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bDepartment of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN, USA

cDepartment of Aerospace Engineering, University of Bristol, United Kingdom

Abstract

A general framework is presented to estimate the Region of Attraction of attracting equilibrium points. The system is described
by a feedback connection of a nonlinear (polynomial) system and a bounded operator. The input/output behavior of the
operator is characterized using an Integral Quadratic Constraint. This allows to analyze generic problems including, for
example, hard-nonlinearities and different classes of uncertainties, adding to the state of practice in the field which is typically
limited to polynomial vector fields. The IQC description is also nonrestrictive, with the main result given for both hard and
soft factorizations. Optimization algorithms based on Sum of Squares techniques are then proposed, with the aim to enlarge
the inner estimates of the ROA. Numerical examples are provided to show the applicability of the approaches. These include
a saturated plant where bounds on the states are exploited to refine the sector description, and a case study with parametric
uncertainties for which the conservativeness of the results is reduced by using soft IQCs.

Key words: Region of attraction, Integral quadratic constraints, Nonlinear uncertain systems, Local analysis, Dissipation
Inequality.

1 Introduction

Stability guarantees are often valid only locally for non-
linear systems, and for this reason the notion of Region of
Attraction (ROA) has been proposed (Khalil 1996). The
ROA of an equilibrium point x∗ is the set of all the initial
conditions from which the trajectories of the system con-
verge to x∗ as time goes to infinity. This paper proposes
a new framework for the analysis of the ROA for generic
uncertain systems. In full generality, the problem con-
sidered in this article consists of the feedback intercon-
nection of a system G with polynomial vector field and a
bounded causal operator ∆. Motivation for this kind of
description stems from the objective to compute ROA of
systems which are affected by generic nonlinearities (in
addition to the polynomial ones) and/or uncertainties.

The Integral Quadratic Constraint (IQC) (Megretski
and Rantzer 1997) paradigm, building on work by
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Yakubovich (Yakubovich 1971), is particularly suited
to address the aforementioned operator ∆, because it
characterizes a broad class of nonlinearities, and allows
to refine the description of the uncertainties by speci-
fying their nature. The setup provided by the feedback
interconnection G-∆ is thus believed to be quite gen-
eral and to adequately cover a large class of nonlinear
systems encountered in applications.

The time domain interpretation of IQCs is instrumen-
tal to prove the main results of the paper. In particular,
the connection between dissipation inequality and IQC
is exploited to provide guarantees of local stability. One
of the known issues is that the dissipation inequality re-
quires the IQC to be hard in the sense that the integral
constraints must hold over all finite times (Seiler 2015).
This is not immediate because the frequency domain
IQC only guarantees an equivalent counter part in the
time domain as an infinite-horizon integral constraint
(soft IQC) (Megretski and Rantzer 1997). Recent stud-
ies have proposed lower bounds on the finite-horizon
integral constraint when only the soft property holds
(Seiler 2015, Seiler 2018, Fetzer et al. 2018). In (Fetzer
et al. 2018), this was provided as a convex constraint on
the IQC multiplier, and it will be employed in this work.

The exact ROA is often difficult to compute either nu-
merically or analytically (Genesio et al. 1985), there-
fore algorithms have been proposed to numerically cal-
culate inner estimates of the ROA. The state of practice
in the field focuses on determining Lyapunov function
level sets, which are contractive and invariant and thus



are subsets of the ROA (Chakraborty et al. 2011b, Val-
morbida et al. 2009). Non-Lyapunov methods have also
been studied to reduce the conservatism typically asso-
ciated with the characterization of ROA as contractive
level sets (Valmorbida and Anderson 2017, Henrion and
Korda 2014). All the approaches above share the com-
mon feature that are either only applicable to polyno-
mial vector fields or rely on Sum Of Squares (SOS) tech-
niques. As a result, a limitation holds on the types of
nonlinearities that can be considered. An example of a
more general approach is the so-called Zubov’s method
(Zubov 1964), which is based on a converse Lyapunov
theorem and requires to solve a partial differential equa-
tion, but this makes it difficult to be employed for prac-
tical cases. Relaxed versions of this result have also been
proposed, for example in (Vannelli and Vidyasagar 1985)
where the concept of maximal Lyapunov function was
introduced. Possible extensions of Lyapunov (Topcu et
al. 2010, Chesi 2004) and non-Lyapunov (Iannelli et al.
2019) methods to the case of uncertain systems have also
been proposed recently. In general, a major drawback
of the approaches employed to deal with uncertain sys-
tems is that they do not exploit specific properties of the
uncertainties (e.g. linear time invariant, real constant).
This inherently leads to conservative outcomes because
the results must hold for a larger set of uncertainties than
the one actually affecting the system.

The contribution of this article is therefore to propose a
general and flexible framework for local stability analysis
of nonlinear uncertain systems. The problem is formu-
lated by defining an augmented plant which comprises
the polynomial part of the vector field G as well as the
Linear Time Invariant (LTI) system Ψ provided by the
state-space factorization of the IQC. Based on this prob-
lem setup, Section 3 establishes certificates for the do-
main of attraction with both hard and soft factoriza-
tions. Specifically, the ROA is formulated as the level set
of a polynomial function of generic degree (which is not
necessarily a Lyapunov function for the system). Since
the fictitious plant and the sought function are polyno-
mial, the problem can be solved numerically via Sum of
Squares (SOS) techniques, allowing it to be recast as a
set of semidefinite programs (Parrilo 2003).

Numerical examples of polynomial systems affected by
hard nonlinearities (i.e. actuator saturation) and real
parametric uncertainties illustrate the application of the
approaches in Section 4. In the former case, the bounds
on the states inherently given by ROA are employed
to provide a less conservative expression for the sector
IQC. As for the case with parametric uncertainties, the
favourable feature of this framework of allowing to refine
the description of the uncertainties is showcased.

The work here, extending preliminary results in (Iannelli
et al. 2018b) which only considered the case of hard
IQC, is related to recent studies (Seiler 2015, Pfifer and
Seiler 2015, Fetzer et al. 2018, Seiler 2018) which focused
on the reconciliation between Lyapunov function meth-
ods and multiplier theory. In particular, the distinction
between hard and soft IQCs plays a crucial role in the
estimation of the domain of attraction. In view of this,
the active area of research concerned with finding less
conservative bounds for soft IQCs (Seiler 2015, Fetzer et

al. 2018, Seiler 2018) can have a big impact on the esti-
mation of local stability regions with the framework pre-
sented here. This paper is also connected to the work in
(Chakraborty et al. 2010), where the time domain inter-
pretation of IQC (hard IQCs only were considered) was
exploited for performance analysis of polynomial systems
subject to hard nonlinearities.

