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Abstract— This paper deals with a finite-horizon Linear
Quadratic Regulator (LQR) design for unknown linear time-
invariant plants. The objective is to provide a flexible approach
which gives robustness guarantees on the closed-loop cost, while
avoiding an overly conservative design. The proposed method
consists of computing the posterior distribution of the system’s
matrices, and using samples from the desired credible region to
solve a convex scenario-based program; the result is an open-
loop solution of the robust LQR that is then expressed as state-
feedback and is used to obtain a new system trajectory. By
updating the system estimates as more data are gathered, the
algorithm ensures controllers the same robustness guarantees
while having to cope with less dispersion in the samples.

I. INTRODUCTION

The problem of controlling unknown plants has become
central to many engineering applications, as a result of
the increasing complexity of modern systems. The indirect
approach to address this problem consists of first identifying
a dynamic model of the system from available data [1], [2]
and then designing a suitable controller using model-based
techniques. Alternatively, one can seek a direct map from the
system’s trajectories to the controller’s actions, by-passing
the identification of the plant’s dynamics. This approach
has found particular success in the reinforcement learning
community [3]. Determining the best strategy is often a
problem-dependent matter, since the respective approaches
offer distinct advantages and disadvantages: see, e.g., [4], [5],
[6] for related surveys, and the investigation in [7] through
the lens of data-driven control.

In this work, emphasis is put on two crucial and inter-
related aspects arising when controlling unknown plants:
robustness and conservatism of the design. Robustness is
a multifaceted concept and we consider it here in the
standard robust control sense, namely as the requirement to
optimize performance over all possible disturbances to the
plant that are compatible with its current knowledge [8].
In indirect approaches, this is typically achieved by using
a fixed uncertainty region centered around an estimate of
the model, and thus it might incur conservatism if the initial
knowledge of the system is not precise [9], [10]. In direct
approaches, conservatism is less of an issue, since new data
are constantly used to make decisions, but it is much more
challenging to guarantee robustness. The aim of this work
is thus to formulate a control design scheme that, on the
one hand, allows for robustness guarantees, and on the other
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can leverage new observations from the system’s response to
decrease its conservatism.

The problem under investigation is the finite-horizon,
discrete-time Linear Quadratic Regulator (LQR) design,
which is key in optimal control theory [11], is widely used in
practice and is still the subject of ongoing research: see, e.g.,
[12], [13], [14], [15], [16], [17], [18], [19], [20]. We focus
on the framework of indirect control design and propose a
method that leverages Bayesian estimation of the unknown
system matrices. An uncertainty region of probability $ ∈
(0, 1) is then extracted from such a distribution and is used to
solve a sample-based, worst-case LQR program. Robustness
is achieved by leveraging the scenario-approach framework
[21]. Specifically, we build on [22] for this part, where
a scenario program was formulated to minimize the LQR
cost associated with a certain number of samples coming
from the distribution of the unknown system’s matrices.
There, the set-up was distribution-agnostic; here, samples are
actively drawn from the current posterior distribution, which
is iteratively updated with new data. As a consequence, the
size of its uncertainty region is shrinking. Crucially, since
the scenario-approach guarantees that the generalization ca-
pability of the solution only depends on the number of
scenarios and the number of optimization variables (which do
not change throughout the iterations), the proposed approach
provides a controller with the same robustness properties as
the data-agnostic sample-driven solution, but with decreased
conservatism. It is also observed that, even though this is
by nature an indirect approach, because an estimate of the
system is required, it is conceptually different than standard
robust control methods, as the design is not done on a
nominal plus uncertainty estimate of the model (e.g., via S-
Lemma tools [23]), but directly on samples coming from
the distribution. This presents advantages in terms of a
more flexible update of the controller, and the possibility to
consider cases where the system is modelled by distributions
with unbounded support.

