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ABSTRACT

This article investigates the core mechanisms of indirect data-driven control for unknown systems,
focusing on the application of policy iteration (PI) within the context of the linear quadratic regulator
(LQR) optimal control problem. Specifically, we consider a setting where data is collected sequentially
from a linear system subject to exogenous process noise, and is then used to refine estimates of the
optimal control policy. We integrate recursive least squares (RLS) for online model estimation within
a certainty-equivalent framework, and employ PI to iteratively update the control policy. In this work,
we investigate first the convergence behavior of RLS under two different models of adversarial noise,
namely point-wise and energy bounded noise, and then we provide a closed-loop analysis of the
combined model identification and control design process. This iterative scheme is formulated as an
algorithmic dynamical system consisting of the feedback interconnection between two algorithms
expressed as discrete-time systems. This system theoretic viewpoint on indirect data-driven control
allows us to establish convergence guarantees to the optimal controller in the face of uncertainty
caused by noisy data. Simulations illustrate the theoretical results.

Keywords Data-driven Control · Policy Iteration · Recursive Least Squares · Robustness · Nonlinear Systems

1 Introduction

Data-driven control is a very active area of research aimed at developing control strategies for systems where a precise
mathematical model is unavailable, a scenario increasingly common in complex modern applications. This field
encompasses a wide range of approaches with different problem settings, techniques, and objectives. It is beyond the
scope of this Introduction to review them all, and we refer the reader to the following works and references therein
[1, 2, 3, 4, 5, 6]. One direction closely related to this work is indirect data-driven control, where data is collected first to
estimate a system model, which is then used inside model-based control methods [7, 8, 9, 10]. This approach makes use
of system identification [11] and, in cases where the controller is updated during operation, is related to indirect adaptive
control [12] or model-based reinforcement learning [13]. By blending data-driven insights with established model-based
strategies, indirect data-driven control offers a flexible framework for tackling control problems in complex, dynamic
environments.

In this article, we focus on a classic problem of increasing importance in the optimal control and reinforcement
learning communities: policy iteration (PI) for solving the linear quadratic regulator (LQR) problem. PI is a dynamic
programming algorithm for optimal control [14, 15] that plays a foundational role in approximate dynamic programming
and reinforcement learning algorithms [16, 17, 18, 19, 20]. The PI algorithm consists of two main steps—policy
evaluation and policy improvement—both of which traditionally rely on an accurate model of the plant. In the standard
formulation, convergence to the optimal policy is guaranteed under certain assumptions about the cost and system’s
dynamics [21].

The LQR problem is a foundational optimal control problem frequently used as a benchmark to compare data-driven
control approaches and, owing to its tractability, analytically understand their fundamental properties [7, 18, 20, 22,
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23, 24]. For example, [18] investigates the impact of additive uncertainties in model-based PI for continuous-time
LQR, while [20] examines the robustness of PI in the presence of parameter uncertainties. The regret analysis of
system identification and LQR algorithms has been investigated from a statistical learning perspective in [25, 26, 27].
In [23], a data-driven policy gradient method that integrates recursive least squares (RLS) with a model-based policy
gradient approach is proposed, with convergence analyzed using averaging theory, and in [28], an adaptive control
framework is proposed for LQR problem. Additionally, the authors’ previous work [24] compared indirect and direct
data-driven PI for LQR and provided their advantages and disadvantages via theoretical analysis. System-theoretic
tools [29] were employed for analysis in [23, 24, 28]. The works discussed earlier [23, 24, 25, 26, 27] adopt an
indirect data-driven control framework, which involves system identification followed by controller design based on the
estimated system dynamics. In contrast, the direct data-driven control framework bypasses the system identification
step and directly optimizes the control policy. In [30, 31], direct data-driven policy gradient methods leveraging
zeroth-order optimization were proposed for the noise-free discrete-time and continuous-time LQR problem. Similarly,
[32] introduced a data-driven policy gradient method incorporating a novel zeroth-order gradient estimation technique
for the noise-free LQR problem. More recently, [33] proposed a direct adaptive data-driven policy gradient method to
handle LQR with noise.

In this study, we develop an indirect data-driven policy iteration approach to solve the LQR problem for an unknown
system subject to additive adversarial process noise. Specifically, we consider the twofold scenario where the noise is
point-wise bounded and energy bounded. We begin by examining the convergence properties of RLS identification,
providing a finite-sample analysis that extends existing asymptotic convergence results for RLS [34]. Our analysis is
meaningful for providing guarantees in indirect data-driven control that employ RLS for online system identification.
Then, we consider the feedback interconnection between the RLS algorithm and the PI scheme, where the gain matrix
is refined iteratively through PI steps that use model estimates generated by RLS from online noisy data. By leveraging
an algorithmic dynamical systems viewpoint on this interconnection, we frame this iterative process as a nonlinear
feedback interconnection and carry out a system theoretic closed-loop analysis. With these results, we establish the
conditions under which the algorithmic system converges to the desired values (i.e., the optimal controller and the true
system model) and, if convergence is not achieved, we provide a guaranteed upper bound on the suboptimal solution.
Our analysis captures the noise in the online collected data as a source of disturbance, enabling an input-to-state
stability result with an intuitive, practical interpretation. In contrast to previous studies, such as [23, 24, 28, 30, 31, 32],
which assume noise-free data, our approach accommodates adversarial noise and relaxes assumptions necessary for
closed-loop analysis compared to our previous work [24]. The analysis in our work provides insights into the impact
of noise within the indirect data-driven policy iteration framework. This work serves as an example for analyzing
online concurrent learning and controller design algorithms, highlighting how noise influences convergence and control
performance.

The main contributions of this work are summarized as follows:

• Convergence analysis of RLS under pointwise bounded noise and energy-bounded noise.

• A system-theoretic analysis of the concurrent learning and controller design algorithm using noisy data.

The paper is organized as follows: Section 2 introduces the problem setting and provides essential preliminaries. Section
3 investigates the convergence properties of recursive least squares with adversarial noisy data. Section 4 details the
methodologies of the indirect data-driven policy iteration and analyzes the convergence properties of the coupled RLS
and PI system. Section 5 illustrates the theoretical findings. Finally, Section 6 provides a concluding summary of the
work.

