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Abstract—This paper presents a robust feedforward design
approach using hybrid modeling to improve the output tracking
performance of feed drives. Geared towards the use for feedfor-
ward design, the hybrid model represents the dominant linear
dynamics with a flat analytical model, and captures the output
nonlinearity by Gaussian process regression. The feedforward
control is based on the model inversion, and the design procedure
is formulated as a signal-based robust control problem, consid-
ering multiple performance objectives of tracking, disturbance
rejection and input reduction under uncertainties. In addition,
the technique of structured µ synthesis is applied, which allows
direct robust tuning of the fixed-structure feedforward gains
and ensures the applicability in industrial hardware. The pro-
posed methodological approach covers the entire procedure from
modeling to control architecture selection and weights design,
delivering an end-to-end strategy that accounts for performance
and robustness requirements. Validated on an industrial milling
machine with real-time capability, the proposed robust controller
reduces the mean absolute tracking error in the transient phase
by 83% and 63% compared to the industrial standard baseline
feedforward and the nominal design, respectively. Even with a
variation of 20% in the model parameters, the robust feedforward
still reduces the error by 58% in the worst case with respect to
the baseline.

Index Terms—Drive control, hybrid modeling, mixed uncer-
tainty, robust feedforward control.

I. INTRODUCTION

MODERN manufacturing is subject to ever-increasing
demands for high productivity and tight part toler-

ances. Feed drives, which are the main motion-generating
components, are required to achieve high-precision tracking
of a high-speed motion profile. Industrial control systems
are predominantly of the PID type, mostly combined with
velocity and acceleration feedforward to improve output track-
ing behavior [1], [2]. This standard approach is effective for
mechanical systems that resemble rigid body dynamics, but
has limited performance for flexible machine structures, which
are increasingly evident in highly dynamic motion.

Inversion-based feedforward control has been widely inves-
tigated to compensate for known higher-order dynamics of
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the plant to achieve accurate output tracking. These include
the zero-phase-error tracking control (ZPETC) [3], [4], the
zero-magnitude-error tracking control (ZMETC) [5]–[7], the
parameter varying feedforward [8], [9], and the optimization-
based inverse feedforward with neural networks [10], [11].
These approaches require a rather precise dynamics model
with significantly increased identification effort. Various adap-
tive feedforward controllers have been studied to eliminate
the influence of model uncertainty and to reduce the commis-
sioning effort by updating the feedforward gains online [12]–
[17]. The convergence of the gain adaptation requires that the
reference trajectory is sufficiently informative and satisfies a
persistent excitation condition, which may not be met with the
standard industrial motion profile, as high-precision manufac-
turing requires, on the contrary, highly smooth motion.

Recent results incorporate the model uncertainty directly
into the controller design. Polynomial regression is applied
to approximate the uncertain inverse transfer function in [18]
of an analog electronic circuit, which shows great robustness
to parametric model uncertainty and measurement noise. The
polynomial extrapolation method is extended to the prediction
and compensation of the unknown disturbance in [19] for a
timing-belt actuator, where a compensating control mechanism
is presented to account for the prediction error of the model.
The technique of Bayesian optimization is used for safe
learning of controller parameters considering safety critical
constraints in [20]–[22]. However, the common drawback
of these methods is their lack of robustness to unmatched
dynamic uncertainties, which limits the tracking performance,
especially for high-order systems, due to the limited model
order applicable for real-time application.

Robust control design approaches, such as H∞ design, have
also received special attention due to the inherent robustness
against both parametric and dynamic uncertainties. The robust
inversion-based feedforward design method is presented in
[23], [24] to directly account for and minimize the effect of
dynamic uncertainty. This strategy is extended to a multiple-
input and multiple-output problem in [25] with a mixed-
sensitivity formulation. The controllers resulting from the
classical unstructured H∞ synthesis have a full order of at
least the model order plus the order of weights, and they
rarely find their way into the industrial hardware. This can
be addressed by the technique of non-smooth optimization
presented in [26] and [27], which allows direct robust synthesis
of fixed-structure controllers. However, it is clear that work on
the robust synthesis of structured inverse feedforward control
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for feed drives is still scarce.
Our previous work introduced an velocity feedforward

scheme based on regression trees (RTs) [28] to compensate for
steady-state errors due to the load-varying elastic deformation.
The feedforward relies on the numerical differentiation of the
RTs, which can lead to large deviations in aggressive motion
profiles due to their non-differentiable property.

This paper addresses the main shortcomings of our earlier
work and others in the literature of feedforward control in two
important directions concerning modeling and control design.
First, we develop a hybrid model geared towards the use for
robust feedforward design to improve the transient and steady-
state tracking behavior simultaneously. The proposed hybrid
model combines an analytical low-order approximation of the
linear drive dynamics, and a data-driven Gaussian process
(GP) model [29] of the output nonlinearity. Unlike the works
that represent the entire system dynamics with GP models
[30]–[32], our proposed approach approximates the dominant
linear dynamics with an analytical model, which simplifies the
learning task of the GP model to the static output nonlinearity
with normalized problem scale. In addition, the flatness of the
selected analytical model allows direct model inversion for
feedforward control without the need for additional optimiza-
tion [33], or inverse learning [34], [35]. Second, in contrast to
the conventional exact model inversion [1], a modified inverse
feedforward with fixed structure is proposed to account for
model uncertainties. The parametrization of feedforward gains
is formulated as a signal-based robust control problem with
simultaneous consideration of multiple performance require-
ments, where the resulting design problem is solved using
the structured µ synthesis technique presented in [26], [27].
In addition, guidelines on weight selection are provided to
reduce the complexity of the control design for practitioners.
The main contribution of the paper can be summarized as
follows:

1. Hybrid modeling strategy of feed drives with particular
focus on feedforward control, combining an analytical
approximation of linear dynamics and a data-driven GP
model of output nonlinearities.

2. Robust design procedure of modified feedforward gains
using the structured µ synthesis technique to optimize
multi-objective control performance under uncertainty in
analytical and data-driven models.

3. Signal-based formulation of synthesis problem and prac-
tical guidelines for weight selection that limit the com-
missioning effort of feedforward gains to the selection of
two hyperparameters.

4. Validated real-time capability, performance improvement
and robustness to model errors on industrial hardware,
with experimental data openly available in [36] for re-
producibility and further analysis.

