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Dynamic aeroelastic behaviour of structurally nonlinear Joined Wings is presented.
Three configurations, two characterized by a different location of the joint and one pre-
senting a direct connection between the two wings (Sensorcraft-like layout) are investigated.

As a first step, the snap-divergence is studied from a dynamic perspective in order
to assess the real response of the configuration. Later on, the investigations focus on the
flutter occurrence (critical state) and go further in analyzing postcritical phenomena: Limit
Cycle Oscillations (LCOs) are observed followed by a lost of periodicity of the solution as
speed is further increased. In some cases, it is also possible to ascertain the presence of
period doubling (flip-) bifurcation.

Differences between flutter (Hopf’s bifurcation) speed evaluated with linear and nonlin-
ear analyses are discussed in depth, in order to understand if a less computationally intense
approach may be used with confidence.

Both frequency and time-domain approaches are compared. Moreover, aerodynamic
solvers based on the potential flow are critically examined and discussed. In particular,
it is assessed in what measure the use of more sophisticated (and computationally more
intensive) aerodynamic and interface models impacts the aeroelastic predictions. These
differences range from the methods adopted for load transferring to the models employed
to describe the wake.

When the use of the tools gives different results, a physical interpretation of the lead-
ing mechanism generating the mismatch is provided. In particular, for PrandtlPlane-like
configurations the aeroelastic response is very sensitive to the wake’s shape. As a conse-
quence, it is suggested that a more sophisticated modelling of the wake positively impacts
the reliability of aerodynamic and aeroelastic analysis.

For Sensorcraft-like configurations some LCOs are characterized by a non-synchronous
motion of the inner and outer portion of the lower wing: the wings’ tip exhibits a small os-
cillation during the descending or ascending phase, whereas the mid-span station describes
a sinusoidal-like trajectory in the time domain.

I. Introduction

There is currently great interest in innovative aircraft configurations. Among them, joined-wing concept
[1, 2] has captured the attention as a possible candidate for the airplane of the future. However, it

was argued and also demonstrated that a reasonably accurate conceptual/preliminary design is hard to be
pursued due to inherent structural nonlinearities that may invalidate the results obtained with fast lower-
fidelity tools, which are a necessity when exploring the large parameter’s space typical of the early design
stages. For example, references [3–5] showed non-negligible differences when comparing structural responses
obtained with linear and nonlinear capabilities. As a consequence, consolidated design strategies and tools
developed in decades, and effectively used by the industry, have to be reviewed. This represents one of the
major barriers to the development of Joined Wings [6].

∗PhD Candidate, Department of Aerospace Engineering, San Diego State University and Department of Structural Engi-
neering, University of California San Diego, AIAA Member

†Visiting Graduate Student, San Diego State University, MS Candidate at the Dipartimento di Ingegneria Aerospaziale,
Università di Pisa.
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The need to include these structural nonlinearities early in the design has pushed the researchers to try
to achieve computational efficiency with reduced order models [7,8]. However, results in this direction have
not been quite encouraging. Some recent results are shown in references [9, 10].

The situation outlined in reference [11] goes well beyond a bad prediction of the critical condition. It is
in fact shown that, bi-stability is possible and thus, catastrophic branch-jumping may eventually arise well
before the static limit condition is reached. The only tool to detect such regions is a nonlinear full post-
critical analysis (branch tracking). Actually, this may not be enough to plot the complete static equilibrium
diagram: in reference [12] isola-type of bifurcations are shown.

When assessing joined-wing behaviour from a static aeroelastic perspective, similar problems were no-
ticed [13] in terms of presence of bi-stable regions, and the snap-divergence concept was introduced. The
strong structural nonlinearities have demonstrated to be dominant also for small angles of attack and at-
tached flow, which can be considered linear.

However, a complete scenario of the aeroelastic properties may be sketched only by nonlinear dynamic
investigations. To the best of authors’ knowledge, nonlinear aeroelastic dynamic analysis was pursued only
in a few efforts, i.e. references [14, 15]. The first of these preliminary studies showed how the flutter speed
prediction varied when using a nonlinear modelling of the structure, whereas the second studied a limit cycle
oscillation.

The effort of the present paper is in the direction of showing, studying and gaining insight into the
dynamic aeroelastic phenomena inherent to these configurations, and which have potential impact on the
design of Joined Wings.

II. Contribution of the Present Study

The numerical investigations presented in references [4, 5, 11,13,16] characterized the response of Joined
Wings on a conceptual level. In particular, a snap-instability was first found when statically loading the
structure with mechanical forces. The occurrence of such kind of instability (saddle-node bifurcation, refer
to [17] for more details) was also observed when mechanical forces of a follower type or aerodynamic loads
were considered. For the true aeroelastic case, the static instability was named snap-divergence, in order to
resemble the true snap-phenomenon that was arising in the pure mechanical case, even if a real snap may
practically not occur due to the nonconservative nature of aerodynamic forces. One of the contributions of
this paper is the study of this phenomenon from a dynamic point of view: after assessing, by means of a
series of linearized frequency-domain analyses, that the flutter speed is higher than the snap-divergence one,
the true dynamic response will be shown.

In reference [13] the snap-divergence was compared to the traditional divergence analysis, performed
through an eigenvalue analysis about particular configurations (usually the undeformed one). Discrepancy
between the critical speeds predicted by these two approaches was substantial. Moreover, the traditional
eigenvalue approach was overpredicting the divergence speed. It is then expected a mismatch also between
flutter speeds evaluated by means of linear and nonlinear flutter analyses. This will be shown to be important
and to have a similar trend as the one found for the divergence analysis: linear tools overpredict the flutter
speed, at least for the considered configurations. The above comparison is further augmented by considering
different damping ratios and by incorporating time domain analyses.

Assessment of flutter speed gives a local information about loss of stability (Hopf’s bifurcation), however,
does not provide a picture of what happens in the post-critical region (see the works cited in reference [18]
for a comprehensive literature review). With the aid of different time-domain capabilities LCOs are shown.
For the Sensorcraft-like case, it is found an asynchronous motion between the outer and inner part of the
lower wing: while the inner part moves in a wave-like pattern, the outer part has a small localized oscillation
during the ascending or descending portion of the periodic motion.

A peculiarity of some joined-wing configurations is that, for higher speed, further bifurcation phenomena
as period doubling [17–20] occur. Moreover, loss of periodicity can also be observed when speed is further
increased, suggesting that a transition to chaos may be in place. On the other hand, for other joined-wing
layouts experiencing an LCO, increasing the speed may have the opposite effect, leading to a stable state.

A very important and often neglected fact is the level of confidence that should be given to solvers
employed for investigating the aeroelastic problem. A first differentiation is made by frequency domain and
time domain tools. In some of the present numerical experiments both of these techniques are used. For the
time domain approach, different options are provided. However, some preliminary theoretical discussions are

2 of 63

American Institute of Aeronautics and Astronautics



necessary. For example, studies on delta wings showed that when the structural nonlinearities are important
they may also drive the limit cycle oscillation much more than the aerodynamic effects do. References [21–23]
are a good example: the response was mainly driven by the structural nonlinearities. Considering the
strongly nonlinear (on the structural side) response of Joined Wings, it is then natural to investigate under
which conditions the structural geometric nonlinearities play an important role in the development of limit
cycle oscillation, which may appear even for a completely attached flow and linear aerodynamics. Even
within these reasonable assumptions there are different level of approximations. In this paper effects of
load/displacements transferring methods (splining, [24], meshless [25]), different way of distributing the
aerodynamic singularities (on an undeformable reference plane or attached to the body) as well as modelling
of the wake (rigid or free) are evaluated. It will be shown that solvers implementing different assumptions
may lead to considerably different results. This is especially true for PrandtlPlane configurations, for which
aerodynamic load redistribution have a major impact on aeroelastic performances: wake deformation is then
a factor to take account of.

It is important to collocate this effort in an historical and bibliographical context. Flutter analysis of
Joined Wings was first performed in reference [26], for a box-wing layout [27]. It was found that the flutter
instability was a limitation to the design of the configuration. Later, [28, 29] the so called PrandtlPlane
[30–32] configuration was studied on an aeroelastic perspective and the encountered flutter problems were
alleviated with the introduction of a double fin. In the above references linear flutter prediction methods
were used. Moreover, the analyses were carried out on a realistic (i.e, inertial and stiffness distributions
were assessed considering real-like operative conditions) aircraft, whereas conceptual investigations on wind-
tunnel-like models will be pursued in this paper.

However, as shown in reference [13] for the static aeroelastic case and in this paper for the dynamic
aeroelastic one, linear results could be non-conservative since higher critical speeds may be predicted. If a
large discrepancy between the linear and nonlinear predicted aeroelastic instability speeds is found on the
conceptual models, then a qualitative indication on the actual aircraft is implicitly provided.

Very few results have been proposed for different layouts of Joined Wings [15], and a lack of understanding
of the physics of the phenomenon is evident: additional studies are then necessary.

III. Theoretical Highlights of the Present Computational Tools

In a generic aeroelastic code the basic aerodynamic and structural solvers need to interact, passing to
each other the information regarding the deformations (which directly influence the aerodynamic forces) and
the forces (which deform the structure). It goes well beyond the goals of this paper to present a summary of
all the possible strategies that could be adopted. The authors refer the reader to excellent works as [33–35]
and the herein cited references.

In the following, the components of the in-house aeroelastic capabilities are described separately. They
consist in a finite element method for the computational structural dynamics (CSD) and an unsteady vortex
lattice method (UVLM) for the time domain aerodynamic simulations. A doublet lattice method (DLM)
for the frequency domain unsteady aerodynamics calculations is also employed: details about this particular
solver could be found in literature, see references [36–38].

Hereinafter, different interface (load/displacement transferring) strategies are analyzed.
Finally, the coupling is treated, and the different aeroelastic solvers are discussed.

A. Structural Finite Element Model

The geometrically nonlinear finite element [39–42] is based on the linear membrane constant strain triangle
(CST) and the flat plate discrete Kirchhoff triangle (DKT). The capability has also embedded the calculation
of the structural tangent matrix KT , which is the sum of two contributions: the elastic stiffness matrix, KE ,
and the geometric stiffness matrix, KG. Composite materials are implemented. A corotational approach is
used, and thus, rigid body motion is eliminated from elements and the pure elastic deformations are found.

The post-critical capability of the structural, and also aeroelastic code, are here omitted for brevity. The
reader is referenced to [11,13] for details.
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B. Dynamic Solver

1. Newton’s Law and Definition of the Residual

According to the second Newton’s law, at each time dynamic equilibrium has to be satisfied. Let s be the
generalized coordinate array (arising from the FE discretization) and ṡ, s̈ its time derivatives. Assume M
to be the mass matrix, and that the damping forces, related to the structural damping, are proportional to ṡ
through the damping matrix Cd, constant with time. The internal structural forces are indicated with F int.
Since only elastic materials are considered, these forces are function of the deformation only. The external
loads are here specialized to be the aerodynamic forces acting on the body, and are a generical function of
t, s, ṡ and s̈. These dependencies are related to the history (wake evolution), current configuration (steady
production of aerodynamic forces), velocity of deformation (which changes the local angle of attack) and
acceleration of deformation, respectively.

The dynamic equilibrium law reads as follows:

M s̈+Cd ṡ = P ext(s, ṡ, s̈, t)− F int(s) (1)

The residual is then defined as:

R(s, ṡ, s̈, t) = Ms̈+Cdṡ− (P ext(s, ṡ, s̈, t)− F int(s)) (2)

In order to obtain the dynamic equilibrium the residual has to be zero at each generic time t. However,
when the problem is discretized in respect to the time, it is possible to enforce the dynamic equilibrium only
at some temporal points. In literature several methods exist for the time discretization of dynamic structural
problems, see for example [43–45].

In the following, the framework of the Newmark’s β−Method and successive improvements leading to
the Generalized α-Method (GAM) are introduced. The reasons that led to the introduction of the so called
Generalized Energy-Momentuum Method (GEMM) and its implementation are then presented (see reference
[46] for more details).

2. From Newmark β-Method to the Generalized α-Method

Before further proceeding, the notation used to state the evaluation of the quantity A at the generic time t
is introduced:

tA = A|t (3)

If the generic quantity A has both a direct and indirect dependence on time, for example A(s(t), t), then
the notation is the following:

tA = A|(s|t,t) (4)

In reference [47], to advance in time from t to t + ∆t, Newmark proposed the following relation between
acceleration, velocity and displacement vectors:

t+∆tṡ = tṡ+ (1− γ)∆t ts̈+ γ∆t t+∆ts̈

t+∆ts = ts+∆t tṡ+ (1− 2β)
∆t2

2
ts̈+ β∆t2 t+∆ts̈

(5)

The process was driven by Taylor’s expansion and mean value theorem. The choice of γ and β determines
important characteristics as accuracy, rate of convergence, stability and the alternatively explicit or implicit
nature of the scheme [43]. Common choice is to take:

γ =
1

2
β =

1

4
(6)

which gives an unconditionally stable (irrespective of the size of the time step ∆t ) and quadratic convergent
scheme (this has been proven for linear problems [48]).

With reference to eq.(2), it is straightforward to impose the dynamic equilibrium at the generic time
t+∆t,

t+∆tR = M t+∆ts̈+Cd
t+∆tṡ−

(
t+∆tP ext − t+∆tF int

)
= 0 (7)
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and apply the scheme proposed in eq.(5).
It is desirable in structural dynamic problems solved through step-by-step time integration algorithms

to possess algorithmic damping. Particularly, it is necessary to control the dissipation on the high frequency
modes since using standard FEM to discretize the spatial domain, the spatial resolution of these modes is
poor. Thus, spurious high frequency modes should be damped out, and this should affect neither the low
frequency modes nor the accuracy of the scheme. For example, the Newmark β-method family algorithms
provide high-frequency dissipation if a different choice of the parameters in eq.(6) is made, with the drawbacks
of an only first-order accuracy in time and too much dissipation on the low frequency modes [49]. This has
driven the formulation of improved methods that enable to overcome these limitations, mantaining second-
order accuracy: the HHT-α [50] and the WBZ-α [51] methods are just some examples. All these schemes
are particular cases of the more general Generalized α-method (GAM), which represents a family of implicit
time-integration schemes, and has been introduced in reference [49].