2 Background

2.1 Notation

RL∞ denotes the set of rational functions with real co-
efficients that are proper and have no poles on the imag-
inary axis. RH∞ is the subset of functions in RL∞ that
are analytic in the closed right half of the complex plane.
RLm×n∞ and RHm×n∞ denote the sets of m × n matrices
whose elements are in RL∞ and RH∞ respectively. Ver-
tical concatenation of two vectors x ∈ Rn and y ∈ Rm
is denoted by [x; y] ∈ Rn+m. For a matrix M ∈ Cm×n,
M> and M∗ denotes respectively the transpose and the
complex conjugate transpose. The para-Hermitian con-
jugate of G ∈ RLm×n∞ , denoted as G∼, is defined by
G∼(s) := G(−s̄)∗, where s̄ is the complex conjugate of
s. Ln2 is the space of all square integrable functions v :
[0,∞) → Rn, i.e. satisfying ‖v‖2 < ∞ where ||v||2 :=( ∫∞

0
v(t)>v(t)dt ≥ 0

)1/2
. R[x] indicates the set of all

polynomials r : Rn → R in n variables, and ∂(r) indi-
cates the degree of r. Given a scalar c > 0, the level set of
r is defined as Ωr,c = {x ∈ Rn : r(x) ≤ c}. A polynomial
g is said to be a Sum of Squares if there exists a finite

set of polynomials g1, ..., gk such that g =
∑k
i=1 g

2
i . The

set of SOS polynomials in x will be denoted by Σ[x].

2.2 Problem statement

Consider an autonomous nonlinear system of the form:

ẋ = f(x), x(0) = x0 (1)

where f : Rn → Rn is the vector field. The vector x∗ ∈
Rn is called a fixed or equilibrium point of Eq. (1) if
f(x∗) = 0. Let φ(t, x0) denote the solution of Eq. (1)
at time t with initial condition x0. The ROA associated
with x∗ is defined as:

R :=
{
x0 ∈ Rn : lim

t→∞
φ(t, x0) = x∗

}
(2)

For nonlinear systems it generally holds R ⊆ Rn.

Computing the exact ROA for nonlinear systems is diffi-
cult (Genesio et al. 1985). A standard approach to calcu-
late inner estimates consists of finding Lyapunov func-
tion level sets.

Lemma 1 (Khalil 1996) Let D ⊂ Rn and let x∗ ∈ D. If
there exists a 1-time continuously differentiable function
V : Rn → R such that:

V (x∗) = 0 and V (x) > 0 ∀x ∈ D\x∗

∇V (x)f(x) < 0 ∀x ∈ D\x∗

ΩV,γ = {x ∈ Rn : V (x) ≤ γ} is bounded and

ΩV,γ ⊆ D

(3)
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then ΩV,γ ∈ R.

If f is a polynomial vector field, a function V satisfying
the conditions in Lemma 1 can be determined by means
of Sums of Squares (SOS) techniques by exploiting their
connection with convex optimization (Parrilo 2003).

First, recall that g ∈ Σ[x] if and only if there exists
Q=QT � 0 such that g = zT Q z, where z gathers the
monomials of g of degree less than or equal to ∂(g)/2.
This problem can be recast as a semidefinite program
and there are freely available toolboxes to solve this in
an efficient manner. In this work, the library SOSOPT
(Balas et al. n.d.) is used. Lemma 2 reports an applica-
tion of the Positivstellensatz (P-satz) Theorem, which
allows to recast the set containment conditions (3) as
SOS constraints.

Lemma 2 Given h, f0, ..., fr ∈ R[x], the following set
containment holds:{
x : h(x) = 0, f1(x) ≥ 0, ..., fr(x) ≥ 0

}
⊆
{
x : f0(x) ≥ 0

}
(4)

if there exist polynomials p ∈ R[x] and s1, ..., sr ∈ Σ[x]
such that:

p(x)h(x)−
r∑
i=1

si(x)fi(x) + f0(x) ∈ Σ[x] (5)

2.3 Integral Quadratic Constraints

IQCs provide a unified framework to assess the robust-
ness of uncertain, nonlinear systems (Megretski and
Rantzer 1997). The basic idea is to describe the generic
nonlinear uncertain operator ∆ by means of IQCs on its
input v and output w channels.

Let Π ∈ RL(nv+nw)×(nv+nw)
∞ : jR → C(nv+nw)×(nv+nw)

be a measurable Hermitian-valued function, commonly
named multiplier. It is said that the two signals v ∈ Lnv2
and w ∈ Lnw2 satisfy the IQC defined by Π if:

∫ +∞

−∞

[
v̂(jω)

ŵ(jω)

]∗
Π(jω)

[
v̂(jω)

ŵ(jω)

]
dω ≥ 0 (6)

where v̂ and ŵ indicate the Fourier transforms of the
corresponding signals. A bounded and causal operator
∆ is said to satisfy the frequency domain IQC defined
by Π if the signals v and w = ∆(v) satisfy Eq. (6) for all
v ∈ Lnv2 . We will denote this by writing ∆ ∈ IQC (Π).

A library of IQCs exists for various types of uncertain-
ties and nonlinearities as summarized in (Megretski and
Rantzer 1997, Veenman et al. 2016), many of them con-
veniently derived in the frequency domain. However, the
dissipativity framework, used here to provide local sta-
bility guarantees, is inherently formulated in time do-
main, hence it is useful to connect frequency and time
domain IQCs (Seiler 2015, Fetzer et al. 2018). Let Π ∈
RL(nv+nw)×(nv+nw)
∞ , and (Ψ,M) be a (non-unique) fac-

torization of Π = Ψ∼ M Ψ, where M = M> ∈ Rnz×nz
and Ψ ∈ RHnz×(nv+nw)

∞ is constructed from pre-selected

basis transfer functions. Note thatM is typically sign in-
definite. By Parseval’s theorem (Zhou et al. 1996), sub-
stituting the proposed factorization of Π in Eq. (6), the
following holds: ∫ ∞

0

z(t)>Mz(t)dt ≥ 0 (7)

where z is the output of the LTI system Ψ with state ma-
trices AΨ, BΨ = [BΨ1 BΨ2], CΨ, and DΨ = [DΨ1 DΨ2]:

ẋΨ = AΨxΨ +BΨ1v +BΨ2w, xΨ(0) = 0

z = CΨxΨ +DΨ1v +DΨ2w
(8)

It is stressed here that an important distinction holds
for time domain IQCs (Seiler 2015). Namely, a bounded
causal operator ∆ : Lnv2 → L

nw
2 satisfies the time domain

soft IQC defined by (Ψ,M), denoted by ∆ ∈ SoftIQC
(Ψ,M), if the inequality in Eq. (7) holds for all v ∈ Lnv2
and w = ∆(v). On the other hand, ∆ satisfies the time
domain hard IQC defined by (Ψ,M), denoted by ∆ ∈
HardIQC (Ψ,M), if the following inequality holds for all
v ∈ Lnv2 , w = ∆(v) and for all T ≥ 0:∫ T

0

z(t)>Mz(t)dt ≥ 0 (9)

While by Parseval’s theorem ∆ ∈ SoftIQC (Ψ,M) →
∆ ∈ IQC (Π) and ∆ ∈ HardIQC (Ψ,M) → ∆ ∈ IQC
(Π), the converse is only true in the former case. In fact,
∆ ∈ IQC does not, in general, imply the existence of a
factorization (Ψ,M) for which ∆ ∈ HardIQC (Ψ,M),
the hard/soft property being not inherent to the multi-
plier Π but dependent on the factorization (Ψ,M).

