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Abstract—This paper presents a robust feedforward design1

approach using hybrid modeling to improve the output tracking2

performance of feed drives. Geared towards the use for feedfor-3

ward design, the hybrid model represents the dominant linear4

dynamics with a flat analytical model, and captures the output5

nonlinearity by Gaussian process regression. The feedforward6

control is based on the model inversion, and the design procedure7

is formulated as a signal-based robust control problem, consid-8

ering multiple performance objectives of tracking, disturbance9

rejection and input reduction under uncertainties. In addition,10

the technique of structured µ synthesis is applied, which allows11

direct robust tuning of the fixed-structure feedforward gains12

and ensures the applicability in industrial hardware. The pro-13

posed methodological approach covers the entire procedure from14

modeling to control architecture selection and weights design,15

delivering an end-to-end strategy that accounts for performance16

and robustness requirements. Validated on an industrial milling17

machine with real-time capability, the proposed robust controller18

reduces the mean absolute tracking error in the transient phase19

by 83% and 63% compared to the industrial standard baseline20

feedforward and the nominal design, respectively. Even with a21

variation of 20% in the model parameters, the robust feedforward22

still reduces the error by 58% in the worst case with respect to23

the baseline.24

Index Terms—Drive control, hybrid modeling, mixed uncer-25

tainty, robust feedforward control.26

I. INTRODUCTION27

MODERN manufacturing is subject to ever-increasing28

demands for high productivity and tight part toler-29

ances. Feed drives, which are the main motion-generating30

components, are required to achieve high-precision tracking31

of a high-speed motion profile. Industrial control systems32

are predominantly of the PID type, mostly combined with33

velocity and acceleration feedforward to improve output track-34

ing behavior [1], [2]. This standard approach is effective for35

mechanical systems that resemble rigid body dynamics, but36

has limited performance for flexible machine structures, which37

are increasingly evident in highly dynamic motion.38

Inversion-based feedforward control has been widely inves-39

tigated to compensate for known higher-order dynamics of40
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the plant to achieve accurate output tracking. These include 41

the zero-phase-error tracking control (ZPETC) [3], [4], the 42

zero-magnitude-error tracking control (ZMETC) [5]–[7], the 43

parameter varying feedforward [8], [9], and the optimization- 44

based inverse feedforward with neural networks [10], [11]. 45

These approaches require a rather precise dynamics model 46

with significantly increased identification effort. Various adap- 47

tive feedforward controllers have been studied to eliminate 48

the influence of model uncertainty and to reduce the commis- 49

sioning effort by updating the feedforward gains online [12]– 50

[17]. The convergence of the gain adaptation requires that the 51

reference trajectory is sufficiently informative and satisfies a 52

persistent excitation condition, which may not be met with the 53

standard industrial motion profile, as high-precision manufac- 54

turing requires, on the contrary, highly smooth motion. 55

Recent results incorporate the model uncertainty directly 56

into the controller design. Polynomial regression is applied 57

to approximate the uncertain inverse transfer function in [18] 58

of an analog electronic circuit, which shows great robustness 59

to parametric model uncertainty and measurement noise. The 60

polynomial extrapolation method is extended to the prediction 61

and compensation of the unknown disturbance in [19] for a 62

timing-belt actuator, where a compensating control mechanism 63

is presented to account for the prediction error of the model. 64

The technique of Bayesian optimization is used for safe 65

learning of controller parameters considering safety critical 66

constraints in [20]–[22]. However, the common drawback 67

of these methods is their lack of robustness to unmatched 68

dynamic uncertainties, which limits the tracking performance, 69

especially for high-order systems, due to the limited model 70

order applicable for real-time application. 71

Robust control design approaches, such as H∞ design, have 72

also received special attention due to the inherent robustness 73

against both parametric and dynamic uncertainties. The robust 74

inversion-based feedforward design method is presented in 75

[23], [24] to directly account for and minimize the effect of 76

dynamic uncertainty. This strategy is extended to a multiple- 77

input and multiple-output problem in [25] with a mixed- 78

sensitivity formulation. The controllers resulting from the 79

classical unstructured H∞ synthesis have a full order of at 80

least the model order plus the order of weights, and they 81

rarely find their way into the industrial hardware. This can 82

be addressed by the technique of non-smooth optimization 83

presented in [26] and [27], which allows direct robust synthesis 84

of fixed-structure controllers. However, it is clear that work on 85

the robust synthesis of structured inverse feedforward control 86
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for feed drives is still scarce.87

Our previous work introduced an velocity feedforward88

scheme based on regression trees (RTs) [28] to compensate for89

steady-state errors due to the load-varying elastic deformation.90

The feedforward relies on the numerical differentiation of the91

RTs, which can lead to large deviations in aggressive motion92

profiles due to their non-differentiable property.93

This paper addresses the main shortcomings of our earlier94

work and others in the literature of feedforward control in two95

important directions concerning modeling and control design.96

First, we develop a hybrid model geared towards the use for97

robust feedforward design to improve the transient and steady-98

state tracking behavior simultaneously. The proposed hybrid99

model combines an analytical low-order approximation of the100

linear drive dynamics, and a data-driven Gaussian process101

(GP) model [29] of the output nonlinearity. Unlike the works102

that represent the entire system dynamics with GP models103

[30]–[32], our proposed approach approximates the dominant104

linear dynamics with an analytical model, which simplifies the105

learning task of the GP model to the static output nonlinearity106

with normalized problem scale. In addition, the flatness of the107

selected analytical model allows direct model inversion for108

feedforward control without the need for additional optimiza-109

tion [33], or inverse learning [34], [35]. Second, in contrast110

to the conventional exact model inversion [1], a modified111

inverse feedforward with fixed structure is proposed to account112

for model uncertainties. The parameterization of feedforward113

gains is formulated as a signal-based robust control problem114

with simultaneous consideration of multiple performance re-115

quirements, where the resulting design problem is solved116

using the structured µ synthesis technique presented in [26],117

[27]. In addition, guidelines on weight selection are provided118

to reduce the complexity of the control design for practitioners.119

The main contribution of the paper can be summarized as120

follows:121

1. Hybrid modeling strategy of feed drives with particular122

focus on feedforward control, combining an analytical123

approximation of linear dynamics and a data-driven GP124

model of output nonlinearities.125

2. Robust design procedure of modified feedforward gains126

using the structured µ synthesis technique to optimize127

multi-objective control performance under uncertainty in128

analytical and data-driven models.129

3. Signal-based formulation of synthesis problem and prac-130

tical guidelines for weight selection that limit the com-131

missioning effort of feedforward gains to the selection of132

two hyperparameters.133

4. Validated real-time capability, performance improvement134

and robustness to model errors on industrial hardware,135

with experimental data openly available in [36] for re-136

producibility and further analysis.137

The rest of the paper is organized as follows: Sec. II in-138

troduces the industrial standard feedforward controls and the139

performance limiting assumptions. Sec. III proposes the hybrid140

modeling structure of feed drives, followed by an inversion-141

based feedforward design for tracking and disturbance com-142

pensation. Sec. IV proposes the robust synthesis framework143

motor
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τm

+

−
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Fig. 1. Industrial cascaded control structure and mechanical properties of a
feed drive with ball screw.