The scheme giving the relationships between the values of s, ṡ and s̈ is the same carried out in eq.(5),
but now the additional equation needed to close the problem is a modified version of the standard choice of
eq.(7): the idea is to force the dynamic equilibrium using convex combinations of these variables. Defining
the following quantities: 

t+αf∆ts = (1− αf )
ts+ αf

t+∆ts
t+αf∆tṡ = (1− αf )

tṡ+ αf
t+∆tṡ

t+αm∆ts̈ = (1− αm) ts̈+ αm
t+∆ts̈

(8)

where, differently from the previously adopted notation, the superscripts are here used to indicate a convex
combination of the values at the beginning (t) and at the end (t + ∆t) of the time step and not values
evaluated at time t+ α∆t. Clearly, αm=αf=1 gives rise to the Newmark family of methods.

The task is now to determine the relations between the algorithmic parameters αm, αf , γ and β to gain
the desired numerical features. It can be demonstrated [49] that the generalized α-method is second-order
accurate, provided that

γ =
1

2
+ αm − αf

β =
1

4
(1 + αm − αf )

2
(9)

The stability property of an algorithm applied to linear problems depends upon the eigenvalues of its am-
plification matrix, in particular on spectral radius ϱ (defined as the largest of the eigenvalues). The spectral
radius is also important because it is a measure of the numerical dissipation, that is a smaller spectral radius
value corresponds to a larger numerical dissipation; to obtain a numerical algorithm which gives the desired
numerical damping at the high frequencies without an excessive dissipation in the low frequency region,
its spectral radius should then be close to unity in the low frequency domain and smoothly decrease as
the frequency increases. Summarizing, see [49] for details, it is possible to have a second order (in time)
accurate unconditionally stable (for linear problems) scheme, which has a user-defined dissipation on the
high frequencies and minimizes the dissipation on lower frequencies if, along with eq.(9), the following is also
satisfied:

αf =
1

1 + ϱ∞

αm =
2− ϱ∞
1 + ϱ∞

(10)

where ϱ∞ denotes the value of the spectral radius in the high-frequency limit (ϱ∞ is then the user-specified
value to control high-frequency dissipation).

Application of this method to eq.(2) is not straightforward. In fact, in literature [44, 49], this procedure
has been developed mainly for linear cases in which the forces were depending on time or displacements only.
Thus, using the convex combination of eq.(8) would be completely identical to the case in which the convex
combination is used for the different term of the residual. However, in the present case, there is a force term
depending nonlinearly from the displacement (F int) and one term depending on t, s, ṡ and s̈ (P ext).

Focus is now on the external forces. One option is to remain consistent with the evaluation in time
dictated by eq.(8), i.e., to set the external/aerodynamic forces evaluated at different convex combinations of
the displacement and derivatives vectors:

P ext|(t+αf∆ts, t+αf∆tṡ, t+αm∆ts̈, t+αf∆t) (11)
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A peculiarity of such an approach is that, in cases for which an explicit linear dependence of the external
forces on the displacements, velocities, accelerations, and a dependence (not necessarily linear) on time is
found, the residual (eq.(2)) could be written as:

R(s, ṡ, s̈, t) =
(
M −MA

)
s̈+

(
Cd −CA

d

)
ṡ−KA s−

(
PA

ext(t)− F int(s)
)
= 0 (12)

where MA, CA
d and KA express the linear dependence of the aerodynamic forces, and PA

ext(t) represents
the time dependence. Thus, except for the internal forces, the application of the GAM closely matches what
explained in reference [49]. Applying this first approach also to the internal forces, the discrete equation for
the residual can be written as:

t+∆tR = M t+αm∆ts̈+Cd
t+αf∆tṡ− P ext|(t+αf∆ts, t+αf∆tṡ, t+αm∆ts̈, t+αf∆t)

+ F int|(t+αf∆ts) (13)

Consider now the internal forces. If the structural model is linear, then

F int|(t+αf∆ts) =
t+αf∆tF int (for linear structures) (14)

which is equivalent to consider a convex combination of the terms of the residual equation or the displacement.
This no longer holds if the forces are nonlinear. Thus the question arises as to which form should be
considered.

3. Generalized Energy-Momentum Method

To apply a convex combination directly to the edge values of the internal and external loads and not to
the displacements, proves to be very important for the properties of the numerical scheme, in particular the
stability one. In fact, algorithms which are unconditionally stable for linear dynamics often lose this stability
in the non-linear case, see for example references [44, 48, 52–56]. This is also true if algorithmic damping,
as evaluated with linear approach (like in [49]) is introduced. A further criterion for the stability of time-
integration algorithms (other than the eigenvalue analysis shown earlier for the Generalized α-method) is
the conservation of energy, motivated by the theorem presented in reference [57] which states that, when
applied to Hamiltonian systems, a numerical algorithm is stable in energy if the sum of kinetic and internal
energies are bounded within each time step relative to the external work, kinetic and internal energies in the
previous time step.

The first algorithm which guaranteed unconditional stability in nonlinear dynamics of three-dimensional
elastic bodies was the Energy-Momentum Method [58]. Actually, its appeal has been redimensioned by some
numerical experiments, see [55, 56, 59]. In fact, convergence problems were observed, and small time steps
were needed to obtain a stable and converged solution. These difficulties have been put in relation to high
modes which are responsible of numerical collapse driven by an unphysical highly oscillatory response. It
seems then advisable to introduce some form of damping in order to keep under control difficult cases [56].

A strategy to introduce controllable numerical dissipation to the Energy-Momentum Method, denoted
as Generalized Energy-Momentum Method was presented in refences [55,46], applied to three-dimensional
truss element and nonlinear dynamics of shells. It includes numerical dissipation adopting the Generalized
α-method to advance the solution within time and guarantees the energy conservation or decay using the
convex combination of the internal forces at the beginning and at the end of the time interval, t+αf∆tF int

instead of considering it applied at the generalized midpoint, F int|(t+αf∆ts).

Unfortunately, is it not possible to automatically extend this approach to the aerodynamic forces, since
the simultaneous dependence on acceleration, velocity and displacement does not make straightforward the
use of a unique convex combination: it would be an open question which value between αf and αm should

be used on this regard. In this effort, both the option t+αf∆tP ext, namely:

t+αf∆tP ext = (1− αf )
tP ext + αf

t+∆tP ext (15)

and the one previously introduced in eq.(11), have been used. Notice also that, in other works like [60],
different convex combinations were suggested for the external forces. Summarizing, the strategy adopted to
discretize in time the equations of motion is the GEMM, whereas the aerodynamic term is evaluated with
a GAM or also a GEMM-like approach. Notice that, for the particular considered cases, no appreciable
differences were noticed between the two approaches.
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In the following, the derivation of the Newton process for convergence is shown for the GEMM-like
approach only. The residual equation becomes:

t+∆tR = M
(
(1− αm) ts̈+ αm

t+∆ts̈
)
+Cd

(
(1− αf )

tṡ+ αf
t+∆tṡ

)
−

(1− αf )
tP ext − αf

t+∆tP ext + (1− αf )
tF int + αf

t+∆tF int (16)

It is important to notice that, considering a generic time t in which all the quantities are known, and
wishing to advance in time to t+∆t, it is possible, by means of eqs.(5), to reduce the residual to a function
of only one variable. Thus,

t+∆tR = R
(
t+∆ts

)
(17)

4. Newton’s Method Applied to the Residual

A generic zero finding methods could be applied to eq.(16) (or alternatively, eq.(13)) in order to drive to
zero the residual and thus obtain the dynamic equilibrium. If Newton’s method is used then the residual
is locally approximated with an affine model and the new linearly predicted zero is considered. A single
Newton’s iteration reads:

0 = t+∆tRitern +
t+∆t[

dR
ds

]itern
· t+∆tuitern (18)

where the superscript “itern” specifies the iteration at which the quantities are considered. The symbolism

t+∆t[
dR
ds

]itern
(19)

indicates the tangent matrix evaluated at t+∆tsitern, and it holds:

t+∆tsitern+1 = t+∆tsitern + t+∆tuitern (20)

The tangent matrix for the system is:

t+∆t[
dR
d s

]
=

αm

β∆t2
M +

αf γ

β∆t
Cd − αf

(
d t+∆tP ext

d t+∆ts
− d t+∆tF int

d t+∆ts

)
(21)

where the iteration superscript has been dropped for clarity. Notice that eq.(21) changes during iterations
only if the internal structural forces F int or the external (aerodynamic) loads P ext are nonlinear with

t+∆ts.
Notice also the contribution of the structural tangent matrix and force (aerodynamic) tangent matrix to the
system’s/global tangent one.

Once the iterative process reaches a convergent state, then a new time step could be taken and the
iterative sequence repeated.

5. Structural Damping

The structural model provides the possibility to reproduce more consistently the dynamic behaviour taking
into account the presence of structural damping, represented by the damping matrix Cd; the approach
consists in the extrapolation of structural modal damping from the system. Considering a problem with one
degree of freedom, the free spring-damping-mass system is described by the equation

ms̈+ 2c ṡ+ k s = 0 (22)

being s the generic coordinate describing the motion, m the mass, c the damping coefficient and k the spring
constant. Rearranging the equation, the canonical form is easily obtained:

s̈+ 2 ζ ωnṡ+ ω2
n s = 0 (23)

where ωn represents the natural frequency of the system and ζ the damping ratio (common values are in the
range of 0.01÷ 0.05). Once eq.(22) is stated in canonical form and ζ is chosen, the damping coefficient c is
automatically set.

7 of 63

American Institute of Aeronautics and Astronautics



If the system has more than one degree of freedom, and the differential equations of motion are linear,
it is possible, by means of the so called light damping approximation [61], to describe the evolution of the
system decoupling the evolution of each natural mode. Thus, for the generic i-th mode the following relation
holds:

q̈i + 2ζiωni q̇i + ω2
ni
qi = 0 (24)

which in matrix form is written as
q̈ +C∆ q̇ +Ω q = 0 (25)

The introduction of damping to the lower frequencies influences the solution so it is necessary only to model
a physical phenomenon and in this sense eq.(24) represents a convenient strategy that gives the possibility
to set this damping factor for each mode independently.

The next step is to be able to relate the modal form of the equation (where the modal damping ratio ζi
could be set) to the generic n-dimensional system which describes the dynamic behaviour of the degrees of
freedom of the structure (s):

M s̈+Cd ṡ+K s = 0 (26)

The matrices are constant, and it is possible to write the response as a superposition of elementary solutions
through the modal coordinates q:

s = Φ q (27)

where Φ is the modal matrix. Substituting eq.(27) into eq.(26) and pre-multiplying by ΦT , it holds

M̂ q̈ + Ĉ q̇ + K̂ q = 0 (28)

where, using the properties of the modal coordinates, it is possible to show that the modal mass M̂ and
stiffness K̂ matrices are diagonal. The aim is to define Cd through Ĉ. The first step is to assume that Ĉ is
diagonal, so that it is straightforward to write eq.(24) for the generic i-th generalized coordinate. It is then
possible to define the damping ratios for each mode in this form, and reconstruct the matrix Cd using the
inverse of relation eq.(27) and left-multiplying by Φ−T , namely:

Cd = Φ−T ĈΦ−1 (29)

Actually the dynamic behaviour of a system is ruled by the most meaningful modes that are associated with
the low natural frequencies, so it can be preferable both from a computational and (numerical) accuracy
point of view to consider the process for just n modes on which it is significant to apply the damping, see
reference [37]. If N is the total number of degrees of freedom of the structure, Φ is now an N × n matrix;
eq.(29) could not be used since Φ is not a square matrix. To perform a similar equivalence, but in a least
square sense, the following operations are performed starting from eq.(27):

ΦTs = ΦTΦ q

T = [ΦTΦ]−1ΦT

Ts = q

Cd = T T ĈT

(30)

C. Aerodynamic model

1. Introduction

The present section introduces the aerodynamic model adopted in the study. The hypotheses of potential
and incompressible flow are assumed to be valid.

2. Geometry Definition and Evaluation of Induced Velocity

Unsteady Vortex Lattice Method (UVLM) is used as aerodynamic solver: the main advantage of such a
formulation is the required simple programming effort, which makes it preferable when operating with thin
wings; for a detailed treatise refer to [62].

The singularities are vortex ring elements, each of which is composed by four constant-strength vortex
line segments with the same value of circulation Γ. The wing is discretized by an arbitrary user selected
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Fig. 1. Location of the vortex rings in the aerodynamic grid.

number of quadrilateral aerodynamic panels as shown in Fig. 1. The vortex ring associated with each panel
is shift downstream along each lateral edge of one fourth of the same edges. The velocity induced at an
arbitrary point P by the generic vortex segment of circulation Γ is obtained from the Biot-Savart law. In
particular, assume V SIkm to be the velocity induced in the k-th collocation (or control) point by m-th ring
of unitary circulation. Moreover, consider that the generic k-th collocation point (where the wall tangency
condition has to be enforced), lies on the center of the k-th vortex ring, whose local direction is nk. Then,
it is possible to define the generic km-the term of matrix of body influence coefficients A:

Akm = V SIkm · nk (31)

3. Wake Model

For an unsteady flow a key role is played by the modelling of the wake. The most accurate model prescribes
that each vortex moves with the local stream velocity since the vortex wake is force free, obtaining the so
called wake roll-up. However this approach is quite time consuming and so often a simpler one, consisting
in assuming a prescribed shape for the wake, is adopted. The effects of wake modelling on the aeroelastic
responses will be discussed later.

