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A novel approach to reduced-order modeling of high-dimensional systems with time-varying properties 
is proposed. It combines the problem formulation of the Dynamic Mode Decomposition method with the 
concept of balanced realization. It is assumed that the only information available on the system comes 
from input, state, and output trajectories, thus the approach is fully data-driven. The goal is to obtain an 
input-output low dimensional linear model which approximates the system across its operating range. 
Time-varying features of the system are retained by means of a Linear Parameter-Varying representation 
made of a collection of state-consistent linear time-invariant reduced-order models. The algorithm 
formulation hinges on the idea of replacing the orthogonal projection onto the Proper Orthogonal 
Decomposition modes, used in Dynamic Mode Decomposition-based approaches, with a balancing 
oblique projection constructed from data. As a consequence, the input-output information captured in 
the lower-dimensional representation is increased compared to other projections onto subspaces of same 
or lower size. Moreover, a parameter-varying projection is possible while also achieving state-consistency. 
The validity of the proposed approach is demonstrated on a morphing wing for airborne wind energy 
applications by comparing the performance against two recent algorithms. Analyses account for both 
prediction accuracy and closed-loop performance in model predictive control applications.
© 2021 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY 

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Data-driven approaches to extract from trajectories of high-
dimensional systems, parsimonious models capable of balancing 
accuracy of the prediction with complexity, are an increasingly 
popular research topic [1]. In fact, pioneering ante litteram contri-
butions to the field, prompted by the goal of identifying low-order 
structures in complex physical problems such as turbulence, were 
made in the fluid mechanics and aerodynamics communities [2]. 
The fundamental idea common to many successful approaches, de-
veloped in the wake of these early contributions, is to project the 
high-dimensional data on a lower dimensional subspace (also con-
structed from data), such that the most important features of the 
dynamics are therein preserved. A celebrated example is the Dy-
namic Mode Decomposition (DMD) approach [3,4], whereby the 
spectrum of a low-order linear dynamical model approximating 
the training data is obtained by leveraging the Proper Orthogonal 
Decomposition (POD) [5] reduction technique. Specifically, the pro-
jecting subspace provided by POD is spanned by the left singular 
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vectors associated with the largest singular values of a data matrix 
gathered from observations of the dynamics. The exact interpre-
tation of the largest singular values depend on the inner product 
used to define the data matrix. In standard applications, where the 
so-called snapshot matrix, corresponding to the correlation matrix 
between the dynamical states, is used, the largest singular values 
are associated with the modes capturing most of the energy in the 
system. Thus, the projection onto the lower dimensional subspace 
preserves the spatial structures with the highest energy content. 
This criterion for choosing the projection subspace might not al-
ways give the best results, as low-energy features can have a large 
effect on the dynamics, e.g. in the case of non-normal systems, 
which can be found in some fluid dynamics problems [6]. More-
over, as recently shown in [7], projections onto POD modes are not 
uniquely defined, due to the arbitrariness of the definition of the 
state. These findings reinforced the known fact that the quality of 
the approximation highly depends on the choice of inner product 
and thus care is required when the projection operator is com-
puted.

Despite these potential shortcomings, POD- and DMD-based 
methods have been successfully applied in various aerospace and 
control flow problems [1,8–11]. However, a relatively unexplored 
ess article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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application domain of data-driven (or equation-free) reduced-order 
modeling (ROM) is aeroservoelasticity, where the coupling among 
multiple disciplines (e.g. aerodynamics, structural dynamics) and 
components of the system (e.g. wing, actuators) often results in 
high-order models. Expect for a few notable recent exceptions, e.g. 
the works in [12,13] where nonlinear ROMs have been developed, 
the standard practice to reduce dimensionality is the use of well 
established model-based reduction technique [14]. See the work 
in [15] for an application and further references on this line of 
research. However, the increasing complexity of the high-fidelity 
solvers (often made up of distinct sub-solvers for the different 
disciplines) on one hand, and the potential advantage of recalibrat-
ing or directly substituting parts of the code with experimental 
or flight data on the other, favour the adoption of equation-free 
strategies. Among the possible reasons for the lack of their appli-
cation in the field, two important issues are highlighted here.

First, a common feature of the majority of the available ap-
proaches is the focus on internal dynamics, meant here as partial 
or ordinary differential equations without external excitations and 
with fully observable states. The work in [16] recently extended 
the DMD framework to controlled systems (DMDc), but the key 
steps of the algorithm (specifically, the selection of the projecting 
subspace) do not substantially change. That is, emphasis is not put 
on preserving the input-output behaviour of the system, which is 
crucial for control systems.

Second, in aeroservoelastic applications, capturing the varia-
tion in the stability and response of the system as the operating 
conditions change is paramount. This can be done, for example, 
using the so-called Linear Parameter-Varying (LPV) representation 
[17], which are of acknowledged benefit for control related tasks 
[18–21]. Unfortunately, obtaining accurate models featuring low 
orders is notoriously a difficult task [22], even for the well ex-
plored class of model-based approaches [23–25]. One of the most 
common strategies is to seek low-order linear time-invariant (LTI) 
representations for frozen-parameter conditions (defining a grid) 
and then interpolate them for intermediate values of the parame-
ters. Since states, and thus state-space models, are defined up to a 
nonsingular (similarity) transformation, a correct interpolation re-
quires that the state of each frozen model is defined with respect 
to the same basis. The need to work with a consistent state-space 
basis for the local ROMs, required for a correct interpolation [26], 
poses a challenge for DMD-inspired data-driven approaches. State-
consistency will depend indeed on the selection of the projecting 
subspace. If this changes across the parameter range, as it is the 
case when one computes the POD modes at each grid point, then 
state-consistency will not hold in general. Conversely, if the sub-
space is kept fixed for all the frozen-parameter LTI systems, then 
accuracy might deteriorate since projection will no longer take 
place onto the optimal (from an energy point of view) subspace 
for the considered parameter.

Motivated by the discussion above, the main contribution of 
this paper is the proposal of a novel equation-free approach to 
obtain LPV low-order models, namely the Balanced Mode Decom-
position (BMD) algorithm. The key idea is to use, instead of an 
orthogonal projection associated with one subspace (as in standard 
DMD), an oblique projection, which is associated with two sub-
spaces, namely a basis space and a test space, characterizing the 
range space and null space of the projection, respectively. Oblique 
projection, often encountered in model reduction [27] and sys-
tem identification [28], was also used for model-based reduction 
of LPV models in [29]. As detailed in Section 3, the oblique pro-
jection proposed here can be interpreted, within the context of 
DMD-type approaches, as an alternative choice to the subspace 
spanned by the POD modes, and it is instrumental to achieve two 
favourable properties. The first is that emphasis can be put on the 
input-output behaviour of the ROM by defining the range and null 
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spaces of the projection as a function of the controllability and 
observability Gramians. These objects are well known in the con-
text of model order reduction of linear systems, as they are the 
main ingredients to perform balanced truncation [14]. This tech-
nique consists of transforming the system in balanced coordinates 
and then removing the states associated with the lowest degree 
of controllability and observability. In the same spirit, range and 
null spaces of the proposed oblique projection are defined so that 
the identified model is (approximately) in balanced coordinates, 
and thus projection onto lower-dimensional subspaces will pre-
serve the structures in the data matrices that are most observable 
and controllable. The second favourable property is that the LPV 
model has a consistent state-space basis [26] across the parameter 
space without having to sacrifice accuracy. This results from the 
fact that one subspace (the basis space) is common to all param-
eters and thus provides a common basis. At the same time, the 
other subspace (the test space) has no influence on the state’s ba-
sis, and thus can be chosen different for each parameter in order 
to alleviate the limitations of a fixed subspace projection.