Notation: The Kronecker product and the vectorization
operation are denoted by ⊗ and vec(·). The identity matrix
of size a is written as Ia, and 1a,b (0a,b) refers to an a× b
matrix of all ones (zeros). Gaussian and uniform distributions
will be indicated by N and U , respectively. A Gamma
distribution with mean a/b will be written as Γ(a, b). The
shorthand notation ‖v‖2A = v>Av is used. Signal sequences
are given without indices, e.g., x = [x>0 x

>
1 . . . x>T−1]> is a

state sequence of length T . Finally, χE denotes the indicator
function that equals 1 if E holds, and 0 otherwise.



II. PROBLEM STATEMENT
The dynamic system under study is linear, time-invariant,

and described by the stochastic difference equation

xt+1 = Fxt +Gut + vt, x0 = x̄, (1)

where xt ∈ Rn and ut ∈ Rm are the state and the input at
time t, respectively. Matrix G is assumed known1, while
matrix F is deterministic but unknown. The process noise
{vt}t is a stochastic process of independent and identically
distributed random vectors; their distribution Pv is assumed
to admit a probability density pv(·), which has a known
analytic expression but depends on an unknown vector θv .

The aim is to find the state-feedback policies {Kt}T−1
t=0

solving the Linear Quadratic Regulator (LQR) problem

min
{Kt}T−1

t=0

Ev

[
x>T SxT +

T−1∑
t=0

x>t Qxt + u>t Rut

]
(2)

dealing with the fact that matrix F ruling the dynamics (1)
is unknown. In Section III we propose an iterative procedure
that is articulated in the following three steps:
• (S-A): Bayesian identification of the system matrix F ,

and extraction of a credible region Θ$ with probability
level $ from its posterior distribution. We consider the
one that is symmetric around the mean: this choice is
arbitrary, but customary.

• (S-B): Extraction of N independent samples from Θ$,
and solution of a scenario-based program returning the
robust open-loop solution of the LQR problem.

• (S-C): Computation of the optimal LQR solution as
state-feedback for the worst-case scenario observed in
(S-B). Such control policy is then applied to the system
and a new state trajectory is obtained.

The three aforementioned steps are then combined in an
iterative scheme presented in Section IV. The goal is to
update the control design as more knowledge of the system
is gathered from its trajectories, while preserving a desired
level of robustness specified by $.

III. METHOD: FUNDAMENTAL STEPS

A. Bayesian model estimate (S-A)
The aim of this step is to compute the posterior

distribution of the unknown state matrix F given observed
state trajectories. Such a distribution will be then used to
compute the posterior region Θ$.

First of all, let us rewrite model (1) in terms of f =
vec(F ). Assume the observation of NS state trajectories,
where the i−th trajectory has length NT (i). Then, for i =
1, ..., NS and t = 1, ..., NT (i), model (1) can be written as

x
(i)
t+1 = Fx

(i)
t +Gu

(i)
t + v

(i)
t ,

= (x
(i)
t ⊗ In)>︸ ︷︷ ︸
φ
(i)
t

fi +Gu
(i)
t + v

(i)
t . (3)

1This choice has been done for the sake of clarity: the overall procedure
can be seamlessly extended to the case with unknown G.

For a generic trajectory i, one can write
x

(i)
1 −Gu

(i)
0

...
x

(i)
NT
−Gu(i)

NT−1


︸ ︷︷ ︸

Y (i)

=


φ

(i)
0
...

φ
(i)
NT−1


︸ ︷︷ ︸

Φ(i)

f +


v

(i)
0
...

v
(i)
NT−1


︸ ︷︷ ︸

v(i)

.
(4)

The overall model that combines data from all NS
trajectories is Y (1:NS) = Φ(1:NS)f+v(1:NS), where Y (1:NS),
Φ(1:NS) and v(1:NS) are augmented vectors obtained by
stacking row-wise Y (i), Φ(i) and v(i), respectively, resulting
in n(

∑NS

i=1NT (i)) := N̄ equations. In the remainder of the
section, we will drop the superscript (1 : NS) for ease of
notation.