Example

To exemplify this aspect, let us consider a real constant
uncertain parameter δu ∈ R satisfying |δu| ≤ k. A pos-
sible frequency domain multiplier Πδu is:

Πδu =

[
k2X(jω) Y (jω)

Y ∗(jω) −X(jω)

]
(10)

with X = X∗ ≥ 0 and Y = −Y ∗ bounded functions of ω
(Megretski and Rantzer 1997). A possible time domain
factorization for Πδu is:

Ψδu =

[
kHν 0

0 Hν

]
; MDG =

[
M11 M12

M>12 −M11

]
(11)

where Hν ∈ RHNd∞ is a column vector of basis func-
tions (typically chosen as low-pass filters, i.e. Hν :=
[1; 1

s+a1
; ...; 1

s+aν
]), andM11=M>11,M12=−M>12 are deci-

sion matrices constrained to satisfyHv
ν (jω)M11Hν(jω)≥0.

This factorization is a general expression for the so
called D-G scalings (Veenman and Scherer 2014, Veen-
man et al. 2016), which specifies that δu is a constant
and real parameter (Zhou et al. 1996). It holds that δu ∈
SoftIQC (Ψδu ,MDG).
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The special case of (10) with Y ≡ 0 corresponds to the
frequency-domain IQC for a dynamic, norm-bounded
LTI system, i.e. δu ∈ RH∞ and ‖δu‖∞ ≤ k. For this
case, a valid time-domain factorization, known asD scal-
ings, is given by (Ψδu ,MD), with MD obtained from
MDG by setting M12 ≡ 0. It holds that δu ∈ HardIQC
(Ψδu ,MD) (Balakrishnan 2002). Note that (Ψδu ,MD)
holds the (stronger) hard property, but it does not fully
capture the nature of δu as real uncertainty, thus it can
possibly lead to more conservative results than those ob-
tained with (Ψδu ,MDG).

Remark 1 Most IQCs require the perturbation to map
zero input to zero output, i.e. v = 0 maps to w = ∆(v) =
0. Specifically, if v = 0 then the IQC in (6) simplifies

to
∫ +∞
−∞ ŵ(jω)∗Π22(jω)ŵ(jω)dω ≥ 0. It is typical that

Π22(jω) < 0 for all ω and hence this requires w = 0. As a
consequence, if ∆ has internal dynamics, e.g. LTI uncer-
tainties, then it is assumed to have zero initial condition.
This assumption was used in (Balakrishnan 2002), and
can be interpreted as the absence of initial stored energy
in ∆. The instance of energy stored in the IQC has re-
cently been addressed in (Pfifer and Seiler 2015, Fetzer et
al. 2018) and could allow to relax this assumption, which
is not deemed overly restrictive in principle.

3 Region of Attraction estimation with IQC

In this section a general framework to estimate the ROA
of attracting equilibria is formulated based on SOS and
IQCs. First, the problem setup is detailed, and then local
stability certificates for the cases of hard and soft IQCs
are stated. Algorithms based on SOS are finally proposed
to numerically solve the problem.

3.1 Problem setup

The proposed framework aims to analyze the local sta-
bility of autonomous nonlinear systems of the form:

ẋ = f(x,w) (12a)

v = h(x,w) (12b)

w = ∆(v) (12c)

where f and h are polynomial functions of x andw (defin-
ing the plant G), and ∆ is a generic bounded operator
(gathering nonlinearities and uncertainties for which an
IQC description holds). The prototype of systems con-
sidered by this work thus consists of the interconnection
G-∆ (standard in robust control) where G is polynomial
but not ∆ in general, making therefore the combined
system non-polynomial.

In the rest of this work it will be assumed for simplicity
that the equilibrium point x∗ is not a function of the un-
certainties in ∆. This hypothesis is largely established in
the literature (Chesi 2004, Topcu and Packard 2009, An-
derson and Papachristodoulou 2017), although strategies
to overcome this limitation have been proposed (Aylward
et al. 2008, Iannelli et al. 2018a). Without loss of gener-
ality, it will also be assumed x∗ = 0.

Starting from the generic description given in (12),
the first step consists in defining the augmented plant

sketched in Fig. 1. The feedback interconnection com-
prises the subsystems G (defined by (12a)-(12b)), ∆
(12c), and Ψ (8).

Fig. 1. Augmented plant for ROA analysis.

Introducing the vector x̃ = [x;xΨ] gathering the states
of the analyzed system x and of the LTI system Ψ, the
plant can be reorganized as follows:

˙̃x = F (x̃, w)

z = H(x̃, w)
(13)

where F,H : Rnx̃+nw → Rnx̃ are polynomial maps de-
pending on both G and Ψ. It is stressed that this manip-
ulation of (12) does not make any assumption on ∆ ex-
cept the existence of a factorization Ψ for the associated
multiplier Π.

3.2 Region of Attraction certificates with Hard IQCs

The proposed estimation of invariant subsets of the ROA
for the system in Eq. (12) when ∆ has an hard IQC
factorization is based on the following theorem.

Theorem 1 Let F be the polynomial vector field defined
in Eq. (13) and ∆ : Lnv2 → Lnw2 be a bounded, causal
operator. Further assume:

(1) ∆ ∈ HardIQC (Ψ,M)
(2) There exist a smooth function V : Rnx̃ → R and

positive scalars εx and εw such that:

V (0) = 0 and V (x̃) > 0 ∀x̃\{0} (14a)

∇V (x̃)F (x̃, w) + z>Mz + εxx̃
>x̃+ εww

>w < 0

∀x̃ ∈ ΩV,γ\{0}, ∀w ∈ Rnw (14b)

where z is the output of the polynomial mapH (13). Then
the intersection of ΩV,γ with the hyperplane xΨ = 0 is an
inner estimate of the ROA of (12).

Proof. The theorem assumes that Eq. (14b) holds only
over the set ΩV,γ . Hence, the proof must ensure first that
all the trajectories originating in ΩV,γ remain within for
all finite time. Assume there exists a T1 > 0 such that
x̃(T1) 6∈ ΩV,γ , and define T2 := inf x̃(T ) 6∈ΩV,γ T . Since
F and H are polynomial maps, solutions of Eq. (13)
are continuous, thus x̃(T2) is on the boundary of ΩV,γ
and x̃(t) ∈ ΩV,γ∀t ∈ [0, T2]. Therefore, it is possible to
integrate the inequality (14b) in this range:

V (x̃(T2))− V (x̃(0)) +

∫ T2

0

z>Mz+

+ εx

∫ T2

0

x̃>x̃ dt+ εw

∫ T2

0

w>w dt < 0

(15)
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Since by hypothesis ∆ ∈ HardIQC (Ψ,M) and
V (x̃(0)) 6 γ, it thus holds:

γ = V (x̃(T2)) < γ (16)

This is contradictory and hence the assumption that
∃T1 > 0 such that x̃(T1) 6∈ ΩV,γ can not hold. Thus
x̃(0) ∈ ΩV,γ implies x̃(t) ∈ ΩV,γ for all finite time (invari-
ance of the level set). Note that this proof by contradic-
tion is needed otherwise there is no guarantee that the
trajectories stay in the set (and thus that the inequality
(14b), leveraged in the rest of the proof, holds).