of feedforward gains, as well as guidelines for the weight 144

selection to ensure industrial applicability. Sec. V presents an 145

experimental validation of the proposed robust feedforward 146

scheme on industrial hardware. Finally, Sec. VI gives the 147

concluding remarks. 148

II. PROBLEM STATEMENT 149

Feed drives are an important motion generating part of 150

machine tools converting the rotatory motion of a motor into 151

a linear motion of the tool or table. The most common type of 152

feed drives are ball screw drives due to their high stiffness, low 153

friction and comparatively low cost, where the motor drives 154

a screw spindle and the translational load side is connected 155

by a chain of balls rolling between screw and the nut, as 156

pictured in Fig. 1. Practically all industrial control platforms 157

use a cascaded feedback control structure, consisting of a load- 158

side proportional (P) position controller Kpos and a motor- 159

side proportional-integral (PI) velocity controller Kvel, which 160

determine the desired velocity ẋm,d from position error el 161

and desired torque τm,d from velocity error ėm, respectively. 162

Further, a PI current controller is used to control the current— 163

and, hence, the motor torque—via pulse-width modulation. 164

The closed-loop current control loop, named Gcurr in Fig. 1, 165

is typically by orders of magnitude faster than the mechanical 166

behavior and the achievable frequency range of velocity and 167

position controller [2]. Hence, for the remainder of this paper, 168

we simplify Gcurr(s) ≈ 1. In addition, a differential feedfor- 169

ward control is used to compensate for the known behavior 170

and allows for better error regulation through feedback. The 171

velocity feedforward is used to cancel the tracking offset in 172

constant velocity stages. The acceleration profile is converted 173

to a torque feedforward term and compensates for the inertia J̃ 174

during the acceleration and deceleration. This control structure 175

works well for stiff systems and is easy to parameterize as 176

the control loops can be tuned sequentially, starting with 177

the innermost current controller. However, for more dynamic 178

motions or larger masses to be moved, the finite stiffness of the 179

coupling, spindle, and nut leads to dynamic positioning errors 180

as well as imperfectly manufactured parts, such as the spindle 181

lead, which is subject to changes along the travel length of 182

the feed drive. 183

The goal of this work is to achieve better output tracking of 184

the commanded position xd by improving the feedforward part 185

in Fig. 1. The feedback control is assumed to be predefined 186
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and is not changed. Although it might be beneficial to consider187

feedforward and feedback simultaneously, we decide not to188

do so here to ensure easier applicability in industrial practice,189

where the cascaded P-PI control structure is implemented in190

the frequency inverters and can hardly be changed in industrial191

applications, only parameterized. Also, the parameterization192

of feedback gains for multi-axis machines should account for193

the overall machine dynamics to synchronize the tracking194

behavior of all axes [37], which is not considered in this195

work. At the same time, the feedforward signal can be freely196

commanded externally from the CNC via the fieldbus system197

[38, §7].198

Note that the standard velocity and acceleration feedforward199

controls in Fig. 1 perform the inversion of the inner motor200

control loop (from ẋm,d to ẋm) and the mechanics (from τm,d201

to xl), respectively. This relies on the fundamental rigid body202

assumptions, i.e.203

1. The transfer function of velocity control loop has a204

constant magnitude of 1 for all frequencies.205

2. The entire power train components are characterized by206

a rigid body with inertia J̃ .207

However, neglecting structural vibration modes and nonlinear208

characteristics of the mechanics results in limited output209

tracking performance [37]. Moreover, as the corresponding210

dynamics of the inner loop or mechanics change, e.g. due to211

changes in inertia, friction and other dynamics resulting from212

wear, aging or variations in lubrication over the machine’s213

lifetime, the feedforward would compensate for the incorrect214

model [1]. This motivates the need for a more accurate215

feedforward strategy and a robust control design method to216

account for model uncertainties.217

III. INVERSION-BASED FEEDFORWARD WITH HYBRID218

MODELING219

This section proposes a combined analytical and data-driven220

modeling approach of the drive control system, followed by221

a feedforward control design based on the model inversion to222

improve the output tracking.223

A. Hybrid Modeling Structure224

In conventional feedforward design of feed drives, the motor225

torque is often chosen as the control input to account for the226

known dynamics of the plant or disturbance [39]. However,227

this requires a rather precise dynamics model of the entire228

compliant mechanics from motor torque to load position,229

which significantly increases the modeling effort.230

The central idea of our modeling approach is to take the231

inner feedback loop as the first part of the model, and to use232

the commanded motor velocity ẋm,d as the control signal.233

This modeling strategy shifts the objective of feedforward234

design from the inversion of the entire mechanical system,235

to the inversion of the inner control loop and the concatenated236

output mapping. The hybrid modeling, given in Fig. 2, assumes237

linear dynamics of the velocity control loop described by the238

analytical model G0, followed by a nonlinear output mapping239

captured by the data-driven model Φ.240

The selected model structure offers two advantages that 241

make it attractive from a practical point of view. On the one 242

hand, in contrast to modeling the entire mechanics, taking the 243

velocity control loop as the first part of the model reduces the 244

sensitivity to plant variations and disturbances, allowing the 245

corresponding dynamics to be described with a simple low- 246

order analytical model and its corresponding uncertainty set 247

with much less identification effort. On the other hand, as 248

the dominant linear dynamics are captured by the analytical 249

model, describing the remaining nonlinear output mapping is 250

less demanding. This can be conveniently modelled as a static 251

nonlinearity and identified with data-driven techniques such as 252

Gaussian process (GP) regression. 253

B. Analytical Model of Velocity Control Loop 254

We use a linear reduced-order model to describe the dom- 255

inant dynamics of velocity-controlled motor drive, namely to 256

capture the first resonant mode. This model is based on the 257

cascade control principle, which assumes that the velocity 258

control loop of the motor drive operates on a much faster 259

timescale than the mechanical dynamics. As such, the motor 260

velocity loop is approximated as the transfer function from the 261

desired velocity ẋm,d to the actual velocity ẋm, given by 262

Gm(s) =
Ẋm(s)

Ẋm,d(s)
=

ω2
0

s2 + 2D0ω0s+ ω2
0

. (1)

where ω0 represents the first resonant frequency and D0 263

describes the damping ratio of the velocity loop. Also, the 264

DC-gain Gm(0) is chosen to be 1, as the velocity control loop 265

has an integrating part in the controller. Thus, the analytical 266

model G0 (from ẋm,d to xm) is given by the velocity transfer 267

function of the motor drive followed by an integrator, namely 268

G0(s) = Gm(s)/s. 269

Apart from the need for a good approximation of the 270

dominant dynamics at low frequencies, the structure of the 271

analytical model G0 is chosen with a particular focus on the 272

targeted feedforward design, i.e. 273

1. The model G0 is selected to be flat. 274

2. The order of the model G0 is limited to 3. 275

The flatness of the selected model simplifies the inversion- 276

based feedforward design using smooth reference trajectories, 277

even if the model inverse is not proper, see Sec. III-D. 278

Moreover, limiting the model order to 3 has the practical 279

motivation that CNC-guided motion is planned continuously 280

up to the third derivative of the axis position (axis jerk). 281

This motion profile will be used later to resolve the exact 282

model inversion by explicitly using the known derivatives. 283

Increasing the model order requires higher-order derivatives 284

of the trajectory, which are not available in the standard CNC 285

system [38, §5.6.2]. 286

C. Data-driven Model of Compliant Mechanics 287

Following the linear dynamics model of the drive motor, 288

the subsequent nonlinear output mapping Φ characterizes the 289

nonlinear mechanics of the power train components, given by 290

xl = Φ(xm) = xm︸︷︷︸
=..ΦL

+(xl − xm)︸ ︷︷ ︸
=..ΦNL

. (2)
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Fig. 2. Hybrid modeling of the feed drive control system for feedforward design.