We now want to compute the posterior f |Y , denoted by
Pf , from which we will extract the credible region Θ$ such
that

Pf (f ∈ Θ$) = $

and is symmetric around the mean.
To compute the posterior, we have to specify the likelihood
and the prior. Given the value of f , data follow the process
noise distribution Pv: hence, the likelihood is pv(Y |f). As
regards the prior P(0)

f , we assume that such a distribution
admits a density pf (·) whose expression is known but
depends on a parameter θf that is fixed and unknown. The
dependence among f , θf , θv and Y is presented in the
Bayesian network in Figure 1.

Remark 1: Note that the presented framework is very
general, because it can accommodate any (possibly multi-
modal) distribution. However, typical choices involve uni-
modal distributions such as the Gaussian and the Laplacian.
In these cases, θf and θv may contain the unknown mean
and covariance of f and each v(i)

t , respectively. For example,
Laplacian noises are typically used to robustly handle outliers
[24], [25], [26], while f is modelled as Laplacian when
sparsity needs to be promoted [27], [28], [29]. �

θf f Y θv

Fig. 1. Bayesian network associated to step (S-A).

According to these hypotheses, one can derive an analytic
formula for the posterior density function of f |Y depending
on the parameters θf and θv: in fact, the main ingredient
is the product of the likelihood pv(Y |f ; θv) and the prior
pf (f ; θf ), whose expressions are known. At this point, two
difficulties arise:
• parameters θf and θv are unknown;
• even if θf and θv were known, retrieving Θ$ may be

far from trivial because it involves an integral which is
difficult to evaluate if the posterior distribution has a
complicated expression.



Both these problems will be effectively tackled by resorting
to Markov Chain Monte Carlo (MCMC) [30].

To address the first issue, we adopt the Empirical Bayes
paradigm [31] and estimate parameters θf and θv from data
by optimizing the marginal likelihood: taking its negative
logarithm, the estimate is obtained by solving

min
θf ,θv

− log pv(Y |θf , θv). (5)

However, problem (5) is typically nonconvex and potentially
high dimensional: thus, deterministic optimization routines,
due to their sensitivity to initial conditions, can be inaccurate.
This issue can be overcome by deploying an MCMC scheme
acting as follows.
Note first that (dropping subscripts for notational ease)

p(f, θf , θv|Y ) ∝ p(f |θf , θv, Y )p(θf , θv|Y ),

∝ p(f |θf , θv, Y )p(Y |θf , θv).
(6)

That is, the marginal likelihood can be explored by drawing
samples from p(f, θf , θv|Y ) := π(f, θf , θv). The rationale
of MCMC is then to build a Markov chain whose invari-
ant distribution is π(f, θf , θv). This effectively provides a
strategy to draw samples from this target distribution that
are principled candidates to solve problem (5). To this aim,
one procedure that can be adopted is known as Metropolis-
Hastings [30], which is summarized in Algorithm 1.

Algorithm 1 Metropolis-Hastings to explore π(θ), with θ =
(f, θf , θv). Input: proposal density q(·|·), target density π(·).
Output: samples {θj} from π(·).

Initialize θ0 and set j = 0;
while not converged do

sample a point θ̄ from the proposal density q(·|θj);
sample a variable u ∼ U([0, 1]);
compute the acceptance probability

pa = min

(
1,
π(θ̄)q(θj |θ̄)
π(θj)q(θ̄|θj)

)
if u ≤ pa then

set θj+1 = θ̄;
else

set θj+1 = θj ;
end if
j ← j + 1.

end while

Updating together the variables f , θv , and θf is often
difficult, because finding an effective proposal distribution
q(·|·) (see Algorithm 1) can be far from trivial. The pro-
posed strategy, introduced in [32], is known as the single-
component Metropolis-Hasting algorithm [30]. Instead of
sampling π(f, θf , θv), the conditional posterior distributions
(also known as full-conditionals) are sequentially sampled.

