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Abstract— Willems’ Fundamental Lemma provides a power-
ful data-driven parametrization of all trajectories of a control-
lable linear time-invariant system based on one trajectory with
persistently exciting (PE) input. In this paper, we present a
novel proof of this result which is inspired by the classical
adaptive control literature and differs from existing proofs
in multiple aspects. The proof involves a quantitative and
directional PE notion, allowing to characterize robust PE
properties via singular value bounds, as opposed to binary rank-
based PE conditions. Further, the proof is constructive, i.e., we
derive an explicit PE lower bound for the generated data. As a
contribution of independent interest, we generalize existing PE
results from the adaptive control literature and reveal a crucial
role of the system’s zeros.

I. INTRODUCTION

The Fundamental Lemma by Willems et al. [1] allows
all finite-length trajectories of a controllable linear time-
invariant (LTI) system to be parametrized based on one
input-output trajectory with persistently exciting (PE) input.
Starting from this data-driven system parametrization, a
plethora of system analysis and control methods have been
developed, analyzed, and successfully applied in practice,
see [2] for a recent survey. Further, different generalizations
of the Fundamental Lemma have been developed in recent
years, e.g., to certain classes of nonlinear systems [3]–[5]
or by relaxing some of its assumptions [6]–[8]. Whereas
the original result by [1] was formulated and proven in the
behavioral framework, the recent paper [9] contains a proof
in the state-space framework. An alternative proof in the
behavioral framework for the single-input case is provided
in [10]. In this paper, we present a quantitative and construc-
tive proof of the Fundamental Lemma based on arguments
from the classical literature on adaptive control [11]–[13].

PE properties and their implications on parameter con-
vergence have been at the center of the field of adaptive
control for several decades [11]–[13]. These classical PE
notions are typically based on squares and summation, e.g.,
for some signal {uk}N−1k=0 , the sum

∑N−1
k=0 uku

>
k is positive

F. Allgöwer is thankful that his work was funded by Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy - EXC 2075 - 390740016 and under grant
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definite. On the contrary, the Fundamental Lemma [1] and
its applications in data-driven control [2] mainly rely on a
rank-based PE notion. That is, the Hankel matrix of depth L
corresponding to the sequence {uk}N−1k=0 with each uk ∈ Rm,

HL(u) =


u0 u1 . . . uN−L
u1 u2 . . . uN−L+1

...
...

. . .
...

uL−1 uL . . . uN−1

 ∈ RmL×(N−L+1),

needs to have full row rank. While this rank condition is
equivalent to positive definiteness of HL(u)HL(u)>, i.e., to
a squares-and-summation-based PE notion, only the latter
allows to precisely quantify the richness of the data in
terms of lower bounds on the eigenvalues of HL(u)HL(u)>.
This quantification has several important implications which
we describe in more detail later in the paper and which
motivated [14] to derive a robust Fundamental Lemma.
In this paper, we seek to further reconcile the behavioral
approach to data-driven control with the classical adaptive
control literature. To this end, we show that the Fundamental
Lemma [1] can be proved using as starting point the main
result of [12]. In addition to providing a different viewpoint
on the Fundamental Lemma, the presented proof has the
following advantages: 1) it involves a quantitative (similar
to [14]) and directional description of PE properties, which
leads to more robust conditions; 2) it is constructive, i.e.,
we derive an explicit lower bound on the richness of the
data matrices. Further, open research questions for methods
relying on the Fundamental Lemma concern noisy data and
nonlinearities in the data-generating system. Owing to the
constructive nature of the proof and its more direct links with
PE properties, we believe that the results presented here can
provide the basis for further generalizations, which constitute
an interesting direction for future research.

Before providing a new proof of the Fundamental Lemma
(Section III), we first extend the results of [12] in Section II,
where we derive input design conditions to guarantee a PE
output signal for arbitrary initial conditions and arbitrary
output reachable systems. In contrast to [12], our results
employ a directional PE notion, leading to less conservative
results and illustrating the role of the Markov parameters
in a transparent fashion. Moreover, we show that the PE
requirements can be relaxed under certain conditions related
to the number of zeros of the system.