The second contribution of the paper is to extensively compare 
the results of the BMD method with two recent extensions of DMD 
with control. The first algorithm is the algebraic DMDc (aDMDc) 
[30], which extended DMDc to parameter-varying systems de-
scribed by algebraic, in addition to differential, equations. Including 
algebraic constraints is very important, for example, when consid-
ering state trajectories generated by aerodynamic solvers capturing 
unsteady effects, such as in panel methods or unsteady vortex 
lattice methods [31]. The second algorithm is the input-output 
reduced-order model (IOROM) approach, proposed in [32] to con-
struct data-driven reduced-order LPV models. Improved ways of 
defining the low-dimensional subspace such that state-consistency 
is achieved while preserving accuracy in the (orthogonal) projec-
tion were proposed therein. However, the projection operator is 
the same for all parameters, and is obtained from the POD modes 
as in standard DMD. An extension of IOROM to handle algebraic 
constraints is also developed here in order to allow for a fair 
comparison. The algorithms are tested on a high-fidelity, fluid-
structure interaction (FSI) numerical model of an airborne wind 
energy (AWE) morphing wing. The FSI simulator is described in 
[33] and the wing was analyzed in detail in [34]. Airborne wind 
energy and morphing wings are paradigmatic examples of applica-
tion domains where the system’s response originates from complex 
interactions across different domains, and thus could benefit from 
equation-free approaches. The first type of comparison investigates 
the accuracy of the reduced-order models to predict various out-
puts of the wing as the size of the model is decreased. In a second 
set of analyses, models featuring different orders are used by a 
model predictive control (MPC) algorithm to track predefined tra-
jectories of the airborne wind energy system with the goal of gain-
ing insight into the trade-off between size and performance, the 
latter evaluated by simulating the FSI solver in closed-loop with 
the MPC controller. Preliminary results of the work were presented 
in [35].

Fig. 1 shows a conceptual representation of the proposed data-
driven ROM framework.

2. Data-driven reduced-order modeling

This section provides background material on the tools and con-
cepts relevant to the reduced-order modeling algorithm proposed 
in this work. In Section 2.1 the general data-driven low-order mod-
eling problem is presented. Section 2.2 reviews the algebraic DMD 
with Control (aDMDc) [30], and Section 2.3 reports on the input-
output reduced-order model (IOROM) [32]. These are the two ROM 
algorithms from the literature used for comparison in this paper.
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Fig. 1. Overview of the algorithm and its proposed application: I. illustrative aeroeservoelastic testcase [34]; II. typical fluid-structure interaction problem; III. system charac-
terized uniquely by its states, inputs, and outputs trajectories; IV. sketch of the newly proposed BMD algorithm and comparison with two other algorithms.
2.1. Problem statement and preliminaries

The starting point is a generic discrete-time nonlinear parameter-
varying model which can be used to describe typical control sys-
tems, such as aeroservoelastic systems modelled by FSI solvers

xk+1 = f (xk, uk,ρk),

yk = h(xk, uk,ρk),
(1)

where x ∈ Rnx , u ∈ Rnu , y ∈ Rny are the state, input and output, 
and ρ : Z → Rnρ is a vector of time-varying parameters defin-
ing the operating conditions of the system. The problem of finding 
an LPV low-order approximation of (1) can be divided into two 
phases: first, local LTI approximations for frozen values of ρ in a 
pre-defined grid {ρ j}ng

j=1 are computed; then, an LPV model is ob-
tained through interpolation. The following discussion is concerned 
with the former phase.

It is assumed that for each frozen value ρ̄ there exists an equi-
librium (or trim) point characterized by the tuple (x̄(ρ̄), ū(ρ̄), 
ȳ(ρ̄)) such that

x̄(ρ̄) = f (x̄(ρ̄), ū(ρ̄), ρ̄),

ȳ(ρ̄) = h(x̄(ρ̄), ū(ρ̄), ρ̄).

The deviation vectors x̃k := xk − x̄(ρ̄), ũk := uk − ū(ρ̄), and ỹk :=
yk − ȳ(ρ̄) can then be used as states of an LTI approximation of 
the system around the equilibrium:

x̃k+1 = A(ρ̄)x̃k + B(ρ̄)ũk, (2a)

ỹk = C(ρ̄)x̃k + D(ρ̄)ũk, (2b)

where (A(ρ̄), B(ρ̄), C(ρ̄), D(ρ̄)) is a state-space representation 
completely describing the linearization about the trim point as-
sociated with ρ̄ . The dependence of local (i.e. related to LTI ap-
proximations for frozen values of ρ) quantities on the parameter 
3

ρ will be dropped in the remainder. It is understood that they de-
pend on the particular value of the parameter considered. Instead, 
the subscript ρ will be used when discussing LPV models.

In the data-driven setting, the only information on the system 
comes from input, state, and output trajectories {xk, uk−1, yk−1}ns

k=1
of length ns . After having subtracted from them the corresponding 
trim values, these trajectories can be used to form the following 
snapshot matrices

X0 = [
x0 − x̄ x1 − x̄ ... xns−1 − x̄

] ∈Rnx×ns ,

X1 = [
x1 − x̄ x2 − x̄ ... xns − x̄

] ∈Rnx×ns ,

U0 = [
u0 − ū u1 − ū ... uns−1 − ū

] ∈Rnu×ns ,

U1 = [
u1 − ū u2 − ū ... uns − ū

] ∈Rnu×ns ,

Y0 = [
y0 − ȳ y1 − ȳ ... yns−1 − ȳ

] ∈Rny×ns .

(3)

The notation [X0; U0] will denote the operation of stacking row-
wise two matrices X0 and U0.

The first goal is to obtain a linear time-invariant low-order ap-
proximation of (2), that is

z̃k+1 = F z̃k + Gũk,

ỹk = H z̃k + Dũk,

where z̃ ∈ Rnz and nz � nx . Once this is available, the family of 
frozen LTI systems, or directly the signals of interest, are interpo-
lated so that the response of the system is available at each value 
ρk for a generic time-varying trajectory of the parameter.

2.2. Algebraic dynamic mode decomposition with control algorithm

The algebraic Dynamic Mode Decomposition with Control (aD-
MDc) algorithm was recently proposed in [30] to extend the DMDc 
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algorithm to systems described by algebraic-differential equations. 
The DMDc algorithm from [16] is first briefly reviewed. This algo-
rithm seeks a data-driven approximation of the matrices involved 
in the state equation (2) by means of two truncated singular value 
decompositions (SVD) of the snapshot matrices. The first one is

[X0; U0] = U�V � ∼= Ur�r V �
r , (4)

where the subscript r denotes a truncation of the SVD decompo-
sition of order r (obtained by keeping only the r largest singular 
values in the decomposition). Note that the value of r does not 
define the size of the final reduced-order model, and it could be 
set for example by using the hard threshold criterion suggested in 
[36]. The effect of choosing r on the accuracy of the model will be 
discussed in the result section. The second truncated SVD is com-
puted from the snapshot matrix X1

X1 = Û �̂V̂ � ∼= Ûnz �̂nz V̂ �
nz

, (5)

where the columns of Ûnz are also called POD modes of X1 and 
are used for the projection onto a lower dimensional space. The 
selection of nz defines the size of the reduced-order model. The 
thresholds used in (4) and (5) should be chosen such that r > nz

[16].
An approximation of the high-order matrices appearing in (2)

can be formulated in terms of the truncated SVD (4) and the snap-
shot matrix X1 as

[A B] = X1 V �
r �−1

r U�
r . (6)

Then, a low-order approximation is obtained by projecting (6) onto 
the set of POD modes by making use of (5)

[F G] =
[

Û�
nz

AÛnz Û�
nz

B
]
.

Therefore, the low-order model obtained by DMDc (which only in-
cludes the state equation) is

z̃k+1 = F z̃k + Gũk,

where z̃ ∈ Rnz is the state of the low-order model and the high-
order state can be recovered by x̃ = Ûnz z̃.