Using the Bayesian network of Figure 1, these are

• π(f |θf , θv) ∝ p(Y |f, θv, θf )p(f |θf ),

• π(θv|θf , f) ∝ p(Y |f, θf , θv)p(θv),
• π(θf |θv, f) ∝ p(f |θf )p(θf ).

(7)

Specifically, in our setup the single-component Metropolis-
Hastings algorithm proceeds as follows: assuming starting
from values (f̄ , θ̄f , θ̄v); then, one draws f̃ from π(f |θ̄v, θ̄f ),
θ̃f from π(θf |f̃ , θ̄v), θ̃v from π(θv|θ̃f , f̃), and then iterates
again starting from (f̃ , θ̃v, θ̃f ). Since all prior distributions
admit a density, the full-conditionals are well-defined:
hence, the procedure is guaranteed to generate the Markov
chain with invariant distribution π(f, θf , θv) after some
burn-in iterates.
It can happen that the distributions on the right-hand sides
of (7) are conjugate priors [33], yielding a full-conditional
that can be sampled without resorting to Algorithm 1. If
this is the case for all full-conditionals, then the single-
component Metropolis-Hastings goes under the name
of Gibbs sampler [34]. The details for a particular case
that will be useful in the remainder of the paper are provided.

Example 1: Consider the distributions f ∼ N (0, λPf )
and v ∼ N (0, σ2Pv) for each t = 1, ..., NT (i) and i =
1, ..., NS . We assume that Pf ∈ Rn2×n2

and Pv ∈ RN̄×N̄
are known, thus in this case it holds that θf = λ and θv = σ2.
We give to precisions λ−1 and σ−2 a proper Gamma prior
approximating an uninformative distribution over the positive
real axis.
Consider then the full conditionals and their expressions in
terms of likelihood-prior products presented in (7). As for
f , note that both prior p(f |λ) and likelihood p(Y |f, σ2)
are Gaussian. It can be verified that this distribution is self-
conjugate, and one obtains

(f |λ, σ2, Y ) ∼ N (µ̂, Σ̂), where{
µ̂ = (Φ>P−1

v Φ/σ2 + P−1
f /λ)−1Φ>P−1

v Y/σ2,

Σ̂ = (Φ>P−1
v Φ/σ2 + P−1

f /λ)−1.

(8)

The full conditionals for λ−1 and σ−2 also admit a simple
representation: indeed, they involve a Gaussian likelihood
and a Gamma prior which are known to be a conjugate pair.
Specifically, one obtains

p(λ−1|f) ∼ Γ

(
n2

2
,
‖f‖2

P−1
f

2

)
, (9)

p(σ−2|Y, f) ∼ Γ

(
N̄

2
,
‖Y − Φf‖2

P−1
v

2

)
. (10)

The Gibbs sampler for this case is then summarized in
Algorithm 2.



Algorithm 2 Gibbs sampler to explore π(f, λ, σ2) in Exam-
ple 1. Input: number of iterations Ng , data Y and Φ, full
conditional densities. Output: samples from π(f, λ, σ2).

for i = 1, ..., Ng do
if i = 1 then

set f(i) = (Φ>Φ)−1Φ>Y ;
else

sample f(i) from (8);
end if
sample λ−1 from (9);
sample σ−2 from (10);

end for

�
Up to this point, a procedure to sample the posterior
p(f, θf , θv|Y ) has been presented. Now, the marginal likeli-
hood optimization problem of (5) is addressed in the follow-
ing way: we obtain Nc samples from the posterior by running
the (single-component) Metropolis-Hastings algorithm, and
use them to optimize the marginal likelihood (5). The se-
lected optimal hyperparameters can be then plugged into the
full conditional of f to obtain the posterior p(f |Y, θf , θv).
Next, the estimated parameters θf and θv fully specify
the posterior f |Y , and our goal is to extract from such
distribution a credible region with probability level $. The
proposed approach is to leverage again the MCMC scheme
to draw samples from the posterior Pf and obtain in sampled
form the [1−$/2, $/2]-quantiles.