The rest of the paper is organized as follows: Sec. II in-
troduces the industrial standard feedforward controls and the
performance limiting assumptions. Sec. III proposes the hybrid
modeling structure of feed drives, followed by an inversion-
based feedforward design for tracking and disturbance com-
pensation. Sec. IV proposes the robust synthesis framework
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τm

+

−
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Fig. 1. Industrial cascaded control structure and mechanical properties of a
feed drive with ball screw.

of feedforward gains, as well as guidelines for the weight
selection to ensure industrial applicability. Sec. V presents an
experimental validation of the proposed robust feedforward
scheme on industrial hardware. Finally, Sec. VI gives the
concluding remarks.

II. PROBLEM STATEMENT

Feed drives are an important motion generating part of
machine tools converting the rotatory motion of a motor into
a linear motion of the tool or table. The most common type of
feed drives are ball screw drives due to their high stiffness, low
friction and comparatively low cost, where the motor drives a
screw spindle and the translational load side is connected by a
chain of balls rolling between screw and the nut, as pictured in
Fig. 1. Although various model-based control approaches have
been investigated in the literature [2], practically all industrial
control platforms use a cascaded feedback control structure
due to its simplicity of parametrization. The cascaded structure
consists of a load-side proportional (P) position controller Kpos
and a motor-side proportional-integral (PI) velocity controller
Kvel, which determine the desired velocity ẋm,d from position
error el and desired torque τm,d from velocity error ėm,
respectively. Further, a PI current controller is used to control
the current—and, hence, the motor torque—via pulse-width
modulation. The closed-loop current control loop, named
Gcurr in Fig. 1, is typically by orders of magnitude faster
than the mechanical behavior and the achievable frequency
range of velocity and position controller [2]. Hence, for the
remainder of this paper, we simplify Gcurr(s) ≈ 1. In addition,
a differential feedforward control is used to compensate for the
known behavior and allows for better error regulation through
feedback. The velocity feedforward is used to cancel the track-
ing offset in constant velocity stages. The acceleration profile
is converted to a torque feedforward term and compensates
for the inertia J̃ during the acceleration and deceleration. This
control structure works well for stiff systems and is easy to
parameterize as the control loops can be tuned sequentially,
starting with the innermost current controller. However, for
more dynamic motions or larger masses to be moved, the finite
stiffness of the coupling, spindle, and nut leads to dynamic
positioning errors as well as imperfectly manufactured parts,
such as the spindle lead, which is subject to changes along the
travel length of the feed drive.
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The goal of this work is to achieve better output tracking
of the commanded position xd using the industrial standard
cascaded control structure by improving the feedforward part
in Fig. 1. The feedback control is assumed to be predefined
and is not changed. Although it might be beneficial to consider
feedforward and feedback simultaneously, we decide not to
do so here to ensure easier applicability in industrial practice,
where the cascaded P-PI control structure is implemented in
the frequency inverters and can hardly be changed in industrial
applications, only parameterized. Also, the parametrization of
feedback gains for multi-axis machines should account for the
overall machine dynamics to synchronize the tracking behavior
of all axes [37], which is not considered in this work. At the
same time, the feedforward signal can be freely commanded
externally from the CNC via the field bus system [38, §7].

Note that the standard velocity and acceleration feedforward
controls in Fig. 1 perform the inversion of the inner motor
control loop (from ẋm,d to ẋm) and the mechanics (from τm,d

to xl), respectively. This relies on the fundamental rigid body
assumptions, i.e.

1. The transfer function of velocity control loop has a
constant magnitude of 1 for all frequencies.

2. The entire power train components are characterized by
a rigid body with inertia J̃ .

However, neglecting structural vibration modes and nonlinear
characteristics of the mechanics results in limited output
tracking performance [37]. Moreover, as the corresponding
dynamics of the inner loop or mechanics change, e.g. due to
changes in inertia, friction and other dynamics resulting from
wear, aging or variations in lubrication over the machine’s
lifetime, the feedforward would compensate for the incorrect
model [1]. This motivates the need for a more accurate
feedforward strategy and a robust control design method to
account for model uncertainties.

III. INVERSION-BASED FEEDFORWARD WITH HYBRID
MODELING

This section proposes a combined analytical and data-driven
modeling approach of the drive control system, followed by
a feedforward control design based on the model inversion to
improve the output tracking.

A. Hybrid Modeling Structure

In conventional feedforward design of feed drives, the motor
torque is often chosen as the control input to account for the
known dynamics of the plant or disturbance [39]. However,
this requires a rather precise dynamics model of the entire
compliant mechanics from motor torque to load position,
which significantly increases the modeling effort.

The central idea of our modeling approach is to take the
inner feedback loop as the first part of the model, and to use
the commanded motor velocity ẋm,d as the control signal.
This modeling strategy shifts the objective of feedforward
design from the inversion of the entire mechanical system,
to the inversion of the inner control loop and the concatenated
output mapping. The hybrid modeling, given in Fig. 2, assumes
linear dynamics of the velocity control loop described by the

analytical model G0, followed by a nonlinear output mapping
captured by the data-driven model Φ.

The selected model structure offers two advantages that
make it attractive from a practical point of view. On the one
hand, in contrast to modeling the entire mechanics, taking the
velocity control loop as the first part of the model reduces the
sensitivity to plant variations and disturbances, allowing the
corresponding dynamics to be described with a simple low-
order analytical model and its corresponding uncertainty set
with much less identification effort. On the other hand, as
the dominant linear dynamics are captured by the analytical
model, describing the remaining nonlinear output mapping is
less demanding. This can be conveniently modeled as a static
nonlinearity and identified with data-driven techniques such as
Gaussian process (GP) regression.

B. Analytical Model of Velocity Control Loop

We use a linear reduced-order model to describe the dom-
inant dynamics of velocity-controlled motor drive, namely to
capture the first resonant mode. This model is based on the
cascade control principle, which assumes that the velocity
control loop of the motor drive operates on a much faster
timescale than the mechanical dynamics. As such, the motor
velocity loop is approximated as the transfer function from the
desired velocity ẋm,d to the actual velocity ẋm, given by

Gm(s) =
Ẋm(s)

Ẋm,d(s)
=

ω2
0

s2 + 2D0ω0s+ ω2
0

. (1)

where ω0 represents the first resonant frequency and D0

describes the damping ratio of the velocity loop. Also, the
DC-gain Gm(0) is chosen to be 1, as the velocity control loop
has an integrating part in the controller. Thus, the analytical
model G0 (from ẋm,d to xm) is given by the velocity transfer
function of the motor drive followed by an integrator, namely
G0(s) = Gm(s)/s.

Apart from the need for a good approximation of the
dominant dynamics at low frequencies, the structure of the
analytical model G0 is chosen with a particular focus on the
targeted feedforward design, i.e.