This is further separated into a linear term ΦL and a nonlinear291

term ΦNL in addition, which have very different problem292

scales. The linear term ΦL serves as the base model, and293

incorporates the prior knowledge that the drive train exhibits294

mostly a linear transmission behavior, affected by a secondary295

nonlinear distortion ΦNL of much smaller magnitude. In296

contrast to learning the entire nonlinear mapping Φ containing297

different problem scales, this separation strategy simplifies298

the task of data-driven model to residual learning of ΦNL299

by subtracting the linear base model ΦL. Also, this additive300

represensation simplifies the inversion-based feedforward in301

Sec. III-D, and allows the robust control design using the µ302

synthesis technique in Sec. IV-B.303

The linear base model ΦL represents the nominal trans-304

mission behavior of the powertrain components, namely the305

transmission ratio from rotational motion of the drive to axial306

motion of the load. The nonlinear distortion ΦNL is observed to307

be patterned and periodic depending on the axis position and308

velocity (see Fig. 10 and [40]), due to the non-constant gear309

ratio resulting from the machining tolerances of the ball screw310

spindle, and the cyclical motion of the motor drive. This is311

typically approximated by parametric sinusoidal models with312

position and velocity dependent offsets, whose results rely313

heavily on expert knowledge of the parametric structure [41].314

In contrast to this, the data-driven approach based on Gaussian315

process regression is applied in the following.316

Consider the vector-valued input x = [x, ẋ]⊤ consisting317

of the axis position and velocity, and the scalar-valued noisy318

output yN, representing the measured nonlinear distortion ΦNL319

subject to the Gaussian noise ε320

yN,i = ΦNL(xi) + εi i = 1, ..., nD, ε ∼ N (0, σ2
N). (3)

Then the posterior distribution under the Gaussian prior and321

likelihood is also Gaussian [29]. Conditioning on the training322

data set X = [x1, ...,xnD
] and y = [yN,1, ..., yN,nD

] of length323

nD, the prediction of ΦNL(x) at an arbitrary test input x is324

given by the posterior mean and variance325

mean = m(x) + k(x,X)⊤ (k(X,X) + σ2
N)

−1(y −m(X))︸ ︷︷ ︸
=..β

(4)

var = k(x,x)− k(x,X)⊤(k(X,X) + σ2
N)

−1k(x,X).
(5)

The mean function m(·) incorporates the prior knowledge326

of the trend in the data and can be used to improve the327

extrapolation behavior [29]. This is set to 0 as we are only328

concerned with the interpolation behavior within the prede-329

fined operational space. The kernel function k(·, ·) provides a330

Kpos

Kff,r

G0 ΦL

Kff,d

xd el ẋm,d xm xl

−

ΦNL

+

−+

+

Fig. 3. Control structure with hybrid feedforward compensation.

similarity measure over function values in the input space, 331

and the squared exponential kernel is used for continuous 332

approximation, given by 333

kSE(x,x
′) = σ2

S exp

(
−

nx∑
j=1

(xj − x′
j)

2

2l2j

)
(6)

where nx is the number of inputs, σ2
S is the signal variance 334

that determines the average distance of the nonlinear function 335

ΦNL(·) from its mean, and lj is the length scale that captures 336

the correlation of neighboring points along a given axis in the 337

input space. 338

D. Feedforward Control with Model Inversion 339

Based on the separation strategy in Eq. (2), the nonlinear 340

output mapping Φ can be further described as a linear transfer 341

function ΦL influenced by an additional disturbance ΦNL. The 342

corresponding control structure with hybrid feedforward for 343

the tracking of reference xd and the rejection of disturbance 344

ΦNL is shown in Fig. 3. 345

The linear transfer function ΦL, which determines the 346

nominal transmission ratio of the powertrain, has a magnitude 347

of 1, as discussed in Sec. III-C. It is thus neglected in the 348

following for simplicity. The additive disturbance term ΦNL is 349

approximated by GP model, which takes the desired reference 350

as input for prediction rather than measurements to avoid 351

feedback loops. In the frequency domain, the achieved output 352

load position xl with the desired reference xd is given by 353

xl = (1 +G0Kpos)
−1G0(Kff,r +Kpos)xd + (7)

(1 +G0Kpos)
−1(1−G0Kff,d)ΦNL,

with the control law 354

u = Kff,rxd −Kff,dΦNL︸ ︷︷ ︸
feedforward

+Kpos(xd − xl),︸ ︷︷ ︸
feedback

(8)

where Kpos is the proportional position controller inherent in 355

the drive control system, Kff,r and Kff,d are the feedforward 356

controllers that are to be designed for trajectory tracking and 357

disturbance rejection, respectively. 358
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A standard approach adopted in practice to design Kff,r359

and Kff,d is to use the so-called exact model inverse. That is,360

assuming the transfer function G0 is exact, the feedforward361

controllers can be chosen as the inverse of the model for362

tracking and disturbance rejection363

Kff,r = Kff,d = G−1
0 =

s3 + 2D0ω0s
2 + ω2

0s

ω2
0

. (9)

If we assume in addition that the map ΦNL is also known,364

this inverse feedforward achieves exact output tracking, i.e.365

by substituting the feedforward law of Eq. (9) into Eq. (7),366

we obtain xl = xd.367

The respective feedforward control laws for tracking and368

disturbance rejection can be expressed in the time domain as369

uff,r =
1

ω2
0

...
x d +

2D0

ω0
ẍd + ẋd, (10)

uff,d =
1

ω2
0

...
ΦNL +

2D0

ω0
Φ̈NL + Φ̇NL, (11)

with the desired velocity ẋd, acceleration ẍd and jerk ...
x d of370

the reference signal. Similarly, Φ̇NL, Φ̈NL and
...
ΦNL represent371

the first, second and third time derivatives of the nonlinear372

distortion, respectively. The GP prediction only takes the373

desired trajectory as input for feedforward control, i.e. x = xd374

and ẋ = ẋd, to avoid introducing additional feedback loops.375

Furthermore, for the computation of time derivatives of the376

GP model in Eq. (11), we negect higher-order derivatives of377

the desired trajectory and consider ẍd ≈ 0, which basically378

limits the prediction of the derivatives to the constant veloc-379

ity phase. Exact calculation without neglecting higher-order380

derivatives can, potentially, improve the transient behavior381

even further. However, the practical motivation is that without382

this simplification, the fourth time derivative of the reference383

trajectory ....
x d would be required to compute the third time384

derivative
...
ΦNL(xd, ẋd), which is not available in the standard385

industrial numerical control system [38, §5.6.2].386

Therefore, considering the two inputs x and ẋ of the GP387

model with ẍ ≈ 0, the time derivatives are given by388

Φ̇NL(x, ẋ) =
∂ΦNL

∂x
ẋ+

∂ΦNL

∂ẋ
ẍ︸ ︷︷ ︸

=0

(12)