B. Robust optimization of open-loop sequences (S-B)

Having obtained in the previous step a probabilistic esti-
mate of f , we propose to solve problem (2) via the following
robust convex program:

min
u,x

max
f̃∈Θ$

Ev[x>T SxT +

T−1∑
t=0

x>t Qxt + u>t Rut],

s.t. xt+1 = F̃ xt +Gut + vt, x0 = x̄,

f̃ = vec(F̃ ) ∈ Θ$,

(11)

That is, we want to find a solution of the LQR problem that
is robust with respect to the posterior measure Pf . First of
all, since the optimal state-feedback solving (11) does not
depend on the process noise {vt}t [35], we can consider

min
u,x

max
f̃∈Θ$

x>T SxT +

T−1∑
t=0

x>t Qxt + u>t Rut, (12a)

s.t. xt+1 = F̃ xt +Gut, x0 = x̄, (12b)

f̃ = vec(F̃ ) ∈ Θ$.

We can further manipulate (12) by eliminating the depen-
dence on the state sequence. In fact, the dynamics (12b) yield
the state evolution

xt = F̃ tx̄+

t−1∑
s=0

F̃ t−1−sGus (13)

which, substituted into (12a), yields the unconstrained pro-
gram

arg min
u

max
f̃∈Θ$

u>B(f̃)u+ 2a>(f̃)u, (14)

where B(f̃) ∈ RmT×mT and a(f̃) ∈ RmT×1 are defined
block-wise, with T blocks that are, for i, j = 1, . . . , T
(dropping the dependence on f̃ for notational ease),

(
a>
)
i

=

T−1∑
t=0

x̄>(F̃ t)>QF̃ t−iGχt−i≥0 + x̄>(F̃T )SF̃T−iG,

(B)i,j =

T−1∑
t=0

G>(F̃ t−i)>QF̃ t−jGχt−i≥0∧t−j≥0

+G>(F̃T−i)>SF̃T−jG+Rχi=j .

At this point, (14) can be rewritten in epigraph form as

arg min
τ,u

τ

s.t. u>B(f̃)u+ 2a>(f̃)u ≤ τ
for all f̃ ∈ Θ$.

(15)

Now, since Θ$ is (usually) a compact subset of Rn2

,
program (15) involves an infinite number of constraints and is
therefore hard to solve. For this reason, we resort to a sample-
based relaxation leveraging the scenario approach [21], [36]
and consider

arg min
τ,u

τ

s.t. u>B(f (k))u+ 2a>(f (k))u ≤ τ
for all k = 1, . . . , N.

(16)

The samples from the posterior {f (k)}Nk=1 are drawn by run-
ning in parallel the MCMC scheme proposed in step (S-A)
with different initializations, and discarding the ones that do
not belong to Θ$. With this construction, the N samples are
independent following the conditional probability measure
defined as

P′f (A) =
Pf (A ∩Θ$)

Pf (Θ$)
=

Pf (A ∩Θ$)

$
(17)

for any event A in the σ−field under study. Now, the
scenario approach theory comes into play to characterize
the generalization capability of the optimal solution û of
(16) based on N samples. In particular, one is interested
in bounding for the violation probability

P′f

(
f̃ : û>B(f̃)û+ 2a>(f̃)û > τ̂

)
, (18)

which is the probability to observe a new realization of
the uncertainty that violates the constraint evaluated at the
current solution (û, τ̂). The main result is stated as follows:
if samples {f (k)}Nk=1 are independent and identically dis-
tributed, and

N ≥ 2

ε

(
ln

1

β
+mT

)
, (19)

then the violation probability is smaller than ε with confi-
dence 1− β [36].