1. The model G0 is selected to be flat.
2. The order of the model G0 is limited to 3.

The flatness of the selected model simplifies the inversion-
based feedforward design using smooth reference trajectories,
even if the model inverse is not proper, see Sec. III-D.
Moreover, limiting the model order to 3 has the practical
motivation that CNC-guided motion is planned continuously
up to the third derivative of the axis position (axis jerk).
This motion profile will be used later to resolve the exact
model inversion by explicitly using the known derivatives.
Increasing the model order requires higher-order derivatives
of the trajectory, which are not available in the standard CNC
system [38, §5.6.2].

C. Data-driven Model of Compliant Mechanics

Following the linear dynamics model of the drive motor,
the subsequent nonlinear output mapping Φ characterizes the
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Fig. 2. Hybrid modeling of the feed drive control system for feedforward design.

nonlinear mechanics of the power train components, given by

xl = Φ(xm) = xm︸︷︷︸
=..ΦL

+ (xl − xm)︸ ︷︷ ︸
=..ΦNL

. (2)

This is further separated into a linear term ΦL and a nonlinear
term ΦNL in addition, which have very different problem
scales. The linear term ΦL serves as the base model, and
incorporates the prior knowledge that the drive train exhibits
mostly a linear transmission behavior, affected by a secondary
nonlinear distortion ΦNL of much smaller magnitude. In
contrast to learning the entire nonlinear mapping Φ containing
different problem scales, this separation strategy simplifies
the task of data-driven model to residual learning of ΦNL
by subtracting the linear base model ΦL. Also, this additive
representation simplifies the inversion-based feedforward in
Sec. III-D, and allows the robust control design using the µ
synthesis technique in Sec. IV-B.

The linear base model ΦL represents the nominal trans-
mission behavior of the powertrain components, namely the
transmission ratio from rotational motion of the drive to axial
motion of the load. The nonlinear distortion ΦNL is observed to
be patterned and periodic depending on the axis position and
velocity (see Fig. 10 and [40]), due to the non-constant gear
ratio resulting from the machining tolerances of the ball screw
spindle, and the cyclical motion of the motor drive. This is
typically approximated by parametric sinusoidal models with
position and velocity dependent offsets, whose results rely
heavily on expert knowledge of the parametric structure [41].
In contrast to this, the data-driven approach based on Gaussian
process regression is applied in the following.

Consider the vector-valued input x = [x, ẋ]> consisting
of the axis position and velocity, and the scalar-valued noisy
output yN, representing the measured nonlinear distortion ΦNL
subject to the Gaussian noise ε

yN,i = ΦNL(xi) + εi i = 1, ..., nD, ε ∼ N (0, σ2
N). (3)

Then the posterior distribution under the Gaussian prior and
likelihood is also Gaussian [29]. Conditioning on the training
data set X = [x1, ...,xnD

] and y = [yN,1, ..., yN,nD
] of length

nD, the prediction of ΦNL(x) at an arbitrary test input x is
given by the posterior mean and variance

mean = m(x) + k(x,X)> (k(X,X) + σ2
N)−1(y −m(X))︸ ︷︷ ︸
=..β

(4)

var = k(x,x)− k(x,X)>(k(X,X) + σ2
N)−1k(x,X).

(5)

The mean function m(·) incorporates the prior knowledge
of the trend in the data and can be used to improve the
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+

Fig. 3. Control structure with hybrid feedforward compensation.

extrapolation behavior [29]. This is set to 0 as we are only
concerned with the interpolation behavior within the prede-
fined operational space. The kernel function k(·, ·) provides a
similarity measure over function values in the input space,
and the squared exponential kernel is used for continuous
approximation, given by

kSE(x,x′) = σ2
S exp

(
−

nx∑
j=1

(xj − x′j)2

2l2j

)
(6)

where nx is the number of inputs, σ2
S is the signal variance

that determines the average distance of the nonlinear function
ΦNL(·) from its mean, and lj is the length scale that captures
the correlation of neighboring points along a given axis in the
input space.

D. Feedforward Control with Model Inversion

Based on the separation strategy in Eq. (2), the nonlinear
output mapping Φ can be further described as a linear transfer
function ΦL influenced by an additional disturbance ΦNL. The
corresponding control structure with hybrid feedforward for
the tracking of reference xd and the rejection of disturbance
ΦNL is shown in Fig. 3.

The linear transfer function ΦL, which determines the
nominal transmission ratio of the powertrain, has a magnitude
of 1, as discussed in Sec. III-C. It is thus neglected in the
following for simplicity. The additive disturbance term ΦNL is
approximated by GP model, which takes the desired reference
as input for prediction rather than measurements to avoid
feedback loops. In the frequency domain, the achieved output
load position xl with the desired reference xd is given by

xl = (1 +G0Kpos)
−1G0(Kff,r +Kpos)xd + (7)

(1 +G0Kpos)
−1(1−G0Kff,d)ΦNL,

with the control law

u = Kff,rxd −Kff,dΦNL︸ ︷︷ ︸
feedforward

+Kpos(xd − xl),︸ ︷︷ ︸
feedback

(8)

where Kpos is the proportional position controller inherent in
the drive control system, Kff,r and Kff,d are the feedforward
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controllers that are to be designed for trajectory tracking and
disturbance rejection, respectively.

A standard approach adopted in practice to design Kff,r
and Kff,d is to use the so-called exact model inverse. That is,
assuming the transfer function G0 is exact, the feedforward
controllers can be chosen as the inverse of the model for
tracking and disturbance rejection

Kff,r = Kff,d = G−1
0 =

s3 + 2D0ω0s
2 + ω2

0s

ω2
0

. (9)

If we assume in addition that the map ΦNL is also known,
this inverse feedforward achieves exact output tracking, i.e.
by substituting the feedforward law of Eq. (9) into Eq. (7),
we obtain xl = xd.

The respective feedforward control laws for tracking and
disturbance rejection can be expressed in the time domain as

uff,r =
1

ω2
0

...
xd +

2D0

ω0
ẍd + ẋd, (10)

uff,d =
1

ω2
0

...
ΦNL +

2D0

ω0
Φ̈NL + Φ̇NL, (11)

with the desired velocity ẋd, acceleration ẍd and jerk
...
xd of

the reference signal. Similarly, Φ̇NL, Φ̈NL and
...
ΦNL represent

the first, second and third time derivatives of the nonlinear
distortion, respectively. The GP prediction only takes the
desired trajectory as input for feedforward control, i.e. x = xd
and ẋ = ẋd, to avoid introducing additional feedback loops.