The aDMDc algorithm [30] builds on the DMDc approach and 
addresses the presence of algebraic constraints in the dynamic 
equations which might arise when considering unsteady aerody-
namics features. Specifically, the morphing wing analyzed in [30]
is described by an FSI solver that implements a 3D panel method 
with a free evolving wake inspired by the method in [31]. This 
leads to a dependence of the states’ evolution on the inputs at the 
next time step. Therefore, a slightly different starting point from 
the general one presented in (1) has to be considered, namely

g(xk+1, uk+1) = f (xk, uk,ρk),

yk = h(xk, uk,ρk),
(7)

where g is in general a nonlinear function taking into account the 
dependence of the states on the control inputs at the next time 
step. This dependence results from algebraic equations relating the 
doublet strengths (aerodynamics states) and downwash (function 
of the other states and the control inputs). This effect is sometimes 
accounted for with artificial aerodynamic states by simply chang-
ing the feedthrough matrix to the outputs. However, to correctly 
capture the evolution of the states it is important to formulate the 
problem as stated in (7). The reader is referred to [30] for further 
discussion on this aspect.

The proposed LTI representation of the system accounting for 
the algebraic constraints due to the unsteady aerodynamics is
4

x̃k+1 = Ax̃k + Bũk + Rũk+1,

where, as in DMDc, the objective is to find a low-order approxi-
mation for the state equation only.

The only difference with respect to DMDc is that now the first 
SVD decomposition is computed with respect to the snapshot ma-
trices X0, U0, and U1, that is

[X0; U0; U1] = U�V � ∼= Ur�r V �
r .

And the high-order matrices are thus approximated by

[A B R] = X1 V �
r �−1

r U�
r .

A low-order approximation is then obtained by projecting (6) onto 
the same set of POD modes used in DMDc (5)

[F G L] =
[

Û�
nz

AÛnz Û�
nz

B Û�
nz

R
]
.

This procedure results in the aDMDc low-order model

z̃k+1 = F x̃k + Gũk + Lũk+1, (8)

where the high-order state can again be obtained from x̃ = Ûnz z̃.
The approach proposed in the parametrically varying version of 

the aDMDc algorithm is to use a different set of POD modes for 
each value of ρ in the grid {ρ j}ng

j=1. The frozen LTI models (8) are 
then simulated simultaneously, the relative states are lifted to the 
high-order ones using the corresponding projection matrices (e.g. 
Ûnz (ρ

j) for the model corresponding to the jth element in the 
parameter space), and the state corresponding to the desired value 
of ρ is obtained by interpolating the high-dimensional states. A 
first consequence of this approach is that the frozen LTI models 
(8) do not have a consistent basis for the state, because the basis 
of the state is determined by the POD modes, which change across 
the parameter grid. While this has the advantage of projecting over 
POD modes specifically computed for a particular value of ρ , it also 
requires running in parallel all of the low-order models. Moreover, 
this algorithm does not provide an LPV model and thus the use of 
LPV robust control design strategies is precluded [21]. While other 
control techniques, such as model predictive control, can still be 
successfully used (see Section 4.4), the necessity to run in paral-
lel, multiple low-order models, is a drawback of the method when 
targeting real-time applications.

2.3. Input-output reduced-order model algorithm

The input-output reduced-order model (IOROM) algorithm was 
proposed in [32] to compute a family of state-consistent data-
driven low order LTI state-space models (including the output 
equation) which can be directly parameterized by the vector ρ .

Consider first the case when there is no parameter dependence 
(or equivalently, ρ is fixed). Drawing inspiration from the interpre-
tation of DMD as linear dynamics fitting [4], the main idea is that, 
given the snapshot matrices (3), the matrices (A, B , C , D) defining 
(2) can be obtained by solving the following least-squares problem

min
A,B,C,D

∥∥∥∥
[

X1
Y0

]
−

[
A B
C D

][
X0
U0

]∥∥∥∥
2

F
, (9)

where the subscript F denotes the Frobenius norm of a matrix. 
Without appropriate regularization, this problem would be ill-
posed for high-dimensional systems (nx � 1). Most importantly, 
even if (9) was solved accurately, it would not provide a low 
dimensional representation of the system. For these reasons, an 
orthogonal projection of the state onto a low dimensional sub-
space of dimension nz is performed by introducing the projection 
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matrix Q ∈ Rnx×nz , where Q � Q = Inz , such that the orthogonal 
projection of x̃ on an nz-dimensional subspace is given by Q Q � x̃. 
Equivalently, one can think that the original state is approximated 
by x̃ ∼= Q z̃ for some reduced-order state (or coefficient vector) 
z̃ ∈Rnz . This results in the following low-order state-space model

z̃k+1 = (Q � A Q )z̃k + (Q �B)ũk,

ỹk = (C Q )z̃k + Dũk.
(10)

The vector z̃ = Q � x̃ ∈ Rnz can thus be interpreted as the state of 
the low-rank approximation of (2)[

A B
C D

]
≈

[
Q F Q � Q G
H Q � D

]
=

[
Q 0
0 Iny

][
F G
H D

][
Q � 0
0 Inu

]
.

The projection matrix Q is constructed from the POD modes of 
X0, that is

Q = Unz ,

where X0 ∼= Unz �nz V �
nz

.
(11)

The least-squares problem giving (F , G , H , D) is then

min
F ,G,H,D

∥∥∥∥
[

X1
Y0

]
−

[
Q 0
0 Iny

][
F G
H D

][
Q � 0
0 Inu

][
X0
U0

]∥∥∥∥
2

F
,

(12)

whose solution is[
F G
H D

]
opt

=
[

Q � X1
Y0

][
Q � X0

U0

]†

, (13)

where † denotes the pseudo-inverse of a matrix. It is worth noting 
that the reduced-order model given by the IOROM algorithm is 
qualitatively similar to the one associated with DMDc. The main 
difference (besides the output equation, not considered in DMDc) 
is that the pseudo-inverse operation, which also amounts to an 
SVD decomposition and thus is conceptually similar to (4), is done 
here directly on the projected snapshot matrices. This is different 
than what is done in DMDc, where the SVD decomposition (4) is 
applied to X0 and U0. A minor difference is also that the POD 
modes are computed here with respect to X0 instead of X1.

In the parameter-varying case, the regression problem (13)
is solved at each value of the parameter grid {ρ j}ng

j=1 by tak-

ing the corresponding snapshot matrices {X0(ρ
j), X1(ρ

j), U0(ρ
j), 

Y0(ρ
j)}ng

j=1. By always using the same projection matrix Q when 
computing the low-order models at different ρ , state-consistency 
is automatically guaranteed because the orthogonal projection has 
the same range space. An LPV reduced-order model is then ob-
tained by interpolating (13) across the parameter’s range. That is

z̃k+1 = Fρk z̃k + Gρk ũk + (z̄(ρk) − z̄(ρk+1)),

ỹk = Hρk z̃k + Dρk ũk,

where (Fρk , Gρk , Hρk , Dρk ) are obtained by interpolating the cor-
responding matrices for the value of ρ at timestep k. Note that the 
low-order state is z̃k = zk − z̄(ρk), where the trim point z̄(ρk) =
Q � x̄(ρk) can change as a function of ρ . The term (z̄(ρk) − z̄(ρk+1))

is added to correctly take into account this effect [32].
Since the choice of a fixed projection matrix is typically asso-

ciated with less accuracy, two strategies are proposed in [32] to 
alleviate this issue. The first consists of using in the decomposition 
(11) a fat snapshot matrix X0 obtained by stacking column-wise 
the snapshot matrices of multiple parameters. This matrix will fea-
ture nsng columns, which can result in computationally expensive 
calculations when this number is large. The second, less accu-
rate but more practical in case several grid points are analyzed, 
5

consists of iteratively building Q by incrementally processing the 
snapshot data from each grid point in a similar fashion to the 
Gram-Schmidt orthogonalization procedure. The former strategy is 
used here when showing results for the IOROM algorithm, together 
with a linear interpolation of the state-space matrices.

3. Balanced mode decomposition with oblique projection 
algorithm

This section presents the technical aspects of the Balanced 
Mode Decomposition (BMD) algorithm proposed in this paper. Sec-
tion 3.1 clarifies the goals and the novelty of the contribution with 
respect to previous works. Section 3.2 presents the algorithm and 
Section 3.3 details the computation of the subspaces defining the 
oblique projection. Finally, Section 3.4 presents a version of the al-
gorithm which can handle algebraic constraints and thus allows 
the analyses in Section 4 of the morphing wing with an unsteady 
aerodynamics model.