Next, it is required to prove that the equilibrium point
is attractive. Let us consider Eq. (15) with the inte-
grals performed in a generic interval [0, T ]. From ∆ ∈
HardIQC (Ψ,M) and V (x̃(T )) ≥ 0, it follows that:

εx

∫ T

0

x̃>x̃ dt+ εw

∫ T

0

w>w dt < V (x̃(0)) (17)

Let T →∞ to see that x̃ ∈ Lnx̃2 and w ∈ Lnw2 .
Let us now define y(x̃, w) = [x̃;w] and Dy = {y(x̃, w) :
x̃ ∈ ΩV,γ , w ∈ Rnw}. The vector field F is a polynomial
function of x̃ and w. Therefore, F is locally Lipschitz
(Khalil 1996):

‖F (y2)− F (y1)‖ ≤ L‖y2 − y1‖ ∀y1, y2 ∈ Dy (18)

with L a real constant. In particular, for y1 = [0; 0] and
a generic y2, it holds that:

‖F (y2)‖ ≤ L‖y2‖ (19)

Eq. (19) is valid for a generic y2 inDy, hence the subscript
will be omitted. It follows directly from Eq. (19) that:

˙̃xT ˙̃x = ‖F (y)‖2 ≤ L2‖y‖2 = L2
[
x̃T x̃+ wTw

]
(20)

By integrating both sides from 0 to ∞, it holds for any
admissible trajectory:∫ ∞

0

˙̃xT ˙̃x dt ≤ L2

∫ ∞
0

[
x̃T x̃+ wTw

]
dt

|| ˙̃x||22 ≤ L2
[
||x̃||22 + ||w||22

] (21)

Since x̃ ∈ Lnx̃2 and w ∈ Lnw2 , it follows from (21) that
˙̃x ∈ Lnx̃2 . Note also that an identical argument applied
to the map h from Eq. (12b) allows to conclude that
v ∈ Lnv2 , which guarantees that the signals in the loop be-
long to the space of signals requested from IQCs. Finally,
( ˙̃x, x̃) ∈ L2 implies that x̃ → 0 as T → ∞ (Desoer and
Vidyasagar 1975). Therefore, all the trajectories origi-
nated by initial conditions in ΩV,γ stay in the set and
eventually converge to the equilibrium point. That is,
ΩV,γ is a subset of the ROA of the system in Eq. (13).
Note finally that by definition of Ψ (8) xΨ(0)=0, i.e.
the initial condition for the states xΨ always lies on the
hyperplane xΨ=0. Thus its intersection with ΩV,γ pro-
vides an inner estimate of the ROA of the original system
(12). 2

Remark 2 Note that V is not a Lyapunov function of the
system in Eq. (13). In fact, it is possible for V̇ to be non-
negative at some points in time. This is a consequence of

the term z>Mz which in general only provides integral
constraints. When the IQC defines a pointwise-in-time
constraint (i.e. z>Mz ≥ 0 ∀t), then V is a Lyapunov
function of the system. This is the case for example of
the sector bound multiplier used in Sec. 4.1.

Remark 3 It is common practice to tackle the nonlinear
stability problem of systems subject to polynomial non-
linearities with Lyapunov techniques, whereas the study
of systems subject to hard nonlinearities (and uncertain-
ties) is addressed with multipliers-based techniques. The
proposed result allows to consider the asymptotic stabil-
ity problem (Khalil 1996) of systems generically described
by Eq. (12) within a unified framework. To determine
whether or not an equilibrium point x∗ is asymptotically
stable (without determining its ROA) it suffices indeed to
satisfy Theorem 1 in any domain D ⊂ Rn containing x∗.

A subtle aspect of the proposed framework is that it
is not automatically guaranteed that v ∈ Lnv2 (this is
required for application of the IQC framework, Eq. 6)
because v is here the solution of the polynomial vector
field G (unlike standard IQC problems where G is an
LTI system). However, if the conditions of Theorem 1 are
satisfied, then the proof demonstrates that all the signals
in the loop belong to L2. As a result, the conditions of
the theorem also guarantees that v is in the space of
signals required by IQCs. By contraposition, any plant
G that does not generate solutions in L2 will not satisfy
the conditions of Theorem 1 and, consequently, cannot
be studied with the proposed method.

3.3 An SOS-algorithm for ROA estimates with hard
IQCs

Theorem 1 is used here to compute inner estimates of
the ROA of the original system (12). By restricting the
attention to the class of polynomial functions V , SOS
optimization can be exploited to enforce the set contain-
ment constraints in Eq. (14). The following program is
first proposed.

Program 1

max
s1∈Σ[x̃,w];V ∈R[x̃]

γ

V ∈ Σ[x̃] (22a)

−(∇V f + z>Mz + Lε)− s1(γ − V ) ∈ Σ[x̃, w] (22b)

where Lε = ε[x̃;w]>[x̃;w] with ε small real number on
the order of 10−6. These constraints are sufficient con-
ditions for (14). Indeed, (22a) ensures positivity of V
(14a), whereas (22b) is, by direct application of Lemma
2, a sufficient condition for the set containment (14b).
Note that in Program 1 there are bilinear terms featur-
ing s1, γ and V . If V is held fixed then the bilinearity
only appears in the terms s1γ. In this case, since one
of the two terms in the bilinearity is the objective func-
tion, the problem is quasiconvex (Seiler and Balas 2010)
and the global optimum can be computed via bisection.
However, the term s1V makes the above program non-
convex and this is handled by means of iterative schemes.
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Namely, a three-steps algorithm, inspired by the V -s it-
eration scheme from (Chakraborty et al. 2011b), is pro-
posed with the aim to enlarge the inner estimates of the
ROA via solution of a sequence of convex programs.

Algorithm 1 (Hard-IQCs)

Outputs: the level sets ΩV,γ and Ωp,β (both inner esti-
mates of the ROA).
Inputs: a shape function p; a polynomial V 0 satisfying
(3) for some γ.

(i) γ-Step: solve through bisection on γ:

max
s1∈Σ[x̃,w],M

γ

− (∇V 0F + z>Mz + Lε)− s1(γ − V 0) ∈ Σ[x̃, w]

set γ̄ ← γ and s̄1 ← s1.
(ii) β-Step: maximize the size of Ωp,β through bisection

on β such that Ωp,β ⊆ ΩV 0,γ̄ :

max
s2∈Σ[x̃]

β

(γ̄ − V 0)− s2(β − p) ∈ Σ[x̃]

set β̄ ← β and s̄2 ← s2.
(iii) V -Step: compute a new shape for the level set by

solving over V,M :

V − εx̃>x̃ ∈ Σ[x̃, w]

− (∇V F + z>Mz + Lε)− s̄1(γ̄ − V ) ∈ Σ[x̃, w]

(γ̄ − V )− s̄2(β̄ − p) ∈ Σ[x̃]

set V 0 ← V and go to γ-Step.

Remark 4 The positive polynomial Lε is required by the
perturbation argument used in Theorem 1 (see Eq. 14b).
In fact, this term is also adopted in other algorithms us-
ing SOS-based schemes (Topcu and Packard 2009, Topcu
et al. 2010, Chakraborty et al. 2011b) because it provides
at the end of every iteration a solution satisfying the con-
straints with some margin, increasing in this way the pos-
sibility of achieving feasibility in the subsequent iterative
step. With the same spirit it has been used here for the
constraint on V (where there is no requirement in prin-
ciple from Theorem 1).