In both cases, the wake is modelled with several rows of vortex rings of different strength, each shed at
a certain time-step. When impulsively starting from a rest condition, only wing bound vortex rings exist.
Consequently, there are no wake panels and the solution is easily found by specifying the zero normal flow
boundary condition on the collocation points. During the second time step, the wing moves along its flight
path and each trailing edge vortex panel sheds a wake ring with a vortex strength equal to its circulation
in the previous time step (automatically satisfying the Kelvin condition). For the case of prescribed wake,
it is enough to impose that each wake’s point is convected by the free-stream velocity and so the procedure
can be continued at each successive time step determining in such a way a wake of known geometry. Notice
that, a wake vortex ring does not change its circulation (consequence of Helmholtz theorem). If the free
wake is modelled, at the end of each timestep, once the problem is solved and the unknown intensity of the
circulation Γ of every ring of the body is known, the evaluation of the induced velocity (u,v,w) at each vortex
ring corner point l is performed in order to move the vortex elements by:

(∆x,∆y,∆z)l = (u, v, w)l ·∆t (32)

This is the only difference between the two methods, because once the wake geometry is defined, the calcu-
lation of influence matrices and thus, the solution of the problem at the next time step are established in an
identical manner. The modelling of the wake is completed and so it is possible to evaluate the contribution
of each wake ring r-th to the local velocity in the k-th control point and store it in the Aw matrix of wake
influence coefficients, where

Awkr
= V WIkr

· nk (33)

with V WIkr
being the wake-induced velocity from wake ring r at the collocation point k.
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Before further proceeding with the description of the model, it is worth to highlight a few important
aspects concerning the roll-up modelling. The use of discrete vortex segments to account for the vorticity
in the shed wake originates accuracy issues due to the singularity that arises from a straight application of
the Biot-Savart law when the induced point is located very close to the vortex line, leading to nonphysical
values of the local velocity assigned to it. This usually occurs when a wake encounters another body or
when the wake has an intense roll-up causing self-intersections. Aeroelastic response of a highly deformable
wing seems to emphasize this aspect, since the trailing edge of the body changes position with time and so
the position where the wake is shed, calling for a more complicated roll-up of the wake compared to the
pure aerodynamic case. To prevent this kind of numerical problems and lack of accuracy, many techniques
have been introduced, as for example the vortex-core model. The basic idea, as shown in [63], is that the
formation of the wake behind any lifting surface must be considered as a viscous phenomenon, with the
vorticity contained in the vortex core diffused radially outward with time. This observation is corroborated,
for example, by experimental measurements of the distribution of tangential velocity surrounding a tip vortex
shed from a blade at various wake ages [64]. According to a potential theory, this region is infinitesimal
because all the vorticity is concentrated along the axis of each vortex filament and this leads to singularity
in the evaluation of the Biot-Savart law near the vortex. In a more realistic model, this line should have
an inner part, that is a finite core, where the flow rotates almost as a rigid body, whereas in the outer part
behaves almost as a potential flow. With this line of reasoning, it is possible to define the core radius rc
both as the radial location where the tangential speed induced by the vortex has a maximum and as the
boundary from the inner rotational flow field and the outer potential flow. Now that the physical meaning of
the sought de-singularization of the induction estimate is pointed out, a revisited version of the Biot-Savart
law is presented:

V =
Γ

4π

h

(r2nc + h2n)
1
n

(cos θ1 − cos θ2) · e (34)

where the reader is referred to [64] for the notation and a plausible choice of the size of core radius.
The other important aspect is related to the issue of reducing as much as possible the time needed to

evaluate at each timestep the influence of the far vortex rings. With this aim, thanks to the equivalence
between vortex ring and doublet panels [65], application of the far field formulas of point-doublet may be
employed [62].

Another option to reduce the computational costs is the truncation of the wake domain: a threshold is
defined so that beyond that distance the contribution of the wake on the local velocity on the control points
over the body is assumed negligible. As a consequence, the far wake panels could be neglected. This wake
truncation is thought to be sufficiently reliable because there is only interest in the wake influence over the
body.

4. Boundary Condition

In order to be able to write the wall tangency condition, which states the no normal velocity condition on
the control points over the body, all the contributions have to be taken into account: the velocity induced by
the body rings V SI, and wake rings V WI, the kinematic velocity V KIN, which is the velocity of wind on the
surface (in particular it is of interest the one at the collocation points) due to relative motion of the wing,
as viewed in the body frame of reference. This last contribution depends on the free-stream velocity, the
rigid motion of the body but also on the elastic deformation of the body V rel (this is relevant in aeroelastic
problems). The terms V WI and V KIN contribute to the right hand side, whereas V SI is unknown (byproduct
of the multiplication of matrix A of eq.(31) with the unknown intensity of the body vortex rings). Thus, it
is possible to write in a matrix form the following system

A · Γ = RHS (35)

where Γ is the array containing the unknowns (strength of the vortex rings), and

RHSk = −(V WIk + V KINk
) · nk (36)

is the vector containing the known part of the normal velocity components.
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5. Evaluation of Loads

Once solved the linear set of equations, next step is the evaluation of the pressure over each body panel and
subsequently the applied loads. The Bernoulli equation for incompressible and irrotational flow with the
hypothesis of negligible body forces states that the sum of the left-hand side terms of eq.(37) are a function
of time only

p

ρ
+

v2

2
+

∂ϕ

∂t
= C(t) (37)

where p is the pressure, ρ is the density, v is the local fluid velocity and ϕ its potential. Evaluating the
left-hand side of eq.(37) in two points of the fluid, an arbitrary point and a reference point at infinity (where
ϕ = 0 and v = 0 having chosen the wind reference system), eq.(38) is obtained:

p∞ − p

ρ
=

v2

2
+

∂ϕ

∂t
(38)

It is then possible to integrate the pressure and, with aid of Kutta-Joukowsky theorem, assess the lift
produced by each panel.

D. Interface Algorithms

1. Infinite Plate Splines

Theory The Infinite Plate Spline concept was introduced in reference [24] and is the basis of several of
the interpolation schemes used in today’s commercial software. This method is based on a superposition
of the solutions of the equilibrium equation describing an infinite plate subjected to small deflections. The
key idea is to consider a set of discrete points (xi,yi) lying within a two-dimensional domain, each of them
has associated a deflection wi that defines the vertical position of the surface on which both structural and
aerodynamic points are presumed to be. Using a superposition of solutions it is possible to calculate the
values of a set of fictitious concentrated loads acting at the known set of points that give rise to the required
deflection w. In this way, given the deflections of the structural grid points the concentrated forces are
obtained and it is possible, by an interpolation process, to calculate the values on a set of aerodynamic grid
points. The interpolated function is differentiable everywhere.

The main drawback of the method is that it is inherently 2-D and so it is limited to interpolate out-of-
plane displacement only. Moreover, a piecewise flat planform for the wing has to be assumed, also when the
wing is deformed. In the following, the entire mathematical procedure to gain the desired results is omitted
and just the major features are outlined; for details about the derivation of the scheme the reader is referred
to reference [66].

The governing equation for a plate (bending case) that extends to infinity in both directions is:

D11
∂4w

∂x4
+ 2 (D12 + 2D66)

∂4w

∂x2∂y2
+D22

∂4w

∂y4
= p (39)

where p is the applied pressure. Then, a series of hypotheses are considered. First, the material is assumed
to be isotropic, giving this a specific value for the D11, D12, D22, D66 stiffness terms. Then, radial symmetry
is imposed, and a concentrated load is applied at the origin. After that, with the argument that no singular
displacement is acceptable at the origin, some terms in the closed form of the solution w are set to zero.
Final adjustments are done to avoid oscillations. With all these hypotheses, the final form for the vertical
displacement w is:

w (x, y) = a0 + a1x+ a2y +
Ñ∑
i=1

F̃ir
2
i ln r

2
i (40)
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with:

a0 =
Ñ∑
i=1

[
Ai +Bi

(
x2
i + y2i

)]
a1 = −2

Ñ∑
i=1

Bixi

a2 = −2
Ñ∑
i=1

Biyi

(41)

where Ñ is the number of fictitious loads (or alternatively, the number of known value wi), Ai, Bi and ri
are known quantities and F̃i are the fictitious concentrated loads used to reconstruct the shape of the plate,
given the actual position of the set of known points.

Application to the displacement and load transfer The goal of this interface algorithm is to
provide both a relation between structural and aerodynamic mesh displacements and to aerodynamic and
structural loads. In other word, it consists in two phases: given a displacement vector U (and also its
derivatives), representing the unknowns associated with the structural nodes, it extrapolates the displacement
at the aerodynamic mesh points, so that the aerodynamic forces, may be evaluated by the aerodynamic solver;
given the aerodynamic forces, it projects them to the structural nodes, so that the computational mechanics
capability can calculate the structural displacements. The way these phases are arranged depends on the
way the aeroelastic coupling is performed. In the present effort, the goal is to get an explicit expression of
the aerodynamic loads applied at the structural nodes, given a structural deformation U .

Before further proceeding, the interface algorithm is specialized. The reference planes where the splines
are specified are planar, and have the local x-axis (xS) along the (initial) free-stream direction. The local
vertical displacements (which are then perpendicular to the spline plane but not necessarily coincident with
the vertical displacement in the global coordinates z) are denoted with ZS and ZS for the generic structural
node and aerodynamic control point, respectively.

Eq.(40) shows how IPS are employed to evaluate the zS coordinate of a generic point of the system
once both its position through the local coordinates xS and yS and the required coefficients are given. The
expression of the aerodynamic loads is calculated starting from the boundary condition applied on the control
points and the involved quantities are thus related to the derivative of the vertical displacement with respect

to the xS direction
dZS

dxS
(which, as it will be shown in the following is related to the changes of relative

angle of attack), the speed ŻS and the acceleration Z̈S of this set of points, so that the sought algorithm
should provide relations between them and the degrees of freedom in the structural nodes. Eq.(40) can be
advantageously applied to the structural points in matricial form, it can be written as

ZS = GF̃ (42)

Inverting this expression, the unknown array F̃ containing the fictitious concentrated loads is obtained; now
the coefficients that have to be used for the spline interpolation (see eq.(41)) are known.

In order to avoid the time consuming task of obtaining the vector F̃ at each timestep, the assumption
that during the deformation process the original local coordinates xS

i and ySi of the generical point i do not
change is made, i.e. the vertical projection is always corresponding (or at least in good approximation) to
the initial position of the structural point considered. If this hypothesis is not satisfied, G changes during
the simulation and has to be continuously evaluated.

Carrying on the interpolation for the desired variables, the following relations are obtained

ŻS = HŻS

Z̈S = HZ̈S

dZS

dxS
= HDZS

(43)

where H easily derives from eq.(42) now applied to the vertical displacement field ZS of the aerodynamic
mesh (the constant expression of the spline’s matrices allows one to use them to interpolate also the time
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derivatives); HD is the interface matrix for the spatial derivative of the displacement and can be gained
differentiating eq.(41) with respect to the local x direction and specializing it for the control points.

The last task to be performed to complete the interfacing for the aerodynamic-structural coupling origi-
nates from the following issue: for a correct application of the Kutta-Joukowsky theorem, the aerodynamic
loads have to be applied in the load points of the vortex ring. In order to use a FEM structural solver, the
loads are thought to act on the structural nodes and thus, given an external concentrated load, its transfer-
ring to the FE nodes of the triangle shell element has to be performed. The problem, depicted in Fig. 2 can
be tackled with an energy conserving approach imposing that the virtual work done by the external force is
equal to the virtual work done by the nodal forces of the element. The expression of the forces acting on the

Fig. 2. Applied load in a triangular element

three vertices of the triangle equivalent to the aerodynamical load applied in the point P with coordinates
(xE , yE) is given by

Lm
1 = hm

1

(
xE
P , y

E
P

)
Lk

Lm
2 = hm

2

(
xE
P , y

E
P

)
Lk

Lm
3 = hm

3

(
xE
P , y

E
P

)
Lk

(44)

where the shape functions relative to the nodes 1, 2 and 3 of the triangle m are indicated respectively as
hm
1

(
xE , yE

)
, hm

2

(
xE , yE

)
and hm

3

(
xE , yE

)
and can be evaluated making use of the area coordinates [67].

2. Interface with Moving Least Square derived algorithm

The present interface algorithm has the purpose to solve the typical aeroelastic problem of coupling the
aerodynamic and structural meshes granting important features [68]. It is in fact possible to interface both
non-matching surfaces or non-matching topologies. Cases in which a control point falls outside the range of
the source mesh are also naturally tackled. There is also a relative insensitiveness to the node density varia-
tions in the source mesh. A very important feature is the conservation of exchanged quantities, in particular
momentum and energy: this is a keypoint since in literature [69] it has been shown how nonconservartive
interfaces may lead to wrong results. In spite of these valuable advantages, the computationally efficiency of
interface computation is really high. A further very desirable feature is the relative independence from the
numerical formulation of the solvers of the two fields.

Problem Statement Thanks to meshless approach it is possible to achieve the previously listed goals.
Traditionally, meshless methods were introduced as a method of numerical resolution of partial differential
equations different than finite element method (FEM), finite difference method (FDM) and finite volume
method (FVM). In these last approaches, spatial domain is often discretized into meshes: the set of differential
equations are approximated by a set of algebraic equations for each mesh and then, by assembling in the
proper way the contribution of all of them, the final system of algebraic equations for the whole problem
is obtained. On the contrary, in mesh free method [25], this system of algebraic equations for the whole
problem is obtained using a set of nodes scattered in the domain which do not form a mesh because no
information on the relationship between the nodes (e.g., connectivity of an element) is required.

These methods seem to solve some issues of the classical approaches which are here briefly listed. First,
the creation of an adequately discretized mesh is notoriously a bottleneck in the process since it is both
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manpower and computer time consuming. Second, the classical approaches have a limited regularity of
the solution, especially in its derivatives, at the elements’ boundaries (although approaches using higher
order continuous basis function like NURBS were already proposed in [70]). Moreover, with lagrangian
grids/meshes there is a lost of accuracy when large deformations are investigated because of the element
distortions. A close examination of these difficulties shows that the root of the problem is the necessity to
use elements (mesh); on the contrary a meshless method does not have these limitations, and could add or
delete nodes when they are needed, providing a great flexibility to the analysis.