Notation: We write I≥0 (I>0) for the set of nonnegative
(positive) integers and I[a,b] for all integers in the interval
[a, b]. An identity matrix of dimension n is denoted by
In. We denote the image of a matrix A by im(A). The
minimum eigenvalue and singular value of A = A> are
defined as λmin(A) and σmin(A), respectively. We write
A � 0 (A � 0) or A ≺ 0 (A � 0) if A is positive or
negative (semi-)definite, respectively. The Kronecker product
of two matrices A and B is denoted by A ⊗ B. Further,
we denote a window of a multivariate sequence {xk}N−1k=0

by x[a,b] =
[
x>a . . . x>b

]>
and we write x = x[0,N−1]

for the full stacked sequence. We write Σor
n,m,p for the

set of output reachable systems (see Definition II.3) of
order n with m inputs and p outputs, i.e., Σor

n,m,p =
{(A,B,C,D) | A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈
Rp×m, (A,B,C,D)output reachable}, and similarly Σc

n,m,p

for the set of controllable systems. Finally, we define
{yk(Σ, x0, u)}N−1k=0 as the output sequence generated by
applying the input {uk}N−1k=0 to the system Σ with initial
condition x0.

II. REVISITING PERSISTENCE OF EXCITATION

After introducing the considered PE notion in Section II-
A, we characterize under what conditions on the input signal
the output of an LTI system is PE in Section II-B. This result
will be instrumental in the new proof of the Fundamental
Lemma in Section III, and it generalizes the main result
of [12] by using a more general quantitative PE notion. In
Section II-C, we show that the input PE condition can be
relaxed under an assumption on the Markov parameters.

A. Quantitative notion of PE

Consider the discrete-time LTI system

Σ0 :

{
xk+1 = Axk +Buk,

yk = Cxk +Duk
(1)

with state xk ∈ Rn, input uk ∈ Rm, and output yk ∈ Rp.
Collect the first n+1 Markov parameters of (1) in the matrix

Γ =
[
Γ0 Γ1 . . . Γn

]
=
[
D CB CAB . . . CAn−1B

]
. (2)

The following is a classical definition of persistence of
excitation [1].

Definition II.1. [1] The sequence {uk}N−1k=0 with uk ∈ Rm

is persistently exciting (PE) of order L if rank(HL(u)) =
mL.

This concept of persistence of excitation has the shortcom-
ing that it is merely qualitative in the sense that, for a fixed
order L, it is not possible to compare the PE levels of differ-
ent signals. This motivates the following quantitative version
of persistence of excitation as recently proposed by [14] in
the context of data-driven control and originally proposed in
a similar form in the adaptive control literature [11]–[13].

Definition II.2. The sequence {uk}N−1k=0 is K-PE of order
L for some matrix K � 0 if

HL(u)HL(u)> =

N−L∑
k=0

u[k,k+L−1]u
>
[k,k+L−1] � K. (3)

Note that {uk}N−1k=0 is K-PE of order L for some K �
0 if and only if {uk}N−1k=0 is PE of order L. However, the
flexibility gained via K in Definition II.2 allows for a more
precise quantification of PE properties than Definition II.1.
In particular, any choice K in Definition II.2 always reduces
to the same rank condition in Definition II.1.

Persistence of excitation properties of system components,
e.g., states, outputs, or regressors, play a crucial role in
the classical literature on parameter estimation and adaptive
control [11]–[13], where they can be used to guarantee
convergence, as well as in the recent literature on data-
driven control, see [2] for an overview. In contrast to the
classical works [11]–[13], which typically involve infinitely
many, shifted time windows or infinite sums, Definition II.2
imposes a condition over one finite time interval. As a second
difference to these results and to the recently suggested PE
notion by [14], we propose a not necessarily diagonal lower
bound K, which allows to capture directional PE properties.

B. When does a PE input imply a PE output?
By the Cayley-Hamilton theorem, there exists a polyno-

mial d(z) =
∑n

j=0 djz
n−j with

d =
[
dn · · · d1 d0

]> ∈ Rn+1, d0 6= 0, (4)

such that d(A) = 0. Without loss of generality, we assume
‖d‖2 = 1. Further, we define

M =
[
Mn . . . M1 M0

]
∈ Rp×m(n+1) (5)

with Mj =
∑j

q=0 dj−qΓq . The following input-output rep-
resentation of system (1) will play a crucial role, cf. [12].

Lemma II.1. [12] Any trajectory {uk, yk}∞k=0 of (1)
satisfies, for any k ≥ n,

Mu[k−n,k] =
[
yk−n . . . yk−1 yk

]
d. (6)

Note that, for a single-input single-output (SISO) system,
M and d simply contain the coefficients of the transfer
function. The following alternative representations of M will
be useful later in the paper:

M = (d> ⊗ Ip)Γ̄ = Γ
(
D̄ ⊗ Im

)
, (7)

where

D̄ =


dn dn−1 . . . d0

dn−1 dn−2
... 0

...
... ...