Notations:

We denote by A ⪰ 0 and A ≻ 0 a positive semidefinite and positive definite matrix A, respectively. The symbol
Sn+ represents the set of real n × n symmetric and positive semidefinite matrices. The sets of non-negative and
positive integers are denoted by Z+ and Z++, respectively. The Kronecker product is represented as ⊗, and vec(A) =
[a⊤1 , a

⊤
2 , ..., a

⊤
n ]

⊤ stacks the columns ai of matrix A into a vector. The symbols ⌊x⌋ and ⌈x⌉ denote the floor function,
which returns the greatest integer smaller or equal than x ∈ R, and ceil function, which returns the smallest integer
greater or equal than x ∈ R, respectively. For matrices and vectors, |·| denotes their Frobenius and Euclidean norm,
respectively. A function belongs to class K if it is continuous, strictly increasing, and vanishing at the origin. A function
β(x, t) is called KL function if β(x, t) decreases to 0 as t → 0 for every x ≥ 0 and β(·, t) ∈ K for all t ≥ 0. For
Y ∈ Rm×n and r > 0, we define Br(Y ) := {X ∈ Rm×n

∣∣ |X − Y | < r}. We consider generic sequences {Yt} as

maps Z+ → Rm×n, and we denote by ∥Y ∥∞ := sup
t∈Z+

|Yt| and ∥Y ∥2 :=
∞∑
t=0
|Yt|.
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2 Problem Setting and Preliminaries

We consider discrete-time linear time-invariant (LTI) systems of the form

xt+1 = Axt +But + wt, (1)

where xt ∈ Rnx is the system state, ut ∈ Rnu is the control input and t denotes the timestep. The system matrices
(A,B) are unknown but assumed to be stabilizable, as is standard in data-driven control approaches [22, 35]; wt ∈ Rnx

represents the adversarial process noise acting on the system.

In this work, we consider two models for the noise:

• point-wise bounded noise [36], where the noise sequence {wt} satisfies:

∥w∥∞ ≤ L∞, L∞ ∈ (0,∞), (2)

where L∞ is an upper bound on the noise magnitude;

• energy bounded noise [37], where the noise sequence {wt} satisfies:

∥w∥2 ≤ L2, L2 ∈ (0,∞), (3)

where L2 represents the noise energy. This type of noise is a specific form of case of point-wise bounded noise
with the additional property, the magnitude of the noise converges to zero quickly enough to be summable,
implying lim

t→∞
|wt| = 0, which offers advantages in certain control applications.

The objective is to design a state-feedback controller ut = Kxt that minimizes the following infinite horizon cost for
the noise-free plant:

J(xt,K) =

+∞∑
k=t

r(xk, uk) =

+∞∑
k=t

x⊤
k Qxk + u⊤

k Ruk, (4)

where R ≻ 0 and Q ⪰ 0. When a stabilizing gain K is applied, ensuring that A+BK is Schur stable, the corresponding
cost J(xt,K) can be expressed in terms of the quadratic form x⊤

t Pxt. Here, P ≻ 0 represents the quadratic kernel of
the cost function associated with K [22], which is determined by the model-based Bellman equation:

P = Q+K⊤RK + (A+BK)⊤P (A+BK). (5)

In optimal control theory [14], it is well established that the solution to the linear quadratic regulator (LQR) problem is
a linear state-feedback control. The optimal feedback gain K∗ is determined by:

K∗ = −(R+B⊤P ∗B)−1B⊤P ∗A, (6a)

P ∗ = Q+A⊤P ∗A−A⊤P ∗B(R+B⊤P ∗B)−1B⊤P ∗A, (6b)

where P ∗ is the quadratic kernel of the optimal cost (value function) and is the unique solution of the discrete algebraic
Riccati equation (DARE) in (6b). The system of equations in (6) provides a way to compute the optimal feedback gain
K∗ that minimizes cost (4).

2.1 Policy Iteration

Even when the system model is known, directly solving DARE (6b) can become computationally challenging for
high-dimensional systems. Policy iteration (PI) offers an efficient, iterative method to compute the optimal gain K∗

by-passing this calculation. The fundamental model-based version of the PI algorithm [38], which requires knowledge
of the system matrices A and B, is summarized in Algorithm 1.

The key properties of Algorithm 1 are presented in the following theorem.

Theorem 1 Properties of model-based PI [38][24, Theorem 4]
If the system dynamics (A,B) are stabilizable, and K0 is stabilizing, then

1. P0 ⪰ P1 ⪰ ... ⪰ P ∗;

2. Ki stabilizes the system (A,B), ∀i ∈ Z+;

3. lim
i→∞

Pi = P ∗, lim
i→∞

Ki = K∗;

3
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Algorithm 1 Model-based policy iteration.
Require: A,B, a stabilizing policy gain K0

for i = 0, 1, ...,+∞ do
Policy Evaluation: find Pi

Pi = Q+K⊤
i RKi + (A+BKi)

⊤Pi(A+BKi) (7)
Policy Improvement: update gain Ki+1

Ki+1 = −(R+B⊤PiB)−1B⊤PiA (8)
end for

4. |Pi+1 − P ∗| ≤ c|Pi − P ∗| with c < 1, ∀i ∈ Z+.

This theorem establishes that, under stabilizability of (1) and appropriate initialization of K0, the sequence {Pi}
generated by policy iteration converges exponentially to the optimal solution P ∗, with Ki stabilizing the system at each
iteration. Theorem 1 is a standard result on PI. However, leveraging a dynamical system viewpoint, we can obtain an
additional results.

2.1.1 PI System Analysis

In [20], we investigated the convergence of PI algorithm with nominal system (A,B) by equivalently reformulating it as
a dynamical system. The main steps are as follows. Define the functions α(Pi) := B⊤PiA and β(Pi) := R+B⊤PiB,
where β(Pi) is a positive definite matrix and thus always invertible. By substituting the policy improvement step (8)
into the policy evaluation step (7), the relationship between Pi and Pi+1 is given by:

Pi+1 = Q+A⊤Pi+1A

+ α(Pi)
⊤β(Pi)

−1β(Pi+1)β(Pi)
−1α(Pi)

− α(Pi+1)
⊤β(Pi)

−1α(Pi)

− α(Pi)
⊤β(Pi)

−1α(Pi+1).

(9)

Using the identity vec(EFG) = (F⊤ ⊗ E)vec(G) from [39] and defining

Γ(Pi) := Q+ α(Pi)
⊤β(Pi)

−1Rβ(Pi)
−1α(Pi), (10)

we can rewrite (9) as:

A(Pi)vec(Pi+1) = vec (Γ(Pi)) , (11)

where A(Pi) := Inx ⊗ Inx − Ω(Pi)⊗ Ω(Pi) and Ω(Pi) := A⊤ − α(Pi)
⊤β(Pi)

−1B⊤.
If A(Pi) is invertible, we have:

vec(Pi+1) = A(Pi)
−1vec (Γ(Pi)) . (12)

The transformation from (9) to (12) involves reshaping the vectorized terms back into a square matrix, thereby
establishing the iterative relationship between Pi+1 and Pi. This process can be formalized as:

Pi+1 = L−1
(A,B,Pi)

(Γ(Pi)) . (13)

where L−1
(·) (·) is an operator that reconstructs the matrix Pi+1 using (A,B) and Pi.