In the present effort what is adopted from the meshless method is one of its central features: the shape
functions. A number of ways to construct shape functions have been proposed in literature, here the choice
falls on Moving Least Square approximation (MLS), which belongs to the family of finite series representation
methods. This family of shape functions were originally introduced for data fitting and surface reconstruction
[71], while in [72] they were used for the first time to build shape functions for the Diffuse Element Method
(DEM), which was among the first ones properly called mesh free method and had a strong impact on the
field. The two main features of MSL are the continuity and smoothness in the entire problem domain of
the approximated field function, and the ability to produce the desired order of consistency (a method is
said to have k-th order consistency if can reproduce polynomials of up to the k-th order). The procedure
of constructing shape functions using MLS approximation is fully presented in appendix A, while in this
section just the main features are outlined.

Moving Least Square The basic idea is to compute the value of a function u(x) on a set of nodes{
η1,η2, ...,ηN̂

}
from its values û(ξ1), û(ξ2), ..., û(ξn̂) on scattered centers (or sources) {ξ1, ξ2, ..., ξn̂}

without deriving an analytical expression. This extrapolation is denoted ûh and is built as a sum of m̂ basis
functions p̂i(η)

ûh(η) =
m̂∑
i=1

p̂i(η) a
ξ
i (η) = p̂(η) · aξ(η) (45)

where a
ξ
i are the unknown coefficients of the basis functions which depend on the point η where the value

is sought and on the set of scattered centers ξ where the function is known (this dependence, denoted by
the superscript in eq.(45), will be omitted in the following for clearness). The array p̂ of basis functions
consists often of monomials of the lowest order such to form polynomial basis with minimum completeness
but particular functions can be added to reproduce a particular behaviour of the investigated variables.

In the present study linear and quadratic polynomials are adopted. The neighbourhood of the point η,
its support domain, is given by a subset of ξ, namely ξs, made of n̂s nodes which are the only ones used
locally to approximate the field function. Each node η has a different set ξs with in general a different
number of nodes n̂s, that is n̂s=n̂s(η). The m̂ coefficients ai describing (as shown in eq.(45)) the function
in the point η are obtained minimizing the functional weighted residual (a weighted discrete L2 norm) J(η):

J(η) =
n̂∑

i=1

W (η − ξi) [ũ(ξi,η)− û(ξi)]
2 (46)

where
ũ(ξi,η) = p̂(ξi) · a(η) (47)

is the approximated value of the the field function in the generical center of the set ξ obtained by means of
the same extrapolation process pointed out in eq.(45). The weight function W used in eq.(46) is positive
for all the ξi centers in the support of node η and zero outside, and has two important roles in constructing
the MLS shape functions: it provides weighting for the residual at different nodes in the support domain
(small weights are wanted for centers far from η); it ensures a smooth manner for centers to leave and
enter the support domain of the considered node. Here comes out the important difference with the FEM
shape functions, which are obtained minimizing the residual J in eq.(46) assuming a unitary constant weight
function and repeating this operation element by element (which coincides with the support domain of
the nodes). By replacing the discontinuous weights of FEM approach with continuous weighting functions
evaluated in the centers of the nodes the smoothness of the approximate function is granted. Solving the
minimization problem

∂J(η)

∂a
= 0 (48)
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an expression for the coefficient vector a(η) is obtained, allowing to rewrite eq.(45)

ûh(η) = Φ(η) · û (49)

where Φ(η) is the array containing the coefficients of the MLS shape function corresponding to the node
η, while û has the value of the field function on the centers. For more details on the derivation refer to
appendix A.

It can be observed that the shape functions in eq.(49) do not satisfy the Kronecker delta criterion
Φi(ξj) = δij resulting in ûh(ξi) ̸= û(ξi), that is, the nodal parameters û(ξi) are not coincident with the

nodal values ûh(ξi); this means that they are not interpolants, but rather approximates of a function; this
property can represents a drawback when the imposition of essential boundary conditions is requested, but
it is possible to overcome it as shown in appendix A.

As stated, the MLS approximation is able to reproduce the desired order of consistency, depending on
the complete order of the monomial basis p̂: if the complete order of the base is k, it can be demonstrated
that the shape function will possess k consistency.

The calculation of spatial derivatives of the function û, requires to derive eq.(45), that is:

∂u

∂x
≃ ∂uh

∂x
=

∂p̂

∂x
· a+ p̂ · ∂a

∂x
(50)

The second term of eq.(50) is not trivial to evaluate and a straight procedure is showed in [25]; it is not an
expensive task itself, however it requires the knowledge of the cloud of particles surrounding each point η
and, thus, it depends on the point where the information is evaluated; on the contrary, the first term can be
evaluated a priori. Work [72] proposed the concept of diffusive derivative, which consists in approximating
the derivative only with the first term on the right hand side of eq.(50), and it proved convergence at optimal
rate.

The great advantage of the problem expressed in this form is the possibility to preserve the local character
of the MLS approximation choosing a compact support weight function W , that is supposed to satisfy the
following requirements:

� W is a monotonically decreasing function that depends only on a scalar parameter r that represents
the Euclidean distance from the two considered points;

� W has a compact support, so {
W (r) > 0 if r < r

W (r) = 0 if r > r
(51)

� W enjoys normal property such that ∫
Ω

W (η − x) dΩ = 1 (52)

where r is the radius delimiting Ω, the local support of node η.

Examples of functions that satisfy these requirements are the Radial Basis Function (RBF) family, which
can be found in different forms as Multiquadratics, Gaussian, Thin Plate Spline and Logarithmic. In this
study the adopted functions possess the lowest possible degree among all piecewise polynomial compactly
supported radial functions of a given order of smoothness [73]: this is an important property since the
approximate functions are as smooth as the involved weight function.

After the dimension of the local support is chosen, the last operation of the preliminary phase is the
determination of the centers which belong to each node η; several strategies exist to solve this task and a
suitable choice from the computational point of view is to rely on nearest neighbor searching algorithms [74]:
given a set S of n data points in a metric space X in real d-dimensional space, the idea is to preprocess these
points so that, given any query point q ∈ X, the k nearest points to q can be efficently reported. These
algorithms perform the geometric preprocessing of building the structure at O(d) cost and the subsequent
operation to get the nearest neighbor from the data set with an O(k · log d) cost.
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As previously stated, an important property sought in the present interface algorithm is the conservation
of momentum and energy; using eq.(49) to exchange the information of displacement and velocity from the
structure to the aerodynamic field, conservation (although not in a strictly mathematical sense) is achieved
because a minimization process is performed and so a limited amount of information can be transmitted [68].
While the conservation of momentum transmitted is taken in account with the definition of the Φ interface
matrix, other considerations lead to conservation of energy. As demonstrated in appendix A, to ensure the
balance of the energy exchanged bewteen fluid and structure, the loads on the structural nodes f i have to be
evaluated by multiplying the loads F i on the aerodynamic grid by the transpose of the interpolation matrix
H (same as Φ of eq.(49)) that matches the two displacement fields.

E. Aeroelastic Coupling

In this section the goal is to express the aerodynamic loads so that they can be combined with the dynamic
model presented in section B in order to formulate the aeroelastic problem.

1. Boundary Condition

The starting point to obtain the sought expression is the boundary condition (enforced at the control points).
Recalling the matrix formulation from eq.(35), it is worth to highlight the various contributions to the RHS
vector. The first contribution can be written as

RHS1 = −Aw · Γw (53)

where Aw is the wake influence coefficients matrix and Γw is the vector with the strength of the wake
singularities, both completely defined from the previous time steps calculations.

The second term is the free-stream contribution

RHS2 = −V n
∞ (54)

where V n
∞ is the component of the free-stream velocity along the normal to the ring. In order to evaluate

this term, it is useful to consider Fig. 3, in which the k-th body ring as well as the position of the control
point and a sketch of both the deformed and undeformed configurations are depicted. Unit vector i is parallel

p
a

a

a

b
bp

Initial undeformed
condition

Deformed
configuration

Element k

global
directionx

Fig. 3. Geometry and local normal of the body ring

to the free stream, while iS is the direction of the free stream projected to the undeformed ring plane. By
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definition, the k-th element of V n
∞ is given by V∞i · nk, where nk is the normal to the ring in its actual

configuration, and the following holds:

i · nk = cos
(π
2
− αk

)
= sinαk = sin

(
αk + βk

)
= sinαk cosβk + cosαk sinβk (55)

being αk the angle of attack of ring k in the undeformed configuration and the angles αk and βk the ones
reported in Fig. 3. Under the assumption of small angles:

cosαk ≈ 1

cosβk ≈ 1

sinβk ≈ tanβk = − tan
(
π − βk

) (56)

A synthetic expression of eq.(55) can be given, discerning the different meanings of the involved terms:

V∞i · nk = V nk
∞, 0 + V nk

∞, d (57)

where V nk
∞,0 = V∞ sinαk is the k-th element of V n

∞,0, and is related to just the change in the rigid angle of
attack (rigid aoa); it is thus a function of the time only. The second term V nk

∞, d is the contribution of the free
stream due to the deformation of the wing (elastic aoa) and is a function of the deformed shape. Observing
that tanβk is equal to the opposite of the derivative of the displacement of the control point in the direction
of the undeformed normal in respect to the direction iS (undeformed x direction), it can be written:

V nk

∞, d = −V∞
dẐk

dxS
k

(58)

where the vector Ẑ collects the displacements of the control points along the undeformed aerodynamic rings’
normals. This contribution can be directly related to the slope of the normal component of displacement of
the control point k.

The third term depends on the strain rate of the structure: it originates from the relative body-flow
velocity that is established as the body changes its shape, giving a contribution to the effective flow speed
that has to be taken into account for a correct evaluation of eq.(35). This is an important source of
aerodynamic damping. It holds:

RHS3 = Ż (59)

The generic Ż can be evaluated extrapolating the deformation velocity on the control points from the vector
U̇ , which contains the generalized velocity of the structural nodes, and multiplying it by the normal to the
k-th ring nk, in its actual configuration.

Now that all the RHS terms have been conveniently treated, eq.(35) can be re-written as:

A · Γ = RHS1 +RHS2 +RHS3

= −Aw · Γw − V n
∞ + Ż

(60)

and inverting A, this final form is obtained:

Γ = Γ1 + Γ2 ·U + Γ3 · U̇ (61)

Γ1 is the known contribution due to the wake and to the rigid aoa, i.e., the first term in eq.(57)

Γ1 = −A−1Aw · Γw −A−1V n
∞0 (62)

Γ2 is the matrix that multiplies the displacement field U ; it features a matrix performing the interpolation
between the aerodynamic and structural meshes in order to get the derivative in respect to xS (Hdx) of the
displacement. This matrix is multiplied by the matrix (N0) in order to sample correctly just the component
parallel to the undeformed normal of the ring:

Γ2 = −V∞A−1N0Hdx (63)

Γ3 multiplies the given velocity field U̇ . The matrix (Hdisp) performs the interpolation between the two
meshes, and is multiplied by (Nd) in order to sample correctly just the component parallel to the actual
normal of the ring.

Γ3 = A−1NdHdisp (64)
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2. Aeroelastic Loads

Starting from the Bernoulli equation for an incompressible, irrotational and unsteady flow, and following
reference [62] it is possible to evaluate the aerodynamic actions. These relations can be advantageously
expressed in matrix form as

p = ρ∆ · Γ+ ρ
∂Γ

∂t
(65)

where p is the array containing the difference between upper and lower pressure for each panel, ∆ is the
matrix that, for each ring of the body, applies the finite difference derivative scheme to Γ and multiplies
it with the suitable coefficients. To finally obtain the expression of the lift acting on the load points of
the aerodynamic mesh, the direction rkL of the force over the k-th ring is chosen accordingly to the Kutta-
Joukowsky theorem as:

rkL = i× r4kL−1kL
(66)

where r4kL−1kL
connects the projections of the load point P k

L along the segments 3k − 4k and 2k − 1k (as

depicted in Fig. 4) and has a modulus equal to the width of the ring panel. Calling ck the chord of the ring

Vector that connects the points

P

P

C

L

k

k

P
C

k

P
L

k

Lift point (where the lift is applied)

Control point (where the WTC is imposed)

Element k

Fig. 4. Direction of the lift over the ring k

and (i, j, k) the axes direction in the global coordinate system, it is finally possible to give a general
expression of the three components of the lift force acting on the kth ring:

Lk
x = cki · r4kL−1kL

pk

Lk
y = ckj · r4kL−1kL

pk

Lk
z = ckk · r4kL−1kL

pk

(67)

which in matrix form becomes:
L = S p (68)

If N is the number of body rings, S is a 3N × N matrix such that when multiplied by p gives rise to the
vector L, whose dimensions are 3N × 1, and is assembled repeating the pattern of eq.(67) for each element
k.

As it can be seen from eq.(65), the unsteady part of the pressure depends on the derivative of Γ with
respect to time. The derivation can be carried out using eq.(61), leading to

∂Γ

∂t
=

∂Γ1

∂t
+ Γ2 · U̇ + Γ3 · Ü (69)

where the derivatives of Γ2 and Γ3 are considered negligible. Now eq.(65) combined with eqs.(61) and (69)
lead to the sought expression for the aerodynamic loads

LLP = LLP
1 +LLP

2 ·U +LLP
3 · U̇ +LLP

4 · Ü (70)
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with

LLP
1 = ρS ·∆ · Γ1 + ρS · ∂Γ1

∂t

LLP
2 = ρS ·∆ · Γ2

LLP
3 = ρS ·∆ · Γ3 + ρS · Γ2

LLP
4 = ρS · Γ3

(71)

The superscript LP is used to outlined how these are forces applied on the load points of the ring. As for
the matrices Hdx and Hdisp, the interface algorithm will provide the way to transfer this quantities on the
structural nodes.

3. Residual and Tangent Matrix Expression

It us assumed that the aerodynamic forces have been projected to the nodes of the structural solver trough
one of the load transferring techniques: the previously defined LLP

1 , LLP
2 , LLP

3 and LLP
4 are now named as LS

1 ,
LS

2 , L
S
3 and LS

4 because they are quantities related to the structural nodes. Recalling section B, there were
different options for the time integration, leading to different options for the evaluation of the aerodynamic
contribution, namely eqs.(15) and (11). With the expression outlined in eq.(71), and recalling that s was
expressing the generalized structural coordinates whereas U represents the displacement from an initial
reference configuration, it is then immediately possible to give the appropriate value of the aerodynamic
loads in the expression of the residual.