Φ̈NL(x, ẋ) =
∂2ΦNL

∂x2
ẋ2 +

∂2ΦNL

∂x∂ẋ
ẍẋ︸ ︷︷ ︸

=0

+
∂ΦNL

∂x
ẍ︸ ︷︷ ︸

=0

...
ΦNL(x, ẋ) =

∂3ΦNL

∂x3
ẋ3 +

∂3ΦNL

∂x2∂ẋ
ẍẋ2︸ ︷︷ ︸

=0

+2
∂2ΦNL

∂x2
ẋẍ︸ ︷︷ ︸

=0

,

where the derivatives of the GP model with respect to its inputs389

can be obtained by the chain rule according to Eq. (4).390

In practice, the nominal model G0 may not exactly repre-391

sent the true plant, especially at high frequencies. Moreover,392

the GP model cannot fully capture the characteristics of393

the disturbance term ΦNL and the prediction is subject to394

uncertainties captured by the variance in Eq. (5). Also, the395

relevant frequency ranges of tracking and disturbance rejection396

are different. In contrast to the same exact inverse for Kff,r397

and Kff,d in Eq. (9), it is thus advantageous to select the398

feedforward gains separately [42]. This leads to the need for 399

a robust multi-objective feedforward design method that seeks 400

to achieve the best possible performance over the possible 401

uncertainties for tracking and disturbance rejection. 402

IV. ROBUST FEEDFORWARD SYNTHESIS UNDER MIXED 403

UNCERTAINTIES 404

This section proposes a robust feedforward design method 405

via structured µ-synthesis to optimize the robust performance 406

of the inversion-based feedforward controller described in 407

Sec. III. In addition, weight selection guidelines are presented 408

to give practitioners an intuitive insight into the trade-offs of 409

the robust design. 410

A. Modelling of Uncertainties 411

For the inverse feedforward control design in Sec. III, the 412

feed drive control system is represented by a hybrid model: 413

the analytical model G0 of drive dynamics approximated by 414

a second order lag term in Eq. (1) with an integrator, and the 415

data-driven model ΦNL of mechanical transmission represented 416

by GP regression in Eq. (4). Both of them are still subject to 417

uncertainties, namely the complex dynamic uncertainty of G0 418

and the real parametric uncertainty of the GP model. 419

Consider the set Π of all possible plants under uncertainty, 420

the complex dynamic uncertainty of the nominal analytical ap- 421

proximation can be captured by the multiplicative uncertainty 422

model in the frequency domain as 423

Gp(jω) = G0(jω)(1 +W (jω)∆c(jω)), (13)

where Gp ∈ Π describes the possible uncertain plant, G0 is 424

the nominal model and ∆c ∈ C is the normalized complex 425

uncertainty with |∆c| < 1. The weight W represents the 426

variation of the relative model uncertainty in the frequency 427

domain, and its magnitude satisfies 428

|W (jω)| ≥ lm(ω) = max
Gp∈Π

∣∣∣∣Gp(jω)−G0(jω)

G0(jω)

∣∣∣∣ , ∀ω. (14)

Here, lm captures the largest possible magnitude of the relative 429

model uncertainty over frequencies. The uncertainty weight 430

W determines the size of the considered uncertainty set, and 431

must be chosen to have a greater magnitude than lm, to ensure 432

that all possible relative uncertainties are included within 433

the uncertainty model of Eq. (13). The weight W is often 434

chosen as a high-pass filter [42], corresponding to the fact that 435

the nominal low-order approximation G0 mainly captures the 436

dynamics at low frequencies and has a larger error at higher 437

frequencies. 438

In addition, the uncertainty of the disturbance prediction 439

ΦNL by the GP model is described by an additive parametric 440

uncertainty model with prediction error bounds. We use d0 as 441

the nominal disturbance term predicted by the GP model and 442

d as the true disturbance ΦNL. This is given by 443

|d− d0| ≤ 3σ, ∀ω. (15)

The uncertain disturbance d is described by the 3σ confidence 444

region around the mean GP prediction d0. This can be repre- 445

sented as an additive uncertain disturbance model, given by 446

d = d0 + 3σ ·∆r, (16)
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Fig. 4. Signal-based robust performance problem for controller synthesis.

with normalized parametric uncertainty ∆r ∈ R and |∆r| < 1.447

Besides, the variance σ is estimated in a conservative way448

by the maximum variance of the GP model over the entire449

input space. Noticeably, the frequency-varying uncertainty450

quantification is not considered here due to numerical diffi-451

culties. The practical problem is that the secondary nonlinear452

distortion ΦNL has a rather small magnitude compared to its453

input vector. In our case, the identification of the investigated454

transfer function, if possible, has a relevant magnitude of about455

−65 dB, which makes the frequency domain GP model very456

sensitive to measurement noise and numerical errors.457

B. Signal-based Robust Feedforward Synthesis458

The central idea of the robust feedforward control synthesis459

is to seek for the best achievable performance over the set460

of possible uncertainties [43]. In contrast to the exact inverse461

feedforward given in Eq. (9), the modified inverse feedforward462

is used to account for model uncertainties, especially at high463

frequencies. The modified feedforward structure is given by464

Kff,i = Fc,iG
−1
0,i =

1
ω2

0,i
s3 +

2D0,i

ω0,i
s2 + s

(Tc,is+ 1)3
, (17)

where the subscript i denotes r and d for reference tracking465

and disturbance compensation, respectively. The lag term466

Fc,i = 1/(Tc,is + 1)3 is introduced to capture the band limit467

of the feedforward gain and to restrict the model inversion468

to frequency regions of low uncertainty. Equivalently, the469

crossover frequency can be calculated as fc,i = 1/(2π · Tc,i)470

in Hz.471

Also, unlike the exact inverse in Eq. (9), whose parameters472

are determined by the identification in the frequency domain,473

the parameters ω0,i, D0,i and Tc,i of feedforward controllers474

are determined by the robust synthesis framework for robust475

performance optimization. In addition, although the feedfor-476

ward gains for tracking and disturbance rejection take the same477

structure of Eq. (17), the corresponding control parameters are478

synthesized independently as their relevant frequency ranges479

are different.480

The synthesis of robust feedforward controllers for trajec-481

tory tracking and disturbance rejection is formulated as a482

signal-based problem [42, §9.3.6], which is very general and483

appropriate for multivariable problems considering multiple484

performance objectives simultaneously, as shown in Fig. 4.485

The transfer functions Gp and Gd represent the uncertain486

plant and disturbance model, Kff,r and Kff,d are the two487

P

∆r

∆c

K

w

ω∆

u

z

z∆

v

N

Fig. 5. Generalized robust synthesis interconnection.