A possible option for the shape function p is the ellip-
soid p(x) = x>Nx (with N ∈ Rn×n, N=N> > 0) spec-
ified by the user based on important directions in the
state space. An alternative scheme, which is similar to
Algorithm 1 but does not entail using p, is discussed in
(Iannelli et al. 2018b). As for the initialization of V , if the
equilibrium is asymptotically stable then the lineariza-
tion of the dynamics about the origin can be used to
compute a Lyapunov function that serves as a candidate
input V 0. Alternatively this can be selected as discussed
for p (note that its influence on the results is less than
that of p because the input V 0 is only used in the first
iteration of the algorithm). Note finally that M is a ma-
trix of optimization variables, as it is the case in stan-
dard IQC analysis (Veenman et al. 2016). In general M
will be subject to constraints in order to represent a valid

IQC. These can be typically recast as SOS constraints
and thus added to the optimizations. Examples of this
instances will be discussed in Sec. 3.4 and Sec. 4.2.

3.4 Region of Attraction certificates with Soft IQCs

Theorem 1 assumes that ∆ ∈ HardIQC (Ψ,M). As com-
mented before, once a suitable multiplier Π is selected
for the considered uncertainty or nonlinearity (i.e. ∆ ∈
IQC (Π)), its factorization can, in general, hold only the
weaker property ∆ ∈ SoftIQC (Ψ,M). Indeed it is of-
ten desirable to enrich the description of ∆ by using dif-
ferent multipliers Π, and for some of them only a soft
factorization might hold (e.g. the less conservative D-G
factorization (11) discussed in Sec. 2.3). Therefore, it is
deemed important to provide guarantees of local stabil-
ity also for the cases that do not satisfy condition 1 of
Theorem 1.

In order to make use of the dissipation inequality argu-
ment exploited in Theorem 1, it is important to have
at least a bound on the finite-horizon integral when no
hard factorization is available. To this end, a recent re-
sult is recalled next. As a preliminary, let us denote by
KYP(A,B,C,D,M) the following constraint on a ma-
trix Y = Y >:[

A>Y + Y A Y B

B>Y 0

]
+

[
C>

D>

]
M
[
C D

]
< 0 (23)

Let us also partition the frequency domain multiplier Π
conformably with the dimensions of v and w as Π =[

Π11 Π12

Π∼12 Π22

]
. Then, the result proposed in (Fetzer et al.

2018) (building on a previous finding from (Seiler 2015))
provides the desired bound.

Lemma 3 (Fetzer et al. 2018) Let Ψ ∈ RHnz×(nv+nw)
∞

and M = M> ∈ Rnz×nz be given and define Π = Ψ∼ M
Ψ. If Π22 < 0 ∀ω ∈ R ∪ {∞} then:

• DT
Ψ,2MDΨ,2 < 0 and there exists a solution Y22 = Y >22

to KYP(AΨ, BΨ2, CΨ, DΨ2,M).
• If ∆ ∈ SoftIQC (Ψ,M) then for all T ≥ 0, v ∈ Lnv2

and w = ∆(v):

∫ T

0

z(t)>Mz(t)dt ≥ −xΨ(T )>Y22xΨ(T ) (24)

for any Y22 satisfying KYP(AΨ, BΨ2, CΨ, DΨ2,M)

Note that this result, even though potentially more con-
servative than others proposed in the literature (Seiler
2015, Seiler 2018), is particularly attractive because it
relates the multiplier (Ψ,M) and the bound Y22 via a
KYP constraint, which is a convex Linear Matrix In-
equality (LMI) on M and Y22. By making use of Lemma
3, Theorem 2 is proposed to address the estimation of
ROA with soft IQCs.

Theorem 2 Let F be the polynomial vector field defined
in Eq. (13) and ∆ : Lnv2 → Lnw2 be a bounded, causal
operator. Further assume:
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(1) ∆ ∈ SoftIQC (Ψ,M)
(2) There exists a Y22=Y >22 that satisfies

KYP(AΨ, BΨ2, CΨ, DΨ2,M)

(3) There exist smooth functions V : Rnx̃ → R and Ṽ =
V − x>ΨY22xΨ, and positive scalars εx and εw such
that:

Ṽ (0) = 0 and Ṽ (x̃) > 0 ∀x̃\{0} (25a)

∇V (x̃)F (x̃, w) + z>Mz + εxx̃
>x̃+ εww

>w < 0

∀x̃ ∈ ΩṼ ,γ\{0}, ∀w ∈ Rnw (25b)

Then the intersection of ΩV,γ with the hyperplane xΨ = 0
is an inner estimate of the ROA of (12).

Proof. Integrating the inequality in Eq. (25b) in the
interval [0, T ], it follows:

V (x̃(T ))− V (x̃(0)) +

∫ T

0

z>Mz+

+ εx

∫ T

0

x̃>x̃ dt+ εw

∫ T

0

w>w dt < 0

(26)

Contrary to the case in the proof of Theorem 1, since ∆ ∈
SoftIQC (Ψ,M), the finite-horizon integral involving the
IQC term is not necessarily positive here. According to
the result in Lemma 3, the following lower bound on the
soft IQC (Ψ,M) is valid:∫ T

0

z>Mzdt ≥ −xΨ(T )>Y22xΨ(T ) (27)

for any Y22 satisfying KYP(AΨ, BΨ2, CΨ, DΨ2,M).
Thus, by making use of this lower bound in Eq. (26), it
holds:

V (x̃(T ))− V (x̃(0))− xΨ(T )>Y22xΨ(T )+

+ εx

∫ T

0

x̃>x̃ dt+ εw

∫ T

0

w>w dt < 0
(28)

Define Ṽ (x̃) = V (x̃)−x>ΨY22xΨ. Since xΨ(0) = 0 (recall
the definition of Ψ in Eq. (8)), the following holds directly
from Eq. (28):

Ṽ (x̃(T ))− Ṽ (x̃(0))+εx

∫ T

0

x̃>x̃ dt+εw

∫ T

0

w>w dt ≤ 0

(29)
Note that (29) represents a formally equivalent expres-

sion of Eq. (15), with the crucial difference that Ṽ is
now the level set function. Specifically, the same proof
by contradiction of Theorem 1 can be used to prove the
invariance of the set ΩṼ ,γ . Moreover, due to the posi-

tivity of Ṽ , it holds again that x̃ ∈ Lnx̃2 and w ∈ Lnw2 .
Therefore, the same arguments apply to prove that the
equilibrium point is attracting in the invariant set. It can
then be concluded that the level set ΩṼ ,γ is a subset of

the ROA of the system in Eq. (13). Thus, the intersec-
tion of ΩṼ ,γ with the hyperplane xΨ = 0 (equivalently,

the intersection of ΩV,γ with xΨ = 0) is a subset of the
ROA of Eq. (12). 2

Remark 5 The key step in proving Theorem 2 is the
finite-horizon bound on the soft IQC. In this case this is
specified as an LMI constraint and thus can be easily in-
corporated in convex optimization algorithms. However,
as it has been discussed in Section 3.3, the numerical es-
timation of ROA via SOS proposed here leads to bilinear
terms. In view of this, other (less conservative) bounds
involving non-convex bilinear matrix inequalities could be
similarly considered.