Furthermore, for the computation of time derivatives of the
GP model in Eq. (11), we neglect higher-order derivatives of
the desired trajectory and consider ẍd ≈ 0, which basically
limits the prediction of the derivatives to the constant veloc-
ity phase. Exact calculation without neglecting higher-order
derivatives can, potentially, improve the transient behavior
even further. However, the practical motivation is that without
this simplification, the fourth time derivative of the reference
trajectory

....
x d would be required to compute the third time

derivative
...
ΦNL(xd, ẋd), which is not available in the standard

industrial numerical control system [38, §5.6.2].
Therefore, considering the two inputs x and ẋ of the GP

model with ẍ ≈ 0, the time derivatives are given by

Φ̇NL(x, ẋ) =
∂ΦNL

∂x
ẋ+

∂ΦNL

∂ẋ
ẍ︸ ︷︷ ︸

=0

(12)

Φ̈NL(x, ẋ) =
∂2ΦNL

∂x2
ẋ2 +

∂2ΦNL

∂x∂ẋ
ẍẋ︸ ︷︷ ︸

=0

+
∂ΦNL

∂x
ẍ︸ ︷︷ ︸

=0

...
ΦNL(x, ẋ) =

∂3ΦNL

∂x3
ẋ3 +

∂3ΦNL

∂x2∂ẋ
ẍẋ2︸ ︷︷ ︸

=0

+ 2
∂2ΦNL

∂x2
ẋẍ︸ ︷︷ ︸

=0

,

where the derivatives of the GP model with respect to its inputs
can be obtained by the chain rule according to Eq. (4).

In practice, the nominal model G0 may not exactly repre-
sent the true plant, especially at high frequencies. Moreover,
the GP model cannot fully capture the characteristics of
the disturbance term ΦNL and the prediction is subject to
uncertainties captured by the variance in Eq. (5). Also, the
relevant frequency ranges of tracking and disturbance rejection

are different. In contrast to the same exact inverse for Kff,r
and Kff,d in Eq. (9), it is thus advantageous to select the
feedforward gains separately [42]. This leads to the need for
a robust multi-objective feedforward design method that seeks
to achieve the best possible performance over the possible
uncertainties for tracking and disturbance rejection.

IV. ROBUST FEEDFORWARD SYNTHESIS UNDER MIXED
UNCERTAINTIES

This section proposes a robust feedforward design method
via structured µ-synthesis to optimize the robust performance
of the inversion-based feedforward controller described in
Sec. III. In addition, weight selection guidelines are presented
to give practitioners an intuitive insight into the trade-offs of
the robust design.

A. Modeling of Uncertainties

For the inverse feedforward control design in Sec. III, the
feed drive control system is represented by a hybrid model:
the analytical model G0 of drive dynamics approximated by
a second order lag term in Eq. (1) with an integrator, and the
data-driven model ΦNL of mechanical transmission represented
by GP regression in Eq. (4). Both of them are still subject to
uncertainties, namely the complex dynamic uncertainty of G0

and the real parametric uncertainty of the GP model.
Consider the set Π of all possible plants under uncertainty,

the complex dynamic uncertainty of the nominal analytical ap-
proximation can be captured by the multiplicative uncertainty
model in the frequency domain as

Gp(jω) = G0(jω)(1 +W (jω)∆c(jω)), (13)

where Gp ∈ Π describes the possible uncertain plant, G0 is
the nominal model and ∆c ∈ C is the normalized complex
uncertainty with |∆c| < 1. The weight W represents the
variation of the relative model uncertainty in the frequency
domain, and its magnitude satisfies

|W (jω)| ≥ lm(ω) = max
Gp∈Π

∣∣∣∣Gp(jω)−G0(jω)

G0(jω)

∣∣∣∣ , ∀ω. (14)

Here, lm captures the largest possible magnitude of the relative
model uncertainty over frequencies. The uncertainty weight
W determines the size of the considered uncertainty set, and
must be chosen to have a greater magnitude than lm, to ensure
that all possible relative uncertainties are included within
the uncertainty model of Eq. (13). The weight W is often
chosen as a high-pass filter [42], corresponding to the fact that
the nominal low-order approximation G0 mainly captures the
dynamics at low frequencies and has a larger error at higher
frequencies.

In addition, the uncertainty of the disturbance prediction
ΦNL by the GP model is described by an additive parametric
uncertainty model with prediction error bounds. We use d0 as
the nominal disturbance term predicted by the GP model and
d as the true disturbance ΦNL. This is given by

|d− d0| ≤ 3σ, ∀ω. (15)
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Fig. 4. Signal-based robust performance problem for controller synthesis.

The uncertain disturbance d is described by the 3σ confidence
region around the mean GP prediction d0. This can be repre-
sented as an additive uncertain disturbance model, given by

d = d0 + 3σ ·∆r, (16)

with normalized parametric uncertainty ∆r ∈ R and |∆r| < 1.
Besides, the variance σ is estimated in a conservative way
by the maximum variance of the GP model over the entire
input space. Noticeably, the frequency-varying uncertainty
quantification is not considered here due to numerical diffi-
culties. The practical problem is that the secondary nonlinear
distortion ΦNL has a rather small magnitude compared to its
input vector. In our case, the identification of the investigated
transfer function, if possible, has a relevant magnitude of about
−65 dB, which makes the frequency domain GP model very
sensitive to measurement noise and numerical errors.

B. Signal-based Robust Feedforward Synthesis

The central idea of the robust feedforward control synthesis
is to seek for the best achievable performance over the set
of possible uncertainties [43]. In contrast to the exact inverse
feedforward given in Eq. (9), the modified inverse feedforward
is used to account for model uncertainties, especially at high
frequencies. The modified feedforward structure is given by

Kff,i = Fc,iG
−1
0,i =

1
ω2

0,i
s3 +

2D0,i

ω0,i
s2 + s

(Tc,is+ 1)3
, (17)

where the subscript i denotes r and d for reference tracking
and disturbance compensation, respectively. The lag term
Fc,i = 1/(Tc,is + 1)3 is introduced to capture the band limit
of the feedforward gain and to restrict the model inversion
to frequency regions of low uncertainty. Equivalently, the
crossover frequency can be calculated as fc,i = 1/(2π · Tc,i)
in Hz.

Also, unlike the exact inverse in Eq. (9), whose parameters
are determined by the identification in the frequency domain,
the parameters ω0,i, D0,i and Tc,i of feedforward controllers
are determined by the robust synthesis framework for robust
performance optimization. In addition, although the feedfor-
ward gains for tracking and disturbance rejection take the same
structure of Eq. (17), the corresponding control parameters are
synthesized independently as their relevant frequency ranges
are different.