This formulation allows the sequence {Pi} obtained from Algorithm 1 to be interpreted as a discrete-time dynamical
system, abstracting the PI algorithm into an algorithmic dynamic and enabling the analysis of its convergence properties,
which serves as the foundation for the subsequent analysis. To this aim, the invertibility of A(Pi) must be ensured.
According to Theorem 1, when Pi ⪰ P ∗, the invertibility of A(Pi) is guaranteed. This condition yields convergence of
(13) to P ∗, as established in Theorem 1.

Additionally, in [20, Theorem 4], we explored an alternative condition that guarantees the invertibility of A(Pi) and
ensures exponential convergence, without relying on the well-known condition Pi ⪰ P ∗, as discussed in Theorem 1.

4
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Theorem 2 (Exponential convergence of PI [20]) There exists a constant δ1 > 0, such that for any Pi ∈ Bδ1(P ∗),
A(Pi) is invertible and the following inequality holds:

|Pi+1 − P ∗| ≤ σ|Pi − P ∗|, ∀i ∈ Z+, (14)

where σ ∈ (0, 1).

The advantage of Theorem 2 is to guarantee the existence of a region around the optimal P ∗ such that if P0 is initialized
there, the sequence {Pi} generated by PI guarantees the invertibility of A(Pi). Figure 1 illustrates the region where
P ⪰ P ∗ as the shaded area, indicating where convergence is guaranteed by Theorem 1. The remaining region, depicted
within the circle, represents the area where convergence is ensured by Theorem 2.

λ1(P )

λ2(P )

P ∗

Bδ1 (P
∗)

P ⪰ P ∗

Figure 1: 2-dimensional Graphic Representation

2.2 Recursive Least Squares

When the system dynamics are unknown, least squares identification is a possible strategy to identify the model
parameters. We can rewrite system (1) as:

xt+1 = Axt +But + wt = [A B]︸ ︷︷ ︸
=:θ

[
xt

ut

]
︸ ︷︷ ︸
=:dt

+wt. (15)

Given a dataset {dk, xk+1}Tk=1 collected over a trajectory of length T , an estimate θ̂ of system matrix θ can be obtained
by minimizing the least-squares loss function [11]:

θ ∈ arg min
θ̂

T∑
k=1

(xk+1 − θ̂dk)
⊤(xk+1 − θ̂dk). (16)

When the matrix HT :=

(
T∑

k=1

dkd
⊤
k

)
is invertible, θ̂ has a closed-form solution:

θ̂ =

(
T∑

k=1

xk+1d
⊤
k

)
H−1

T . (17)

This (batch) least squares approach estimates the parameters in a single step, utilizing all data points at once. In contrast,
the recursive least squares (RLS) algorithm is particularly valuable for online estimation scenarios [12], whereby
estimates are incrementally updated as new data becomes available. Defining the estimated system matrix at time t as
θ̂t := [Ât, B̂t], the RLS algorithm update equations, are given as follows and summarized in Algorithm 2.

Ht = Ht−1 + dtd
⊤
t , (18a)

θ̂t = θ̂t−1 + (xt+1 − θ̂t−1dt)d
⊤
t H

−1
t . (18b)

5
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Algorithm 2 Recursive least squares.

Require: An initial estimate of the system dynamic θ̂0 and H0 ≻ 0
for t = 1, ...,∞ do

Given {xt+1, dt}
Ht = Ht−1 + dtd

⊤
t

θ̂t = θ̂t−1 + (xt+1 − θ̂t−1dt)d
⊤
t H

−1
t

end for

In the context of RLS, it is essential to quantify the time-varying estimation error, denoted as ∆θt := θ̂t − θ, which
evolves as data are collected over time. This term arises due to the initial estimation error and the effect of the noise
models (2) and (3). Using Algorithm 2, we can derive the recursive expression for the estimation error ∆θt as follows:

∆θt = θ̂t−1Ht−1H
−1
t + (θdt + wt)d

⊤
t H

−1
t − θHtH

−1
t

= (θ̂t−1 − θ)Ht−1H
−1
t + wtd

⊤
t H

−1
t

= (θ̂t−2 − θ)Ht−2H
−1
t + (wtd

⊤
t + wt−1d

⊤
t−1)H

−1
t

= (θ̂0 − θ)H0H
−1
t +

(
t∑

k=1

wkd
⊤
k

)
H−1

t .

(19)

In the derivations above, the first equality uses the RLS update equation in (18) and the last equality is obtained by the
recursively applying (19). In the next section, we will analyze how the estimation error behaves under the presence of
adversarial noisy data.

3 Recursive Least Squares with Adversarial Noise Data

Before analyzing the property of RLS with noisy data, we first recall a property of data sequence {dt}, where dt is
defined in (15), which plays a crucial role in ensuring the convergence of the RLS estimator. This property, named local
persistency, captures the excitation level of the data sequence.

Definition 1 Local persistency [24, Definition 2]
A sequence {Yt} ∈ Sn+ is locally persistent if there exist N ≥ 1,M ≥ 1 and α > 0 such that , for all j = Mk+ 1 with
k ∈ Z+,

N−1∑
t=0

Yt+j ⪰ αIn. (20)

The numbers α and N are respectively, the lower bound and persistency window of {Yt}. M is the persistency interval.
A sequence {Yt} ∈ Rn×m is locally persistent if {YtY

⊤
t } is locally persistent.

The concept of local persistency was first introduced in our previous work [24] as a relaxed condition of the persistency
condition from in [34]. Local persistency provides a sufficient condition for the convergence of the RLS algorithm with
noise-free data, as demonstrated in [24, Theorem 2]. We introduce the following assumption which holds throughout
the work.

Assumption 1 The data sequence {dt} is locally persistent with parameters N = Nd, M = Md and α = αd.

Assumption 1 can be met by appropriately selecting the excitation signal ut. In a later section, we will address how to
design ut to satisfy this assumption. Building on this assumption, we now extend the analysis to include the convergence
of RLS under the influence of adversarial noise. To facilitate this, we introduce an additional assumption regarding the
data sequence:

Assumption 2 (Boundedness of data sequence {dt}) The data sequence {dt} satisfies:

∥d∥∞ ≤ d̄, (21)
where d̄ ∈ (0,∞) is a constant.

Because of the boundedness of the noise sequence {wt}, Assumption 2 is guaranteed if we apply a stabilizing gain K.
Having established these preliminaries, we now present the following theorem that analyzes the convergence properties
of the RLS estimation error in the presence of bounded noisy data.

6
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Theorem 3 If Assumptions 1 and 2 are satisfied and the noise satisfies (2), then the estimation error of RLS initialized
with θ̂0 and H0 = aI(a > 0) is bounded by:

|θ̂t − θ| ≤ βθ(|θ̂0 − θ|, t) + γθ(∥w∥∞), ∀t ∈ Z++ (22)

where βθ(|θ̂0 − θ|, t) := a(Md+Nd)|θ̂0−θ|
min(a,αd)t

; γθ(x) := d̄ηx; d̄ is defined in (21); η := (nx+nu)(Md+Nd)
min(a,αd)

.