3.1. Novelty and connections with prior work

The main motivation for the proposal of the BMD algorithm 
for data-driven LPV low-order modeling is to address two lim-
itations of recent extensions of the celebrated DMD method to 
input-output parameter-varying models. The first one concerns the 
use of Q (i.e. the subspace spanned by the most energetic POD 
modes according to the standard choice of inner product as un-
weighted scalar product) for the projection of the higher-order dy-
namics, which is suboptimal as also acknowledged by the authors 
of [32]. In the input-output context, a subspace typically providing 
lower input-output errors with respect to the others having same 
size nz is the one where the system’s state is in balanced coordi-
nates [37]. This is indeed the rationale behind balanced truncation, 
which consists of removing the states corresponding to the small-
est nx − nz Hankel singular values [38]. The justification for this is 
that the sum of the Hankel singular values provides a lower bound, 
and for systems in balanced coordinates, an upper bound on the 
error of the approximation achieved by removing system’s states. 
Even though not guaranteed to be optimal, balanced truncation is 
a very effective tool in model-based order reduction [14,39]. These 
ideas are used here to propose a new projection operator for the 
high-dimensional state.

Whereas the aspect mentioned above is relevant also for the 
case where the sought model is an LTI (i.e. when there is no pa-
rameter dependence), the second one is specific to the LPV setting. 
Precisely, the second limitation addressed by the BMD algorithm 
concerns how to handle state-consistency across the frozen models 
in order to estimate the system’s response at intermediate points 
in the parameter grid. In the currently available approaches, this is 
addressed in two possible ways. When state-consistency is not ful-
filled, all reduced-order models are run in parallel by interpolating 
directly the high-dimensional lifted state. This is the case of aD-
MDc, and while it has the advantage that the projection operators 
are parameter-dependent (i.e. at each parameter’s value one can 
use a different set of POD modes), an LPV model is not available 
and moreover computational efficiency might be compromised. On 
the other hand, a parameter-independent projection matrix for all 
frozen models can be used in order to guarantee state-consistency. 
This is the case for the IOROM algorithm, and it has the drawback 
that, whereas the orthonormal basis associated with the nz most 
energetic modes will be in general different at each value of ρ , a 
fixed one that is common to all parameters is used.

The central idea to overcome both of the aforementioned issues 
is to replace the orthogonal projection employed in standard POD-
based approaches by an oblique projection. Given V ∈ Rnx×nz and 
W ∈ Rnx×nz , such that W is bi-orthogonal to V , i.e. W �V = Inz , 
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the oblique projection of x̃ is given by �x̃, where � = V W � . As 
a result, the original state is approximated as x̃ ∼= V z̃ (where, as 
before, z̃ ∈ Rnz is the reduced-order state), and the component 
of x̃ that is eliminated by the projection is in the nullspace of 
�. As opposed to the orthogonal projection, which is character-
ized by a single subspace (the one spanned by the columns of 
Q ), the oblique projection is defined by two subspaces: the ba-
sis space (spanned by the columns of V ), such that the projection 
of x̃ lies in the span of V ; and the test space (spanned by the 
columns of W ), such that the projection V z̃ has zero error within 
it, i.e. W � (

x̃ − V z̃
) = 0. Technically, the high-dimensional state 

vector is projected along the orthogonal complement of the sub-
space spanned by the columns of W onto a subspace spanned 
by the columns of V . In practice, this means that what is lost by 
projecting x̃ (i.e. the nullspace of the projection) is orthogonal to 
W , and the state basis only depends on V . The two issues dis-
cussed above are then addressed by: computing V and W from 
the empirical controllability and observability Gramians of the sys-
tem (which leads to a model-free balanced truncation); employing 
a fixed V and a parameter-dependent W . Since V by definition de-
fines the basis of the vector space where the state of each model 
is defined, this basis will be common to all the local state-space 
models, and thus state-consistency is guaranteed.

The idea of using an oblique projection for LPV model-order re-
duction was first proposed in [29]. Therein, the setting where a 
model of the system is available (in the form of high-order state-
space models) is considered, and thus both the construction of V
and W , and the computation of the low-order model, is model-
based. In the data-driven ROM literature, balancing concepts are 
used in two important techniques, namely Balanced POD (BPOD) 
[40] and the Eigensystem Realization Algorithm (ERA) [41]. The 
former is only partially equation-free: the controllability Gramian 
is computed from data, while for the observability Gramian an 
adjoint simulation model is needed. Additionally, the high-order 
state-space matrices are required for the balanced projection. For 
the case of ERA, a balanced model comes from impulse response 
simulations of the model in the spirit of system identification al-
gorithms from realization theory [42]. The ERA algorithm is closely 
related to BPOD, as it can be interpreted as a data-driven bal-
anced truncation. An important difference is that ERA provides 
only the reduced-order model and not the balancing transforma-
tion, namely the set of vectors known as balancing and adjoint 
modes in BPOD. These modes are the counterpart of the basis and 
test space in BMD, respectively, and are a desirable output of a 
ROM algorithm as they show the most important spatio-temporal 
structures in the dynamics. In an aeroservoelastic setting, this can 
provide insights into efficient design solutions. It is recalled that 
BPOD can be interpreted as a special case of POD when impulse 
responses are used to build the snaphost matrices and the ob-
servability Gramian is used as inner product [40]. Conceptually 
(because in practice the algorithm formulation is articulated in a 
different way), it can be helpful to think of BMD as a version of 
DMD that makes use of this special case of POD.

3.2. BMD regression problem

We consider first the frozen-parameter case and, by virtue of 
the previously discussed oblique projection, propose the following 
low-order LTI system model

z̃k+1 = (W � AV )z̃k + (W �B)ũk,

ỹk = (C V )z̃k + Dũk,
(14)

where the computation of the balancing basis V and test spaces 
W from system’s trajectories will be detailed in Section 3.3. The 
vector z̃ = W � x̃ ∈Rnz can thus be interpreted as the state associ-
ated with the following low-rank approximation of (2)
6

[
A B
C D

]
≈

[
V F W � V G
H W � D

]
=

[
V 0
0 Iny

][
F G
H D

][
W � 0

0 Inu

]
.

(15)

The matrices (F , G , H , D) can then be obtained with the following 
least-squares problem

min
F ,G,H,D

∥∥∥∥
[

X1
Y0

]
−

[
V 0
0 Iny

][
F G
H D

][
W � 0

0 Inu

][
X0
U0

]∥∥∥∥
2

F
,

(16)

which has solution[
F G
H D

]
opt

=
[

W � X1
Y0

][
W � X0

U0

]†

. (17)

To build a low-order LPV model, snapshot matrices are first col-
lected for the values of the parameter in the grid {ρ j}ng

j=1, and the 
least-squares problem (16) is solved at each grid point. Crucially, 
the test space W is allowed to be a function of ρ . This leads to 
the following solution for the reduced-order models in the grid

[
F (ρ j) G(ρ j)

H(ρ j) D(ρ j)

]
opt

=
[

W �(ρ j)X1(ρ
j)

Y0(ρ
j)

][
W �(ρ j)X0(ρ

j)

U0(ρ
j)

]†

,

(18)

where the dependence on ρ of the local quantities has been here 
explicitly reported in order to clearly point out that all the objects 
involved in the construction of the low-order state-space models 
are parameter-varying.

The BMD LPV reduced-order model is then obtained by inter-
polating the frozen matrices (18) across the parameter’s range

z̃k+1 = Fρk z̃k + Gρk ũk + (z̄(ρk) − z̄(ρk+1)),

ỹk = Hρk z̃k + Dρk ũk,
(19)

where, as in IOROM, (Fρk , Gρk , Hρk , Dρk ) are obtained by interpo-
lating the corresponding matrices for the value of ρ at timestep k, 
and the term (z̄(ρk) − z̄(ρk+1)) takes into account the fact that the 
equilibrium point associated with each ρ is in general different, 
and z̄(ρk) = W � x̄(ρk). Note that, since V is fixed, the basis space 
is common to all the frozen models and thus the interpolation can 
be done at the state-matrices level (as in IOROM). However, the 
projection is parameter-dependent due to the use of a parameter-
varying test space W (ρ).

