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Abstract

A method is presented to estimate the region of attraction (ROA) of stochastic systems with finite second moment and
uncertainty-dependent equilibria. The approach employs Polynomial Chaos (PC) expansions to represent the stochastic system
by a higher-dimensional set of deterministic equations. We first show how the equilibrium point of the deterministic formulation
provides the stochastic moments of an uncertainty-dependent equilibrium point of the stochastic system. A connection between
the boundedness of the moments of the stochastic system and the Lyapunov stability of its PC expansion is then derived.
Defining corresponding notions of a ROA for both system representations, we show how this connection can be leveraged
to recover an estimate of the ROA of the stochastic system from the ROA of the PC expanded system. Two optimization
programs, obtained from sum-of-squares programming techniques, are provided to compute inner estimates of the ROA. The
first optimization program uses the Lyapunov stability arguments to return an estimate of the ROA of the PC expansion.
Based on this result and user specifications on the moments for the initial conditions, the second one employs the shown
connection to provide the corresponding ROA of the stochastic system. The method is demonstrated by two examples.
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1 Introduction

The analysis of the region of attraction (ROA) of an
uncertain nonlinear system is an active field of research
(Chesi 2004, Valmorbida and Anderson 2017, Iannelli et
al. 2019). The type of uncertainty and its appearance in
the dynamical equations is often pivotal for the choice
of the analytical approach. A class of uncertain systems
commonly considered has two characteristic properties:
firstly, the equilibrium point of the system is indepen-
dent of the uncertainty, and secondly, the uncertainty
comes from a uniform distribution. The stability of this
class of systems can be analysed using Lyapunov meth-
ods where an estimate of the ROA is obtained in the
form of the sublevel set of a Lyapunov function (Chesi et
al. 2005). The aim then lies in finding a Lyapunov func-
tion verifying a largest possible estimate of the ROA.
For systems where the uncertainty itself is parametric
and polytope-bounded, parameter-dependent as well as
common and composite Lyapunov functions have been
investigated in, e.g., Topcu et al. (2010), Chesi (2004),
Iannelli et al. (2019). While estimates for these cases can
be efficiently obtained, the assumption of uncertainty-
independent equilibria and uniformly distributed un-
certainty excludes most systems from the analysis as
equilibria are in general uncertainty-dependent and the
stochasticity affecting the system can come from a wide
range of distributions.
The ROA analysis in the case of uncertainty-dependent
equilibria is not directly amenable to the use of Lya-
punov functions, as this method requires knowledge
of the equilibrium’s location in the standard case. To

tackle this problem, an equilibrium-independent version
of the ROA was proposed in Iannelli et al. (2018) where
the idea is to formulate the ROA as a function of a new
coordinate representing the deviation of the state rela-
tive to the equilibrium point. This approach, however, is
still limited to uncertainties from uniform distributions.
A more general approach for stability analysis is pro-
vided by contraction methods which inherently do not
require knowledge on the equilibrium state. Contrac-
tion of uncertain systems was studied, e.g. in Ahbe et
al. (2018) for polytope-bounded parametric uncertainty
and in Pham et al. (2009) for Itô stochastic differential
equations. Contraction methods often pose, however,
numerically more complex problems compared to Lya-
punov analysis as they consider the differential system.
Furthermore, while contraction analysis gives conclu-
sions about the contractive behaviour of a system it in
general does not provide information on the state of the
(stochastic) equilibrium.
In this work we present an efficient method to analyse the
ROA of stochastic nonlinear systems with uncertainty-
dependent equilibrium points where the uncertainty
can be in form of any square-integrable random vari-
able. The stochastic system is thereby represented by
a higher-dimensional set of deterministic equations ob-
tained from a Polynomial Chaos (PC) expansion of the
stochastic dynamics. PC expansions are a polynomial
approximation method which allow the representation
of a second order random process, i.e. stochastic systems
with finite second moment, by a higher-dimensional de-
terministic expression. An overview of PC expansions
can be found, e.g., in Sullivan (2015) and Le Maitre