Also the derivation of the aerodynamic tangent matrix is trivial. With reference to eq.(21)

d
t+∆t

LS

d t+∆ts
=

∂
t+∆t

LS

∂ t+∆ts
+

∂
t+∆t

LS

∂ t+∆tṡ

∂ t+∆tṡ

∂ t+∆ts
+

∂
t+∆t

LS

∂ t+∆ts̈

∂ t+∆ts̈

∂ t+∆ts
(72)

Recalling eqs.(5) and (70), and observing that derivatives with respect to the generalized coordinates are
identical to derivatives in respect to displacements, i.e.,

d

ds
=

d

dU
(73)

then, it can be inferred that:

d
t+∆t

LS

d t+∆ts
= LS

2 +
γ

β∆t
LS

3 +
1

β∆t2
LS

4 (74)

F. Aeroelastic Solvers

In the present study three solvers have been used. Each of them is characterized by using different options
both on the pure aerodynamic side (but within the model of incompressible potential flow), and on the
aeroelastic coupling. The three solvers, called Solver1, Solver2 and Solver3 have increasing computational
cost. Their properties are graphically presented in Fig. 5. A solver based on the doublet lattice method
(DLM) [36,38] method is occasionally employed for comparison purposes.

1. Solver1

This model adopts the IPS as interface algorithm and, as outlined in section D.1, this implies simplified
hypotheses, inherent both to the limits of the algorithm itself (as the 2D assumption) and to simplifications
needed to preserve low computational costs. As a consequence in this model the aerodynamic mesh does not
follow the structure, i.e., the coordinates of inducing rings and the inducted control points that are employed
in the evaluation of the coefficients of the matrices A and Aw in section C.2 and C.3 do not depend on
the deformation process of the body. However, body’s deformation still influences the boundary condition
(and thus the aerodynamic load) with the terms RHS2 and RHS3 discussed in section E.1. Such a choice
implies that a prescribed wake model is adopted, as it appears an useless computational task to consider a
free-wake model shed from an aerodynamic mesh that does not occupy the real position of the body.
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Fig. 5. Differences between the time-domain aeroelastic solvers.

2. Solver2

In Solver2 the IPS is substituted with the MLS interpolation algorithm. Everything is linked with the
coupling of aerodynamic and structural fields, which removes the obstacle of passing information between
two sets of points occupying the same planar surface, as necessary with IPS. This allows to build up for
each time step the real aerodynamic mesh. However, in this case a mixed approach is chosen: the velocity
vector used for the matrices A and Aw is still evaluated ignoring the new position of the body, but the
aerodynamic coefficients of these matrices (i.e. the normal components of the velocities) are updated at each
timestep because in eqs.(31) and (33) it is considered the actual normal direction nk of the ring where the
k-th control point is placed.

The reason of this choice is the assumption that for a correct estimate of the velocity vector the important
aspect is the relative distance between the vortex line and the induced point and this is still in good agreement
with the initial one when the body is deformed. On the contrary, what is mainly changed during the dynamic
evolution, especially for very deformed configurations as the ones under investigations, is the direction along
which the boundary condition should be written. Thus, there is a lack of accuracy to keep projecting the
induced velocity vector on the initial normal direction.

Thanks to the MLS is possible to evaluate the updated rkL, which gives the direction of lift produced
from the k-th ring, see eq.(66). This is accomplished by means of evaluation of the actual position of the
points 4kL and 2kL in Fig. 4. It is worth to notice that now the aerodynamic load is follower both in direction
and intensity.

Since the aerodynamic mesh still remains attached to the undeformed configuration, free-wake approach
has been not considered to be meaningful, thus, Solver2 represents an improvement in the accuracy com-
paring to the Solver1 without an excessive drawback in simulation run time.

3. Solver3

Solver3 adopts the MLS interpolation algorithm and considers the aerodynamic mesh in its actual posi-
tion, enabling the free-wake model and the correct (without further assumptions as the ones made before)
expression of all the quantities involved in the evaluation of the aerodynamic loads.
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IV. Validation of the Computational Capability

Validation of the in-house computational capabilities is here demonstrated. Some components or even
some full aeroelastic solvers have already been validated in previous works. For example, nonlinear structural
finite element code, both in the static and dynamic versions, has been already employed in some previous
efforts, i.e. [4, 11, 13, 16, 75]. Moreover, also the DLM capability has been already described and checked in
references [37, 38]. However, some other components have been newly implemented. For example, even if
the VLM implant was already used in the DLM, the new UVLM was not yet tested.

A. Validation of the Aerodynamic Solvers

Validation of the pure aerodynamic solvers is here demonstrated. A few words are necessary to introduce
the results. Referring to section III.F, two of the several features that distinguish the aeroelastic solvers
are the locations of the vortex rings and the treatment of the wake. From a pure aerodynamic perspective,
then, the different modelling concerns the wake only. Thus, to validate the unsteady behaviour, the wake is
treated both as rigid or deformable.

A common validation mean, popular as the Wagner ’s test case, consists in an impulsive start of an
airfoil. There is an analytical expression, see [76] that describes the evolution of the lift coefficient in respect
of τ , known as reduced time, which is the covered distance expressed in semi-chords of the airfoil, i.e.,
τ = 2V∞ t/c . Here t represents the time and c the chord of the airfoil. If CL is the lift coefficient, it holds
that CL(τ) = CL(∞)Ψ(τ), where:

Ψ(τ) = 1− 0.165 e−0.0455τ − 0.335 e−0.3τ (75)

Since this test case is a bi-dimensional one, to validate the solvers a wing with large aspect-ratio in considered
(AR = 30) and the evaluation of the lift coefficient is done at its mid-station. The simulation is run
considering ∆t V∞/c = 1/8. Results are shown in Fig. 6, where the lift coefficient normalized to the steady
lift coefficient is plotted against the reduced time, for both the rigid and deformable wake approaches. Results
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Fig. 6. Results of Wagner’s test case using a rigid and a deformable wake: lift coefficient normalized to the
steady lift coefficient plotted against the reduced time. The analytical solution is obtained from [76]

are in satisfying agreement.

B. Validation of the Meshless Transferring Capability

Validation of meshless capability has been carried out whereas this is not pursued here for the spline interface
(validations were already performed in previous works using the same framework). Since Solver1 relies
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on IPS, a modified version of this solver has been implemented featuring the meshless for the load and
displacements transferring. Then, a joined-wing configuration is considered, as the one depicted in Fig. 7.
Notice that, this same configurations will be a test case geometry for this paper. A freestream speed of
55 m/s is considered, and the angle of attack α, measured in the symmetric xz plane, has the evolution
depicted in the same graph. The results are in an excellent agreement, especially considering that at these
large displacements the infinite spline method may begin to have issues related to its formulation, i.e., the
assumption of constant projection of the points is no longer exactly satisfied. This results, beside other cases
not reported here for brevity, may be considered as a valuable validation for the meshless method.
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Fig. 7. Aeroelastic transient analysis of a Joined Wing configuration studied the Solvber1 when employing
both IPS and Meshless transfers method.

C. Final Validation of the Time Domain Aeroelastic Codes Capabilities

In this final subsection the three time domain solvers are validated against experimental results which are
proposed in reference [77]. It consists of a delta wing plate model tested in a low-speed wind tunnel showing
limit cycle oscillations. For the geometry and details about the configuration the reader is referred to the
original work. This experiment is also performed numerically by the solvers, and results are directly compared
with the reference experiment, as well as computational results reported in [37], obtained with a technique
that transforms the frequency domain DLM results in time domain response.

1. Solver1

Numerical results obtained with Solver1 are shown in Table 1. To favour the comparisons, the first two
columns report reference results, where as the third and forth show the performances of Solver1 with two
different values of structural damping. Maximum vertical speed of the tip for LCO established at different

Attar et Al.[77] (experimental) Demasi et Al.[37] Solver1 ζ=3% Solver1 ζ=5%

Flutter velocity 24 m/s 22,7 (ζ= 1%) 24 m/s 24,5 m/s

U̇ztip (V∞=25,5 m/s) 0,5 m/s 0,69 m/s 0,63 m/s

U̇ztip (V∞=27 m/s) 1,36 m/s 1 m/s (ζ= 5%) 1,28 m/s 1,07 m/s

LCO frequency (V∞=27 m/s) 14,5 Hz 14.92 Hz (ζ= 5%) 15,3 Hz 14,8 Hz

U̇ztip (V∞=28 m/s) 1,85 m/s 1,55 m/s (ζ= 3%) 1,5 m/s 1,3 m/s

Table 1. Validation of Solver1 with Delta Wing test case. U̇ztip is the maximum vertical speed of the tip of
the wing.
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wind speed are also represented in Fig. 8.
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Fig. 8. Results of Delta Wing test case: experimental [77] Solver1. The maximum vertical speed of the wing’s
tip is plotted against the wind speed.

2. Solver2

Numerical data for Solver2 are now shown in Table 2. Maximum vertical speed of the tip for LCO established

Attar et Al.[77] (experimental) Demasi et Al.[37] Solver2 ζ=3% Solver2 ζ=5%

Flutter velocity 24 m/s 22,7 (ζ= 1%) 23 m/s 23,5 m/s

U̇ztip (V∞=25,5 m/s) 0,5 m/s 0,9 m/s 0,66 m/s

U̇ztip (V∞=27 m/s) 1,36 m/s 1 m/s (ζ= 5%) 1,36 m/s 1,23 m/s

LCO frequency (V∞=27 m/s) 14,5 Hz 14.92 Hz (ζ= 5%) 16 Hz 15,3 Hz

U̇ztip (V∞=28 m/s) 1,85 m/s 1,55 m/s (ζ= 3%) 1,55 m/s 1,37 m/s

Table 2. Validation of Solver2 with Delta Wing test case. U̇ztip is the maximum vertical speed of the tip of
the wing.

at different wind speeds is also represented in Fig. 9.

3. Solver3

The same process is repeated for Solver3. See Table 3. Maximum vertical speed of the tip for LCO established

Attar et Al.[77] (experimental) Demasi et Al.[37] Solver3 ζ=3% Solver3 ζ=5%

Flutter velocity 24 m/s 22,7 (ζ= 1%) 24 m/s 24,5 m/s

U̇ztip (V∞=25,5 m/s) 0,5 m/s 0,77 m/s 0,57 m/s

U̇ztip (V∞=27 m/s) 1,36 m/s 1 m/s (ζ= 5%) 1,18 m/s 1 m/s

LCO frequency (V∞=27 m/s) 14,5 Hz 14.92 Hz (ζ= 5%) 15,6 Hz 15,1 Hz

U̇ztip (V∞=28 m/s) 1,85 m/s 1,55 m/s (ζ= 3%) 1,47 m/s 1,34 m/s

Table 3. Validation of Solver3 with Delta Wing test case. U̇ztip is the maximum vertical speed of the tip of
the wing.

at different wind speed are also represented in Fig. 10.
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Fig. 9. Results of Delta Wing test case: experimental [77] and Solver2. The maximum vertical speed of the
wing’s tip is plotted against the wind speed.
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Fig. 10. Results of Delta Wing test case: experimental [77] and Solver3. The maximum vertical speed of the
wing’s tip is plotted against the wind speed.
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V. Description of the Analyzed Joined-Wing Configurations

There are different configurations that will be analyzed in this paper. The first one, depicted in Fig. 11,
is a Joined Wing (named JW70 ) in which the joint is not located at the tip of both the wings. The thickness
of the wings and the joint is 0.7 mm.
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Fig. 11. JW70 model. The joint is located at 70% of the wing span. The thickness of the different parts of the
structure is equal to 0.7 mm.

The second configuration (Fig. 12) is a PrandtlPlane-like [2] configuration featuring a swept-back lower
wing and a swept-forward upper wing. It is designated PrP40. For this layout, the thickness of the wings
is varied and specified case by case. Both JW70 and the PrP40 have been chosen for reference reasons,
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Fig. 12. PrandtlPlane Joined Wing model PrP40. The joint is located at the tip of the wings.

see [4, 11, 13, 16]. The models’ dimensions are selected to be consistent with the ones corresponding to
wind-tunnel scaled models.

The last layout (Fig. 13) is the typical Sensorcraft [78]. The geometrical details are taken from refer-
ence [79], a part from the thickness which has been set to 0.7mm. In this configuration the aft wing is
directly joined to the front wing, to act like a strut.

For all the layouts the adopted material is a typical Aluminium, featuring a Young’s modulus E =
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Fig. 13. Sensorcraft. The aft wing is connected to the front one at the midspan. The thickness of the wings is
equal to 0.7 mm.

6.9 · 107
[

Kg
mm·s2

]
, a Poisson’s ratio ν = 0.33 and a density ρmat = 0.69 · 103 kg/m3.

For the aerodynamic analysis, the surface is discretized employing different (usually about 12) elements
in the chordwise direction. The overall number of rectangular elements is then between approximately 600
and 3000 for the different cases.

The density of the air is chosen to be the standard air density (ρ = 1.225 kg/m3).
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VI. Snap Divergence

The concept of snap divergence was first introduced in references [13, 80]. It was related to a precise
mathematical event, which was the singularity of the aeroelastic tangent matrix. For that critical condition an
infinitesimal increment in the onset flow speed was determining an equilibrium not continuously adjacently to
the previous one. In other words, a jump phenomenon (from which the word snap) was expected. This jump
phenomenon could be theoretically demonstrated to happen if the acting forces are of the conservative type,
and this actually is pursued and shown in [11,12]. However, aerodynamic forces are not of the conservative
type and the scenario could be much more complicated. First of all, for the case here investigated it has been
verified (and will be reported in next sections) that flutter speed is larger than snap-divergence one, thus,
the stability (in a local sense) of the equilibrium points could be assessed with static aeroelastic analysis.
Moreover, different-than-fixed points type of attractors may theoretically exist, with the consequence that
snap may even induce the system to settle, for example, to a limit cycle oscillation.

In this section the snap-divergence response will be shown. The time-domain capability is used, in
particular Solver1. This choice is dictated by the necessity to keep the aeroelastic modelling consistent to
the one used in references [13,80].