3.5 An SOS-algorithm for ROA estimates with soft
IQCs

The algorithm discussed in this section allows to find in-
ner estimates of the ROA when uncertainties and non-
linearities are possibly described by soft IQCs. In order
to do this, a result allowing condition 2 in Theorem 2 to
be enforced as an SOS constraint is first provided with
the following Lemma.

Lemma 4 The constraint KYP(AΨ, BΨ2, CΨ, DΨ2,M)
on Y22 holds if and only if there exists a function
VΨ = x>ΨY22xΨ: RnxΨ → R such that:

∇VΨ(xΨ)fΨ(xΨ, w) + z>Mz < 0 (30)

with fΨ = AΨxΨ +BΨ2w

z = CΨxΨ +DΨ2w
(31)

Proof. It immediately follows by left and right mul-
tiplying the LMI (23) by [xΨ;w]> and [xΨ;w] respec-
tively. 2

The algorithm for the case of soft IQC is then stated.

Algorithm 2 (Soft-IQCs)

Outputs: the level sets ΩṼ ,γ and Ωp,β (both inner esti-

mates of the ROA).
Inputs: a shape function p; a polynomial V 0 satisfying
(3) for some γ; M0; Y 0

22.

(i) γ-Step: set Ṽ 0 ← V 0− x>ΨY 0
22xΨ and solve through

bisection on γ:

max
s1∈Σ[x̃,w]

γ

− (∇V 0F + z>M0z + Lε)− s1(γ − Ṽ 0) ∈ Σ[x̃, w]

set γ̄ ← γ and s̄1 ← s1.
(ii) β-Step: maximize the size of Ωp,β through bisection

on β such that Ωp,β ⊆ ΩṼ 0,γ̄ :

max
s2∈Σ[x̃]

β

(γ̄ − Ṽ 0)− s2(β − p) ∈ Σ[x̃]

set β̄ ← β and s̄2 ← s2.
(iii) V -Step: compute a new shape for the level set by

solving over V,M, Y22:

7



Ṽ − εx̃>x̃ ∈ Σ[x̃, w];

− (∇V F + z>Mz + Lε)− s̄1(γ̄ − Ṽ ) ∈ Σ[x̃, w]

(γ̄ − Ṽ )− s̄2(β̄ − p) ∈ Σ[x̃]

− (∇VΨfΨ + z>Mz) ∈ Σ[x̃, w]

set V 0 ← V , M0 ← M , Y 0
22 ← Y22, and go to γ-

Step.

where VΨ, fΨ are defined in Eqs. (30-31). It is worth re-
marking that in the proposed algorithm only the V -step
is affected by the KYP constraint and, since this only
features quadratic forms (30), enforcing it with as an
SOS constraint is lossless. In fact, in the γ-step only a
maximization of the size (given by the scalar γ) of the

level set is performed, but its shape (given by Ṽ ) is held

fixed to a given value Ṽ 0. Therefore, by keeping in the
γ-Step the multipliers M fixed to the value optimized at
the previous iteration, the KYP constraint is automat-
ically satisfied. In this regard, note that the algorithm
needs an initialization for M and Y22. There are not for-
mal guidelines for their selection, and in this work the γ-
Step at the first iteration is initialized with Y 0

22 = 0 and
it optimizes over M– that is, it is applied as in the case
of hard IQCs (Algorithm 1). This potentially leads to an
error on γ̄ which, however, only serves in the first itera-
tion to perform the β-step and V -step. The latter then
computes a level set ΩṼ ,γ fulfilling all the prescribed con-
straints, and thus a valid ROA estimate of the system is
achieved. This will in turn provide the sought initializa-
tions for the next iteration and so forth.

4 Numerical examples

This section provides two numerical examples to illus-
trate the application of the proposed framework.

4.1 Closed-loop short period GTM aircraft

The closed-loop short period motion of the NASA’s
Generic Transport Model (GTM) can be approxi-
mated as a 2 states polynomial system (Chakraborty et
al. 2011a):

α̇ = −1.492α3 + 4.239α2 + 0.2402αδe + 0.003063αq−
+ 0.0649δ2

e + 0.006226q2 − 3.236α− 0.3166δe + 0.9227q;

q̇ = −7.228α3 + 18.36α2 + 41.5αδe − 45.34α− 59.99δe+

− 4.372q + 1.103q3;

δeCMD = Kq; K = 4
π

180
;

(32)
where α is the angle of attack, q is the pitch rate, δ is
the elevator deflection. The GTM steady-state solution
consists of a locally stable equilibrium point at the ori-
gin, i.e. x∗ = 0. Previous studies focused on Region of
Attraction analysis of the Open (OL) and Closed-Loop
(CL) system (Chakraborty et al. 2011a), and worst-case
L2 gain analysis with saturated rate of δ (Chakraborty
et al. 2010). In this work, δ is assumed to be subject to

actuator magnitude saturation, that is:

δ =

{
sgn(δCMD) δsat; |δCMD| > δsat

δCMD; |δCMD| ≤ δsat
(33)

where δsat is the saturation level. A characterization of
the saturation by means of IQCs holding as finite-horizon
time domain constraints (i.e. hard IQCs) is discussed
next. For example, regarding the saturation as a mem-
oryless, bounded, nonlinearity within the sector [σ, η],
the sector multiplier ΠS enforces this property:

ΠS =

[
−2ση σ + η

σ + η −2

]
; ΨS = I2; MS = λSΠS ; (34)

with λS > 0 decision scalar.

If in addition the saturation is considered a monotonic
and odd function, then a slope restriction in the sec-
tor [σ1, η1] holds. This property leads to the Zames-
Falb IQC ΠZF (Heath and Wills 2005, Megretski and
Rantzer 1997). By parametrizing the dynamic part of
ΠZF with low pass filters (one low pass filter with fre-
quency 1 rad

s is used here) (Veenman et al. 2016), a J-
spectral factorization Jsf (ΠZF ) can be performed with
the algorithm from (Seiler 2015), which in turn provides
an hard IQC factorization (ΨZF ,MZF ).

A common choice in IQC analysis of saturated systems
is to consider the sector [0, 1] for both ΠS and ΠZF .
However, these IQCs include the OL system (i.e. δ=0) as
a particular case and thus the estimated ROA cannot be
larger than the corresponding one. For these reasons, a
relaxation of the sector IQC is proposed, exploiting the
fact that the ROA inherently provides a bound on the
values of the states of the system. The premise, based on
the notion of local IQCs (Summers and Packard 2010),
is sketched in Fig. 2, showing the relationship between
commanded (δCMD) and saturated (δ) input. On the
horizontal axis it is highlighted δmaxCMD = Kqmax, where
qmax denotes the largest value for which q belongs to
the region of attraction. It is then apparent that the
lower bound σ depends on qmax and the saturation level,

specifically it holds σ = δsat

K
1

qmax
.

Fig. 2. Relaxed sector constraint exploiting bounds on the
states.