The proof of Theorem 3 is provided in Appendix A.1. The result of Theorem 3 can be interpreted as an input-to-state
stability (ISS) result [40, 41]. The function βθ(·, ·) is a KL function, representing the error due to initialization θ̂0,
which decreases to zero as t approaches infinity. The function γθ(·) is a K function, capturing the error introduced by
the noise term wt. This function is non-zero unless ∥w∥∞ = 0. Based on Theorem 3, we can derive the following
corollary, which is a standard corollary of ISS results.

Corollary 1 Using the assumptions and notations of Theorem 3, if lim
t→∞
|wt| = 0, then we have lim

t→∞
|θ̂t − θ| = 0.

The proof of Corollary 1 closely follows the steps outlined in [24, Appendix D3] and is omitted here. As discussed in
Section 2, the energy-bounded noise condition in (3) represents a particular case of (2), where lim

t→∞
|wt| = 0. Thus,

Theorem 3 and Corollary 1 are applicable. However, by directly using (3), a stronger result than those provided in (22)
and Corollary 1 can be achieved.

Corollary 2 (RLS with energy bounded noisy data) Using the assumptions and notations of Theorem 3, if the noise
is energy bounded, i.e. satisfying (3), the estimation error of RLS is bounded by:

|θ̂t − θ| ≤ βθ(|θ̂0 − θ|, t) + βe(∥w∥2,
√
t), ∀t ∈ Z++, (23)

with βe(∥w∥2,
√
t) := d̄η ∥w∥2√

t
.

The proof of Corollary 2 is provided in Appendix A.2. According to the corollary, the estimation error is bounded by
two KL-function. As t approaches infinity, the estimation error converges to zero, which recovers with the result in
Corollary 1.

The analysis in this section provides analytical insight into the role of noise in RLS, illustrating how noise affects
estimation accuracy and convergence. These results can be integrated with robust control techniques to guarantee the
performance of indirect data-driven control employing online RLS algorithms.

Before concluding our discussion on RLS, we quantify the maximum estimation error of RLS for point-wise bounded
noise, which can be derived from Theorem 3 as:

∆θ(θ̂0, d̄) := max{|θ̂0 − θ|, βθ(|θ̂0 − θ|, 1) + d̄η∥w∥∞}. (24)
The first term in (24) represents the estimation error determined by the initialization at t = 0, and the second term is the
upper bound provided by Theorem 3 for t ≥ 1. This quantity can be interpreted as the largest estimation error for all
t ∈ Z+, i.e. |∆θt| ≤ ∆θ(θ̂0, d̄), and it is determined by the initialization θ̂0 and the upper bound on the data sequence
d̄ defined in (21). Similarly, for the energy bounded noise satisfying (3), we can derive the maximum estimation error
from Corollary 1 as:

∆θe(θ̂0, d̄) := max{|θ̂0 − θ|, βθ(|θ̂0 − θ|, 1) + d̄η∥w∥2}. (25)

4 Online Identification-based Policy Iteration

In this section, we analyze the online identification-based policy iteration (ORLS+PI), which integrates the model-based
PI from Algorithm 1 with the RLS algorithm presented in Algorithm 2. This approach offers a practical solution for
performing policy iteration in scenarios where the system dynamics are unknown. By concurrently optimizing the
policy and conducting online system identification, the algorithm aims to improve the control performance iteratively.
Our primary focus is to investigate the convergence properties and limitations of this combined approach from a
system-theoretic perspective and its robustness to noise.

4.1 Algorithm Definition

For the ORLS+PI algorithm, we collect the data sequence {dt} online with the control input ut given as:

ut = K̂txt + et, (26)

where K̂t is the feedback gain and et is a potentially non-zero feedforward term.

7
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Remark 1 (Remark on K̂t) The gain K̂t in (26) is referred to the on-policy gain [23], meaning that data are generated
using the policy currently being updated. In this case, the K̂t is generated by ORLS+PI algorithm. However, as
discussed in [24, Section 5.4], one advantage of indirect data-driven policy iteration is that the excitation can be also
performed off-policy. i.e. the data can be generated using a different stabilizing policy K, that is not updated by the
algorithmic dynamics.

Remark 2 (Remark on et) The term et represents an additional degree of freedom of the online policy, which can be
used, for example, as an exploratory signal that explores the system in a random or targeted way [8, 42]. The purpose
of including et is to ensure the local persistency of the data sequence {dt}, i.e. Assumption 1. However, it is important
to note that the subsequent analysis is agnostic to the specific choice of et. In this work, we assume that the sequence of
the signal {et} is bounded, i.e.

∥e∥∞ ≤ ē. (27)

where ē ∈ (0,∞) is a constant that represents the upper bound of the signal magnitude at each timestep.

The ORLS+PI algorithm involves at each iteration t the following steps:

• Given a policy gain K̂t, which either originates from the initialization (t = 1) or the previous timestep, the
cost function kernel estimate P̂t is computed by solving the model-based Bellman equation (5) using the
current system estimates

(
Ât−1, B̂t−1

)
:

P̂t = Q+ K̂⊤
t RK̂t+(

Ât−1 + B̂t−1K̂t

)⊤
P̂t

(
Ât−1 + B̂t−1K̂t

)
.

(28)

• The physical system is excited with the control input ut introduced in (26). The state-input data {xt, ut, xt+1}
is then used to recursively update the system dynamics estimates

(
Ât, B̂t

)
using the RLS Algorithm:

Ht = Ht−1 + dtd
⊤
t , (29a)

θ̂t =
(
θ̂t−1Ht−1 + xt+1d

⊤
t

)
H−1

t . (29b)

• Using the updated estimates
(
Ât, B̂t

)
, the policy is improved by solving for the new feedback gain K̂t+1:

K̂t+1 = −
(
R+ B̂⊤

t P̂tB̂t

)−1

B̂⊤
t P̂tÂt. (30)

To ensure the feasibility of the ORLS+PI algorithm, particularly regarding equations (28) and (30), we will provide a
detailed discussion on this topic in a later section.

Remark 3 (Timestep t) In this work, we use a single index t for both the RLS estimate update and the PI policy update.
While, in principle, each update could be tracked by its own independent index. The analysis in this section can be
extended to handle different timescales for each update, following the approach outlined in [24].

The ORLS+PI algorithm is summarized in Algorithm 3 and is depicted in Figure 2 through a block diagram that
emphasizes the dynamic viewpoint leveraged in this work. The closed-loop system, consisting of the physical system
and the controller, is connected by the solid black lines in the figure and is subject to the exogenous noise term wt.
The algorithmic dynamics, formed by the PI and RLS algorithms, is placed inside the bottom shaded area and its
interconnections are depicted by the dashed black lines.