P

∆r

∆c

K

w

ω∆

u

z

z∆

v

N

Fig. 5. Generalized robust synthesis interconnection.

The synthesis of robust feedforward controllers for trajec-
tory tracking and disturbance rejection is formulated as a
signal-based problem [42, §9.3.6], which is very general and
appropriate for multivariable problems considering multiple
performance objectives simultaneously, as shown in Fig. 4.

The transfer functions Gp and Gd represent the uncertain
plant and disturbance model, Kff,r and Kff,d are the two
feedforward controllers that are to be synthesized, Kpos is
the proportional position controller with fixed gain inherent
in the original control system. The input weights Wv,Wd

and Wr represent the mapping from the exogenous signals
to the corresponding physical signals, namely the parametric
uncertainty of the GP, the predicted nominal disturbance, and
the reference trajectory. The output weights Wu and We

specify the desired performance requirements in terms of the
control effort and the control error, respectively.

For the controller synthesis, the signal-based interconnec-
tion in Fig. 4 can be transformed into the generalized robust
synthesis structure of Fig. 5 by introducing

w =

wv

wd

wr

 , z =

[
zu
ze

]
, v =

d0

r
y

 , u = u, (18)

where ∆ = diag[∆r,∆c] is the uncertainty set with real
and complex blocks, P is the generalized plant, and K is
the generalized controller; v are the measured outputs of
the general plant and u is the control input consisting of
the feedforward and feedback parts; ω∆ = [d∆r

, u∆c
]> and

z∆ = [v∆r
, y∆c

]> are the uncertain inputs and outputs,
respectively.

The generalized plant P is given by a transfer function
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
=
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0 0 Wv 0 0 0
0 0 0 0 0 W
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1 G0 0 Wd 0 G0


︸ ︷︷ ︸

=..P


d∆r

u∆c

wv

wd

wr

u

 .

(19)

The generalized controller K with fixed structure reads

u =
[
−Kff,d Kff,r +Kpos −Kpos

]︸ ︷︷ ︸
=..K

d0

r
y

 , (20)

where Kpos is the proportional feedback controller, Kff,r and
Kff,d are the feedforward controllers of Eq. (17) for tracking
and disturbance rejection, respectively.

To analyze the robust performance of the uncertain system,
the interconnection of Fig. 5 can be transformed into the N∆
structure by relating the transfer function matrix N (from
[ω>∆,ω

>]> to [z>∆, z
>]>) to P and K by a lower linear

fractional transformation

N = Fl(P ,K) = P11 + P12K(I − P22K)−1P21, (21)

which can be further rearranged into the M∆ structure for
robust stability analysis, with the upper left block of N
representing the transfer function matrixM from the uncertain
inputs ω∆ to the uncertain outputs z∆.

Nominal and robust stability are the prerequisites for robust
performance. Designing the feedback controller such that the
system remains stable under uncertainties, as discussed in
Sec. II, is not the focus of this paper. In the following we
assume that the stability conditions are satisfied and focus
on the robust performance optimization by synthesis of the
feedforward gains.

Both robust stability and performance problems can be ad-
dressed using the technique of µ-analysis [42]. The structured
singular value (SSV) of the transfer function matrix M , in
terms of the normalized uncertainty set ∆ with maximum
singular value σ̄(∆) less than one, is given by [42, §8.8]

µ∆(M) =
1

min
{
km | det(I − kmM∆) = 0, σ̄(∆) ≤ 1

} .
(22)

The inverse of the SSV value µ∆(M) determines the smallest
positive value that gives a singular matrix I−kmM∆, which
corresponds to an unstable interconnection between kmM
and ∆. In other words, the inverse of µ∆(M) indicates the
maximum tolerable increase of the uncertainty set ∆, before
the closed-loop control system becomes unstable. Thus, the
robust stability condition reads

µ∆(M) < 1, (23)

yielding a robust stabilization of the plant P by the controller
K subject to any uncertainties within the uncertainty set ∆.

Furthermore, by introducing the extended block structure
∆ext = diag[∆, ∆̃] with the actual uncertainty set ∆ and
a normalized full complex uncertainty ∆̃ [42, §8.10.1], the
robust performance condition of the interconnection of Fig. 5
can be transformed into the robust stability condition of the
extended N∆ext structure, given by

µ∆ext(N) < 1, (24)

which corresponds to the satisfaction of the control perfor-
mance specifications subject to the uncertainty set ∆, even in
the worst case. The robust performance synthesis then amounts
to designing a controllerK of Eq. (20) that minimizes the SSV
value µ∆ext(N), i.e.

min
K

µ∆ext(N). (25)

Although the search for the fixed-structure controller K
of Eq. (20) that satisfies the condition of Eq. (24) has not
been fully solved, locally optimal solutions can be found by
combining the µ-analysis and the structured H∞-synthesis.
The main idea is to iterate between the estimation of the
upper bound of µ via D-scaling (D-step) and the synthesis
of a structured H∞ controller for the scaled problem (K-step)
using the non-smooth optimization technique [26], [27]. In
addition, to account for the real parametric uncertainty, the G-
scaling can be used to obtain a less conservative estimate of
the upper bound [44]. The DGK-iteration with fixed-structure
H∞-synthesis to solve problem (25) is available as musyn
program in MATLAB’s Robust Control Toolbox.

C. On the Weight Selection

The weights of the signal-based robust control problem
represent the known or expected frequency content of the
signals, and specify the desired performance requirements in
terms of control input and control error. We presented in our
previous work [45] a two-step design approach of the weight
selection for the signal-based robust control problem, i.e.

1. Map the exogenous signals to the physical signals based
on the measurement.

2. Define the performance requirements by selecting two
hyperparameters.

The practical motivation for this design procedure is to limit
the tuning complexity and to allow even non-specialists to
use the proposed robust synthesis framework for feedforward
design with limited commissioning effort, summarized below.

Step 1: Information extraction from the measurement

The weights of the exogenous inputs are set according
to the expected magnitudes of the physical signals: The
reference weight Wr is set to the expected maximum reference
change within the working space; the disturbance weight Wd

takes maximum magnitude of the nominal disturbance d0; the
parametric uncertainty weight Wv represents the error bound
of the GP model and is set to Wv = 3σ.