3.3. Basis and test spaces construction

In order to preserve the most important features of the input-
output mapping of the system when projecting into the lower 
order subspace of dimension nz , the matrices V and W are com-
puted from the controllability and observability Gramians, respec-
tively Wc and Wo . This ensures that the projection preserves the 
most observable and controllable states, enabling an approximate 
data-driven balanced truncation of the reduced-order LPV model.

Because the approach is fully data-driven, empirical Gramians 
are computed from data matrices consisting of appropriate state 
trajectories using known systems theoretical results. The empirical 
controllability Gramian can be obtained, following the definition 
[37,43], by impulse response simulations (one for each input chan-
nel). As for the empirical observability Gramian, if the model is 
linear and its adjoint is available, then it can be computed from 
impulse response simulations (one for each output channel) of the 
adjoint system, as done in balanced POD [40]. This computation is 
identical to the one giving the controllability Gramian, but is ap-
plied to the adjoint system (for an LTI model in state-space form, 
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Algorithm 1 Balanced Mode Decomposition with oblique projection.

Input: parameter grid points {ρ j}ng

j=1; snapshot matrices {X0(ρ j), X1(ρ j), U0(ρ j), Y0(ρ j)}ng

j=1; empirical Gramians {Wc(ρ
j), Wo(ρ

j)}ng

j=1; desired model order nz .

Output: test space projection matrices {W (ρ j)}ng

j=1; fixed basis space projection matrix V ; reduced-order models at the grid points {F (ρ j), G(ρ j), H(ρ j), D(ρ j)}ng

j=1.

1: for j = 1, ..., ng do
2: Lc(ρ

j)Lc(ρ
j)� = Wc(ρ

j) Cholesky factorization of Wc

3: Lo(ρ
j)Lo(ρ

j)� = Wo(ρ
j) Cholesky factorization of Wo

4: H(ρ j) = Lc(ρ
j)�Lo(ρ

j)

5: (U , �, �) = svd(H(ρ j))

6: Ũ = U (:, 1 : nz)

7: (Ū , �, �) = svd(Lc(ρ
j)Ũ )

8: Q̄ (:, 1 + nz( j − 1) : nz j) = Ū (:, 1 : nz)

9: end for
10: (U V , �, �) = svd(Q̄ )

11: V = U V (:, 1 : nz) Fixed basis space
12: for j = 1, ..., ng do
13: (Q̃ , ̃R) = qr(Lo(ρ

j)� V ) Thin QR factorization
14: Q = Q̃ (:, 1 : nz)

15: R = R̃(1 : nz, :)
16: W (ρ j) = Lo(ρ

j)Q (R�)−1 Parameter-varying test space
17:

[
F (ρ j) G(ρ j)

H(ρ j) D(ρ j)

]
=

[
W �(ρ j)X1(ρ j)

Y0(ρ j)

][
W �(ρ j)X0(ρ j)

U0(ρ j)

]†

solution of the BMD regression problem

18: end for
this is obtained by replacing A and B by A� and C�). If the above 
does not hold, for example in case one has only access to the sys-
tem’s trajectories and not to the model’s matrices, the approach 
developed in [44], valid also for nonlinear systems and not re-
quiring an adjoint model, can be used. In this method the data 
matrices used for the Gramian computation consist of state tra-
jectories obtained from unforced (zero input) simulations (one for 
each state) obtained by perturbing the initial condition of each 
state. Since these are unforced responses, when the system is suf-
ficiently damped, it will be generally sufficient to observe only the 
initial time-steps and thus this calculation can be parallelized and 
efficiently implemented to reduce the computational time.

Once Wc and Wo are available, a procedure based on [29, 
Proposition 2] is employed to compute the test and basis spaces. 
This construction is reported in the first part of the pseudocode 
given in Algorithm 1, which summarizes input, output, and main 
steps of the BMD algorithm (MATLAB notation is used for matrix 
operations and rows/columns selection). For a fixed value of ρ , 
the construction proposed in [29] is an equivalent procedure, but 
more numerically stable for large-scale systems, to the well known 
square root algorithm for balanced truncation [43]. Indeed, it can 
be noted (see lines 5-11) that the subspace V is taken as a basis 
for span(Lc Ũ ), where Lc (Lo) is a Cholesky factor of Wc (Wo) and 
Ũ consists of the first nz left singular vectors of H = L�

c Lo . The sin-
gular values of H are the Hankel singular values of the system and 
the SVD decomposition of H plays a fundamental role in balanced 
reduction [37,43]. As for the subspace W , it can be shown that 
the expression in line 16 is equivalent to W = Wo V (V �Wo V )−1, 
but it is computed with improved numerical robustness [45] by 
making use of a thin QR factorization (line 13). These choices of 
V and W are shown [29, Proposition 2] to provide the same bal-
ancing projection operator used in the square root algorithm. The 
desired order nz is indicated as an input of Algorithm 1, because 
one might want to obtain a low-order model with a specified size. 
This is also the approach used in the analyses presented in Sec-
tion 4. Alternatively, nz can be indirectly defined as in aDMDc and 
IOROM by setting a threshold on the singular values of a data ma-
trix. Whereas in those two methods this is done with respect to 
singular values of the snapshot matrix of the state (X1 in Eq. (5)
and X0 in Eq. (11)), in the BMD algorithm the matrix H should 
be considered. That is, a threshold on the Hankel singular values 
of the system can be selected, as in standard balanced reduction. 
This threshold can be conveniently expressed as percentage of the 
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largest Hankel singular value. Note that for each parameter in the 
grid there is a different matrix H (line 4), and thus, given a thresh-
old, the number of truncated singular values might differ at each 
grid point. Because obviously a common value of nz for all the lo-
cal models should be selected, a remedy for this is e.g. to choose 
as nz the maximum number of truncated singular values across 
the grid.

The output {F (ρ j), G(ρ j), H(ρ j), D(ρ j)}ng

j=1 provided by the 
BMD algorithm is a grid LPV model. After an interpolation algo-
rithm to evaluate the matrices’ entries for any value of ρ inside the 
considered range has been chosen, this model can be used for sim-
ulation and control design. Note also that recently proposed robust 
analysis methods for linear-time varying (LTV) systems [46,47] can 
be applied to this model, e.g. to investigate specific aircraft ma-
noeuvres. Indeed, by fixing a particular trajectory for ρ the LPV 
system is transformed into an LTV one. Moreover, the parameter-
varying test space W (ρ j) can be useful to gain insights into the 
aeroservoelastic modes which have been eliminated and those that 
have been kept in the projection, while the parameter-independent 
basis space can be used to recover at each time-step k the high-
dimensional state via the transformation x̃k = V z̃k .

As noted in the introduction, the algorithm provides an ap-
proximate balanced truncation. Approximation is related to the 
use of empirical Gramians, which are only finite-time approxi-
mations of the true ones (for this reason, also called finite-time 
Gramians) since their computation is trajectory-based. As a result, 
they only provide in principle a finite-time balanced realization 
[14], whereas the theoretical order reduction error bounds are only 
available for infinite-time balanced realizations. This source of er-
ror can however be made arbitrarily small by using long enough 
data sequences for constructing the Gramians. The slowest decay 
rate of the system’s impulse responses is the key parameter to con-
sider when choosing the length of the trajectory [48].

3.4. Extension to handle algebraic constraints

Since the BMD algorithm will be applied in Section 4 to a 
wing described by an FSI solver which implements the algebraic 
constraints described in Section 2.2, an extension to handle this 
instance is presented here. For a fixed value of ρ , the model struc-
ture for the high-order model becomes

x̃k+1 = Ax̃k + Bũk + Rũk+1,

ỹ = C x̃ + Dũ + P ũ ,
k k k k+1
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where a potential effect of the algebraic constraints in the output 
equation is also considered via the matrix P (in the analyses of the 
morphing wing this matrix was, as expected, always found to be 
zero). Therefore, the low-order approximation (for each value of ρ
in the parameter grid) becomes[

A B R
C D P

]
≈

[
V F W � V G V L
H W � D P

]

=
[

V 0
0 Iny

][
F G L
H D P

]⎡
⎣ W � 0 0

0 Inu 0
0 0 Iny

⎤
⎦ .