8
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Algorithm 3 ORLS+PI Algorithm

Require: Â0, B̂0, H0, the initial optimal policy gain K̂1 for system (Â0, B̂0)
for t = 1, ...,∞ do

Policy Evaluation: find P̂t by (28)

Excite the system with ut = K̂txt + et

Collect the data← (xt, ut, xt+1)

Use RLS in Algorithm 2 to update Ât, B̂t

Policy Improvement: update gain K̂t by (30)

end for

Physical System
xt+1 = Axt +But + wt

Controller

ut = K̂txt + et

Policy Iteration
(28), (30)

Recursive Least Squares
(29a), (29b)

Closed-loop System

Algorithmic dynamics

wt xt+1

θ̂t

K̂t

ut

Figure 2: Concurrent identification and policy iteration scheme

4.2 Convergence Analysis of ORLS+PI Algorithm

As illustrated in Figure 2, the dynamics of the policy iteration (PI) and recursive least-squares (RLS) can be analyzed as
a feedback interconnection of two coupled dynamical systems. In the "system PI", the inputs are the estimates

(
Ât, B̂t

)
obtained from the RLS, and the dynamics are described by (30) and (28). In the "system RLS", the inputs are the data
{dt} and {xt+1} collected online from the physical system and perturbed by the noise, with the dynamics described by
(29a) and (29b).

The properties of "system PI" were recalled in Section 2.1 and the properties of "system RLS" were investigated
in Section 3, which provides insight into the behavior of the RLS algorithm under adversarial noise conditions. To
facilitate our analysis, we introduce the following notations:

α̂t := B̂⊤
t P̂tÂt (31a)

β̂t = β̂⊤
t := R+ B̂⊤

t P̂tB̂t. (31b)

Before stating the main result, we introduce the following assumption.

9
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Assumption 3 The estimates
(
Ât, B̂t

)
obtained from RLS are stabilizable ∀t ∈ Z+. Given a stabilizable estimate(

Ât, B̂t

)
, we assume that P̂t ⪰ P ∗

(Ât,B̂t)
∀t ∈ Z+, where P̂t is obtained via (28) and P ∗

(Ât,B̂t)
is the quadratic kernel

of the value function associated with
(
Ât, B̂t

)
and is calculated by solving (6b).

Assumption 3 is a direct translation in the online identification-based setting of the standard requirement for the
formulation of policy iteration, (cf. Theorem 1). For further discussions and details on how to realize this assumption,
we refer to [24, Assumption 1, Assumption 2]. We are finally ready to state the main convergence and robustness result
of Algorithm 3.

Theorem 4 (ORLS+PI Analysis 1) If Assumption 3 is satisfied, then the ORLS+PI system formulated by (28)-(30)
admits the following equivalent dynamical system representation:

θ̂t+1 =

(
θ̂t

(
H0 +

t∑
k=1

dkd
⊤
k

)

+

t∑
k=1

xt+1d
⊤
t

)(
H0 +

t∑
k=1

dkd
⊤
k

)−1

,

(32a)

P̂t+1 = L−1

(Ât,B̂t,P̂t)

(
Q+ α̂⊤

t β̂
−1
t Rβ̂−1

t α̂t

)
. (32b)

Additionally, if Assumptions 1 and 2 are satisfied and the noise satisfies (2), then with the initialization H0 = aI(a > 0)

and arbitrary θ̂0, the estimates P̂t and θ̂t satisfy the following relationships for all t ∈ Z++:∣∣∣P̂t − P ∗
∣∣∣ ≤ βc

(∣∣∣P̂0 − P ∗
∣∣∣ , t)+ γc (∥∆θ∥∞) , (33a)

|θ̂t − θ| ≤ βθ(|θ̂0 − θ|, t) + γθ(∥w∥∞), (33b)

where

• βc (·, ·) := ct
∣∣∣P̂0 − P ∗

∣∣∣ is a KL-function with c ∈ (0, 1) defined in Theorem 1;

• γc (∥·∥∞) := C̄
1−c ∥·∥∞ is a K-function with constant C̄ given in the proof (50);

• βθ(·, ·) and γθ(·) are defined in Theorem 3.

The proof of Theorem 4 is provided in Appendix A.3 and is the result of combining Theorem 3 with [24, Theorem 6].

We observe here that, regarding Assumption 2, there is no guarantee that the stabilizing property of K̂t will hold for the
true system (A,B). In the on-policy setting (see Remark 1), we cannot ensure the boundedness of the data sequence.
However, as discussed in Remark 1, the excitation can be performed off-policy. Specifically, all the analyses still hold if
the system is excited using a fixed pre-stabilizing gain K. In this off-policy case, Assumption 2 can be guaranteed.

Theorem 4 describes the convergence properties of the ORLS+PI algorithm for arbitrary initial θ̂0. If an assumption on
the maximum estimation error (24), which also depends on θ̂0 is made, then Assumptions 2 and 3 are not anymore
required.

Assumption 4 The maximum estimation error of RLS satisfies the following condition:

∆θ(θ̂0, D̄) ≤ min{āp, b̄p}, (34)

where āp and b̄p are constants defined in (52) (see Theorem 6 in Appendix A.4) and D̄ is defined in (58) (see Lemma 21
in Appendix A.4).

The value of D̄ is quantitatively determined by both the upper bound of the noise and the sequence {K̂t} applied to the
system. Assumption 4 requires that the maximum estimation error from RLS remains within acceptable limits. This
can be used in conjunction with recent findings on the inherent robustness of PI with inexact models [20] to show that
Algorithm 2 converges under different assumptions than Theorem 4. Under Assumption 4, we can derive the following
theorem.

10
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Theorem 5 (ORLS+PI Analysis 2) If Assumption 4 is satisfied and the initial K̂0 is selected as the optimal gain
calculated by solving (6) using (Â0, B̂0, Q,R), then the ORLS+PI algorithm formulated by (28)-(30) admits the
equivalent dynamical system representation in (32). Additionally, if Assumption 1 is satisfied and the noise satisfies (2),
then with the initialization H0 = aI(a > 0) and an initial θ̂0 satisfying Assumption 4, the estimates P̂t and θ̂t satisfy
the following relationships for all t ∈ Z++:∣∣∣P̂t − P ∗

∣∣∣ ≤ βσ

(∣∣∣P̂0 − P ∗
∣∣∣ , t)+ γσ (∥∆θ∥∞) , (35a)

|θ̂t − θ| ≤ βθ(|θ̂0 − θ|, t) + γD(∥w∥∞), (35b)

where:

• βσ (·, ·) := σt
∣∣∣P̂0 − P ∗

∣∣∣ is a KL-function with σ ∈ (0, 1) defined in Theorem 2;

• γσ (∥·∥∞) := p̄a+p̄b

1−σ ∥·∥∞ is a K-function with p̄a and p̄b given in the proof (52);

• βθ(·, ·) is defined in Theorem 3;

• γD(∥·∥∞) := cD∥·∥∞ with cD := D̄η; η is defined in Theorem 3 and D̄ is defined in (58).