A. Time response on Snap-divergence Occurence

Consider the static aeroelastic response reported in Fig. 14 (taken and adapted from Refs. [13,80]). Starting
from the steady state A, a perturbation in the onset velocity is applied.

Before describing the perturbation application, it is worth to explain how the simulation was started. The
steady state aeroelastic solver was using horse shoe singularities to represent the bound vorticity, whereas
in the time domain dynamic capability a vortex ring representation is used. Equivalence has been imposed
on the aerodynamic loads, determining thus the circulation of the vortex rings. A further point is the fact
that static solutions were considered converged after a tolerance on the residual was reached. Of course, in
a real numerical setting it is not possible to reach the perfect equilibrium. Thus, it has been checked that
the numerical unbalance was negligible.

With the starting condition (state A in Fig. 14, corresponding to a free-stream speed of V∞ = 33 m/s),
the flow speed is first increased to reach V∞ = 34.3 m/s (state B), then decreased to its initial value. This is
process a quasi-static process, as could be inferred from the box in Fig. 14, where the wind speed in respect
of time is plotted.

Tracking the dynamic response, as long as the speed approaches values close to the one of snap-divergence,
there is an abrupt increase in the displacement of the wing tip (measure of the deformation of the structure).
Comparing the displacements for the static and dynamic cases, the snap-divergence phenomenon may be well
recognized. In the inverse phase, where the speed is decreased to its initial value, similar trend is observed
and the initial static equilibrium condition is obtained at the end of the transient. Further looking at the
response, the inertial effects seem to be of secondary importance in this specific case, in fact no oscillation
is observed.

Summarizing, the dynamic response matches closely the static one.

VII. Flutter Evaluated with Linear and Nonlinear Analyses

This section shows how linear and nonlinear tool may predict notably different flutter speeds. As already
outlined in section III, the here considered nonlinearity is relative to the large displacement of the configu-
rations (geometric nonlinearity). This comparison was already pursued in [4, 13, 80], for mechanical loading
and static aeroelastic conditions, respectively. It was assessed that linear analysis may give unreliable and
nonconservative predictions. In some cases linear tools were not even able to correctly evaluate trends when
one or more parameters were varied.

In this section the difference between the two approaches from an aeroelastic dynamic point of view
is pursued by means of the frequency domain (DLM) solver, see [37]. This solver requires the modes
of the structures as an input. Thus, as it will be shown, the process of running different analyses with
modes representative of the undeformed or deformed structure is the keypoint in which nonlinear effects are
introduced.
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Fig. 14. Aeroelastic static response of JW70, speed perturbation in time, and aeroelastic dynamic response to
the perturbation. Uz refers to the vertical displacement of the wing tip, point P1 of Fig. 11.

A. PrP40

The already introduced configuration PrP40 is first taken into consideration. As said, the DLM method
requires the modes of the structures as an input. Thus, evaluating the modal properties of the structures
at different point on the static aeroelastic response (the static aeroelastic equilibrium states can be found
in [13] and are presented also in the next session), it is possible to have a progressively more refined estimate
of the flutter speed (Hopf’s bifurcation).

Results are relative to different structural damping values: a chosen value of damping ratio is applied to
the considered modes, in the process explained in section III.B.5.

Flutter speeds are 51.5 m/s for the zero damping case, 52.2 when ζ = 0.01, 53.7 when ζ = 0.02 and
54.9 when ζ = 0.03. Discrepancy of the flutter speed evaluated for the undeformed configuration (which is
the common practice) and the real one is about 22%. Unfortunately, in this case the discrepancy is in the
nonconservative side (overprediction of the critical condition). Actually, increasing the linearization speed
enhances this mismatch, at least for a large portion of the response. Interestingly enough, an overprediction
of the divergence speed was also found for the aeroelastic static case (see [13,80]).

In literature it is claimed [81] that DLM model lacks in precision when used for cases in which wake
roll-up plays an important role, or for case in which the structural deformation is conspicuous. In other
works, e.g. [77], the real wake geometry was judged to be not influent for the specific aeroelastic case under
examination. In this regard, next section which will focus more on the LCO, will also present a comparison
among flutter speeds predicted with different approaches (frequency vs time domain) and models.
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B. Sensorcraft

Here the Sensorcraft is considered. Results are shown in Fig. 16. The interesting property of this config-
uration is the relatively smaller deformation consequences of the chosen geometric properties (this will be
better characterized in next section). However, as it could be appreciated, there is still a non-negligible over-
prediction of the linear tool. In fact, considering the zero-damping case, the linear prediction gives 59.1 m/s
against the 51.6 m/s, with a difference of approximately 15%.

A further aspect to underline is the relative insensitiveness of the flutter speed in respect of the structural
damping. This was not the case for the previously examined configuration.

It is interesting to observe that, linearizing about a speed other than the fundamental (zero) one, the
flutter prediction instead of being more precise, may actually lead to larger errors. This was observed
also for the PrP40 case, suggesting that, evaluation done with immediate successive linearization may give
misleading trends and even more inaccurate predictions, unless the linearization speed is close to the real
critical one. These results stress out the big role played by the nonlinearities in Joined Wings configurations.
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VIII. Postcritical Dynamic Aeroelastic Analysis

In this section different results are shown. Flutter speed as predicted by the time- and frequency-domain
solvers are compared, for different values of the damping ratio. For the post-flutter, different dynamic
responses, in particular Limit Cycle Oscillations (LCO), are observed for the baseline configurations. These
LCOs are obtained perturbing the steady state, or, alternatively, increasing the angle of attack until the
target value is reached. The sophistication of the analyses is mitigated by the use of all the solvers as
an important mean of comparison and validation. The discrepancies observed when different solvers are
employed is discussed in more depth and a physical interpretation of these differences is also attempted,
when possible. The outcome of this analysis has important consequences since it suggests which solver
should be used to reach a good balance between reliability and computational costs.

A. Limit Cycle Oscillation for JW70

The previous sections gave both a static and dynamic evaluation of the aeroelastic properties of the joined-
wing configurations under examination. In particular, flutter speed was assessed with frequency domain
solver. In this regard, a time domain solver may be used to assess if the flutter speed was consistently
predicted, and, also, to show the post-critical response. Moreover, solvers based on different modelling are
used to provide an insight in what are the important requirements for this kind of problem, so that simpler
and computationally less expensive solutions may be used with confidence.

1. Solver1

Fig. 17 shows the dynamic response of the JW70 configuration evolving from an equilibrium state as the
ones depicted in the graph. For each case, a vanishing angle of attack perturbation is given to provoke a
more observable transient, and eventually induce more rapidly a post-flutter behaviour. This perturbation
consists in a linear increase in the angle formed by the onset flow direction and the x-axis, followed by a
symmetric decrease to the unperturbed value (which is 1◦). The peak is reached at 0.1 seconds, and at its
value it holds that αx = 1.01 (this is shown in the box in Fig. 17).
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Fig. 17. Solver1. Aeroelastic dynamic response of JW70 starting from steady states relative to different
velocities when a vanishing perturbation in angle of attack of the onset flow is given.
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All the results have been obtained considering no structural damping. The simulations have been carried
out for different speeds, so that both the typical subcritical and supercritical responses could be appreciated.
In particular, with this approach, it is possible to locate a small interval in which the flutter speed lies
(according to this solver). For the present case, the flutter speed falls in the interval 39, 5÷ 40 m/s. These
results are analyzed and discussed in more depth in section 4.

For speed larger than flutter, an LCO is observed. The properties of the LCOs are depicted in Fig. 18.
Very interesting is the transient of system before settling to an LCO. Not only the path described in the space
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Fig. 18. Time response and Phase-space trajectory for JW70 configuration, for different flow speeds. Solver1
is employed. No structural damping is considered.

phase is long before it is finally attracted from the LCO orbit. But, for a wind speed of V∞ = 40.5m/s it has
also an abrupt change in the oscillatory trend. It is the authors’ opinion, and actually, it may be supported
by physical sense, that this behaviour is largely due to the overconstrained nature of the joined-wing layout.
The mutual loads transferred through the joints give raise to a complicated response. This could be easily
verified comparing the transient to the LCO shown above with the ones of the Delta Wing case (see reference
[37]).

2. Solver2

The same process outlined in the previous section is now repeated using a different aerodynamic solver.
The difference with the previous case is concentrated in a more consistent application of the boundary
condition (which requires the re-evaluation of the aerodynamic tangent matrix at each timestep) and also
the application of the Kutta-Joukowsky formula on the real deformed structure. Moreover, all the aero-
dynamic/structural information are passed thanks to a meshless method. Refer to section III.F for more
details.

The static response, used to start a simulation from a steady state condition, is depicted in Fig. 19. It
is obtained with a static aeroelastic tool consistent with the above employed hypotheses. It may be well
noticed that the snap-divergence has now a more pronounced connotation.
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Fig. 19. Solver2. Aeroelastic dynamic response of JW70 starting from steady states relative to different
velocities when a vanishing perturbation in angle of attack of the onset flow is given. Different structural
damping are considered.

In the same figure and in Fig. 20, the dynamic responses obtained starting from different steady velocity
and applying the above described perturbation are given. It may be observed how, with this more realistic
modelling, the flutter speed sensibly decreases if compared with the outcome of the above analyses. In fact,
even for structural damping ratio of ζ different than zero, and speeds that were subcritical (in term of flutter)
when the case was analyzed with the Solver1, an LCO is observed.

3. Solver3

The capability of free wake is considered in Solver3. The vortex rings are now considered attached to
the structure. Thus, differently than Solver2, there is a perfect consistency between the control point where
boundary condition is applied and inducing singularities panels. Refer again to section III.F for more details.

To consistently compare the results with the the ones presented above, it is necessary to find a suitable
steady state condition. There are two generic ways to achieve a steady state. One method is based on an
iterative process starting from an initial first guess wake geometry, moving it accordingly with the induced
velocity components parallel to a plane perpendicular to the free-stream velocity (see [62]). A further way
to proceed, is just to start from a rest condition and follow the transient until a steady state is reached.

Here, an approach similar to the second one is employed. In fact, an impulsive start is given to the
configuration, and the angle of attack is slowly increased until it reaches the sought value (in Fig. 21 is
depicted the time history of the nominal angle of attack). When these simulations are carried out for larger
speeds than the flutter one, then, obviously, a steady state is not observed. Results are summarized in
Fig. 21. The time histories suggest that the flutter speed lies in the 36 ÷ 38 m/s range, probably closer to
38 m/s. In fact, the LCO observed at this speed has a very limited amplitude, indicating that the state
is one immediately following a Hopf’s bifurcation. With a small increase in speed, the LCO has a larger
amplitude. With a further increment of speed, the response does not seem to have any periodicity, suggesting
a transition toward chaos. A in depth analysis is needed to affirm and demonstrate the above possible chaotic
behaviour.

It is very interesting to notice how a relatively small variation in speed (see Fig. 21) significantly changes
the kind of response.
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Fig. 20. Time response and Phase-space trajectory for JW70 configuration, for different flow speeds. Solver2
is employed.

4. Effects of Solver’s Choice and Structural Damping on Flutter Speed

In Fig. 22 it is plotted the flutter speed, as evaluated with the different solvers, with respect to the structural
damping ratio. The critical speeds evaluated with the time domain solvers are obtained by considering the
two successive speeds for which the response was showing and was not showing an LCO. In the graph, the
DLM overestimates the flutter speed in respect with all other methods. In particular, Solver1 uses the same
aerodynamic and load transferring of the DLM one, thus, to prove that this difference is not an artifact of
numerics, the number of natural modes, aerodynamic panels and structural elements have been verified to
be enough to give convergent results (the details are here omitted for brevity).

Solver2 gives lower flutter speeds. Applying the lift in the appropriate direction and consider the real
normal in the application of the boundary condition exacerbates the bending actions. However, in general,
even if in agreement with intuition, this may not always hold. For example, it will be shown for the PrP40
layout that this is not the case.

With Solver3, the singularities are bound to the structure, and the wake is free to deform and evolve.
Especially this last features has a relevant role in increases the critical speed.

All the solvers show a similar trend of the flutter speed with the structural damping.
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Fig. 21. Time response and Phase-space trajectory for JW70 configuration, for different flow speeds. Solver3
is employed. The angle of attack is increased linearly from 0◦ to 1◦ in 0.5 seconds. No structural damping is
considered. The LCO observed at a speed of V∞ = 38 m/s has a frequency of 10.8 Hz. The one at V∞ = 38.5 m/s
has a frequency of 10.5 Hz.
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B. Limit Cycle Oscillation for PrP40

This section retraces the logics of the previous part. However, the configuration under examination is now
the PrP40. See Fig. 12 for details about the geometry. For this specific test case, the thickness of the wings
is set to t = 1 mm. The modality of application of the perturbation strictly follows what done in the previous
section.

1. Solver1

Fig. 23 shows both the aeroelastic static response, andd the time evolution of the PrP40 configuration
starting from an equilibrium state depicted in the graph and experiencing a vanishing perturbation. This
disturbance consists in a linear increase in the angle formed by the onset flow direction and the x-axis,
followed by a symmetric decrease to the unperturbed value (which is 1◦). The typical times are the same
described in the JW70 case. For all cases the structural damping is set to zero. Both configurations relative
to subcritical and supercritical speeds are chosen.

The outcome of the simulations suggests that the flutter speed is in the 58÷59 m/s range. Observing the
response for speed larger than the flutter’s one, it may be noticed how, differently than the JW70 case, the
response is not settling to his final LCO with the typical pattern observed before, in which the oscillating
motion was very slowly cutting its amplitude and shifting its mean value before reaching the asymptotic
behaviour. On the contrary, after a very brief peak, the response immediately sets to the asymptotic mean
value, and the amplitude of the oscillation rapidly reaches the regime one. This could be observed with the
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Fig. 23. Solver1. Aeroelastic dynamic response of PrP40 starting from steady states relative to different
velocities when a vanishing perturbation in angle of attack of the onset flow is given.

aid of Fig. 24.
Repeating the simulation with a value of the damping ratio ζ = 0.03 the critical speed increases, however,

the time response reminds the ones of the undamped system. Thus, this cases are not shown here for brevity.
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Fig. 24. Time response and Phase-space trajectory for PrP40 configuration, for different flow speeds. Solver1
is employed. No structural damping is considered.