The dynamic uncertainty weight W represents the uncer-
tainty variation of the analytical model G0 over frequencies.
As defined in Eq. (14), this is defined as a high-pass filter,
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since the low-order approximation is less accurate at high
frequencies. We thus define its inverse as

W−1 =

(
s/M1/nW + ωB

)nW(
s+ ωBA1/nW

)nW
. (26)

The weight parameters are determined graphically from the
measured frequency response functions according to the con-
dition of Eq. (14), where nW is the filter order determining
the slope, ωB is the crossover frequency where the relative
uncertainty exceeds 1, and M > 1, A < 1 are the asymptote
at high and low frequencies, respectively.

The weight Wu describes the expected frequency content of
the control signal and avoids input saturation. This is defined
as a first order low-pass filter, given by

Wu =
s/Mu + ωB,u

s+ ωB,uAu
, (27)

where a larger magnitude of Wu implies a smaller expected
control action. Also, the parameters can be determined graph-
ically in a similar way to Eq. (26), based on the measured
frequency response function from the desired reference r to
the control signal u in the standard control loop.

Step 2: Definition of performance requirements

In addition to the weights mentioned above, which are
determined from the measurement, the performance weight
We defines the required control performance with respect to
the control error e, which is chosen by the designer. This is
defined as a low-pass filter, i.e.

We =
s/Me + ωB,e

s+ ωB,eAe
, (28)

where a larger magnitude of We implies a smaller error
tolerance. Due to the integrator of G0, we have Ae = 0
inherently. However, the low frequency asymptote Ae is still
set to a small value to avoid numerical errors [42, §2.7.3]. The
remaining two hyperparameters ωB,e and Me are determined
by the designer to trade-off between the expected bandwidth
and the attenuation of high frequency oscillations. A larger
value of the desired bandwidth ωB,e results in lower tracking
error at low frequency, but inevitably increases the peak Me

and the sensitivity to high frequency oscillations.

V. VALIDATION

The proposed robust feedforward control scheme has been
validated experimentally on an industrial feed drive. For re-
producibility and further analysis, the experimental data are
openly available in [36].

A. Experimental Setup and Computational Requirements

The experimental setup consists of the x-axis of a five-axis
milling machine, shown in Fig. 6. The motor is a Rexroth
MS2N03-D0BYN with a rated torque of 0.68 Nm, maximum
torque of 6.8 Nm and a rated velocity of 5700 1/min. The load
(namely the z- and b-axis) weighs 150 kg and is driven on the
Franke TSL06U ball screw linear table, which has a spindle

Fig. 6. The test bench used for validation.

lead of 5 mm and an effectively reachable length of 0.36 m.
The motor is controlled with Rexroth ctrlX DRIVE coupled
with Beckhoff TwinCAT 3 system for real-time control. All
parts of the feedforward control, including the GP prediction,
are implemented in PLC code on the PC-based TwinCAT 3
real-time control system with a sampling rate of 1 kHz.

The most computationally intensive part of the feedforward
scheme is the evaluation of the GP model for the distur-
bance compensation of Eq. (11), which requires three times
evaluation of the GP derivatives of Eq. (12). To obtain fast
approximate prediction for the real-time control, the nearest
neighbor approach [46] is used to approximate the full GP
prediction of Eq. (4). The basic idea is that the GP kernels only
determine the prediction locally, and the data points closest to
the test input are the most informative. At each prediction
step, the closest points X∗ with predefined box constraints
are searched along each axis of the input, which can be easily
implemented by index searching. The local approximation
of the full GP prediction in Eq. (4) is then computed by
multiplying k(x,X∗)> by the coefficients β∗ corresponding
to X∗. The sizes of the box constraints are determined by
requiring a remaining accuracy of 99% compared to the full
prediction, resulting in constraints of ±20 mm in position and
±10 mm/s in velocity. Such dimensions allow a good balance
between computational effort and prediction accuracy.

The runtime of feedforward with GP prediction (single
core performance) is measured in the TwinCAT 3 system on
different CPUs, given in Fig. 7 and Table I. For example, on an
i5-4670 CPU, the mean and maximum execution times for the
compensation scheme are 45 and 53 µs. Even with the weakest
i3-8100 CPU in the test, the maximum runtime is 108 µs,
which is only 10% of the sampling time. Using vectorized code
(SIMD instructions on the processor) could speed this up even
more. In addition, a total memory of 29.1 kB is required to
store the prediction parameter β of Eq. (4) in double precision.
This illustrates the real-time capability and the small memory
footprint of the compensation scheme.

B. Identification of Hybrid Model

The analytical model G0 of the velocity control loop is
identified using least-squares by comparing the measured and
modeled frequency response functions (FRFs) [47, §9.9.1].
To measure the FRFs, sinusoidal velocity sweeps are used
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Fig. 7. Runtime of feedforward scheme with GP model on industrial PCs.

TABLE I
COMPUTATION TIME OF GP-BASED FEEDFORWARD SCHEME ON

DIFFERENT CPUS WITH SAMPLING TIME 1 MS.

CPU time i3-8100 i5-4670 i7-11850HE i9-10900KF

mean [µs] 81 45 41 22
maximum [µs] 108 53 48 24

with linearly increasing frequency f ∈ [1, 400] Hz. An offset
velocity of 10 mm/s is added to reduce the influence of
sticking friction. Also, the FRFs are measured at different start
positions xl,0 ∈ {0, 150, 300} mm to capture the position-
varying dynamics. The local rational model (LRM) method
[48] is used to estimate the FRFs with a model order of 2 and
a window length of 101.

The identified PT2 model Gm of Eq. (1) (from ẋm,d to
ẋm, with ω0 = 472.8 rad/s and D0 = 0.28) of the velocity
loop without integrator is shown in Fig. 8. The corresponding
multiplicative uncertainty, the largest possible magnitude of
the relative model uncertainty lm, and the selected uncertainty
weight W are shown in Fig. 9. The uncertainty weight W
is selected using the strategy introduced in Sec. IV-C with
nW = 4, ωB = 2π · 130, M = 15 and A = 0.11,
which has a larger magnitude than lm to include all possible
relative uncertainties over frequencies, see also Eq. (14). The
relative uncertainty exceeds 1 at about 140 Hz, indicating that
the low-order analytical model only captures the dynamics
in the lower frequency range and deviates more than 100%
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Fig. 10. Measured nonlinear distortion ΦNL for different velocities.

at frequencies greater than 140 Hz. To capture the high
frequency dynamics more accurately than the analytical model
of Eq. 1, it is necessary to increase the model order. This
would require motion profiles smoother than the jerk-limited
trajectory, which, however, are not available in the standard
numerical control system [38, §5.6.2].