The proof of Theorem 5 is provided in Appendix A.4. Here, we outline the main steps involved in the proof. The
proof relies primarily on Theorem 3, which establishes the convergence of the RLS under a bounded data sequence and
point-wise bounded noise, and on [20, Theorem 6], which describes the inherent robustness of PI. The proof proceeds
as follows:

1. Condition on Initialization θ̂0: The inherent robustness of PI guarantees that K̂t stabilizes the system for all
t ∈ Z+. Because in addition we have point-wise bounded noise and control inputs, we determine the upper
bounded of the sequence {dt} denoted by D̄. Then we determine the necessary condition (Assumption 4) to
sure that Theorem 6 holds;

2. PI inherent robustness: Leveraging the robustness properties of PI from [20, Theorem 6], we can directly
establish inequality (35a);

3. System stabilization and bounded data sequence: We have shown that the data sequence {dt} is upper
bounded by D̄. This allows us to prove inequality (35b);

Remark 4 (Comparison between Theorems 4 and 5) Theorem 4 extends the results of [24, Theorem 6] to case
studies involving bounded noisy data. Theorem 4 relies on Assumptions 2 and 3 to derive ISS results (32). These
assumptions provide a result by imposing no restrictions on the initial condition θ̂0 of RLS.

In contrast, Theorem 5 removes the Assumptions 2 and 3 by introducing a specific condition on initialization and the
upper bound of the data sequence, which is partially influenced by the noise level, as defined in (34). This requirement
ensures that the maximum estimation error stays within the level of inherent robustness of PI. Therefore, the results
under Theorem 5 only hold when the estimation error is sufficiently small.

As discussed earlier, for Theorem 4, we can only perform off-policy excitation during the online data collection to
ensure the boundedness of the data sequence. However, in the case of Theorem 5, the closed-loop stability of the
physical system is guaranteed. Therefore, we can directly employ excitation with the on-policy gain K̂t.

Remark 5 (Remark to Assumption 4) Assumption 4 cannot be directly verified, as we only know the existence of āp
and b̄p. However, from a system-theoretical perspective provided by Theorem 5, we know that if the initial condition
is close to the true system and the upper bound of the noise is small, the coupled system is input-to-state stable with
respect to the upper bound of the noise and the estimation error of system matrices. Moreover, the on-policy gain
ensures stability as stated in Remark 4. In other words, compared to Theorem 5, with better prior knowledge of the
system matrices, fewer assumptions are required to guarantee the performance of concurrent learning and controller
design procedure.

Based on Theorem 4 and Theorem 5, we can now derive the following corollaries that help interpret the two theorems
in a more intuitive and practical manner.

11
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Corollary 3 (Finite sample analysis of |P̂t − P ∗|) Using the notations and assumptions of Theorem 4 and given an
iteration tre > 1, the distance between |P̂t − P ∗| can be quantified as:∣∣∣P̂t − P ∗

∣∣∣ ≤ βc

(∣∣∣P̂tre − P ∗
∣∣∣ , t− tre

)
+ γc

(
sup
k≥tre

|∆θk|
)
, ∀t ≥ tre;

(36)

Similarly, using similar notations and assumptions of Theorem 5, we have:∣∣∣P̂t − P ∗
∣∣∣ ≤ βσ

(∣∣∣P̂tre − P ∗
∣∣∣ , t− tre

)
+ γσ

(
sup
k≥tre

|∆θk|
)
, ∀t ≥ tre.

(37)

The proof of Corollary 3 follows directly by reformulating the equations (33a) and (35a).

Corollary 4 Under the conditions of Theorem 4 and Theorem 5, if lim
t→∞
|wt| = 0, then lim

t→∞
|θ̂t − θ| = 0, lim

t→∞
|P̂t −

P ∗| = 0 and lim
t→∞
|K̂t −K∗| = 0.

Corollary 4 is a standard corollary of ISS results and it can be proved for example by following the steps outlined in [24,
Appendix D3]. From this corollary, if the data sequence is locally persistent and noise term wt vanished at infinity, {P̂t}
obtained from the concurrent learning and controller design algorithm converges asymptotically to the optimal P ∗.

Corollary 5 (Energy bounded noise) Using the notations of Theorem 5, for the energy bounded noise satisfying (3),
if

∆θe(θ̂0, D̄) ≤ min{āp, b̄p}, (38)

where ∆θe(·, ·) is defined in (25), then the ORLS+PI algorithm formulated by (28)-(30) admits the equivalent dynamical
system representation in (32). If Assumption 1 is satisfied, the estimates P̂t and θ̂t satisfy the following relationships for
all t ∈ Z++: ∣∣∣P̂t − P ∗

∣∣∣ ≤ βσ

(∣∣∣P̂0 − P ∗
∣∣∣ , t)+ γσ (∥∆θ∥∞) , (39a)

|θ̂t − θ| ≤ βθ(|θ̂0 − θ|, t) + βD(∥w∥2,
√
t), (39b)

where βD(∥w∥2,
√
t) := D̄η ∥w∥2√

t
and η is defined in Theorem 3.

Corollary 5 can be proved by integrating the results of Corollary 2 with Theorem 5. Based on (39), we can recover the
asymptotic results stated in Corollary 3. A similar corollary for Theorem 4 can also be derived by combining Corollary
2 is omitted here.

In this work and previous [24], we analyze the ORLS+PI algorithm as a dynamical system and provide input-to-state
stability (ISS) results to characterize the closed-loop behavior. In [24], we focused on noise-free data, considering
the persistency level of the data sequence. In contrast, this work accounts for bounded noisy data and assumes that
the sequence is locally persistent. The analysis in this section provides a mathematical description of how adversarial
noise impacts the performance of the ORLS+PI algorithm. This insight enables us to characterize the conditions under
which noise affects estimation accuracy and convergence, informing guidelines for robust algorithm initialization and
parameter tuning in noisy environments.

5 Simulations

In this section, we present simulation results1 to illustrate some of the properties of online identification-based policy
iteration discussed in the previous sections.