C. Computation of the robust state-feedback solution (S-C)

The solution û to (16) obtained in step (S-B) can be
interpreted as the open-loop solution of the LQR problem in
the worst-case scenario within the samples drawn from Θ$.
To allow for possible disturbance rejection, we seek a closed-
loop solution. We obtain this by considering the state matrix
yielding the worst-case scenario in (16), denoting it Fwc,
and computing the classic LQR solution by means of the
Riccati difference equation [11], [37], [38]. Specifically, the
latter consists in finding a matrix sequence {Mt}Tt=0 obtained
through the following backward recursion:

MT = S

Mt = Q+ F>wcMt+1Fwc

−F>wcMt+1G(R+G>Mt+1G)−1G>Mt+1Fwc.

Next, the optimal feedback policy is obtained as

Kt = −(R+G>Mt+1G)−1G>Mt+1Fwc. (20)

IV. METHOD: UPDATING SCHEME

In this Section, steps (S-A), (S-B) and (S-C) detailed
in Section III are combined in an updating scheme. After
having collected a first state trajectory, one applies the three
steps sequentially; the idea is then to deploy the sequence
of feedback gains computed in step (S-C) to obtain a new
system trajectory, and repeat the procedure. By adding new
data to the existing set, the system’s estimate (S-A) can be
refined, and by doing so samples that are closer to the true,
unknown system can be used in the design procedure (S-B).
In fact, in the spirit of the Bernstein-von Mises’ Theorem
and general consistency results for Bayesian estimates (see,
e.g., Chapter 10 in [39]), the posterior f |Y converges to the
point distribution centred at the true value f : from this it
follows that the size of the posterior regions {Θ(i)

$ }i is going
to decrease (with respect to the usual Lebesgue measure)
as the number of iterations i increases, while keeping the
same probability level $. Importantly, the scenario program
in (S-B) is solved keeping N , ε and β constant (see (19))
at each iteration: thus, the same guarantee on the robustness
holds, but conservatism is reduced because dispersion in
the samples is decreasing as the number of updates increases.

We now examine in more detail the proposed iterative
application of steps (S-A), (S-B) and (S-C): the aim is to find
a feedback policy {Kt}T−1

t=0 solving the original problem (2),
being robust against the uncertainty deriving from estimating
the unknown system matrix.
The user defines the number of times Nit the procedure is
to be repeated. At each iteration, a sequence of feedback
matrices {K(i)

t }T−1
t=0 solving (16) in (S-B) is obtained. To

compare the performance throughout the iterations (e.g., by
means of the cost values), it is key to solve (S-B) considering
the same initial condition x0 = x̄. This is also reasonable
because one is typically interested in the behaviour at a
certain fixed working condition of the plant. At the end of
the Nit iterations, there can be two possible decision rules to
select the feedback policy {K̂t}T−1

t=0 among the available Nit:

either one selects the one obtained for iteration k = Nit, or
one chooses the one corresponding to the iteration yielding
the smallest minimax cost of (16). Typically the two solutions
coincide if Nit is sufficiently large; however, the second
option turns out to be the most reliable in order not to be
sensitive to the choice of Nit.
The overall update-and-design procedure is summarized in
Algorithm 3.

Algorithm 3 Update-and-design scheme for robust LQR.
Input: system matrix G, initial state x̄, state trajectory length
NT , probability level $, LQR cost matrices Q, R, S and
horizon T , number of samples N , parameter µ, number of
iterations Nit. Output: Feedback policy {K̂t}T−1

t=0 .
for i = 1, . . . , Nit do

if i = 1 then
Set u(i)

t ∼ N (0, Im), t = 0, . . . , T − 1;
else

Set u(i)
t = K

(i−1)
t x

(i)
t , t = 0, . . . , T − 1;

end if
Compute data matrices Y (1:i), Φ(1:i);
Step (S-A): retrieve the posterior P(i)

f for f ;
Retrieve Θ

(i)
$ (in sampled form);

Draw N independent samples from P′(i)f (see (17));
Step (S-B): compute û(i) solving (16);
Identify the worst-case scenario F (i)

wc yielding û(i);
Step (S-C): compute nominal LQR solution for F (i)

wc ;
end for
select {K(i)

t }T−1
t=0 yielding the lowest minimax cost (16);

Remark 2: To generate new state trajectories, several
choices can be made for the input sequence. Three possible
strategies are:
• the one we propose, i.e., applying the feedback sequence

computed at the previous iteration on the system at its
current state;

• exciting the system via white noises;
• using pre-stabilizing feedbacks.