...
d0 0 . . . 0

 ∈ R(n+1)×(n+1), (8)

Γ̄ =


Γ0 0 . . . 0

Γ1 Γ0
. . .

...
...

. . . . . . 0
Γn . . . Γ1 Γ0

 ∈ Rp(n+1)×m(n+1). (9)



The following result characterizes PE properties of the output
of (1) in terms of the input for arbitrary initial conditions.

Theorem II.1. If the signal {Mu[k−n,k]}N−1k=n is PE of order
1, then, for any x0 ∈ Rn, the sequence {yk(Σ0, x0, u)}N−1k=0

is PE of order 1. Further, if {Mu[k−n,k]}N−1k=n is Ku-PE of
order 1, then, for any x0 ∈ Rn, {yk(Σ0, x0, u)}N−1k=0 is Ky-
PE of order 1 with

Ky =
1

n+ 1
Ku. (10)

Proof. Let us abbreviate y(Σ0, x0, u) by y. Note that

Ku �
N−1∑
k=n

Mu[k−n,k]u
>
[k−n,k]M

> (11)

(6)
=

N−1∑
k=n

[
yk−n . . . yk

]
dd>

[
yk−n . . . yk

]>
�‖d‖22

N−1∑
k=n

n∑
j=0

yk−jy
>
k−j � (n+ 1)

N−1∑
k=0

yky
>
k ,

using ‖d‖22 = 1 in the last step. This proves both statements.

Theorem II.1 extends [12, Theorem 2.1] by providing a
matrix-valued lower bound (10) instead of a diagonal one,
i.e., Ku = kuI for some ku > 0. The result yields a
sufficient condition for designing an input which guarantees
a PE output, i.e., {Mu[k−n,k]}N−1k=n needs to be PE of order
1. In [12], it is claimed that this condition is not only
sufficient but also necessary for achieving PE of the output
for arbitrary initial conditions. This is, however, not true. In
the appendix, we give a counterexample and discuss where
the proof of [12] fails.

Note that the input design condition in Theorem II.1
involves the matrix M , which is typically unknown in
estimation and data-driven control setups. In order to develop
conditions which only involve the input, the concept of
output reachability is essential, compare [12].

Definition II.3. The system Σ is output reachable if, for
any ŷ ∈ Rp, there exist T ∈ I≥0 and an input sequence
{uk}Tk=0 such that the resulting output {yk(Σ, 0, u)}Tk=0

satisfies yT (Σ, 0, u) = ŷ.

By writing down the explicit output evolution, one ob-
serves that system (1) is output reachable if and only if Γ has
full row rank, that is, if and only if M has full row rank [12,
Lemma 2.1]. Note that, if the signal {Mu[k−n,k]}N−1k=n is PE
of order 1, then M has full row rank [12, Lemma 2.2]. Thus,
output reachability is necessary for ensuring a PE output via
Theorem II.1.

The following corollary of Theorem II.1, which ex-
tends [12, Corollary 2.1], provides a design condition for
the input signal to ensure a PE output for an arbitrary output
reachable system and for arbitrary initial conditions.

Corollary II.1. If the signal {uk}N−1k=0 is PE of order n+ 1,
then, for any Σ ∈ Σor

n,m,p and any x0 ∈ Rn, the sequence

{yk(Σ, x0, u)}N−1k=0 is PE of order 1. Further, if {uk}N−1k=0 is
Ku-PE of order n + 1, then, for any Σ ∈ Σor

n,m,p and any
x0 ∈ Rn, {yk(Σ, x0, u)}N−1k=0 is Ky-PE of order 1 with

Ky =
1

n+ 1
MKuM

>. (12)

Proof. The first claim follows from Theorem II.1 since
{Mu[k−n,k]}N−1k=n is PE of order 1 for arbitrary M with full
row rank if {u[k−n,k]}N−1k=n is PE of order 1, which, in turn,
holds if {uk}N−1k=0 is PE of order n+1. For the second claim,
if {uk}N−1k=0 is Ku-PE of order n + 1 then MKuM

> �∑N−1
k=n Mu[k−n,k]u

>
[k−n,k]M

>, from which (12) follows by
the same steps as in the proof of Theorem II.1.