feedforward controllers that are to be synthesized, Kpos is 488

the proportional position controller with fixed gain inherent 489

in the original control system. The input weights Wv,Wd 490

and Wr represent the mapping from the exogenous signals 491

to the corresponding physical signals, namely the parametric 492

uncertainty of the GP, the predicted nominal disturbance, and 493

the reference trajectory. The output weights Wu and We 494

specify the desired performance requirements in terms of the 495

control effort and the control error, respectively. 496

For the controller synthesis, the signal-based interconnec- 497

tion in Fig. 4 can be transformed into the generalized robust 498

synthesis structure of Fig. 5 by introducing 499

w =

wv

wd

wr

 , z =

[
zu
ze

]
, v =

d0r
y

 , u = u, (18)

where ∆ = diag[∆r,∆c] is the uncertainty set with real 500

and complex blocks, P is the generalized plant, and K is 501

the generalized controller; v are the measured outputs of 502

the general plant and u is the control input consisting of 503

the feedforward and feedback parts; ω∆ = [d∆r
, u∆c

]⊤ and 504

z∆ = [v∆r
, y∆c

]⊤ are the uncertain inputs and outputs, 505

respectively. 506

The generalized plant P is given by a transfer function 507

matrix as 508

v∆r

y∆c

zu
ze
d0
r
y


=



0 0 Wv 0 0 0
0 0 0 0 0 W
0 0 0 0 0 Wu

-We -WeG0 0 -WeWd WeWr -WeG0

0 0 0 Wd 0 0
0 0 0 0 Wr 0
1 G0 0 Wd 0 G0


︸ ︷︷ ︸

=..P


d∆r

u∆c

wv

wd

wr

u

 .

(19)
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The generalized controller K with fixed structure reads509

u =
[
−Kff,d Kff,r +Kpos −Kpos

]︸ ︷︷ ︸
=..K

d0r
y

 , (20)

where Kpos is the proportional feedback controller, Kff,r and510

Kff,d are the feedforward controllers of Eq. (17) for tracking511

and disturbance rejection, respectively.512

To analyze the robust performance of the uncertain system,513

the interconnection of Fig. 5 can be transformed into the N∆514

structure by relating the transfer function matrix N (from515

[ω⊤
∆,ω⊤]⊤ to [z⊤

∆, z⊤]⊤) to P and K by a lower linear516

fractional transformation517

N = Fl(P ,K) = P11 + P12K(I − P22K)−1P21, (21)

which can be further rearranged into the M∆ structure for518

robust stability analysis, with the upper left block of N519

representing the transfer function matrix M from the uncertain520

inputs ω∆ to the uncertain outputs z∆.521

Nominal and robust stability are the prerequisites for robust522

performance. Designing the feedback controller such that the523

system remains stable under uncertainties, as discussed in524

Sec. II, is not the focus of this paper. In the following we525

assume that the stability conditions are satisfied and focus526

on the robust performance optimization by synthesis of the527

feedforward gains.528

Both robust stability and performance problems can be ad-529

dressed using the technique of µ-analysis [42]. The structured530

singular value (SSV) of the transfer function matrix M , in531

terms of the normalized uncertainty set ∆ with maximum532

singular value σ̄(∆) less than one, is given by [42, §8.8]533

µ∆(M) =
1

min
{
km | det(I − kmM∆) = 0, σ̄(∆) ≤ 1

} .
(22)

The inverse of the SSV value µ∆(M) determines the smallest534

positive value that gives a singular matrix I−kmM∆, which535

corresponds to an unstable interconnection between kmM536

and ∆. In other words, the inverse of µ∆(M) indicates the537

maximum tolerable increase of the uncertainty set ∆, before538

the closed-loop control system becomes unstable. Thus, the539

robust stability condition reads540

µ∆(M) < 1, (23)

yielding a robust stabilization of the plant P by the controller541

K subject to any uncertainties within the uncertainty set ∆.542

Furthermore, by introducing the extended block structure543

∆ext = diag[∆, ∆̃] with the actual uncertainty set ∆ and544

a normalized full complex uncertainty ∆̃ [42, §8.10.1], the545

robust performance condition of the interconnection of Fig. 5546

can be transformed into the robust stability condition of the547

extended N∆ext structure, given by548

µ∆ext(N) < 1, (24)

which corresponds to the satisfaction of the control perfor-549

mance specifications subject to the uncertainty set ∆, even in550

the worst case. The robust performance synthesis then amounts551

to designing a controller K of Eq. (20) that minimizes the SSV 552

value µ∆ext(N), i.e. 553

min
K

µ∆ext(N). (25)

Although the search for the fixed-structure controller K 554

of Eq. (20) that satisfies the condition of Eq. (24) has not 555

been fully solved, locally optimal solutions can be found by 556

combining the µ-analysis and the structured H∞-synthesis. 557

The main idea is to iterate between the estimation of the 558

upper bound of µ via D-scaling (D-step) and the synthesis 559

of a structured H∞ controller for the scaled problem (K-step) 560

using the non-smooth optimization technique [26], [27]. In 561

addition, to account for the real parametric uncertainty, the G- 562

scaling can be used to obtain a less conservative estimate of 563

the upper bound [44]. The DGK-iteration with fixed-structure 564

H∞-synthesis to solve problem (25) is available as musyn 565

program in MATLAB’s Robust Control Toolbox. 566

C. On the Weight Selection 567

The weights of the signal-based robust control problem 568

represent the known or expected frequency content of the 569

signals, and specify the desired performance requirements in 570

terms of control input and control error. We presented in our 571

previous work [45] a two-step design approach of the weight 572

selection for the signal-based robust control problem, i.e. 573

1. Map the exogenous signals to the physical signals based 574

on the measurement. 575

2. Define the performance requirements by selecting two 576

hyperparameters. 577

The practical motivation for this design procedure is to limit 578

the tuning complexity and to allow even non-specialists to 579

use the proposed robust synthesis framework for feedforward 580

design with limited commissioning effort, summarized below. 581

Step 1: Information extraction from the measurement 582

The weights of the exogenous inputs are set according 583

to the expected magnitudes of the physical signals: The 584

reference weight Wr is set to the expected maximum reference 585

change within the working space; the disturbance weight Wd 586

takes maximum magnitude of the nominal disturbance d0; the 587

parametric uncertainty weight Wv represents the error bound 588

of the GP model and is set to Wv = 3σ. 589

The dynamic uncertainty weight W represents the uncer- 590

tainty variation of the analytical model G0 over frequencies. 591

As defined in Eq. (14), this is defined as a high-pass filter, 592

since the low-order approximation is less accurate at high 593

frequencies. We thus define its inverse as 594

W−1 =

(
s/M1/nW + ωB

)nW(
s+ ωBA1/nW

)nW
. (26)