2. Solver2

The static aeroelastic response is first obtained in a way consistent with the hypothesis of the aerodynamic
solver. Then, picking a speed, the initial configuration is automatically chosen, the perturbation is applied
and the response is studied. Results are shown in Fig. 25, whereas the LCOs in the phase-space diagram are
given in Fig. 26.

An interesting direct comparison of the LCO properties at a fixed speed (59 m/s) when choosing two
different solvers is shown in Fig. 27. Exploiting the geometrical follower nature of the aerodynamic forces
(taken into account with Solver2 ) has an important effect on the amplitude of the LCO, and also on the
frequency: both of them increase by a considerable extent. Although it is always difficult to rely on intuition
when studying flutter, the increase in amplitude “is expected” in the sense that a follower force tends to
exacerbate the deformation.

3. Solver3

Time responses and phase spaces of the limit cycle oscillations found by means of the Solver3 are not
reported. However, the performances of this tool in predicting flutter speed are analyzed in the next section.

4. Effects of Solver’s Choice and Structural Damping on Flutter Speed

In Fig. 28 it is plotted the flutter speed, as evaluated with the different solvers, with respect to the structural
damping ratio. Considering the undamped case, the DLM solver found a flutter speed of approximately
51.5 m/s, whereas, Solver1 predicts a critical speed of 58.5 m/s. The relative error is in the order of 12%,
definitely larger than the discrepancy observed for the JW70 case. Further analyses are needed to explain
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Fig. 25. Solver2. Aeroelastic dynamic response of PrP40 starting from steady states relative to different
velocities when a vanishing perturbation in angle of attack of the onset flow is given.

this difference. A further comment is that, differently than previous case, now the DLM predicts the lowest
speed, giving thus a conservative estimation of the flutter speed.

Another difference from the JW70 case is the higher flutter speeds predicted by Solver2 when compared
to Solver1, for nonzero damping ratios.

However, the most relevant observation is the discrepancy of Solver3 with all other solvers. Here, an
explanation is tempted based on physical arguments. Comparing Solver3 with Solver2 the most significant
source of differences is the treatment of the wake. To isolate this effect, a pure aerodynamic case is introduced.

An impulsive start of an undeformable PrP40, immersed in a flow with an angle of attack of 5◦ is now
considered. Both a rigid wake and a flexible (free) wake model are used. The lift coefficient evolution in
time is depicted in Fig. 29. In the immediate transient there is a small difference between the lift coefficient
which vanishes when evolving in time. If, for a time in which the global lift coefficients are identical, the lift
distribution along the wingspan is compared, effects of the different modelling of the wake could be better
appreciated. When free wake is modeled, there is a decrease, especially concentrated on the outer part of
the upper wing, of the lift; on the other hand on the front wing there is an almost uniformly distributed
increase.

A similar aerodynamic study was repeated for an unstaggered PrandtlPlane-like configuration: it was
deduced that the large load redistribution due to wake deformation was not just strictly connected with the
stagger of the PrP40 configuration. Thus, it is expected that also the other joined-wing layouts experience
a considerable load redistribution when a free-wake model is adopted. The question has still to be answered
regarding why the PrandtlPlane-like configuration is much more sensitive to the wake modelling. The
following speculative explanation could be attempted. It may be noticed that in this configuration both of
the wings extend spanwise to the same amount, and the redistribution of loads on the wing-tip area has
large bending moment effects due to the large moment arm with respect to the wing root. Thus, it seems
reasonable to link these actions to a consistently different aeroelastic response. However, as said, this has
to be demonstrated, especially considering that this redistribution is of course particular of the specific case
under examination (undeformed wings), thus it is not immediate to extend these results to the real deformed
case.

A further note about the redistribution is that, it would affect the induced drag of the configuration.
This was already shown in reference [82], where a free-wake modelling was shown to predict a lower induced
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Fig. 27. LCOs of PrP40 at a speed of V∞ = 59 m/s as predicted by Solver1 and Solver2.

drag whereas the lift coefficient was not experiencing differences. It is then suggested that, application of
classic formulae [83–86] for a first evaluation of the induced drag may be slightly penalizing.

C. Sensorcraft

Now the Sensorcraft configuration is considered. The undisturbed flow forms with the x-axis an angle of 3◦,
and this enables to track an aeroelastic static response as shown in Fig. 30. The dynamic response is studied
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Fig. 28. Flutter speeds for PrP40 configuration, evaluated with the different solvers and for different structural
damping ratio values.

applying a vanishing perturbation in angle of attack, as described for the previous cases.

1. Solver1

Solver1 is here used to track the response. However, before further proceeding, it is interest to comment the
aeroelastic static response of this configuration, as shown in Fig. 30. It features the vertical displacement of
both point P 1, lying on the wing tip, and P 2, at the midspan, as depicted in Fig. 13. The extreme nonlinear
response presents a sequence of softening and stiffening. In the first stiffening region (for wing’s tip), the
deformation of the upper wing produces a bending moment transmitted directly to the lower wing, such that
the tip of the wing does not experience any vertical displacement for a wide range of speeds.

Dynamic responses are presented in Fig. 31 for different speeds. Focus is first on the LCO for a speed of
V∞ = 52.5 m/s. Considering the midspan point P 2, the trajectory described by this point when a limit cycle
oscillation is established is the usual wave-like response. However, this does not hold for wing tip P 1. In fact,
considering a period, during the ascending part the motion is temporary reversed and some higher frequency
oscillations of smaller amplitude establish before continuing again the ascending motion. The descending
motion does not show such a pattern. This response has been observed also when structural damping
(algorithmic damping as explained in section III.B.2, has always been used in the present simulations) was
considered (not shown here) suggesting thus, that this phenomenon is not an artifact of numerics but rather
real expression of the physics.

If the speed is slightly increased to V∞ = 53.5 m/s, the same pattern is observed, however now the
oscillation observed within the ascending motion increases its amplitude. It is natural then to repeat this
process for higher speeds and observe what happens. A speed of V∞ = 59 m/s is considered, and the response
is depicted in Fig. 32. The response does not show any aeroelastic instability, although the speed is increased
from the previous cases showing LCOs. This result is unexpected and underlines, once again, the difficulties
inherent to the design of such a configuration. With the aid of Fig. 33 this property is shown: starting from
a stable situation, the speed is slowly decreased until a critical condition is reached. It can be appreciated
that, for V∞ = 57 the response immediately loses its stability (in the static sense) and an LCO is developed
after the transient.
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Fig. 29. Wake models and their effects on the lift coefficients of the PrP40’s wings.

2. Solver2

Use of Solver2 does not seem to give large differences from what previously observed. What can be noticed is
a small decrease of the frequency, as shown in Fig. 34 when compared with the previous results. Also the same
oscillating pattern during the ascending motion is observed. In order to better visualize this phenomenon,
it is interesting to plot the snapshots of the configuration during a period, Fig. 35. As it can be easily
verified, the states c, d and e describe the small oscillation during the ascending motion. Focusing then on
the upper wing, it can be observed a unique smooth wave-like pattern identified by a compression and an
extension, whereas for the outer portion of the wing this does not hold. It is not trivial to understand why
the portions of the wing system have different dynamics, since different sources of difficulties are present:
nonlinear structure, coupled aerodynamic structural and inertial effects, and also overconstrained nature of
the system. As it will be shown in the next section, adding a further source of nonlinearity (wake roll up)
also influences the above mentioned pattern.

3. Solver3

Results obtained with Solver3 are presented in Fig. 36. The speed is selected so that it was possible to
observed the small oscillation pattern of the tip of the wing (point P 1). The angle of attack is increased
until the value of 3◦ is obtained. It is interesting to observe that the high frequency oscillation pattern earlier
observed is now present in the descending portion of the LCO. To visualize this pattern, snapshots of the
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Fig. 30. Aeroelastic static response of Sensorcraft. Vertical displacements of points P 1 and P 2 are taken into
consideration (see Fig. 13). Angle of attack is 3◦. The vanishing perturbation that is applied to track the
dynamic response is also represented.

configuration during a period are presented in Fig. 37. States f , g and h describe the small oscillation during
the descending motion. It can be verified how, even if the midspan point P 2 is monotonically descending in
this window of time, the outer portion of the wing inverts its motion bending upward before restarting its
descend.

4. Effects of Solver’s Choice and Structural Damping on Flutter Speed

In Fig. 38, it is plotted the flutter speed, as evaluated with the different solvers, with respect to the structural
damping ratio. The predictions are now much closer, and the differences are negligible. This is related both
to the particular layout and to the smaller deformations involved, which do not enhance the modelling
differences of the solvers.
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IX. Joined Wings: a Dynamical System Perspective

This section shows the complicate picture of Joined Wings responses described from a dynamical system
perspective. Different kinds of bifurcations are detected when tracing the stability diagram, and the situation
appears very complex.

Before further going into details, the test case is here described. Consider the PrP40 layout, shown in
Fig. 12. The thickness is now selected to be 0.6 mm. The freestream velocity is along the x axis. Solver1
is used to study the dynamic response. As it will be clear in the following, also aeroelastic static tool with
continuation capabilities (arc-length methods) are used.

Being the angle of attack zero, there are no aerodynamic forces in the undeformed (basic) configuration.
Thus, it is an equilibrium (fixed point) configuration for all velocities. With reference to the bifurcation
diagram of Fig. 39, in which the vertical displacement of the tip of the lower wing (point P1 in Fig. 12)
has been chosen as representative displacement variable and the parameter is the flow speed, these fixed
points lie on the ordinate. If the speed is increased, V sd is reached. This speed is associated with saddle
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Fig. 39. Bifurcation diagram for the test case. Solver1 is employed. Solid(dashed) lines represent stable
(unstable) fixed points, full circles stand for stable limit cycle oscillations (the largest value is depicted) and
the full complex star stand for stable bi-cyclic periodic closed orbit (largest value is depicted in the graph).

node bifurcations occurring on branches far from the fundamental one. What occurs is the inception of two
fixed node points on each of the non-fundamental branches. That is, if the speed falls between V sd and
V bf, there are five possible equilibrium configurations, and three of them are stable, see Fig. 39. Thus, a
so called tri-stability situation is in place. With aid of Fig. 40, a speed in this range has been chosen, i.e.
V∞ = 29.5 m/s, and the equilibrium points are represented with a small circles, full (empty) if they are stable
(unstable). Consequence of multi-stability have been already explored and discussed for joined-wing layouts
in references [11, 12]. This property is demonstrated in Fig. 41 by giving different vanishing perturbations
in angle of attack, and observing that after the transient the configuration could settle to the three different
equilibrium states on the branches. When speed approaches V bf, there is a bifurcation that leads to change
of stability of the main branch: the undeformed configuration looses its stability. What happens in the
negative part of Uz is here not studied, thus, any fixed point that may exist in that part of the plane has
not been taken into consideration. The typical phase-space diagram for V∞ = 33.7 m/s, which is in the
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Fig. 40. Phase space for different speeds.

range V bf ÷ V hb is depicted in Fig. 40. There is a bi-stability, being the stable states on the branch I and
II. There are also two unstable poles, the first being on the undeformed configuration and the other one on
the branch II. Responses showing this behaviour are represented in Fig. 42.

Increasing the speed, it is finally found an Hopf’s bifurcation, V hb. This bifurcation pertains the branch II
only. The fixed static solution becomes unstable, and, on the contrary, a stable limit cycle oscillation is
developed. The properties of the points on the other branches do not change. Thus, as it is shown for a
speed V∞ = 34.0 m/s, which is in the range V hb ÷ V fb, perturbations lead to the response shown in Fig. 43.

The largest bifurcation speed found in this analysis is V fb, for which a flip bifurcation (also called period
doubling) occurs. For speeds slightly larger than V fb, then, considering that the only stable point lies on
the branch I, there is still a bi-stability. This is shown also in Fig. 44. It is important to notice that, to
mathematical assess a flip-bifurcation occurrence the eigenvalues of the so called Monodromy Matrix (known
also as Floquet characteristic multipliers) [17, 87] have to be studied. However, this analysis is not trivial
when relatively large (in terms of number of DOFs) systems are considered. Thus, this was not pursued in
this study. On the contrary, period doubling was assessed noticing that, immediately after the bifurcation
point, the period of the closed orbit was doubling compared to the one of the limit cycle oscillation established
at a speed lower than the period doubling one. Fig. 45 clearly shows the doubling of the period. The closer
orbit described after period doubling occurrence is here assessed to as bi-cyclic periodic orbit. It is presented
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Fig. 41. Tri-stability region, at V∞ = 29.5 m/s. Starting from the initial undeformed configuration different
vanishing perturbations in angle attack are given, and the response is tracked.

more in detail in Fig. 45. The time responses as well as the state spaces are plotted considering now three
degrees of freedom. Other than the point P1, now also vertical displacements of points P2 and P3, shown in
Fig. 12, are considered.

When speed is further increased, the response associated with the branch detached from the period
doubling bifurcation seems to have a chaotical response, as shown in Fig. 46. In depth analyses are needed
to confirm transition to chaos. The branch I stable fixed point is still present (Fig. 39).

52 of 63

American Institute of Aeronautics and Astronautics



t

Uz

[s]

[mm]

0.1
0

1.5

0.2

a

t

x

Point P
1

V =         m/s33.7
¥

0 1 2 3 4 5 6 7 8 9
0

50

100

150

200

250

0 1 2 3 4 5
0

10

20

30

40

50

60 Uz
[mm]

V =         m/s33.7
¥

0.1
0

0.6

0.2

a

t

x

t [s]Point P
1

Fig. 42. Bi-stability region, at V∞ = 33.7 m/s. Starting from the initial undeformed configuration different
vanishing perturbations in angle attack are given, and the response is tracked. The systems could settle down
to both static equilibrium on branches I and II.

0 2 4 6 8 10 12
0

50

100

150

200

250

0 5 10 15 20 25 30
0

10

20

30

40

50

t

Uz

[s]

[mm]

Uz
[mm]

[s]
0.1

0

0.01

0.2

a

t

x

t

0.1
0

1.5

0.2

a

t

x

Point P
1

Point P
1

V = 34 m/s¥

V = 34 m/s
¥

Fig. 43. Bi-stability region. Starting from the initial undeformed configuration different vanishing perturba-
tions in angle attack are given, and the response is tracked. Either the static solution on branch I or the limit
cycle oscillation are approached after a transient.