1The Matlab codes used to generate these results are accessible from the repository: https://github.com/col-tasas/2024-
SysIDbasedPIwithNoisyData
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5.1 Comparison between different types of noise

We consider the following system which was already used in prior studies [7, 22, 24]:

xt+1 =

[
1.01 0.01 0
0.01 1.01 0.01
0 0.01 1.01

]
︸ ︷︷ ︸

A

xt +

[
1 0 0
0 1 0
0 0 1

]
︸ ︷︷ ︸

B

ut + wt. (40)

The weight matrices Q and R are set to 0.001I3 and I3, respectively. The initial estimates for system matrices A and B
are set as:

Â0 = A+ 0.5I3,

B̂0 = B + 0.5I3.
(41)

The matrix H0 for RLS is initialized as 0.1I6. The initial stabilizing policy gain K̂0 is set to the optimal LQR gain
associated with (Â0, B̂0, Q,R). The dithering signal et of the policy (26) is distributed uniformly with each entry
sampled independently from the interval [−10, 10]. Figure 3 illustrates the convergence of the quadratic kernel of the
value function P̂t, representing the closed-loop evaluation of the cost function with the feedback gain K̂t under different
noise conditions, which are set as:

PB1 : |wt| =
0.5

t
+ 0.5; (42a)

PB2 : |wt| =
0.5

t
; (42b)

EB : |wt| =
0.5

t2
. (42c)
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Figure 3: Comparisons of convergence behaviors of ORLS+PI with different types of noise

The blue solid line shows the convergence under point-wise bounded noise. This setup results in a non-vanishing error
between P̂t(K̂t) and P ∗(K∗) due to the persistent noise component, as discussed in Corollary 3. The red dashed line
uses noise vanishing as t→∞ but is not energy bounded. This condition yields convergence to the optimal values, as
detailed in Corollary 4. The magenta dotted line shows energy bounded noise. This configuration, in line with Corollary
5, achieves convergence to the optimal values.

5.2 Comparison between Policy Iteration and Policy Gradient

We compare our OLRS+PI algorithm with a recently proposed method that combines online RLS with a model-based
policy gradient approach [23], referred to here as ORLS+PG. The system dynamics (A,B) and the weight matrices Q

13



Bowen Song and Andrea Iannelli

and R are set according to the example proposed in [23]:

A =

 −0.53 0.42 −0.44
0.42 −0.56 −0.65
−0.44 −0.65 0.35

 , B =

 0.43 −0.82
0.53 −0.78
0.26 −0.40

 ,

Q =

 6.12 1.72 0.53
1.72 6.86 1.72
0.53 1.72 5.73

 , R =

[
1.15 −0.23
−0.23 3.62

]
.

The initial estimates Â0, B̂0, and the matrix H0 required for both ORLS+PI and OLRS+PG are set to 1.3A, 0.7B, and
H0 = 0.01I5, respectively. The initial feedback gain K̂0 is set to the optimal gain for the LQR problem associated with
(Â0, B̂0, Q,R). The OLRS+PG method uses the same online policy employed in Algorithm 2, with a feedback term
K̂txt plus a dithering signal et ∈ [−10,+10] to ensure sufficiently informative data. The stepsize γ of ORLS+PG is
empirically set to 0.005. Figure 4 investigates the convergence of kernel of closed-loop evaluation P̂t by considering
three different types of noise, set as (42).

0 10 20 30 40 50 60 70
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Figure 4: Comparison of ORLS+PI with ORLS+PG

As seen in Figure 4, the ORLS+PI method exhibits faster convergence of P̂t compared to the ORLS+PG methods.
This is due to the nature of the PI method, which can be viewed as a Newton method. For the ORLS+PG methods,
the stepsize can only be tuned empirically, and selecting an optimal stepsize to ensure convergence remains an open
question. Instead, for ORLS+PI, owing to the analyses carried out in this work, there are systematic guidelines for
choosing the initialization based on the bounds of the data sequence. Examining (58) reveals that the upper bound also
grows as the noise magnitude increases. Consequently, when the noise is larger, the initialization must be chosen closer
to the true system to ensure convergence.

6 Conclusion

In this work, we studied the application of indirect data-driven policy iteration to the LQR problems when data are
subject to adversarial bounded noise. First we analyzed the convergence properties of RLS, establishing an upper bound
on the estimation error. This result is meaningful for the indirect data-driven control method, as it provides guarantees
on control performance by quantifying the accuracy of model estimates obtained from noisy data. Subsequently, we
conceptualized the algorithm as a feedback interconnection between an identification scheme and the PI algorithm, both
framed as algorithmic dynamical systems that realize concurrent learning and control. We analyzed the convergence
properties of such a nonlinear closed-loop under different noise and parameters initialization scenarios to provide a
comprehensive picture on the robustness of such data-driven schemes. In future work, it will be important to explore
unbounded stochastic noise and investigate its impact on the performance of RLS and the coupled RLS+PI system.
Additionally, we aim to explore direct data-driven policy iteration, which bypasses the system identification step and
directly utilizes data to formulate the PI procedure, with a particular focus on its performance in noisy data and the
relative strengths and weaknesses with respect to indirect schemes.
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A Technical Proof

A.1 Proof of Theorem 3

Proof 1 (Proof of Theorem 3) From (19), we have:

|∆θt| ≤ a|∆θ0||H−1
t |+

(
t∑

k=1

|wk||dk|

)
|H−1

t |

≤ a|∆θ0||H−1
t |+ d̄

(
t∑

k=1

|wk|

)
|H−1

t |.

(43)

With the definition of local persistency, we have:

λmin(Ht) ≥ a+ ⌊ t

⌈Nd

Md
⌉Md

⌋αd ≥ a+ ⌊ t

Md +Nd
⌋αd.

Then we have:

|H−1
t | ≤

nx + nu

a+ ⌊ t
Md+Nd

⌋αd

≤ (nx + nu)(Md +Nd)

min(a, αd)t
, ∀t ∈ Z++.

(44)

Substituting (44) into (43), we obtain:

|θ̂t − θ| ≤ β(|θ̂0 − θ|, t) + c

∑t
k=0|wk|
t

, ∀t ∈ Z++. (45)

Based on the bound defined in (2), we obtain:

t∑
k=1

|wk| ≤ t sup
t

√
w⊤

t wt ≤ t∥w∥∞. (46)

Substituting (46) into (45), we conclude the proof of Theorem 3.

A.2 Proof of Corollary 2

Proof 2 For the proof of Corollary 2, we use the AM–GM inequality,

t∑
k=1

|wk| ≤
√
t

√√√√ t∑
k=1

w⊤
k wk ≤

√
t

√√√√ ∞∑
k=1

w⊤
k wk ≤

√
t∥w∥2. (47)

Substituting (47) into (45), we conclude the proof.