The weight parameters are determined graphically from the 595

measured frequency response functions according to the con- 596

dition of Eq. (14), where nW is the filter order determining 597

the slope, ωB is the crossover frequency where the relative 598

uncertainty exceeds 1, and M > 1, A < 1 are the asymptote 599

at high and low frequencies, respectively. 600
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The weight Wu describes the expected frequency content of601

the control signal and avoids input saturation. This is defined602

as a first order low-pass filter, given by603

Wu =
s/Mu + ωB,u

s+ ωB,uAu
, (27)

where a larger magnitude of Wu implies a smaller expected604

control action. Also, the parameters can be determined graph-605

ically in a similar way to Eq. (26), based on the measured606

frequency response function from the desired reference r to607

the control signal u in the standard control loop.608

Step 2: Definition of performance requirements609

In addition to the weights mentioned above, which are610

determined from the measurement, the performance weight611

We defines the required control performance with respect to612

the control error e, which is chosen by the designer. This is613

defined as a low-pass filter, i.e.614

We =
s/Me + ωB,e

s+ ωB,eAe
, (28)

where a larger magnitude of We implies a smaller error615

tolerance. Due to the integrator of G0, we have Ae = 0616

inherently. However, the low frequency asymptote Ae is still617

set to a small value to avoid numerical errors [42, §2.7.3]. The618

remaining two hyperparameters ωB,e and Me are determined619

by the designer to trade-off between the expected bandwidth620

and the attenuation of high frequency oscillations. A larger621

value of the desired bandwidth ωB,e results in lower tracking622

error at low frequency, but inevitably increases the peak Me623

and the sensitivity to high frequency oscillations.624

V. VALIDATION625

The proposed robust feedforward control scheme has been626

validated experimentally on an industrial feed drive. For re-627

producibility and further analysis, the experimental data are628

openly available in [36].629

A. Experimental Setup and Computational Requirements630

The experimental setup consists of the x-axis of a five-axis631

milling machine, shown in Fig. 6. The motor is a Rexroth632

MS2N03-D0BYN with a rated torque of 0.68 Nm, maximum633

torque of 6.8 Nm and a rated velocity of 5700 1/min. The load634

(namely the z- and b-axis) weighs 150 kg and is driven on the635

Franke TSL06U ball screw linear table, which has a spindle636

lead of 5 mm and an effectively reachable length of 0.36 m.637

The motor is controlled with Rexroth ctrlX DRIVE coupled638

with Beckhoff TwinCAT 3 system for real-time control. All639

parts of the feedforward control, including the GP prediction,640

are implemented in PLC code on the PC-based TwinCAT 3641

real-time control system with a sampling rate of 1 kHz.642

The most computationally intensive part of the feedforward643

scheme is the evaluation of the GP model for the distur-644

bance compensation of Eq. (11), which requires three times645

evaluation of the GP derivatives of Eq. (12). To obtain fast646

approximate prediction for the real-time control, the nearest647

neighbor approach [46] is used to approximate the full GP648

Fig. 6. The test bench used for validation.
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Fig. 7. Runtime of feedforward scheme with GP model on industrial PCs.

prediction of Eq. (4). The basic idea is that the GP kernels only 649

determine the prediction locally, and the data points closest to 650

the test input are the most informative. At each prediction 651

step, the closest points X∗ with predefined box constraints 652

are searched along each axis of the input, which can be easily 653

implemented by index searching. The local approximation 654

of the full GP prediction in Eq. (4) is then computed by 655

multiplying k(x,X∗)⊤ by the coefficients β∗ corresponding 656

to X∗. The sizes of the box constraints are determined by 657

requiring a remaining accuracy of 99% compared to the full 658

prediction, resulting in constraints of ±20 mm in position and 659

±10 mm/s in velocity. Such dimensions allow a good balance 660

between computational effort and prediction accuracy. 661

The runtime of feedforward with GP prediction (single 662

core performance) is measured in the TwinCAT 3 system on 663

different CPUs, given in Fig. 7 and Table I. For example, on an 664

i5-4670 CPU, the mean and maximum execution times for the 665

compensation scheme are 45 and 53 µs. Even with the weakest 666

i3-8100 CPU in the test, the maximum runtime is 108 µs, 667

which is only 10% of the sampling time. Using vectorized code 668

(SIMD instructions on the processor) could speed this up even 669

more. In addition, a total memory of 29.1 kB is required to 670

store the prediction parameter β of Eq. (4) in double precision. 671

This illustrates the real-time capability and the small memory 672

footprint of the compensation scheme. 673

B. Identification of Hybrid Model 674

The analytical model G0 of the velocity control loop is 675

identified using least-squares by comparing the measured and 676

modelled frequency response functions (FRFs) [47, §9.9.1]. 677
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TABLE I
COMPUTATION TIME OF GP-BASED FEEDFORWARD SCHEME ON

DIFFERENT CPUS WITH SAMPLING TIME 1 MS.

CPU time i3-8100 i5-4670 i7-11850HE i9-10900KF

mean [µs] 81 45 41 22
maximum [µs] 108 53 48 24
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Fig. 8. Identified analytical model Gm of velocity loop without integrator.

To measure the FRFs, sinusoidal velocity sweeps are used678

with linearly increasing frequency f ∈ [1, 400] Hz. An offset679

velocity of 10 mm/s is added to reduce the influence of680

stiction friction. Also, the FRFs are measured at different start681

positions xl,0 ∈ {0, 150, 300} mm to capture the position-682

varying dynamics. The local rational model (LRM) method683

[48] is used to estimate the FRFs with a model order of 2 and684

a window length of 101.685

The identified PT2 model Gm of Eq. (1) (from ẋm,d to686

ẋm, with ω0 = 472.8 rad/s and D0 = 0.28) of the velocity687

loop without integrator is shown in Fig. 8. The corresponding688

multiplicative uncertainty, the largest possible magnitude of689

the relative model uncertainty lm, and the selected uncertainty690

weight W are shown in Fig. 9. The uncertainty weight W691

is selected using the strategy introduced in Sec. IV-C with692

nW = 4, ωB = 2π · 130, M = 15 and A = 0.11,693

which has a larger magnitude than lm to include all possible694

relative uncertainties over frequencies, see also Eq. (14). The695

relative uncertainty exceeds 1 at about 140 Hz, indicating that696

the low-order analytical model only captures the dynamics697

in the lower frequency range and deviates more than 100%698

at frequencies greater than 140 Hz. To capture the high699

frequency dynamics more accurately than the analytical model700

of Eq. 1, it is necessary to increase the model order. This701

would require motion profiles smoother than the jerk-limited702

trajectory, which, however, are not available in the standard703

numerical control system [38, §5.6.2].704

The nonlinear distortion ΦNL = xl − xm (c.f. Eq. (2))705

is measured over the workspace at the commanded velocity706

vd ∈ [110, 210] mm/s with a grid of 10 mm/s. Fig. 10 shows707

the periodic pattern of the measured ΦNL depending on the708

axis position and velocity, which is then captured by the GP709

regression model. The variance of the measurement noise is710

set as the square of the maximum relative error of the linear711

101 102
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m
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Fig. 9. Relative uncertainty and uncertainty weight of analytical model.
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Fig. 10. Measured nonlinear distortion ΦNL for different velocities.