The nonlinear distortion ΦNL = xl − xm (c.f. Eq. (2))
is measured over the workspace at the commanded velocity
vd ∈ [110, 210] mm/s with a grid of 10 mm/s. Fig. 10 shows
the periodic pattern of the measured ΦNL depending on the
axis position and velocity, which is then captured by the GP
regression model. The variance of the measurement noise is
set as the square of the maximum relative error of the linear
encoder with σ2

N = (5·10−7)2. The signal variance is estimated
according to the variance of the measured ΦNL, which takes
σ2

S = (3 · 10−5)2. A reasonable smoothness of the input
space and a good prediction result are achieved with the length
scale parameters l1 = 0.0015 and l2 = 0.005, which are
chosen iteratively, and can also be estimated by likelihood
maximization or cross validation [29, §5.4].

The validation on the test bench is performed with finer
grids of 5 mm/s at unseen operating velocities to test the
generalization capability of the model. The normalized val-
idation result of the GP regression model at ẋd = 175 mm/s
in the interval of 150 mm is shown in Fig. 11. Overall, a high
coefficient of determination R2 = 97% between measurement
and prediction and a mean-absolute error of 1.13 µm is
obtained. A major advantage of the GP model over parametric
approaches is the high degree of adaptability to the unseen
operating condition. In addition, if significant prediction error
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Fig. 11. Validation of normalized GP prediction on the test bench.

occurs, the measured data during the machine operation can
be stored to update the GP parameters, and thus adapt the
compensation scheme to new operating conditions. This might
be the case due to wear during the lifetime of the feed drive.

C. Feedforward Control Design

The feedback controller of Fig. 1 remains the same and
the following feedforward controllers are compared in the
validation:

(a) baseline: The standard velocity and acceleration feedfor-
ward control given in Sec. II.

(b) exact inverse: The exact inverse feedforward control of
the hybrid model given in Sec. III-D.

(c) robust inverse: The robust feedforward control with mod-
ified inverse of the hybrid model given in Sec. IV-B.

The gains of the exact inverse feedforward of Eq. (9)
take directly the model parameters identified in the fre-
quency domain, given in Sec. V-B and Table II. The robust
parametrizationdet of the modified inverse feedforward of Eq.
(17) is performed based on the two-step approach introduced
in Sec. IV-C. The selected weights determined from the
measurement are: Wd = 2·10−4, Wr = 0.36, Wv = 2.6·10−6

and Wu = (0.015s + 0.1257)/(s + 0.01). The performance
weight is set to We = (0.8s+62.8)/(s+0.00628) by requiring
a sensitivity peak of Me = 1.25 and a crossover frequency
of ωB,e = 10 · 2π, which gives a good balance between
low frequency tracking and high frequency damping. The low
frequency asymptote is set to Ae = 10−4 to avoid numerical
problems. The resulting peak µ value is 0.689 < 1, indicating
the satisfaction of robust performance requirements, and the
corresponding feedforward gains are collected in Table II.

TABLE II
CONTROLLER PARAMETERS OF EXACT AND MODIFIED ROBUST INVERSE

FOR HYBRID MODEL.

feedforward gains ω0,i [rad/s] D0,i [-] fc,i [Hz]

exact inverse
Kff,r,Kff,d 472.8 0.28 -

robust inverse
Kff,r 331.1 0.38 18.6
Kff,d 472.3 0.37 50.4

The modified robust inverse introduces band limitation for
the feedforward control, which is implemented separately for
reference tracking and disturbance compensation.

The task of limiting the frequency content for tracking feed-
forward Kff,r is shifted to the design of band-limited reference
motion profile xd. The industrial standard jerk-limited S-curve
motion profile is used here [38, §5.6.2], maximum jerk and
acceleration values of the S-curve profile are chosen such that
the dominant effective excitation frequency of the reference
trajectory is less than the required band limit fc,r of the
tracking feedforward Kff,r, which is described in [49]. Due
to the inherent band limit of the selected reference signal,
the additional low pass term of Kff,r can be neglected in the
implementation to avoid unnecessary phase delay.

The modified disturbance feedforward Kff,d is realized as
the exact inverse of the GP given in Eq. (11), followed by a
third order lag term to represent the band limitation as in Eq.
(17). The third order low pass filter is implemented in both
forward and backward directions to remove the phase shift
and to keep the disturbance feedforward synchronized with
the tracking feedforward. Such a filtering strategy requires
a preview of the reference trajectory xd and its derivatives
before the current time step, which is available in the industrial
numerical control system by means of the look-ahead func-
tionality [2]. Alternatively, this preview-based synchronization
strategy can also be implemented by delaying the tracking
feedforward accordingly.

D. Tracking Performance

To validate the steady-state tracking performance, which
determines the surface finish quality of workpieces manufac-
tured on a machine tool, constant velocity trajectories with
ẋd ∈ {150, 175} mm/s are chosen. Fig. 12 shows the steady-
state tracking behavior with the corresponding feedforward
controllers at ẋd = 175 mm/s. For a quantitative comparison,
the tracking performance is evaluated with the mean absolute
error (mae) and the maximum absolute error (max). The
respective control effort is quantified by the standard deviation
of input signals during this constant velocity experiment,
summarized in Table III.

Compared to the baseline feedforward neglecting the me-
chanical compliance, the hybrid modeling approach with exact
and modified robust model inverse cut the tracking error
at both experiments by more than 61% in mae value and
more than 36% in max value. Interestingly, the tracking
behavior of the baseline feedforward is no longer offset free at
t ∈ [0.8, 1.4] s, resulting in a rather large average error. This is
due to neglecting the axial kinematic errors which, especially
at high velocities, leads to a velocity deviation between the
drive motor and the load, see the slower varying part of ΦNL
in Fig. 10. To further illustrate the resulting vibration level, the
tracking errors are detrended using a high pass filter with a
cut-off frequency of 5 Hz. The hybrid modeling approach still
reduces the detrended mae error by 21% with the exact inverse
and by 26% with the robust modified inverse. Noticeably,
the primary periodic disturbance due to the cyclical motion
of the ball screw at v = 175 mm/s has a frequency of
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Fig. 12. Tracking error and control signal for constant velocity of 175 mm/s.

fdist = v/h = 35 Hz with h the spindle lead. This is outside
the bandwidth fb ≈ 10 Hz and can hardly be handled by the
given feedback controller.

The control effort of the modified robust inverse is reduced
by at least 47% compared to the exact inverse feedforward
with comparable tracking error, since the modified robust
inverse limits the feedforward gain of the high frequency
content. This is as expected because the control input weight
Wu is selected based on the measured FRFs from reference
r to control signal u in the standard control loop, which con-
sequently implies a comparable control effort to the standard
feedforward, cf. Sec. IV-C.