Equation (12) provides a quantitative input design con-
dition to ensure a desired output PE level Ky � 0, i.e.,
it is sufficient to choose the input as Ku-PE of order
n + 1 for some Ku � 0 satisfying 1

n+1MKuM
> � Ky.

Corollary II.1 is conceptually also similar to the classical
result [13, Theorem 2.9], which describes PE properties of
filtered signals. The result remains true when replacing 1 by
any integer L ∈ I>0, i.e., it can be shown that the output
is PE of order L if the input is PE of order L + n. This
extension is omitted for space reasons.

Corollary II.1 extends [12, Corollary 2.1] by allowing
for a matrix-valued PE lower bound, yielding insights on
directional persistence of excitation. To be precise, the matrix
in (12) does not only bound the minimum singular value of∑N−1

k=0 yky
>
k , but is described via a (not necessarily diagonal)

matrix depending on the system parameters via M . In fact,
inserting M = Γ(D̄ ⊗ Im) from (7) in (12), we have

Ky �
λmin(Ku)

n+ 1
σmin(D̄)2ΓΓ>. (13)

Thus, the Markov parameters Γ directly influence (a lower
bound on) the matrix Ky and, in particular, directions that
are easy to reach or observe are more PE. This insight is
conceptually similar to [15], which shows that the difficulty
of system identification is influenced by the controllability
properties of the underlying system.

Using M = (d> ⊗ Ip)Γ̄ by (7) as well as ‖d‖2 = 1, we
can also derive the following alternative bound

Ky �
1

n+ 1
λmin(Γ̄KuΓ̄>)Ip. (14)

Since the lower bound (14) is diagonal, it does not provide
any directional information on the richness of the output.
However, in contrast to (13), it illustrates the role of the PE
directions of the input. Specifically, the bound depends on
λmin(Γ̄KuΓ̄>), i.e., to be more effective, the input should be
tailored to the row space of the Toeplitz matrix Γ̄ containing
the Markov parameters.

To summarize, Corollary II.1 implies the bounds (13)
and (14), which allow for an intuitive interpretation in terms
of directional persistence of excitation of the output and
input, respectively. While these results cannot be used to
construct explicit PE bounds if Γ and d are unknown, they
reveal interesting insights in the interplay of the input and
output PE properties and the system’s Markov parameters.



C. Relaxing PE requirements

Corollary II.1 provides an input design condition for guar-
anteeing a PE output for arbitrary output reachable systems.
In this section, we investigate whether this condition can be
relaxed when restricting the system class by using additional
prior knowledge on the system. To this end, we consider the
condition that the first r Markov parameters vanish, i.e.,

Γi = 0 for i = 0, . . . , r − 1, and Γr 6= 0. (15)

Corollary II.2. If {uk}N−r−1k=0 is PE of order n+1−r, then,
for any Σ ∈ Σor

n,m,p satisfying (15) and any x0 ∈ Rn, the
sequence {yk(Σ, x0, u)}N−1k=0 is PE of order 1.

Proof. Note that (7) and (15) imply

Mu[k−n,k] =M̄ru[k−n,k−r] (16)

with M̄r := (d̄>r ⊗ Ip)Γ̄r, d̄r :=
[
dn−r . . . d0

]>
, and

Γ̄r :=


Γr 0 . . . 0

Γr+1 Γr
. . .

...
...

. . . . . . 0
Γn . . . Γr+1 Γr

 .

If {uk}N−r−1k=0 is PE of order n + 1 − r, then
{M̄ru[k−n,k−r]}N−1k=n is PE of order 1 for arbitrary matrices
M̄r with full row rank. Together with (16), this implies
that {Mu[k−n,k]}N−1k=n is PE of order 1 for arbitrary output
reachable systems satisfying (15), i.e., by Theorem II.1, the
output is PE of order 1.

According to Corollary II.2, the PE requirements of Corol-
lary II.1 can be relaxed depending on how many Markov
parameters vanish. For SISO systems, (15) is equivalent to
system (1) having relative degree r and n− r zeros. In this
case, Corollary II.2 means that a sufficient condition for the
output being PE is that the input is PE of order 1 + #zeros,
i.e., additional zeros require a richer input signal to achieve
the same PE level of the output. Verifying condition (15)
only from data is an interesting issue for future research.

Note that the lower bound (14) is zero if Γ0 = D does not
have full row rank. In this case, a non-trivial bound can be
derived by following the same strategy as in Corollary II.2.