encoder with σ2
N = (5·10−7)2. The signal variance is estimated 712

according to the variance of the measured ΦNL, which takes 713

σ2
S = (3 · 10−5)2. A reasonable smoothness of the input 714

space and a good prediction result are achieved with the length 715

scale parameters l1 = 0.0015 and l2 = 0.005, which are 716

chosen iteratively, and can also be estimated by likelihood 717

maximization or cross validation [29, §5.4]. 718

The validation on the test bench is performed with finer 719

grids of 5 mm/s at unseen operating velocities to test the 720

generalization capability of the model. The normalized val- 721

idation result of the GP regression model at ẋd = 175 mm/s 722

in the interval of 150 mm is shown in Fig. 11. Overall, a high 723

coefficient of determination R2 = 97% between measurement 724

and prediction and a mean-absolute error of 1.13 µm is 725

obtained. A major advantage of the GP model over parametric 726

approaches is the high degree of adaptability to the unseen 727

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ΦNL,measured [-]

Φ
N

L
,p

re
di

ct
ed

[-
]

Fig. 11. Validation of normalized GP prediction on the test bench.
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operating condition. In addition, if significant prediction error728

occurs, the measured data during the machine operation can729

be stored to update the GP parameters, and thus adapt the730

compensation scheme to new operating conditions. This might731

be the case due to wear during the lifetime of the feed drive.732

C. Feedforward Control Design733

The feedback controller of Fig. 1 remains the same and734

the following feedforward controllers are compared in the735

validation:736

(a) baseline: The standard velocity and acceleration feedfor-737

ward control given in Sec. II.738

(b) exact inverse: The exact inverse feedforward control of739

the hybrid model given in Sec. III-D.740

(c) robust inverse: The robust feedforward control with mod-741

ified inverse of the hybrid model given in Sec. IV-B.742

The gains of the exact inverse feedforward of Eq. (9)743

take directly the model parameters identified in the frequency744

domain, given in Sec. V-B and Table II. The robust param-745

eterization of the modified inverse feedforward of Eq. (17)746

is performed based on the two-step approach introduced in747

Sec. IV-C. The selected weights determined from the mea-748

surement are: Wd = 2 · 10−4, Wr = 0.36, Wv = 2.6 · 10−6
749

and Wu = (0.015s + 0.1257)/(s + 0.01). The performance750

weight is set to We = (0.8s+62.8)/(s+0.00628) by requiring751

a sensitivity peak of Me = 1.25 and a crossover frequency752

of ωB,e = 10 · 2π, which gives a good balance between753

low frequency tracking and high frequency damping. The low754

frequency asymptote is set to Ae = 10−4 to avoid numerical755

problems. The resulting peak µ value is 0.689 < 1, indicating756

the satisfaction of robust performance requirements, and the757

corresponding feedforward gains are collected in Table II.

TABLE II
CONTROLLER PARAMETERS OF EXACT AND MODIFIED ROBUST INVERSE

FOR HYBRID MODEL.

feedforward gains ω0,i [rad/s] D0,i [-] fc,i [Hz]

exact inverse
Kff,r,Kff,d 472.8 0.28 -

robust inverse
Kff,r 331.1 0.38 18.6
Kff,d 472.3 0.37 50.4

758

The modified robust inverse introduces band limitation for759

the feedforward control, which is implemented separately for760

reference tracking and disturbance compensation.761

The task of limiting the frequency content for tracking feed-762

forward Kff,r is shifted to the design of band-limited reference763

motion profile xd. The industrial standard jerk-limited S-curve764

motion profile is used here [38, §5.6.2], maximum jerk and765

acceleration values of the S-curve profile are chosen such that766

the dominant effective excitation frequency of the reference767

trajectory is less than the required band limit fc,r of the768

tracking feedforward Kff,r, which is described in [49]. Due769

to the inherent band limit of the selected reference signal,770

the additional low pass term of Kff,r can be neglected in the771

implementation to avoid unnecessary phase delay.772

The modified disturbance feedforward Kff,d is realized as 773

the exact inverse of the GP given in Eq. (11), followed by a 774

third order lag term to represent the band limitation as in Eq. 775

(17). The third order low pass filter is implemented in both 776

forward and backward directions to remove the phase shift 777

and to keep the disturbance feedforward synchronized with 778

the tracking feedforward. Such a filtering strategy requires 779

a preview of the reference trajectory xd and its derivatives 780

before the current time step, which is available in the industrial 781

numerical control system by means of the look-ahead func- 782

tionality [2]. Alternatively, this preview-based synchronization 783

strategy can also be implemented by delaying the tracking 784

feedforward accordingly. 785

D. Tracking Performance 786

To validate the steady-state tracking performance, which 787

determines the surface finish quality of workpieces manufac- 788

tured on a machine tool, constant velocity trajectories with 789

ẋd ∈ {150, 175} mm/s are chosen. Fig. 12 shows the steady- 790

state tracking behavior with the corresponding feedforward 791

controllers at ẋd = 175 mm/s. For a quantitative comparison, 792

the tracking performance is evaluated with the mean absolute 793

error (mae) and the maximum absolute error (max). The 794

respective control effort is quantified by the standard deviation 795

of input signals during this constant velocity experiment, 796

summarized in Table III. 797

Compared to the baseline feedforward neglecting the me- 798

chanical compliance, the hybrid modeling approach with exact 799

and modified robust model inverse cut the tracking error 800

at both experiments by more than 61% in mae value and 801

more than 36% in max value. Interestingly, the tracking 802

behavior of the baseline feedforward is no longer offset free at 803

t ∈ [0.8, 1.4] s, resulting in a rather large average error. This is 804

due to neglecting the axial kinematic errors which, especially 805

at high velocities, leads to a velocity deviation between the 806

drive motor and the load, see the slower varying part of ΦNL 807

in Fig. 10. To further illustrate the resulting vibration level, the 808

tracking errors are detrended using a high pass filter with a 809

cut-off frequency of 5 Hz. The hybrid modelling approach still 810

reduces the detrended mae error by 21% with the exact inverse 811

and by 26% with the robust modified inverse. Noticeably, 812

the primary periodic disturbance due to the cyclical motion 813

of the ball screw at v = 175 mm/s has a frequency of 814

fdist = v/h = 35 Hz with h the spindle lead. This is outside 815

the bandwidth fb ≈ 10 Hz and can hardly be handled by the 816

given feedback controller. 817

The control effort of the modified robust inverse is reduced 818

by at least 47% compared to the exact inverse feedforward 819

with comparable tracking error, since the modified robust 820

inverse limits the feedforward gain of the high frequency 821

content. This is as expected because the control input weight 822

Wu is selected based on the measured FRFs from reference 823

r to control signal u in the standard control loop, which con- 824

sequently implies a comparable control effort to the standard 825

feedforward, cf. Sec. IV-C. 826

In addition to the constant velocity phase, feed drives are 827

particularly challenged in the transient phase during acceler- 828



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. X, MONTH 2024 11

−5

0

5

10
e x

[µ
m

]
baseline exact inv robust inv

0 0.2 0.4 0.6 0.8 1 1.2 1.4
174.5

175

175.5

t [s]

u
[m

m
/s

]

Fig. 12. Tracking error and control signal for constant velocity of 175 mm/s.