A.3 Proof of Theorem 4

Proof 3 (Proof of Theorem 4) Based on the Assumptions 1 and 2, (33b) is directly proved. Now we turn to (33a),
Assumption 3 guarantees the formulation of standard PI procedure. Following the same step in [24, Appendix D6]

P̂t+1 = L−1

(A,B,P̂t)

(
Γ(P̂t)

)
+ ε (∆At,∆Bt) , (48)
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where

ε (∆At,∆Bt) := −L−1

(A,B,P̂t)

(
Γ(P̂t))

)
+ L−1

(Ât,B̂t,P̂t)

(
Q+ α̂⊤

t β̂
−1
t Rβ̂−1

t α̂t

)
,

(49)

and Γ(P̂t) is defined in (10). Using the same arguments in [24], we can prove that:

|ε (∆At,∆Bt)| ≤ C̄|∆θt|, (50)

where C̄ is polynomial of (A,B,Q,R). For the detailed computation steps and derivation of C̄, we refer to [24,
Appendix D6]. Then we can prove:

|P̂t − P ∗| ≤ c|P̂t−1 − P ∗|+ C̄|∆θt|
≤ ct|P̂0 − P ∗|+ C̄

(
1 + c+ ...+ ct−1

)
∥∆θ∥∞

≤ ct|P̂0 − P ∗|+ C̄

1− c
∥∆θ∥∞.

(51)

Then we conclude the proof of (33a).

A.4 Proof of Theorem 5

Proof 4 (Proof of Theorem 5) In this proof, the robustness of PI algorithms plays a central role, as outlined in our
previous work [20, Theorem 7]. For clarity and completeness, we recall this theorem here:

Theorem 6 (Robustness of PI [20]) Given σ and δ1 defined in Theorem 2, there always exist constants āp(δ1, σ) ≥ 0

and b̄p(δ1, σ) ≥ 0 such that if ∥a∥∞ ≤ āp, ∥b∥∞ ≤ b̄p and P̂0 ∈ Bδ1(P ∗), where sequences {at} and {bt} are defined
as

at := |∆At|, bt := |∆Bt|, (52)

with ∆At := Ât −A, ∆Bt := B̂t −B, then

1. K̂t is stabilizing, ∀t ∈ Z+;

2. the following holds,:

|P̂t − P ∗| ≤ βp(|P̂0 − P ∗|, t) + γ1(∥a∥∞)

+ γ2(∥b∥∞)≤ δ1, ∀t ∈ Z+,
(53)

where βp(x, t) := σtx; γ1(x) := p̄a

1−σx; γ2(x) := p̄b

1−σx with constants p̄a, p̄b > 0;

3. if lim
t→∞

|∆At| = 0 and lim
t→∞

|∆Bt| = 0, then lim
t→∞

|P̂t − P ∗| = 0.

To proceed with the proof, we first verify the conditions under which Theorem 6 holds.

From Theorem 6, if ∥a∥∞ ≤ āp, ∥b∥∞ ≤ b̄p and P̂0 = P ∗, ensuring that the conditions of Theorem 6 hold, then we
have |P̂t − P ∗| ≤ δ1, ∀t ∈ Z+. Moreover, this guarantees that lim

t→∞
|P̂t − P ∗| ≤ δ1. Now, consider fixed matrices

Ã and B̃ satisfying |Ã − A| ≤ āp and |B̃ − B| ≤ b̄p, then given an initial condition P̂0 = P ∗, we conclude that
lim
t→∞

|P̂t − P ∗| = |P ∗
(Ã,B̃)

− P ∗| ≤ δ1, where P ∗
(Ã,B̃)

is the optimal solution to (6) corresponding to (Ã, B̃, Q,R).

Thus, we can conclude, for any Ã and B̃ satisfying |Ã−A| ≤ āp and |B̃ −B| ≤ b̄p, then P ∗
(Ã,B̃)

∈ Bδ1(P ∗).

When the maximum estimation error ∆θ(θ̂0, D̄) ≤ min{āp, b̄p}, then we have

γ1(∥a∥∞) + γ2(∥b∥∞) =
p̄a∥a∥∞ + p̄b∥b∥∞

1− σ

≤ (p̄a + p̄b)∥∆θ∥∞
1− σ

.

(54)

Together with (24), when Assumption 4 holds and the initial policy K̂0 is selected as the solution to the (6) using
(Â0, B̂0, Q,R), the conditions required by Theorem 5 are satisfied. Substituting (54) into (53), we conclude (35a). Now
we turn to prove (35b). If the data sequence {dt} is bounded, then we can directly use Theorem 3 to prove (35b).
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For matrices, |·|2 denotes their induced-2 norm. Based on Theorem 6, K̂t is stabilizing, for all t ∈ Z+. Then we can
define:

K̄cl := sup

|Â−A| ≤ āp,

|B̂ −B| ≤ b̄p,
P ∈ Bδ1(P ∗)

|Â+ B̂(B̂⊤PB̂ +R)−1B̂⊤PÂ|2 (55)

and we have K̄cl ∈ [0, 1). The additional excitation term et satisfies ∥et∥ ≤ ē, ∀ t ∈ Z+ (27). Additionally, we have

|K̂t| = |(R+B⊤
t P̂tBt)

−1B̂⊤
t P̂tÂt|

≤ |R−1|(|B|+ ∥∆θ∥∞)(|P ∗|+ δ1)(|A|+ ∥∆θ∥∞)︸ ︷︷ ︸
=:K̄

(56)

Then we can introduce the following lemma, which shows the boundedness of xt:

Lemma 1 (Boundedness of state xt) Given the system (1) with noise satisfying 2 and with the control input ut =

K̂txt + et, where K̂t is the stabilizing gain from ORLS+PI and et satisfies (27), the state of system (1) remains
bounded:

|xt| ≤ max

(
|B|ē+ ∥w∥∞

1− K̄cl
, |x0|

)
=: x̄, ∀t ∈ Z+, (57)

where K̄cl is defined in (55) and ē is defined in (27).

Proof 5 (Proof of Lemma 1) For the case |xt| ≥ |B|ē+∥w∥∞
1−K̄cl

,

|xt+1| ≤ |A+BK̂t|2|xt|+ |B|ē+ ∥w∥∞

≤ K̄cl
|B|ē+ ∥w∥∞

1− K̄cl
+ |B|ē+ ∥w∥∞

=
|B|ē+ ∥w∥∞

1− K̄cl
.

Together with the upper bound on the initialization, we conclude the proof.

Further, we can also derive the bound of the data dt:

Lemma 2 (Boundedness of data dt) Given the system (1) with noise satisfying (2) and with the control input ut =

K̂txt + et where K̂t is the stabilizing gain from ORLS+PI and et satisfies (27), the data dt, which is employed for RLS,
is bounded:

|dt| =
∣∣∣∣[ xt

ut

]∣∣∣∣ ≤ ∣∣∣∣[ I

K̂t

]∣∣∣∣ |xt|+
∣∣∣∣[ 0

et

]∣∣∣∣
≤ (1 + K̄)x̄+ ē =: D̄

(58)

where K̄ is defined in (56) and x̄ is defined in Lemma 1.

Using the upper bound of the data sequence {dt} and together with Theorem 3, we can conclude (35b).
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