In the latter two cases, the length of the state trajectory NT
used for step (S-A) is independent of the LQR horizon T . On
the other hand, updating the system estimate via the feedback
computed at step (S-C) would apparently require NT to be
equal to T . This can be avoided as follows: for NT < T ,
by considering only the first NT feedback matrices; and for
NT > T , by using the last feedback matrix KT−1 for all
future times t = T, . . . , NT . The first two strategies may
be preferred to enhance exploration, but may incur stability
issues for “large” values of NT ; a thorough discussion on
this aspect is however beyond of the scope of this paper. �

V. NUMERICAL EXPERIMENTS
This section shows the application of the proposed update-

and-design scheme to randomly sampled plants of different
sizes. The goal is on the one hand to demonstrate the
effectiveness of the algorithm and on the other to provide
insights by showing some of its peculiar features.



In all the following tests, the true vectorized state matrix
F will be sampled from a multivariate Gaussian distribution
with zero mean and covariance 0.5In2 . The process noise
is an i.i.d. sequence where each sample vt is drawn from
N (0, 0.3In) for all t. Under these assumptions, step (S-A)
coincides with the Gibbs sampler presented in Example 1.
Finally, the matrix G is equal to 1n,m and the initial condition
is x̄ = 0.5 · 1n,1. All state trajectories have the same length
NT , which is taken to be equal to the LQR horizon T . The
LQR cost matrices are Q = 10In, S = 8In and R = Im.
As for the scenario approach robustness guarantees, we fix
ε = 0.1 and β = 0.1: this means that with 90% confidence
the solution of step (S-B) has a violation probability of 10%.
We compute the corresponding value of N from (19) and
draw samples from the posterior region computed at step
(S-A). Precisely, we consider the $ = 0.977 probability
region to be symmetric around the posterior mean. The
procedure summarized in Algorithm 3 is initialized by using
an open-loop state trajectory of length NT obtained with
white Gaussian noise, and is repeated Nit = 15 times using
as inputs the feedback policies computed at the previous
iterations, but applied on the current state.
When assessing the performance of the computed feedback
policy, there are three quantities involved. Denoting with
J(x̄, {ut}T−1

t=0 ;F ) = x>T SxT +
∑T−1
t=0 x>t Qxt + u>t Rut,

where xt+1 = Fxt +Gut, these are the following:
• L̄ = J(x̄, {u∗t }T−1

t=0 ;F ), i.e., the optimal LQR cost
under the true, noiseless, dynamics.

• L(i) = J(x̄, {K(i)
t x

(i)
t }T−1

t=0 ;F ), i.e., the suboptimal
LQR cost obtained at iteration i by using the estimated
feedback policy on the true system;

• L̂ = J(x̄, {K̂tx̂
(i)
t }T−1

t=0 ;F ), i.e., the value returned
following the decision rule proposed in Algorithm 3.
That is, L̂ = mini=1,...,Nit

L(i).
Note that these scores are not observable, because they
depend on the unknown state matrix F : however, we use
them to study the performance of the proposed approach.

A. Sample performance on a single plant

The goal of this test is to show how two features of Algo-
rithm 3 evolve across the iterations: the system’s estimation
performed in step (S-A), and the estimated LQR cost L(i)

associated with the controller designed at step (S-C).
In this experiment, state and input dimensions are set to

n = 4 and m = 1, respectively, and the true state-matrix is

F =


0.528 0.561 0.996 −0.790
−0.375 0.599 0.827 0.700
−0.977 0.953 −0.315 0.300
0.827 0.764 0.558 0.667