Finally, the persistence of excitation condition for the input
in Corollary II.2 only involves the data up to time step N −
r − 1. This is due to the fact that the time steps k = N −
r, . . . , N − 1 have no influence on the output trajectory.

III. A QUANTITATIVE AND CONSTRUCTIVE PROOF OF
THE FUNDAMENTAL LEMMA

In this section, we present our main result: a novel proof of
(a generalization of) the Fundamental Lemma based on [12],
i.e., based on the results in Section II. Let us recall the
Fundamental Lemma [1, Theorem 1] in the context of state-
space systems, adjusted to our notation.

Theorem III.1. [1] If {uk}N−1k=0 is PE of order L+n, then,
for any Σ ∈ Σc

n,m,p and any x0 ∈ Rn,

im

[
HL(u)

HL(y(Σ, x0, u))

]
(17)

=
{[ ū

ȳ(Σ, x̄0, ū)

]
| ū ∈ RmL, x̄0 ∈ Rn

}
.

Theorem III.1 provides a parametrization of all system
trajectories based on one input-output trajectory, and the
result has found wide use in designing and analyzing data-
driven control algorithms [2]. In the original paper [1],
the Fundamental Lemma has been proven in the behav-
ioral framework, and a proof for state-space systems has
been given in [9]. In the following, we provide a novel,
quantitative and constructive proof of Theorem III.1, which
exploits the system description (6). To this end, we define the

extended output φk =

[
xk
uk

]
which gives rise to the system

xk+1 = Axk +Buk, (18)

φk = C̃xk + D̃uk,

where C̃ =

[
In
0

]
, D̃ =

[
0
Im

]
. Throughout this section,

whenever we apply the results from Section II, the considered
“output” is φk and the corresponding “input-output represen-
tation” (6) is associated with (18). Note that, for system (18),

the Markov parameters Γ take the form Γ =

[
0 Γxu

I 0

]
with

the controllability matrix Γxu =
[
B AB . . . An−1B

]
.

Thus, system (18) is output reachable if and only if (A,B)
is controllable.

To prove the Fundamental Lemma, we are only concerned
with the input-state system (18) and consider the matrix

[
H1(x[0,N−L])

HL(u)

]
=


x0 x1 . . . xN−L
u0 u1 . . . uN−L
u1 u2 . . . uN−L+1

...
...

. . .
...

uL−1 uL . . . uN−1

 . (19)

Specifically, we study under which conditions on the input
the rank condition

rank

([
H1(x[0,N−L])

HL(u)

])
= mL+ n, (20)

holds, compare [1, Corollary 2 (iii)]. In the language of

Definition II.2, this means that
{[

xk
u[k,k+L−1]

]}N−L

k=0

needs

to be PE of order 1. Establishing (20) is the hard part of
proving the Fundamental Lemma and, once shown, directly
implies the statement of Theorem III.1, cf. [16, Lemma 2].
We summarize this fact in the following statement.

Proposition III.1. (17) holds if (20) holds.

In the following, we derive a sufficient condition for (20)
to hold for arbitrary initial conditions and arbitrary con-
trollable systems, which, according to Proposition III.1,



provides a sufficient condition for (17). To this end, with
M corresponding to system (18), we define

Z =

[
M 0(m+n)×m(L−1)

0m(L−1)×m T ⊗ Im

]
(21)

=


Mn Mn−1 . . . M1 M0 0 . . . 0

0 dnI dn−1I . . . d1I d0I
. . .

...
...

. . . . . . . . . . . . . . . . . . 0
0 . . . 0 dnI dn−1I . . . d1I d0I

 ,
where T is the Toeplitz matrix

T =

dn . . . d0 0 0

0
. . . . . . . . . 0

0 0 dn . . . d0

 ∈ R(L−1)×(L+n−1). (22)

Theorem III.2. If {uk}N−1k=0 is PE of order L+n, then, for
any Σ ∈ Σc

n,m,p and any x0 ∈ Rn, (17) holds. Further, if
{uk}N−1k=0 is Ku-PE of order L+ n, then[

H1(x[0,N−L])
HL(u)

] [
H1(x[0,N−L])

HL(u)

]>
� 1

n+ 1
ZKuZ

>.

(23)

Proof. Define

Φk :=
[
φk−n . . . φk

]
=

[
xk−n . . . xk
uk−n . . . uk

]
,

Uk :=


uk−n+1 uk−n+2 . . . uk+1

uk−n+2 uk−n+3 . . . uk+2

...
...