The new objective function to be minimized is

min
F ,G,L,H,D,P

∥∥∥∥∥∥
[

X1
Y0

]

−
[

W 0
0 Iny

][
F G L
H D P

]⎡
⎣ W � 0 0

0 Inu 0
0 0 Iny

⎤
⎦

⎡
⎣ X0

U0
U1

⎤
⎦

∥∥∥∥∥∥
2

F

,

and the new optimal solution is

[
F G L
H D P

]
=

[
W � X1

Y0

]⎡
⎣ W � X0

U0
U1

⎤
⎦

†

.

The BMD LPV reduced-order model with algebraic constraints is 
then, in analogy to (19), given by

z̃k+1 = Fρk z̃k + Gρk ũk + Lρk ũk+1 + (z̄(ρk) − z̄(ρk+1)),

ỹk = Hρk z̃k + Dρk ũk + Pρk ũk+1.
(20)

The IOROM algorithm has also been extended to the algebraic-
differential case in order to allow its application to the test case 
considered in Section 4. This can be done in a similar way to what 
has been shown above for BMD. Specifically, starting from (12), the 
new least-squares problem for the IOROM reduced-order model is

min
F ,G,L,H,D,P

∥∥∥∥∥∥
[

X1
Y0

]

−
[

Q 0
0 Iny

][
F G L
H D P

]⎡
⎣ Q � 0 0

0 Inu 0
0 0 Iny

⎤
⎦

⎡
⎣ X0

U0
U1

⎤
⎦

∥∥∥∥∥∥
2

F

,

which has the following solution

[
F G L
H D P

]
=

[
Q � X1

Y0

]⎡
⎣ Q � X0

U0
U1

⎤
⎦

†

. (21)

Eq. (20), when the interpolated matrices are taken from (21), pro-
vides the IOROM LPV reduced-order model with algebraic con-
straints.

4. Results

This section presents and discusses results obtained by apply-
ing the three algorithms aDMDc, IOROM, and BMD to the flexible 
and highly cambered morphing wing depicted in Fig. 1. The wing 
is made of composite material, and the trailing edges are able to 
morph and, by doing so, to increase or decrease the camber, thus 
replacing conventional ailerons. The reader is referred to the re-
lated previous works for details on the wing design [49] and its 
investigation with fluid-structure interaction tools [34].
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1. Summary of the wing’s FSI model

The high-fidelity FSI model of the morphing wing is presented 
 detail in [33,50]. The structural model is based on a combination 
 linear plate and beam elements. The external skin of the lifting 
rface and the Voronoi-based internal structure are modelled us-
g plates, while the stringers are modelled with beam elements. 
e stiffness and mass matrices are obtained with the commer-

al software Nastran [51]. From these, a modal decomposition is 
rformed to extract the structural modes of the wing, which are 
upled via thin plate spline and inverse distance weighting [52]
ith the aerodynamic model. The aerodynamic model is based on 
3D unsteady panel method [53]. The unsteadiness of the flow 
 represented by shedding at each time step a new row of vor-
x ring singularities after the trailing edge. All the other wake 
des are then moved, via a second-order Runge–Kutta integra-

on scheme, using the local velocity of the flow. The aerodynamic 
rces on the surface are computed with the coefficient of pressure 
 each panel, considering the far field velocity, the induced ve-

city by the wing itself, and the induced velocity by all the wake 
nels.
The state of the system x consists of the total number of struc-

ral modes of the wing and the doublet strengths (from the 3D 
nel method solver), with nx=618. The input vector u of size nu=6 

 given by

= [α; p; q; r; Fs; Fas] , (22)

here α is the angle of attack, p, q, and r are the roll, pitch, and 
w rotation rates, and Fs and Fas are the (normalized) symmet-

c and anti-symmetric morphing actuation inputs. Their value is 
sociated with a camber deformation and is thus related to a 
ailing edge deflection: specifically, the amount of upwards (neg-
ive value) or downwards (positive value) deflection.

As for the output channels, we will consider both single output 
d multiple output models. Emphasis will be given to the case 

here the output is the first bending mode of the wing (ny =1), 
nce this is usually the one associated with dynamic instabilities 
d large deformations, and thus it is of particular interest for ac-

ve control tasks [54,55]. The flight speed will be considered as 
e time-varying parameter (nρ=1).

The training phase, common to both the algorithms and con-
sting of generating the snapshot matrices in Eq. (3), is carried 
t by exciting the system with a series of impulses deployed in 

ndom order in all input channels, following the same procedure 
opted in [30]. The amplitude of these signals has been chosen so 
at nonlinear effects due to the wake’s evolution are not excited. 
e same precaution is used for the computation of the empirical 
amians. Trajectories are of length ns=500 and are recorded with 
mpling time 0.006 s.

2. Fixed-parameter models

In this first set of tests, the accuracy of the different mod-
s at fixed values of the flight speed V is assessed by means 
 sinusoidal inputs. The frequencies, different for each channel, 
e expressed in terms of the aircraft reduced frequency fr =: V

c̄ , 
here c̄=0.29 m is the mean chord of the wing. The first, third, and 
fth input channels are excited with sinusoids 1

5π fr , 1
10π fr , and 

1
π fr , respectively, while the other channels are set to zero. For 
ference, the first bending mode of the wing has a frequency of 
proximately 10 Hz [33]. This test is performed for 3 flight speeds 
 the range of operating conditions of interest, namely V =30 m/s, 
=40 m/s, and V =50 m/s. To quantify the accuracy as a function of 
e order of the model nz , the Euclidean norm of the error signal 
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Fig. 2. Relative error on the prediction of the system’s output (bending mode) for three different values of the flight speed as a function of the model order.
between the first bending mode amplitude provided by the high-
fidelity FSI and each of the predictions obtained with the three 
ROM algorithm is computed. The results in terms of relative error 
(with respect to the predicated signal norm) are shown in Fig. 2.

It is clear that for all speeds BMD provides the smallest error 
for a very low-order approximation of the full dynamics, as ex-
pected in view of the choice of low-dimensional subspace where 
the high-dimensional data are projected. As the size nz of the 
system increases, the difference between the algorithms is less no-
ticeable and, for high enough orders, the algorithms tend to give 
same results.

It is also noted that the results obtained with the aDMDc al-
gorithm showed great sensitivity, in the range of nz displayed in 
Fig. 2, to the SVD truncation order r employed in Eq. (4). Using the 
hard threshold criterion from [36] did not provide good results as 
it resulted in a very large r (therefore the truncation included very 
low singular values deteriorating the approximation). Since fine-
tuning the value of r to optimize the results obtained with aDMCc 
would have required trying several values of r for each different 
value of nz , this was not pursued here. Instead, the heuristic choice 
r=nz+10 was implemented and proved to provide reasonable re-
sults. Even though, because of this possibly suboptimal choice, the 
resulting gap in performance with the other two methods observed 
in Fig. 2 can be also ascribed to numerical inaccuracies associated 
with the decomposition (4), the need to optimally choose r can be 
considered as a disadvantage of the aDMDc problem formulation. 
It is finally observed that, in the extensive analyses performed, 
aDMCc typically showed worse performance than BMD irrespec-
tive of the choice of r.