A strategy is discussed next to include this relaxation
in the algorithms presented in Section 3. This has con-
nections with previous works (Hu et al. 2006, da Silva
and Tarbouriech 2005) that considered a similar prob-
lem, but allows for polynomial plants G (32) and level
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set functions. The idea is to determine qmax at the end of
each iteration (i.e. after the V -step), and based on that
update the lower bound σ of the sector multiplier. The
expression of ΠS at iteration n+ 1 is thus given by:

ΠS |n+1
= ΠS |[

σ= δsat

K
1

qmax|n
;η=1

] (35)

where the value qmax|n can be computed at the end of
iteration n with the following SOS program:

qmax|n = max
sf+ ,sf−∈Σ[x̃]

qmax

q + qmax − sf+
(γ|n − V |n) ∈ Σ[x̃]

−q + qmax − sf−(γ|n − V |n) ∈ Σ[x̃]

(36)

This program is an application of Lemma 2 and guaran-
tees that − qmax|n ≤ q|n ≤ qmax|n.
This strategy has the desired property that the sector
employed at iteration n + 1 (function of qmax|n) is al-
ways consistent with the ROA computed at the same
iteration. This results from the fact that the computed
ROA is non-decreasing throughout the iterations, there-
fore qmax|n+1 ≥ qmax|n. In (Iannelli et al. 2018b) an al-
ternative strategy where the lower bound of the sector is
integrated in the program as optimized variable is also
discussed.

Fig. 3 displays inner estimates of the ROA of the satu-
rated GTM model obtained with Algorithm 1 and the
discussed relaxation strategy for three levels of satura-
tion (δsat=[0.05, 0.1, 0.2] rad). The open loop OL and
unsaturated closed-loop CL cases are also reported for
comparison. A quartic level set (i.e ∂(V ) = 4) is consid-
ered, and the shape matrix N = diag(8.16, 1.31) from
(Chakraborty et al. 2011a) is employed to define the
shape function p.
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Fig. 3. Estimates of the ROA for different saturation levels.

It can be observed that the three curves obtained with
the proposed approach are larger than the OL curve.
Moreover, as the value of δsat is increased, the corre-
sponding curves get closer to the unsaturated closed-
loop, as expected. Fig. 3 also shows three markers (as-
terisk for δsat=0.05 rad, cross for δsat=0.1 rad, and cir-
cle for δsat=0.2 rad) corresponding to initial conditions
for which the dynamics was found unstable, and the rel-
ative escaping trajectories in dashed-dotted lines. The

small gap between markers and corresponding estimates
of ROA suggests that the effect of saturation is well pre-
dicted by the proposed approach.

4.2 Van der Pol oscillator

The Van der Pol (VdP) oscillator is a polynomial non-
linear system with 2 states. In here the case with an un-
certain scalar parameter δ1 ∈ [−1, 1] is studied:

ẋ1 = −x2(1 + 0.2δ1)

ẋ2 = x1 + (x2
1 − 1)x2

(37)

The VdP steady-state solutions are an unstable limit
cycle and a locally stable equilibrium point (coinciding
with the origin for all the values of the uncertainty, as it
was assumed in Section 3.1).

The estimation of the ROA is performed with the mul-
tipliers (Ψδu ,MD) and (Ψδu ,MDG) discussed in Sec.
2.3. The D-G scalings multipliers (11), providing soft
IQCs, require the additional constraint Hv

ν M11Hν > 0
to be a valid factorization. This can be enforced with-
out conservatism by finding a matrix Y such that
KYP(AHν , BHν , CHν , DHν ,M11) holds (23). This in
turn can be expressed by Lemma 4 as an inequality
involving the optimization variables, and thus it is ap-
pended as additional SOS constraint in Algorithm 2.

Fig. 4 presents the results for ∂(V ) = 6. The shape func-
tion p = 0.378x2

1 +0.278x2
2−0.274x1x2 from (Topcu and

Packard 2009) is employed. Hν is parameterized with
ν = 1, i.e. Hν = [1, 1

s+a1
] where a1=1 rad

s . This value is
close to the frequency of the limit cycle, and yielded an
improvement in the estimation of the ROA compared to
other parameterizations. The limit cycles of the system,
enclosing the region of attraction of the origin and thus
providing an upper bound on the estimations, is reported
for eight values of δ1 (ROA(δ1)).

−3 −2 −1 0 1 2 3
−4
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−2

−1

0

1

2

3

4

x
1

x
2

 

 

D (hard)

DG (soft)

ROA(δ
1
)

Fig. 4. Estimates of the ROA: hard versus soft IQCs.

The results show that the inner estimates of the ROA lie
close to the smallest in size of the LCOs. It can also be
noted that the estimation obtained with the D-G scal-
ings (specifying the nature of the uncertainty as real pa-
rameter) is the largest. This stresses once more the fa-
vorable effect of enriching the description of the uncer-
tainties/nonlinearities with an appropriate selection of
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the IQCs. In addition, it motivates the importance of
providing the main result of the paper also for the case
of soft IQCs (Theorem 2).

4.3 General concluding remarks

The numerical examples have showcased some of the
properties of the new proposed framework for ROA anal-
ysis. Before briefly commenting them, the main assump-
tions underlying the analyses are recapped here. System
(12) has a locally stable equilibrium point x∗, and it is
well-posed (hence guaranteeing continuity of the result-
ing trajectories) for initial conditions in the region of at-
traction of x∗. For the sake of simplicity, x∗ is assumed
to be independent of ∆, but extensions of the methods
proposed in (Aylward et al. 2008, Iannelli et al. 2018a)
to the present formulation can be employed for cases in
which this hypothesis does not hold.

The presented approach allows to capture the effect of
different kind of uncertainties on the local stability of the
analyzed system. One of the advantages of this method
is indeed the possibility to refine the description of the
uncertainty by adding various classes of multipliers. Dif-
ferent from other solutions proposed in the literature
(Topcu and Packard 2009, Topcu et al. 2010, Anderson
and Papachristodoulou 2017, Iannelli et al. 2019), this
framework exploits the nature of the uncertainties (e.g.
real constant, linear time varying) to reduce the conser-
vatism by specializing the IQC description. In addition
to that, a further refinement is allowed by the parame-
terization of the dynamic multipliers (e.g. increasing ν
for the D-G scalings). In practice, a trade-off between
computational time and accuracy will arise, and system-
dependent investigations are required to assess the ben-
efits of a more sophisticated description.

Another favourable feature is that the estimate of the
ROA is given by means of parameter-independent level
sets, i.e. V is a function of x̃ only. The fact that ΩV,γ
does not depend on the uncertainty set ∆ avoids the
computation of the intersection of the parameterised es-
timates, resulting in a more accurate and easier to visu-
alise outcome. Nonetheless, the parameter-independent
option is known to lead to more conservative estima-
tions because a single function is used to certify the set
containment properties over the entire uncertainty set
(Topcu et al. 2010). The solution proposed in this work
can be interpreted as a trade-off in that regard, since the
function V indirectly depends on the uncertainties via
the IQC states xΨ (for dynamic IQCs). This has no ef-
fect on the interpretation of the results because it always
holds xΨ(0) = 0, thus the analyst will only look at the
intersection of ΩV,γ with the hyperplane xΨ = 0.

The main drawback of this approach is the presence of
the states xΨ associated with dynamic multipliers, which
determines an increase in the run time. Note however
that there are a number of static multipliers which allow
to specify features of the operator ∆ (e.g. sector, norm
bound, time varying real scalar) without affecting the
size of x̃. Another aspect worth noting is that the compu-
tation of ΩV,γ relies on non-convex programs, hence con-
vergence to local minima and sensitivity to user-specified
parameters are possible issues. Future works can consider

efficient convex formulations of this problem (Henrion
and Korda 2014).