. . .
...

uk−n+L−1 uk−n+L . . . uk+L−1

 .
First, note that

Ukd =

 dnuk−n+1 + · · ·+ d0uk+1

...
dnuk−n+L−1 + · · ·+ d0uk+L−1


= (T ⊗ Im)u[k−n+1,k+L−1]

with T from (22). Hence, using (6), we have[
Φk

Uk

]
d =

[
M 0
0 T ⊗ Im

] [
u[k−n,k]

u[k−n+1,k+L−1]

]
(24)

= Zu[k−n,k+L−1].

Using that {uk}N−1k=0 is Ku-PE of order L+ n, we obtain

ZKuZ
> �

N−L∑
k=n

Zu[k−n,k+L−1]u
>
[k−n,k+L−1]Z

> (25)

(24)
=

N−L∑
k=n

[
Φk

Uk

]
dd>

[
Φk

Uk

]>
� ‖d‖22

N−L∑
k=n

[
Φk

Uk

] [
Φk

Uk

]>
�(n+ 1)

N−L∑
k=0

[
xk

u[k,k+L−1]

] [
xk

u[k,k+L−1]

]>
,

which shows (23). Note that Z has full row rank since M
has full row rank (by controllability) and d0 6= 0. Together
with Proposition III.1, this proves the statement.

Theorem III.2 shows that (a variation of) the main result
from Section II can be used to prove the Fundamental
Lemma from [1]. In fact, for L = 1, Theorem III.2 follows
from Corollary II.1 without any modification, i.e., the one-
step version of the Fundamental Lemma [1, Corollary 2 (ii)]
is actually a direct consequence of [12, Corollary 2.1]. The
longer proof above is required for the general case L > 1.

In addition to providing a novel proof strategy, Theo-
rem III.2 in fact generalizes the original Fundamental Lemma
from [1] by providing a quantitative and constructive state-
ment. Specifically, (23) reveals a direct connection between
the PE level of the input and that of the input-state matrix[
H1(x[0,N−L])

HL(u)

]
. While positive definiteness of the left-hand

side in (23) (i.e., the existence of some lower bound) is also
guaranteed in existing proofs of the Fundamental Lemma [1],
[9], we construct an explicit lower bound on the PE level.
Improved PE bounds, in turn, imply better robustness with
respect to noise, e.g., in system identification [14] or in data-
driven predictive control [17, Theorem 3].

These insights are of practical use even in the realistic
scenario that the system parameters in Z are only known
approximately or if they are fully unknown. To be precise,
suppose only an estimate Ẑ of Z in (21) is available with
error bound ‖Ẑ −Z‖2 < ε for some ε > 0, and we want to
use this knowledge to guarantee a certain PE bound in (23).
If we let {uk}N−1k=0 be Ku-PE of order L+n, then the lower
bound in (23) implies[

H1(x[0,N−L])
HL(u)

] [
H1(x[0,N−L])

HL(u)

]>
� 1

n+ 1
ZKuZ

>

� 1

2(n+ 1)
ẐKuẐ

> − ε2

n+ 1
σmax(Ku).

In this sense, our PE characterization is robust with respect
to model inaccuracy. Similar bounds can be derived in the
presence of process or measurement noise. Working out these
insights in more detail and employing them for robust data-
driven control is an interesting issue for future research.

We note that related results (Fundamental Lemma with
quantitative PE bounds) are provided in [14] using a proof
strategy similar to [9], however, only diagonal PE bounds
and L = 1 are addressed.

IV. CONCLUSION

We presented a novel, quantitative and constructive proof
of Willems’ Fundamental Lemma, which has received sig-
nificant attention in the context of data-driven control. Ad-
ditionally, we extended classical results on adaptive control,
which inspired our proof. We believe that the proposed new
proof technique paves the way for further generalizations
of the Fundamental Lemma and, since it enables robust PE
guarantees for noisy/uncertain setups, it opens the door to
new robust data-driven control results.
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[3] J. Berberich and F. Allgöwer, “A trajectory-based framework for data-
driven system analysis and control,” in Proc. European Control Conf.
(ECC), 2020, pp. 1365–1370.