4.3. Parameter-varying models

In the second set of tests, the accuracy during parameter-
varying manoeuvres is tested. A manoeuvre of 3 s where the flight 
speed linearly increases from V =20 m/s to V =50 m/s is analyzed. 
Unless otherwise specified, the reduced-order models are obtained 
using snapshot matrices obtained gridding the flight speed range 
every 2 m/s and thus using 16 different speeds (ng =16). A linear 
interpolation will be used to evaluate quantities for values of ρ
that are not in the grid.
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4.3.1. Sinusoidal excitation
The same sinusoidal input signals used in Section 4.2 are con-

sidered here. In Fig. 3, the bending mode amplitude response ob-
tained with the FSI solver (FSI) is compared with the predictions 
of the three algorithms when the order of the models is fixed at 
nz=14. The goal is to compare the prediction accuracy of the algo-
rithms when a very low number of states (in comparison with the 
order of the original system) is employed. It is noted that the same 
observations can be gathered when values of nz in the same range 
are considered. All the signals are normalized by the largest value 
of the bending amplitude measured in the FSI simulation, which 
for the analyzed case was 0.7. Note that a unitary value of the first 
bending mode corresponds to a wingtip displacement of 4.6 cm. 
In this case, since only one value of nz was considered, the aDMDc 
model was here obtained by fine tuning the threshold value r in 
order to provide the best results.

The plot confirms, also in the LPV setting, that the BMD algo-
rithm guarantees the smallest error when a low-rank approxima-
tion of the system is desired. In this simulation, aDMDc outper-
forms IOROM, possibly due to the fact that it uses a parameter-
varying set of POD modes. However, aDMDc does not provide a 
family of interpolated low-order models, and interpolates directly 
the high-order states, thus requiring parallel simulations of the 
low-order models. The better performance of BMD, despite the fact 
that a part of the projection (the one related to the basis space) 
is constant, is ascribed to the improved selection of subspace for 
the projection compared to the standard POD one, common to the 
other two methods. In addition to the improvement in the ac-
curacy, the BMD algorithm is also capable of providing, like the 
IOROM algorithm, a family of consistent LTI models with the ad-
vantages for LPV control design and in general real-time applica-
tions.

4.3.2. Effect of the input signals
This section investigates the accuracy of the reduced-order 

models for different types of input signals. The Euclidean norm of 
the error signal between the first bending mode amplitude pro-
vided by the high-fidelity FSI and the prediction obtained with 
each of the three ROM algorithms is again used as metric to as-
sess the quality of the approximation. Three classes of inputs are 
considered: Sine coincides with the signal tested so far and already 
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Fig. 3. Comparison of the normalized output (bending mode) for parameter-varying simulations (flight speed linearly increasing from 20 m/s to 50 m/s) of models with size 
14.

Fig. 4. Relative error of the prediction of the system’s output (bending mode) for speed-varying manoeuvres with three different types of input signals as a function of the 
model order.
investigated in [30]; Chirp excites the system by injecting in all 6 
input channels defined in (22) a chirp signal with frequency lin-
early varying from 1

50π fr to 2
15π fr ; PRBS excites the system by 

injecting in all 6 input channels a PRBS-9 sequence. This last input, 
namely a Pseudo-Random Binary Signal (PRBS) [56], is a determin-
istic signal with white-noise-like properties. It is very well known 
in the system identification and experiment design fields since it 
has the favourable property of equally distributing energy across 
all the frequencies in the input spectrum. In this way, informa-
tion on the models in different frequency ranges can be extracted. 
Although not a common input in aeroservoelastic applications, it 
has been used in this spirit here, since the previously adopted sets 
of input will only give information on the behaviour of the re-
duced models around the aircraft reduced frequency fr . Results 
are shown in Fig. 4.

The plots confirm the advantage in using the BMD approach 
when seeking a low-order model capturing parameter variations. 
10
These results are important considering that they are obtained by 
exploring different frequency ranges of the system’s response.

An interesting aspect observed in Fig. 4 is that none of the algo-
rithms exhibit a monotonic improvement of the model’s accuracy 
(measured here by the relative prediction’s error) as a function 
of the system’s order. Indeed, in a very few cases, a small dete-
rioration can be observed between two consecutive values of nz , 
before the curve keeps decreasing as nz increases. Even though 
this might seem surprising at first glance, there is no theoreti-
cal guarantee that such a monotonic improvement is achieved in 
this type of algorithms. The reason is that adding one mode to the 
low dimensional subspace where the dynamics is described might 
(in principle) deteriorate the model’s approximation, if that mode 
alone does not add meaningful information. This is for example 
the case when pairs of modes describe relevant features of the sys-
tem (e.g. modes of vibration), and so only when both of them are 
used in the projection there is an improvement. In practice, nu-
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Fig. 5. Relative error on the prediction of the system’s output (bending mode) for speed-varying manoeuvres with values of ng as a function of the model order.
merical errors due to the SVD truncation and the interpolation of 
the models across the parameter’s grid can also have an effect on 
these results. However, it is noted that the number of occurrences 
and the entity of this deterioration are limited.

4.3.3. Effect of the parameter grid
In this section we analyze the effect of the flight speed grid 

where the reduced-order LTI models are computed, i.e. the selec-
tion of the parameter ng . This is an important aspect, which is 
known to influence both the accuracy of the LPV models and the 
quality of the control design based on them. Three cases are com-
pared in Fig. 5: ng =4 where the grid includes one plant every 10 
m/s; ng =8 where the grid includes one plant every 4 m/s from 
V =20 m/s to V =48 m/s and then V =50 m/s; ng =16 which is the 
grid used so far. PRBS inputs are used to excite the system in these 
tests.

From the analyses it can be gathered that aDMDc is more ro-
bust than the other algorithms to the value of ng . In particular, 
both IOROM and BMD present poor performance for a few reduced 
order models in the range of nz between 30 and 40 when the 
flight speed grid is coarser. The reason for this behaviour is due to 
the interpolation approaches employed by the three ROM schemes. 
Whereas IOROM and BMD interpolate the low-order state-space 
matrices obtained at the grid points, aDMDc interpolates directly 
the high-order vector states which are obtained by lifting the low-
order states z̃ from the local models (8) running in parallel. Inter-
polating every entry of the state-space matrices therefore makes 
the choice of the grid a more delicate aspect in IOROM and BMD. 
The unstable behaviours resulting in very high (out of the plot) 
errors are indeed ascribed to numerical inaccuracies in this inter-
polation. It has been observed that the entries of the matrices are 
overall bigger as the order nz is increased, hence justifying why 
these outliers take place within the aforementioned range of mod-
el’s orders. While there does not seem to be a fundamental reason 
to explain it, it is apparent that the sensitivity of BMD to the 
coarseness of the parameter grid is more accentuated. A possible 
explanation is that, because at each grid point the computation of 
the empirical Gramians is required, dealing with coarse grid exac-
erbates the numerical inaccuracies associated with the projections 
on low-order models. Improved interpolation schemes, not con-
sidered in this work, could be employed to ameliorate this issue. 
Except for these isolated numerical problems, BMD shows better 
performance even when very coarse grids are employed.
11
4.3.4. Prediction capability for other signals
The capability of the models to predict other quantities of in-

terest, such as for example aerodynamic coefficients depending on 
the system’s states, is investigated. In particular, we test the accu-
racy when these coefficients are added to the vector of output (this 
is done for BMD) or computed directly from the states (this is done 
for IOROM and aDMDc). In the latter case, the low-order states 
are lifted to the high-order ones, which are then used to compute 
the coefficients using their known relationship to the states. While 
this is the only possible way of reconstructing the system’s sig-
nals for aDMDc, in IOROM and BMD this can alternatively be done 
by simply adding the desired quantities to the vector of outputs. 
This would probably be the preferred approach if the signals are 
used for control (either because they represent measurements fed 
to the controller or because they are performance measures to be 
optimized). The different choice done here for BMD and IOROM is 
for the sake of exploring different models, and results showed that 
whether the signals were computed from output channels or re-
trieved from the states had a very minor impact on the predictive 
accuracy.

Fig. 6 shows the normalized lift (CL ), pitch (CM ), and drag (C D ) 
coefficients for the same constant acceleration manoeuvre con-
sidered in the previous sections and with a sinusoidal excitation. 
Normalization is performed, as done earlier in Fig. 3, by dividing 
each signal by the largest value of the corresponding signal in the 
FSI simulation.