TABLE III
TRACKING PERFORMANCE AT CONSTANT VELOCITY.

baseline exact inv robust inv

velocity: 150 mm/s
mae(ex) [µm] 2.79 1.06 1.03
max(|ex|) [µm] 7.01 4.47 4.24
std(u) [mm/s] 0.07 0.17 0.09

velocity: 175 mm/s
mae(ex) [µm] 3.11 1.12 1.22
max(|ex|) [µm] 8.28 4.08 3.89
std(u) [mm/s] 0.08 0.19 0.10

ation and deceleration, where the control performance deter-829

mines the part tolerance and the cycle time. Here the industrial830

standard jerk-limited S-curve motion profile is chosen [38,831

§5.6.2], and set to have a maximum velocity of 0.2 m/s, a832

maximum acceleration of 2 m/s2 and a maximum jerk of833

10 m/s3 traveling along the entire axis range. The validation834

result is given in Fig. 13 and in Table IV.

TABLE IV
TRACKING PERFORMANCE OF THE RESPECTIVE CONTROLLERS.

baseline exact inv robust inv

mae(ex) [µm] 17.01 8.02 2.96
max(|ex|) [µm] 90.71 52.39 16.24

835

In contrast to the baseline feedforward assuming rigid body836

dynamics of the control loop, it is observed that the exact837
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Fig. 13. Tracking error with jerk-limited S-curve motion profile.

inverse feedforward, which approximates the dynamics by a 838

low-order model with only two parameters, reduces the track- 839

ing error by 53% in mae value and by 42% in max value. This 840

clearly illustrates the benefit of the selected analytical model 841

structure dedicated to the feedforward design, as discussed 842

in Sec. III-B. In addition, the modified robust feedforward, 843

designed by the µ synthesis framework with optimized robust 844

performance, cut the tracking error even further by more than 845

82% in both metrics. It can be seen from Table II that the 846

robust synthesis method sets a lower resonant frequency ω0,r 847

and a higher damping ratio D0,r for tracking control than the 848

identified model parameters, which leads to a more significant 849

feedforward action in the low frequency range relevant for 850

trajectory tracking and explains the reduction in tracking errors 851

compared to the exact inverse. 852

Overall, the tracking performance with exact and robust 853

model inversion is superior to the baseline feedforward in 854

both steady and transient states, illustrating the benefit of the 855

chosen hybrid structure for feedforward design. In addition, 856

the proposed robust synthesis framework further optimizes the 857

control performance compared to the nominal exact inverse, 858

even with limited commissioning complexity. 859

E. Robustness Analysis 860

Apart from the tracking performance, the robustness of 861

the proposed feedforward design approach is investigated 862

experimentally. This is separated into robustness studies in 863

the face of errors in the data-driven model and the analytical 864

model. 865

The robustness test against underfitting and overfitting of the 866

GP model is performed by setting the length scale parameter to 867

l1,under = 0.005 and l1,over = 0.0006, respectively. The tracking 868

result at ẋd = 175 mm/s is given in Fig. 14. Noticeably, 869

despite the errors in GP model, the hybrid feedforward still 870

ensures an offset-free tracking behavior, and reduces the over- 871

all tracking error by more than 33% in mae value compared 872

to the baseline. This is due to the correction of slower 873

kinematics errors via the GP model, as discussed in Sec. V-D. 874

Considering the resulting vibration level by detrending the 875

tracking error, the underfitted GP model increases the error by 876

52% and 11% for the exact and robust inverse, respectively, 877

due to the incorrectly estimated periodic pattern of ΦNL. 878

As for the overfitting, the resulting vibration level remains 879

similar to the baseline control for exact inverse (increased 880

by 6%) and robust inverse (reduced by 5%). This illustrates 881

the inherent robustness of our chosen model structure against 882

overfitting: due to the low pass nature of the control loop with 883

limited bandwidth, the overly high frequency input command 884

resulting from the overfitted GP is no longer tracked by 885

the underlying speed control loop, and therefore does not 886

significantly increase the vibration level. Overall, the modified 887

robust design achieves better worst case performance than the 888

nominal design, and drastically reduces the control effort by 889

55% and 82%, preventing potential input saturation, especially 890

in the case of overfitting. 891

The robustness is also investigated with mismatched model 892

parameters of the analytical model G0 to simulate errors in the 893
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Fig. 15. Robustness to wrong analytical model (left: exact inverse, right:
modified robust inverse).

identification or varying plant dynamics. The nominal model894

parameters ω0 and D0 are varied by ±20% respectively for895

the inverse feedforward control with S-curve motion profile.896

For the robust feedforward synthesis, the uncertainty weight897

W defined in Eq. (14) must be chosen appropriately to adapt898

the uncertainty set to the deliberately varied model parameters,899

while the other weights of the robust synthesis problem remain900

the same. The result in Fig. 15 shows that, even the nominal901

exact inverse feedforward with significant model errors still902

achieves a performance improvement of at least 35% com-903

pared to the baseline feedforward with rigid body assumption.904

Furthermore, the presented robust synthesis method improves905

the worst case performance by 38% in comparison to the906

nominal feedforward.907

Overall, this experimental robsutness analysis illustrates the908

excellent resilience to errors in the model parameters of the909

inverse feedforward design with the chosen model structure,910

and the significantly increased robustness of the presented911

robust inversion solution as opposed to the exact inversion.912

VI. CONCLUSION913

We presented an inversion-based feedforward design ap-914

proach for the feed drive control system based on hybrid mod-915

eling. The hybrid model, developed with a particular focus on916

its use for real-time feedforward compensation, combines a flat 917

analytical model of linear dynamics and a GP model of output 918

nonlinearities. Besides the exact model inversion solution, the 919

main design contribution is a robust inversion-based feedfor- 920

ward control that explicitly accounts for model uncertainties. 921

The robust synthesis scheme is adopted to optimize the robust 922

performance of the feedforward control under uncertainties. 923

To increase the practical applicability, the synthesis problem 924

of feedforward controllers is formulated in a signal-based 925

manner, and the commissioning complexity of feedforward 926

gains is reduced to the selection of two hyperparameters. Ex- 927

tensive experimental results on an industrial milling machine 928

illustrate the real-time capability and significant performance 929

improvement of the robust feedforward control with hybrid 930

model. Furthermore, the excellent robustness to errors in the 931

analytical model and the data-driven model of this feedforward 932

synthesis framework is demonstrated experimentally. 933

Future work includes representing the disturbance term by 934

the frequency domain GP model, as in [50], which may 935

provide a more accurate, higher fidelity uncertainty quantifi- 936

cation and reduce conservatism. The practical challenge is 937

that the disturbance transfer function tends to have very small 938

magnitudes, requiring more appropriate treatment of numerical 939

issues. 940
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