[4] J. G. Rueda-Escobedo and J. Schiffer, “Data-driven internal model
control of second-order discrete Volterra systems,” in Proc. 59th IEEE
Conf. Decision and Control (CDC), 2020, pp. 4572–4579.
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APPENDIX: ON NECESSITY IN THEOREM II.1
[12, Theorem 2.1] contains the following claim.

Claim A.1. If {yk(Σ0, x0, u)}N−1k=0 is PE of order 1 for any
x0 ∈ Rn, then {Mu[k−n,k]}N−1k=n is PE of order 1.

Claim A.1 means that PE of order 1 of {Mu[k−n,k]}N−1k=n is
not only sufficient but also necessary for {yk(Σ0, x0, u)}N−1k=0

being PE of order 1 for arbitrary initial conditions. However,
as we show in the following, the claim is incorrect in general.

Suppose the system Σ0 takes the form

A =

[
0 0
1 0

]
, B =

[
1
0

]
, C = I2, D = 0. (26)

With the minimal polynomial A2 = 0, we have d =[
0 0 1

]>
, M =

[
0 1 0
1 0 0

]
. Suppose now the input is

chosen as u[0,N−1] =
[
1 0 . . . 0

]>
. For a fixed initial

condition x0 =

[
x0(1)
x0(2)

]
, the resulting output is

H1(y) =
[
y0 y1 y2 y3 . . . yN−1

]
(27)

=

[
x0(1) 1 0 0 . . . 0
x0(2) x0(1) 1 0 . . . 0

]
.

Note that H1(y) has full row rank for any initial condition
x0 ∈ R2. On the other hand, {Mu[k−n,k]}N−1k=n is not PE

of order 1 since Mu[0,2] =

[
0
1

]
but Mu[k−n,k] = 0 for all

k = n+ 1, . . . , N − 1. This invalidates Claim A.1.
Let us take a closer look at the proof of necessity in [12,

Theorem 2.1], i.e., an attempt of proof for Claim A.1. To
this end, suppose {Mu[k−n,k]}N−1k=n is not PE of order 1,
i.e., there exists 0 6= a ∈ Rp such that a>Mu[k−n,k] = 0 for
k = n, . . . , N −1. By (6), this implies for k = n, . . . , N −1

n∑
j=0

dja
>yk−j = 0. (28)

The main proof idea from [12] is now to choose initial
conditions such that a>yk = 0 for k = 0, . . . , n − 1. If
this were possible, then one could repeatedly apply (28) to
conclude that a>yk = 0 for all k = n, . . . , N − 1, thus
proving that the output is not PE of order 1, i.e., proving
Claim A.1. In [12], it is stated that such initial conditions can
be chosen based on an observable realization of the transfer
function from u to a>y. Indeed, suppose (Ã, B̃, C̃, D̃) is
such a realization of order ñ, and denote the corresponding
state by x̃k ∈ Rñ and the output by ỹk = a>yk ∈ R. The
system dynamics imply

ỹ[0,ñ−1] = Φñx̃0 + Tñu[0,ñ−1] (29)

for the observability matrix Φñ and a suitable matrix Tñ.
Since Φñ has full column rank (by observability) and is
square (since ỹk ∈ R), it is invertible. Hence, choosing
the initial condition x̃0 = −Φ−1ñ Tñu[0,ñ−1] leads to ỹk =
a>yk = 0 for k = 0, . . . , ñ− 1.

The problem arises from the fact that ñ need not be equal
to n. In particular, if ñ < n, there may not exist initial
conditions which ensure that a>yk = 0 holds for k =

ñ, . . . , n− 1. Indeed, for the system (26), we have a =

[
1
0

]
and the system (A,B, a>C, a>D) is not observable. The
state of an observable realization necessarily has dimension
ñ = 1 < 2 = n. This means that we can only choose initial
conditions to ensure a>y0 = 0, but not a>y1 = 0, cf. (27).

In view of the above argument, the proof of necessity
from [12] applies and Claim A.1 holds if ñ = n, i.e.,
(A, a>C) is observable. This gives rise to the following
open questions: Are there relevant system classes for which
observability of (A, a>C) can be guaranteed for any a
satisfying a>Mu[k−n,k] for k = n, . . . , N − 1, independent
of the choice of input? Conversely, for which systems is
(A, a>C) not observable, i.e., ñ < n, such that smaller
levels of PE for the input may suffice to achieve a certain
PE level for the output? What are the implications for
necessity of PE in Corollary II.1 and in the Fundamental
Lemma (Theorem III.2)? We leave these questions for future
research.