5 Conclusions

This paper presents a new framework for region of at-
traction analysis of systems affected by generic nonlin-
earities and uncertainties. Non-polynomial nonlineari-
ties and uncertainties are described by means of Integral
Quadratic Constraints, which are allowed to have both
hard and soft factorizations. The main results of the arti-
cle give sufficient conditions to determine inner estimates
of the ROA of attracting fixed points for both types of
factorization. For the soft IQC case, a recently proposed
convex lower bound on the hard IQC is employed. One
of the features of the results is that the invariant sets are
not level sets of a Lyapunov function.

Based on Sum of Squares techniques, iterative algo-
rithms that allow to enlarge the provable invariant and
attractive sets are formulated, and then applied to two
case studies. A computational strategy to combine the
estimation of ROA with the definition of the sector
multiplier is discussed, together with the effect of re-
fining the description of real parametric uncertainties
by means of more sophisticated IQCs. The results show
the prowess of the proposed framework in analyzing the
local stability of generic uncertain nonlinear systems.

Acknowledgements

The authors would like to thank the anonymous review-
ers for their interesting remarks and insightful sugges-
tions, which greatly contributed to improving the paper.

References

Anderson, J. and A. Papachristodoulou (2017). ‘Robust nonlinear
stability and performance analysis of an F/A-18 aircraft
model using sum of squares programming’. International
Journal of Robust and Nonlinear Control 23(10), 1099 1114.

Aylward, E. M., P. A. Parrilo and J.J. E. Slotine (2008). ‘Stability
and robustness analysis of nonlinear systems via contraction
metrics and SOS programming’. Automatica 44(8), 2163 –
2170.

Balakrishnan, V. (2002). ‘Lyapunov functionals in complex
µ analysis’. IEEE Transactions on Automatic Control
47(9), 1466–1479.

Balas, G. J., A. K. Packard, P. Seiler and U. Topcu (n.d.).
‘Robustness analysis of nonlinear systems’. http://www.aem.
umn.edu/~AerospaceControl/.

Chakraborty, A., P. Seiler and G. J. Balas (2010). Local
Performance Analysis of Uncertain Polynomial Systems with
Applications to Actuator Saturation. IEEE CDC.

Chakraborty, A., P. Seiler and G.J. Balas (2011a). ‘Nonlinear
region of attraction analysis for flight control verification and
validation’. Control Engineering Practice 19(4), 335 – 345.

Chakraborty, A., P. Seiler and G.J. Balas (2011b). ‘Susceptibility
of F/A-18 Flight Controllers to the Falling-Leaf Mode:
Nonlinear Analysis’. J. of Guidance, Control and Dynamics
34(1), 73–85.

Chesi, G. (2004). ‘Estimating the domain of attraction for
uncertain polynomial systems’. Automatica 40, 1981 – 1986.

10



da Silva, J. M. G. and S. Tarbouriech (2005). ‘Antiwindup design
with guaranteed regions of stability: an lmi-based approach’.
IEEE Transactions on Automatic Control 50(1), 106–111.

Desoer, C. and M. Vidyasagar (1975). Feedback Systems: Input-
Output Properties. Academic Press: New York.

Fetzer, M., C. W. Scherer and J. Veenman (2018). ‘Invariance
with dynamic multipliers’. IEEE Transactions on Automatic
Control 63, 1929 – 1942.

Genesio, R., M. Tartaglia and A. Vicino (1985). ‘On the
estimation of asymptotic stability regions: State of the art and
new proposals’. IEEE Transactions on Automatic Control
30(8), 747–755.

Heath, W. P. and A. G. Wills (2005). Zames-Falb multipliers for
quadratic programming. 44th IEEE Conference on Decision
and Control (CDC).

Henrion, D. and M. Korda (2014). ‘Convex Computation of the
Region of Attraction of Polynomial Control Systems’. IEEE
Transactions on Automatic Control 59(2), 297–312.

Hu, T., A. R. Teel and L. Zaccarian (2006). ‘Stability
and performance for saturated systems via quadratic and
nonquadratic lyapunov functions’. IEEE Transactions on
Automatic Control 51(11), 1770–1786.

Iannelli, A., A. Marcos and M. Lowenberg (2019). ‘Robust
estimations of the region of attraction using invariant sets’.
Journal of The Franklin Institute 356, 4622–4647.

Iannelli, A., P. Seiler and A. Marcos (2018a). An equilibrium-
independent region of attraction formulation for systems with
uncertainty-dependent equilibria. IEEE CDC.

Iannelli, A., P. Seiler and A. Marcos (2018b). Estimating the
Region of Attraction of uncertain systems with Integral
Quadratic Constraints. IEEE CDC.

Khalil, H. K. (1996). Nonlinear systems. Prentice Hall.

Megretski, A. and A. Rantzer (1997). ‘System analysis via integral
quadratic constraints’. IEEE Transactions on Automatic
Control 42(6), 819–830.

Parrilo, P. A. (2003). ‘Semidefinite programming relaxations
for semialgebraic problems’. Mathematical Programming
96(2), 293–320.

Pfifer, H. and P. Seiler (2015). ‘Less Conservative Robustness
Analysis of Linear Parameter Varying Systems Using Integral
Quadratic Constraints’. International Journal of Robust and
Nonlinear Control 26(16), 3580 – 3594.

Seiler, P. (2015). ‘Stability analysis with dissipation inequalities
and integral quadratic constraints’. IEEE Transactions on
Automatic Control 60(6), 1704–1709.

Seiler, P. (2018). An Iterative Algorithm to Estimate Invariant
Sets for Uncertain Systems. In ‘IEEE ACC’.

Seiler, P. and G. Balas (2010). Quasiconvex Sum-of-Squares
Programming. In ‘IEEE CDC’.

Summers, E. and A. Packard (2010). L2 gain verification for
interconnections of locally stable systems using integral
quadratic constraints. In ‘IEEE CDC’.

Topcu, U., A. K. Packard, P. Seiler and G. J. Balas (2010). ‘Robust
Region-of-Attraction Estimation’. IEEE Transactions on
Automatic Control 55(1), 137–142.

Topcu, U. and A. Packard (2009). ‘Local Stability Analysis
for Uncertain Nonlinear Systems’. IEEE Transactions on
Automatic Control 54(5), 1042–1047.

Valmorbida, G. and J. Anderson (2017). ‘Region of attraction
estimation using invariant sets and rational Lyapunov
functions’. Automatica 75, 37 – 45.

Valmorbida, G., S. Tarbouriech and G. Garcia (2009). Region of
attraction estimates for polynomial systems. In ‘IEEE CDC’.

Vannelli, A. and M. Vidyasagar (1985). ‘Maximal lyapunov
functions and domains of attraction for autonomous nonlinear
systems’. Automatica 21, 69–80.

Veenman, J. and C.W. Scherer (2014). ‘IQC-synthesis with
general dynamic multipliers’. International Journal of Robust
and Nonlinear Control 23(17), 3027–3056.

Veenman, J., C. W. Scherer and H. Köroğlu (2016). ‘Robust
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