 .
The state trajectory length NT is 5.
Figure 2 depicts the posterior distribution information of
f obtained via step (S-A) at the first and last iteration of
the algorithm. It can be noted that uncertainty around the
estimates shrinks thanks to new data. Thus, since the same
number N of samples is drawn from uncertainty regions at
each iteration, conservatism is effectively reduced. This is

Fig. 2. Estimation performance of f = vec(F ) at the first (top panel)
and at the last (bottom panel) iteration of Algorithm 3. LEGEND: Solid red:
true f ; Dashed blue: estimated f (posterior mean); Dotted black: symmetric
posterior region bounds with probability level $ = 0.997.

apparent in Figure 3, where the true LQR cost L̄ is compared
with L(i). It can be noted that the suboptimal LQR costs
tend to decrease and reach the optimal LQR cost at the
end of the procedure. Moreover, it can be noticed that the
proposed decision rule for selecting the optimal estimated
cost is effectively capable of selecting the minimum one,
which is 1.8% higher with respect to the true LQR score.

Fig. 3. Evolution of estimated LQR costs L(i) throughout Algorithm 3.



B. Monte Carlo study

The performance of Algorithm 3 is now studied on 50 ran-
dom systems where vec(F ) is sampled from N (0, 0.5In2).
In this test, n = 2 and m = 1 and NT = 5.
First, the algorithm’s capability of improving on the LQR
cost estimated at the first iteration is analyzed. This can be
interpreted as a measure of the decrease in conservatism of-
fered by the proposed algorithm with respect to data-agnostic
robust LQR design schemes proposed in [22]. Recalling
the definitions presented at the beginning of Section V, we
consider the following performance metric:

M = 100%
L(1) − L̂
L̂

.

We study the statistics of this metric in Figure 4. Evaluated
at each abscissa Z, the plot returns the number of runs such
that the relative improvement M is greater than or equal to
Z%. There are 3 runs that yield a negative value forM, but
11 that exceed the 100% improvement. TheM-values of the
first are [−2.36,−1.02,−0.45], and the quartiles of the latter
are [202, 460, 624]. Focusing on the index in {1, . . . , Nit}
that the algorithm selected as the optimal one (i.e., returning
the lowest minimax cost), its mean value over all 50 runs is
11, and its quartiles are [7, 11, 14].

Fig. 4. Number of occurrencies (over all 50 runs of the Monte Carlo
experiment) of event {M ≥ Z%} for each abscissa Z ∈ [0, 100].

Next, we investigate the conservatism of the controller
obtained from Algorithm 3 by comparing L̂ with the op-
timal cost L̄ of the corresponding plant. The results are
displayed in Figure 5. It can be seen that the costs of the
proposed feedback laws L̂ are very close to the optimal ones,
showcasing the expected behaviour in terms of conservatism
reduction. To better view the statistics of such a performance,
Figure 6 presents the boxplot of the relative difference (i.e.,
normalized with respect to the optimal cost L̄) between the
two costs.

VI. CONCLUSIONS AND FORTHCOMING
RESEARCH

In the context of the LQR control of unknown linear sys-
tems, we propose a three-step algorithm to compute a time-
varying state-feedback control law that guarantees a robust

Fig. 5. Comparison of LQR scores L̄ and L̂.

Fig. 6. Relative difference between L̄ and L̂.

performance and is updated by exploiting the availability
of new data. Results show that the proposed procedure, by
leveraging its refined knowledge of the true system, shall
outperform data-agnostic methods by reducing conservatism
in robust design.

Future analyses involve tests with non-Gaussian distribu-
tions, building upon the theory presented in Section III-A,
and a more thorough convergence analysis of the MCMC
schemes. Also, the dependence of the overall performance
from the LQR horizon length should be studied.
The proposed procedure could be extended to the case in
which state measurements are available only through noisy
outputs, or some of them are missing. Moreover, since the
current formulation can also take input/state constraints into
account, another intriguing direction involves the adapta-
tion of the proposed procedure to (dual) Model Predictive
Control; in this case, scalability needs to be discussed and
improved.
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