TABLE III
TRACKING PERFORMANCE AT CONSTANT VELOCITY.

baseline exact inv robust inv

velocity: 150 mm/s
mae(ex) [µm] 2.79 1.06 1.03
max(|ex|) [µm] 7.01 4.47 4.24
std(u) [mm/s] 0.07 0.17 0.09

velocity: 175 mm/s
mae(ex) [µm] 3.11 1.12 1.22
max(|ex|) [µm] 8.28 4.08 3.89
std(u) [mm/s] 0.08 0.19 0.10

In addition to the constant velocity phase, feed drives are
particularly challenged in the transient phase during acceler-
ation and deceleration, where the control performance deter-
mines the part tolerance and the cycle time. Here the industrial
standard jerk-limited S-curve motion profile is chosen [38,
§5.6.2], and set to have a maximum velocity of 0.2 m/s, a
maximum acceleration of 2 m/s2 and a maximum jerk of
10 m/s3 traveling along the entire axis range. The validation
result is given in Fig. 13 and in Table IV.

TABLE IV
TRACKING PERFORMANCE OF THE RESPECTIVE CONTROLLERS.

baseline exact inv robust inv

mae(ex) [µm] 17.01 8.02 2.96
max(|ex|) [µm] 90.71 52.39 16.24

In contrast to the baseline feedforward assuming rigid body
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Fig. 13. Tracking error with jerk-limited S-curve motion profile.

dynamics of the control loop, it is observed that the exact
inverse feedforward, which approximates the dynamics by a
low-order model with only two parameters, reduces the track-
ing error by 53% in mae value and by 42% in max value. This
clearly illustrates the benefit of the selected analytical model
structure dedicated to the feedforward design, as discussed
in Sec. III-B. In addition, the modified robust feedforward,
designed by the µ synthesis framework with optimized robust
performance, cut the tracking error even further by more than
82% in both metrics. It can be seen from Table II that the
robust synthesis method sets a lower resonant frequency ω0,r

and a higher damping ratio D0,r for tracking control than the
identified model parameters, which leads to a more significant
feedforward action in the low frequency range relevant for
trajectory tracking and explains the reduction in tracking errors
compared to the exact inverse.

Overall, the tracking performance with exact and robust
model inversion is superior to the baseline feedforward in
both steady and transient states, illustrating the benefit of the
chosen hybrid structure for feedforward design. In addition,
the proposed robust synthesis framework further optimizes the
control performance compared to the nominal exact inverse,
even with limited commissioning complexity.

E. Robustness Analysis

Apart from the tracking performance, the robustness of
the proposed feedforward design approach is investigated
experimentally. This is separated into robustness studies in
the face of errors in the data-driven model and the analytical
model.

The robustness test against underfitting and overfitting of the
GP model is performed by setting the length scale parameter to
l1,under = 0.005 and l1,over = 0.0006, respectively. The tracking
result at ẋd = 175 mm/s is given in Fig. 14. Noticeably,
despite the errors in GP model, the hybrid feedforward still
ensures an offset-free tracking behavior, and reduces the over-
all tracking error by more than 33% in mae value compared
to the baseline. This is due to the correction of slower
kinematics errors via the GP model, as discussed in Sec. V-D.
Considering the resulting vibration level by detrending the
tracking error, the underfitted GP model increases the error by
52% and 11% for the exact and robust inverse, respectively,
due to the incorrectly estimated periodic pattern of ΦNL.
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Fig. 14. Robustness to wrong GP model (left: underfitting, right: overfitting).

As for the overfitting, the resulting vibration level remains
similar to the baseline control for exact inverse (increased
by 6%) and robust inverse (reduced by 5%). This illustrates
the inherent robustness of our chosen model structure against
overfitting: due to the low pass nature of the control loop with
limited bandwidth, the overly high frequency input command
resulting from the overfitted GP is no longer tracked by
the underlying speed control loop, and therefore does not
significantly increase the vibration level. Overall, the modified
robust design achieves better worst case performance than the
nominal design, and drastically reduces the control effort by
55% and 82%, preventing potential input saturation, especially
in the case of overfitting.

The robustness is also investigated with mismatched model
parameters of the analytical model G0 to simulate errors in the
identification or varying plant dynamics. The nominal model
parameters ω0 and D0 are varied by ±20% respectively for
the inverse feedforward control with S-curve motion profile.
For the robust feedforward synthesis, the uncertainty weight
W defined in Eq. (14) must be chosen appropriately to adapt
the uncertainty set to the deliberately varied model parameters,
while the other weights of the robust synthesis problem remain
the same. The result in Fig. 15 shows that, even the nominal
exact inverse feedforward with significant model errors still
achieves a performance improvement of at least 35% com-
pared to the baseline feedforward with rigid body assumption.
Furthermore, the presented robust synthesis method improves
the worst case performance by 38% in comparison to the
nominal feedforward.

Overall, this experimental robustness analysis illustrates the
excellent resilience to errors in the model parameters of the
inverse feedforward design with the chosen model structure
and the significantly increased robustness of the presented
robust inversion solution as opposed to the exact inversion.

VI. CONCLUSION

We presented an inversion-based feedforward design ap-
proach for the feed drive control system based on hybrid mod-
eling. The hybrid model, developed with a particular focus on
its use for real-time feedforward compensation, combines a flat
analytical model of linear dynamics and a GP model of output
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Fig. 15. Robustness to wrong analytical model (left: exact inverse, right:
modified robust inverse).

nonlinearities. Besides the exact model inversion solution, the
main design contribution is a robust inversion-based feedfor-
ward control that explicitly accounts for model uncertainties.
The robust synthesis scheme is adopted to optimize the robust
performance of the feedforward control under uncertainties.
To increase the practical applicability, the synthesis problem
of feedforward controllers is formulated in a signal-based
manner, and the commissioning complexity of feedforward
gains is reduced to the selection of two hyperparameters. Ex-
tensive experimental results on an industrial milling machine
illustrate the real-time capability and significant performance
improvement of the robust feedforward control with hybrid
model. Furthermore, the excellent robustness to errors in the
analytical model and the data-driven model of this feedforward
synthesis framework is demonstrated experimentally.

Future work includes representing the disturbance term by
the frequency domain GP model, as in [50], which may
provide a more accurate, higher fidelity uncertainty quantifi-
cation and reduce conservatism. The practical challenge is
that the disturbance transfer function tends to have very small
magnitudes, requiring more appropriate treatment of numerical
issues.
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