53 of 63

American Institute of Aeronautics and Astronautics



t

Uz

[s]

[mm]

Uz
[mm]

[s]

0.1
0

0.3

0.2

a

t

x

t

0.1
0

1.2

0.2

a

t

x

Point P
1

Point P
1

V =      m/s35
¥

V = 35 m/s
¥

0 2 4 6 8 10 12
0

50

100

150

200

250

300

0 2 4 6 8 10 12
0

5

10

15

20

25

30

Fig. 44. Bi-stability region. Starting from the initial undeformed configuration different vanishing pertur-
bations in angle attack are given, and the response is tracked. Either the static solution on branch I or the
bi-cyclical closed orbit are approached after a transient.

8 8.5 9 9.5 10 10.5
50

100

150

200

250

300

P3

P1

P2

t [s]

U [mm]z

120

140

160

180

180 200 220 240 260 280 300

70

80

90

100

110

120

110 120 130 140 150 160 170 180
60

70

80

90

100

110

Uz

P1

Uz

P3

Uz

P1

Uz

P

3
Uz

P

2

Uz

P2

180 200 220 240 260 280 300

Time Response
Space State

P P
2 3

P P
1 3

P P
1 2

9 9.5 10

200

250

300
P1

LCO
flip-bifurcation

before

V = 35 m/s¥

V = 34.5 m/s¥

Response
flip-bifurcation

after

Fig. 45. Closed orbit for higher than flip bifurcation speeds. Time response for points P1, P2, P3, and state
spaces for their combinations. The time responses are also compared to a subcritical one to assess the doubling
of the period.

54 of 63

American Institute of Aeronautics and Astronautics



1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

V = 35.3 m/s
¥0.1

0

1.2

0.2

a

t

x

Uz
[mm]

t [s]

Point P
1

Fig. 46. Time response for V∞ = 35.3 m/s when a vanishing perturbation in angle attack is given: the response
does not show any periodicity.

55 of 63

American Institute of Aeronautics and Astronautics



X. Conclusions

Aeroelastic dynamic phenomena of Joined Wings have been here presented. Previous efforts assessed
Joined Wings response for mechanical loads and post-critical conditions in static [4,11,16], and dynamic [13]
regimes. The true aeroelastic post-critical condition was also studied. As a logical continuation this paper
analyzed the aeroelastic dynamic response. The effort was directed towards different perspectives.

First, a dynamic characterization of the snap-divergence concept was achieved. In fact, its occurrence
was first found in reference [13], and examinated by means of an aeroelastic static analysis. The question
was then to assess its existence and the behaviour of the system. Results showed that the static predictions
were correct, and the characteristic snap was observed.

Second, flutter analysis undergone with a linear frequency-domain tool was compared to a nonlinear
one, obtained as a sequence of linearizations performed about deformed configurations. These investigations
continued what previously assessed in efforts [4, 13] for mechanical instability and divergence. It was found
that the linear tools were giving nonconservative predictions.

Third, the impact of different modelling of the aeroelastic problem (as the interface method or as the wake
description) on flutter speed was assessed for time-domain solvers. Comparisons with the above frequency-
domain capability were also given. It was shown that, free-wake modelling was increasing flutter speed (at
least for the configurations under examination), and this was put in relation with the particular architecture
of the layout. Other differences in the prediction were not enough clear to be assessed.

Fourth, aeroelastic dynamic post-critical regime was explored. Limit cycle oscillations were found. For
some combinations of solvers and configurations, the transient to the LCO showed unusual trends: phase-
space transient trajectories were not resembling the final periodic orbit and the transient time was relatively
long. It was however difficult to give any further physical interpretation without having the support of exper-
imental data. Moreover, for the Sensorcraft-like configuration, at certain speeds, the limit cycle oscillation
was showing within a period different patterns between the outer and inner parts of the wing system.

Fifth, the joined-wing behaviour was studied in more depth on a dynamical system perspective. Bi-
stability and tri-stability were observed, in analogy with what discovered in reference [11]. For a certain
speed, one branch was experiencing an Hopf’s bifurcation (flutter), followed by a flip bifurcation (or period
doubling). These are common symptoms predicting transition to chaos.

A contribution that this paper aims to give is also represented by the detailed treatise of theory of
implementation of the aeroelastic solvers. This has been accomplished describing problems inherent to
the time-discretization of the dynamic equation. Moreover, the aeroelastic coupling is presented in detail,
with emphasis on the different contributions giving raise to the aerodynamic unsteady forces. And, finally,
application and specialization of the meshless method was tackled in depth.
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A. Meshless Interface Algorithm

The procedure of constructing shape functions using MLS approximation and the way to apply them
in order to obtain the coupling between aerodynamic and structural field with the desired properties is
here presented. The values of the function û(x) on a set of nodes {η1,η2, ...,ηn̂} are obtained from its
values û(ξ1),û(ξ2),...,û(ξn̂) on scattered centers (or sources) {ξ1, ξ2, ..., ξn̂} without deriving an analytical
expression. This extrapolation is denoted by ûh(η) and is built as a sum of m̂ basis functions p̂i(η)

ûh(η) =

m̂∑
i=1

p̂i(η) a
ξ
i (η) = p̂(η) · aξ(η) (76)

where ai are the unknown coefficients of the basis functions which depend on the point η where the value is
sought; the vector p̂ of basis functions consists often of monomials of the lowest order such to form polynomial
basis with minimum completeness but particular functions can be added to reproduce a particular behaviour
of the variables investigated. In the present study linear and quadratic polynomials are adopted:

p̂ = {1, x, y, z}
p̂ = {1, x, y, z, x2, xy, y2, yz, z2, zx}

(77)

The m̂ coefficients ai describing (as shown in eq.(76)) the function in the point η are obtained minimizing
the weighted residual functional (a weighted discrete L2 norm) J(η)

J(η) =
n̂∑

i=1

W (η − ξi) [ũ(ξi,η)− û(ξi)]
2 (78)

where
ũ(ξi,η) = p̂(ξi) · a(η) (79)

is the approximated value of the the field function in the generical center of the set ξ obtained by means
of the same extrapolation process pointed out in eq.(76). A useful matrix form of eq.(78) can be given as
follow:

J(η) = (P̂ a(η)− û) ·
(
W (P̂ a(η)− û)

)
(80)

where the following vectors and matrices are introduced:

û = {û(ξ1), û(ξ2), ..., û(ξn̂)}

P̂ =


p̂1(ξ1) p̂2(ξ1) ... p̂m̂(ξ1)

p̂1(ξ2) p̂2(ξ2) ... p̂m̂(ξ2)

... ... ... ...

p̂1(ξn̂) p̂2(ξn̂) ... p̂m̂(ξn̂)

 (81)

W =


W (η − ξ1) 0 ... 0

0 W (η − ξ2) ... 0

... ... ... ...

0 0 ... W (η − ξn̂))

 (82)

Solving the minimization problem
∂J(η)

∂a
= 0 (83)

an expression for the coefficient vector a(η) is obtained

a(η) = Â−1B̂ û (84)

where Â is called the moment matrix and is given by

Â = P̂ T W P̂ (85)
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and B̂ is given by
B̂ = P̂ T W (86)

It is now possible to give a definitive expression of eq.(76) as:

ûh(η) =
n̂∑

i=1

Φi(η) ûi (87)

where Φi(η) is the coefficient of the MLS shape function of node η corresponding to the center i, which is
given by

Φi(η) =

m̂∑
j=1

p̂j(η)
[
Â−1B̂

]
ji

(88)

Eq.(87) can also be written in the following matrix form, suitable for applications to the aeroelastic model

ûh(η) = Φ(η) · û (89)

where Φ(η) is the array containing the coefficients of the MLS shape function of node η.
The Radial Basis Functions (RBF) that can be adopted for the three-dimensional cases [73] are

W 0(r) = (1− r)2 C0

W 2(r) = (1− r)4(4 r + 1) C2

W 4(r) = (1− r)6(
35

3
r2 +

18

3
r + 1) C4

W 6(r) = (1− r)8(32 r3 + 25 r2 + 8r + 1) C6

(90)

where r represents the Euclidean distance between the two considered points. The degree of smoothness
Cn of the RBF bounds the maximum number of continuous derivatives of the approximant function ûh, as
can be argued from the expression of the shape functions in eq.(88). Usually the weight functions in eq.(90)
are written using as independent variable r/δ instead of r, where δ is a scaling factor that allows one to
change the function support for different centers, making more appropriate the determination of the local
support dimension in those cases where there is a great variation in the data density or when it is requested
to exactly enforce structural constraints on the aerodynamic mesh.

The minimization problem has a unique solution if the symmetric matrix Â is positive definite; this
matrix may become singular when the interface is not a well-posed problem, as for example when the
number of terms of polynomial basis m is bigger than the number n̂ of nodes used in the support domain
or when nodes and relative centers are such that the basis functions vanish in the local support. Especially
the latter case can often represent an issue if, for example, planar or piecewise planar configurations are
analyzed and it is thus useful to resort to the concept of Moore-Penrose pseudoinverse for evaluation of a
in eq.(84). The so-called Moore-Penrose pseudoinverse of matrices [88] is a concept that generalizes the
usual notion of inverse of a square matrix, but that is also applicable to singular square matrices or even to
non-square matrices. For this reason it proved to be particularly useful in dealing with certain least squares
problems, when an approximation for solutions of linear equations like Âz = c is sought, where Â is a
given m̂ × n̂ matrix and c is a column vector with m̂ components; the solution is expressed as the set of all
vectors z⋆ such that the Euclidean norm ||Âz⋆ − c|| has the least possible value, called the minimizing set

of the linear problem, and it can be demonstrated that this set is obtained through a matrix Â+, named the
Moore-Penrose pseudoinverse of Â and satisfying the following properties:

ÂÂ+Â = Â

Â+ÂÂ+ = Â+

ÂÂ+ and Â+Â are self-adjoint

(91)

For the Singular Value Decomposition Theorem [89] a matrix Â can always be written as

Â = V SW ⋆ (92)
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where V and W are unitary matrices given by the Polar Decomposition Theorem and S is a diagonal
matrix whose diagonal elements are the singular values of Â, i.e., the square root of the eigenvalues of ÂT Â.
Eq.(92) shows the so-called singular value decomposition of the matrix Â. It can be demonstrated that the
Moore-Penrose pseudoinverse is given by

Â+ = WS+V ⋆ (93)

where S+ is a diagonal matrix whose diagonal elements are the reciprocal of the singular values of Â. The
crucial point is the choice of which diagonal elements have to be retained in S+, because this is the way an
inverse matrix of a singular one is given, i.e, just the invertible part is inverted. In the present effort, the
following strategy is chosen: the singular values of Â are normalized dividing them by the maximum one
and a cut off value is adopted such that all the smaller ones are replaced with 0 in S+ (where the reciprocal

would be requested). It should be observed that when the matrix Â is singular, it has at least one of its

singular values equal to zero and so a cut off of 0 could be enough, but it can happen that although Â is
non singular from a mathematical point of view (no zero eigenvalues) it has a high condition number and
eq.(93) without further modifications wouldn’t be enough to obtain good results.

The final issue is the conservation of energy [68]. To present the problem and its solution in the most
general way, the following coupling conditions are considered

σs n = −pn+ σf n

ηs = ηf

η̇s = η̇f or
∂η̇s

∂n
=

∂η̇f

∂n

(94)

where ηs denotes the structural boundary position, ηf is the aerodynamic counterpart, p is the pressure,
σs and σf are respectively the structure stress tensor and the fluid viscous stress tensor, and n is the
normal vector to either a newly defined virtual interface surface or the surface of the fluid. The first relation
expresses the dynamic equilibrium between stresses on the two fields, whereas the others are kinematic
compatibility conditions on displacement and speed; for the latter one, just the normal component can be
used if an inviscid flows is considered (wall tangency condition). As these conditions are valid for continuous
systems and the two fields are discretized to solve the problem, conservation properties have to be assured:
the change of energy in the fluid-structure system need to be equal to the energy supplied by external forces.
In the following it is demonstrated how this property can be retained enforcing the coupling conditions in a
weak sense through the use of Virtual Work. Calling δηf and δηs the admissible displacements for the two
respective fields, the relation between nodal quantities (i and j are respectively the generical aerodynamic
and structural node) is

δηf
i =

js∑
j=1

Φj(η
f
i ) δη

s
j (95)

where if and jf are respectively the number of aerodynamic and structural nodes considered. The resulting
virtual displacement of the aerodynamic surface Γf is obtained assuming Ni base functions belonging to the
aerodynamic field discretization space corresponding to the if nodes of the same surface; in this way, the
following relation holds

δηf =

if∑
i=1

Ni

js∑
j=1

Φj(η
f
i ) δη

s
j (96)

The virtual work of the aerodynamic load is equal to

δW f =

∫
Γf

(−pn+ σfn) · δηf dΓ (97)

Calling f j the load on the structural node j induced by the fluid, the virtual work of the forces acting on
the structure is

δW s =

js∑
j=1

f j δη
s
j (98)
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Imposing equivalence of the virtual works and rearranging eq.(97) through eq.(95) and eq.(96) the following
holds

f j =
if∑
i=1

F i Φj(η
f
i ) (99)

where Fi is given by

F i =

∫
Γf

(−pn+ σfn)Ni dΓ (100)

Consider now f (F ) to be the matrix whose rows are the forces evaluated at the generic aerodynamic
(structural) j-th (i-th) node, f j ( F i). Thus eq.(99) may be written in the matrix form:

f = ΨT F (101)

being Ψ the interpolation matrix that matches the two displacement’s fields, i.e., Ψij=Φj(η
f
i ). Eq.(101)

shows the sought result: to ensure the balance of the energy exchanged between fluid and structure, the
loads on the structural nodes f have to be evaluated multiplying the loads F on the aerodynamic grid by
the transpose of the interpolation matrix.
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