The same observations gathered earlier with respect to the tra-
jectory of the bending mode are confirmed here. It is particularly 
interesting to observe that, even though these coefficients are not 
outputs of the model, and thus the balancing projection is not 
aimed directly at capturing them, the BMD algorithm is still able 
to perform better than the others. Fig. 7 shows the same analyses 
when chirp signals are used as input to excite the model. Similar 
conclusions can be drawn.

4.4. Reduced-order models for model predictive control

In this section, a control application of the morphing wing’s 
low-order models is investigated. Specifically, model predictive 
control (MPC) [57] is considered, given its well established use 
in the AWE field [58]. Two distinct reference tracking problems 
are examined, where pre-defined lift and first bending mode am-
plitude profiles are tracked while flying trajectories over a range 
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Fig. 6. Comparison of the normalized lift, pitch, and drag coefficients for a parameter-varying simulation with nz =14 and sinusoidal inputs.

Fig. 7. Comparison of the normalized lift, pitch, and drag coefficients for a parameter-varying simulation with nz =14 and chirp inputs.
of different flight speeds and in the presence of turbulence and 
gusts. The analysis of these manoeuvres is motivated by the inter-
est in using active control to guarantee a safe operation for the 
AWE system (with respect to some of its critical components such 
as the wing or tether) by keeping indicators of the structural in-
tegrity close to desired, and possibly pre-optimized, values. This 
can avoid passive remedies such as reducing the load transmit-
ted to the ground station, which in turn decreases the amount of 
wind energy harvested. Having effective and reliable control laws 
to guarantee the integrity of the AWE system can represent an im-
portant enabler for this technology [59].

In its basic form, model predictive control repeatedly solves a 
finite-horizon optimal control problem of length Nc subject to in-
put and state-constraints. At each instant, a model of the system 
is employed to predict its response and thus select the control se-
quence (ui)

Nc−1
i=0 which minimizes the cost

JMPC =
Nc−1∑ (∥∥ ỹk − rk

∥∥2
N + ∥∥ũk

∥∥2
M + ∥∥�ũk

∥∥2
M�

)
, (23)
k=0

12
where r is the reference trajectory, and for a vector x, we de-
note by ‖x‖P the weighted l2-norm (xT P x)

1
2 . Besides the terms 

penalizing deviation of the output ỹ from r (with the weighting 
matrix N ∈ Rny×ny ) and control effort (with the weighting matrix 
M ∈ Rnu×nu ), the cost in (23) also penalizes fast changes in the 
input via the term �ũk = ũk − ũk−1 (e.g. to avoid actuator rate sat-
uration).

The following optimization problem will be solved to obtain the 
optimal input sequence

minimize
(ui)

Nc−1
i=0 ,(yi)

Nc−1
i=0

JMPC(ũ, ỹ), (24a)

subject to ỹi = f (ũi, ũi+1), (24b)

(ũi)
N−1
i=0 ∈ U, (24c)

where: the cost function (24a) is defined in (23); the constraint 
set U (24c) enforces minimum and maximum values for the in-
put; and (24b) enforces the dynamic constraint that relates the 
sequence of input to the output via an input-output model of 
the system f . Precisely, f will be formulated here by using the 
reduced-order aDMDc, IOROM, and BMD models. The goal of the 
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Fig. 8. Speeds variations during the manoeuvres (left plot) and reference tracking profiles (right plot).
analyses is to compare the associated closed-loop cost J CL
MPC, that 

is the cost (23) incurred by the true system (simulated here by the 
high-dimensional FSI solver) when this is regulated by the inputs 
optimized solving problem (24). Since the model is used to predict 
the system’s output, and thus select the input sequence, any mis-
match between model and system can result in a degradation of 
the controller performance.

The analysis considers the case where the morphing wing 
(Fig. 1, I) flies a trajectory with flight velocities ranging between 
V =27 m/s and V =50 m/s (Fig. 8-left). Additionally, the wing is sub-
ject to a gust at the maximum flight speed with gust length 0.5 s 
corresponding to a 1 degree deflection of the angle of attack α, 
and to turbulence generated with a Dryden filter (Fig. 8-left). The 
right plot in Fig. 8 depicts the lift and the first bending mode’s 
amplitude profiles tracked by the MPC algorithm. Recall from the 
previous discussion that a unitary value of the first bending mode 
corresponds to a wingtip displacement of 4.6 cm.

The scenario considered here has only a symmetric morphing 
actuation input, i.e. ũ = Fs . This normalized input is constrained to 
be in the interval [-3, 3] at each time-step. This is associated with 
allowable deflections of the trailing edge in the range ± 9 mm. 
Problem (24) is solved using the MATLAB implementation provided 
in [60], where the application of MPC with models obtained via 
DMDc was investigated.

The output ỹ is either the first bending mode, or the lift force 
generated by the wing, depending on the case. The control horizon 
is Nc=10 and the weights used in the cost are: N=1300, M=10, and 
M�=0.1 (lift tracking) and N=13000, M=10, and M�=0.1 (bending 
tracking). The penalty on the output deviation is increased in the 
latter case due to the difference in magnitude of the two tracked 
quantities (recall Fig. 8-right). Fig. 9 shows the comparison of the 
closed-loop cost J CL

MPC resulting from closing the true plant (simu-
lated by means of the high-dimensional FSI solver) with the MPC 
controller generated using the low-order models. For the sake of 
clarity, the closed-loop cost J CL

MPC has been normalized in each case 
by dividing it by the corresponding value obtained with the BMD 
algorithm when nz=40.

The observations gathered in the previous sections regarding 
the better prediction performance achieved with the BMD algo-
rithm when low-order approximations are considered are con-
firmed here in the context of control applications. Both plots show 
that, while for higher orders the closed-loop costs have very sim-
ilar values, when the size of the model is decreased the BMD 
gives in general the lowest cost. Another interesting observation 
is that the lift tracking problem is quite robust to the use of low-
order models. Indeed, the closed-loop costs are always within two 
times of the lowest cost achieved at nz=40 except for the case of 
13
aDMDc at nz=10). On the other hand, the bending tracking prob-
lem is shown to be more challenging when low-order representa-
tions are employed. Whereas no attempt to further optimize the 
MPC problem tuning was made (all the design parameters were 
kept the same independent of nz), this motivates further work on 
the use of low-order models for control of coupled flexible struc-
tures like those encountered in AWE applications. In the real-time 
control setting, it is important to stress that by using BMD and 
IOROM models an order of magnitude computational speed-up was 
achieved with respect to the cases where aDMDc models were 
used. This is because the aDMDc models have the requirement of 
running several models in parallel.

5. Conclusion

The paper proposes the Balanced Mode Decomposition with 
oblique projection algorithm, a novel data-driven algorithm for 
constructing low-order LPV models from system’s trajectories. Two 
recent algorithms from the literature, aDMDc and IOROM, are con-
sidered for comparison since they both have connections with the 
newly proposed approach. Technical details on the BMD algorithm 
are given in order to clearly point out the innovations, and the 
advantages with respect to previous work. The performance of 
the BMD algorithm is assessed on a morphing wing for airborne 
wind energy applications. The results, proposed both for the fixed 
parameter and, more extensively, for the parameter-varying case, 
confirm the theoretical advantages discussed in the technical part 
of the paper. When seeking low-order model representations, the 
BMD approach achieves generally, among the tested algorithms, 
the lowest prediction error and best control performance when 
used as model for an on-line MPC scheme. The improved accu-
racy is ascribed to the use of a projecting subspace that bal-
ances the low-order states (this element is of interest also in a 
fixed-parameter setting), and to the use of a parameter-varying 
projection operator (which can thus be enriched with parameter-
dependent features, instead of being fixed throughout the range). 
This has the advantageous feature of being achieved while guar-
anteeing state-consistency. Owing to these appealing features, it 
is envisaged the application of BMD for tasks such as off-line 
and real-time control design, and in multi-disciplinary optimiza-
tion tool chains, where typically low-order representations are em-
ployed as surrogate models.
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Fig. 9. Normalized closed loop costs for the two MPC tracking problems as a function of the model order.
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