and Knio (2010). While PC expansion techniques have
become established tools in uncertainty quantification,
their use in stability and control is still sparse (Kim et
al. 2013) and mostly focused on linear systems. Stability
analysis of linear stochastic systems via PC expansions
using Lyapunov inequalities was previously performed
in Fisher and Bhattacharya (2009) and Lucia et al.
(2017). In Hover and Triantafyllou (2006), the evolution
of the stochastic modes resulting from the PC expan-
sion was used to obtain information on the stability of
a nonlinear system. A more generalized approach for
polynomial systems using Lyapunov arguments is briefly
presented in Fisher and Bhattacharya (2008), however
the method proposed therein can only be used to certify
global stability properties.
This paper proposes a novel method to analyse the
ROA of stochastic nonlinear systems with uncertainty-
dependent equilibria by leveraging the PC expansion
framework. We first show how an equilibrium point of
the deterministic expression given by the PC expansion
corresponds to an uncertainty-dependent equilibrium
point of the stochastic system. The latter can be rep-
resented as a set, referred to as the equilibrium set, for
which statistical information is directly obtained from
the expansion coefficients.
For both the stochastic system and its PC expansion no-
tions of local stability are provided, consisting in bound-
edness of moments for the first and asymptotic stability
in the sense of Lyapunov for the second. It is then demon-
strated how Lyapunov stability of the PC equilibrium
point implies moment boundedness of trajectories in the
neighborhood of the equilibrium set of the stochastic
system. From the stability notions and their shown con-
nection, corresponding notions of the ROA are defined
for both system representation. To obtain an inner esti-
mate of the ROA of the PC expanded system, Lyapunov
arguments stating sufficient conditions are formulated
and converted into an algorithm. The algorithm employs
well-established sum-of-squares verification techniques
to test polynomial positivity (Parrilo 2000) which were
previously used for analysing the ROA of polynomial
systems in, e.g. Tan and Packard (2006), Topcu et al.
(2010) and others. We then proceed by providing a
notion of the ROA of the stochastic system which is for-
mulated on the basis of the ROA of its deterministic PC
expansion. While the ROA of a deterministic system is
clearly defined, the definition of an attractive region of
uncertain system can be of various types. For stochastic
systems a definition of the ROA can be derived from the
type of stochastic stability under consideration. For an
overview of the different definitions of stochastic stabil-
ity see, e.g., Khasminskii (2012). A widely used notion
for the ROA of uncertain systems is that of a ‘robust’
ROA, which is the intersection of the ROA’s obtained
for each realization of the uncertainty. As it thus relates
to the worst case, this notion is suitable for uncertainties
with uniform distributions but less so for other distri-
butions where the worst case is not of practical interest
or exploiting the statistical information available gives
less conservative results. A probabilistic ROA of an
uncertainty-independent equilibrium point was investi-
gated for Ito-stochastic system via Lyapunov functions
in Gudmundsson and Hafstein (2018). In Steinhardt
and Tedrake (2012) ‘safe sets’ of a controlled system
with quantified failure probabilities were considered and

computed with a supermartingale approach. We here
provide an approach in which the ROA is obtained in
terms of the region of initial conditions with specified
moment properties for which trajectories almost surely
converge to the equilibrium set of the stochastic system.
The moment properties of the initial condition consist
of, for example, a fixed variance in the initial state and
can be specified by the user. The proposed method is
demonstrated by two examples from the literature.

1.1 Notation

Let (Θ,F , µ) be a probability space, where Θ is a sam-
ple space, F is a σ-algebra of the subsets in Θ and µ is
a probability measure on (Θ,F). The Lebesgue space is
denoted by Ll, where 1 ≤ l ≤ ∞. The inner product in
the L2 space is denoted by 〈·, ·〉L2(µ) which represents in-
tegration (i.e. expectation, also indicated by E) with re-
spect to µ. A random variable ξ : Θ→ R with finite sec-
ond moment, ξ ∈ L2(Θ, µ), is referred to as the stochas-
tic germ. For clarity of presentation we here consider
one-dimensional stochastic germs. The extension to vec-
tor valued ξ with independent components is straight-
forward, see e.g. Sullivan (2015). Let the P -th moment
of a random variable ξ be given by MP (ξ) = E[|ξ|P ]. A
probability distribution λ with P given moments, where
1 ≤ P < ∞, is denoted by λ(M1..P ). The symbol ∼ de-
notes an element with distribution λ.
Let Pn denote the ring of all n-variate polynomials with
real coefficients and let Pn≤r denote those polynomials of

total degree at most r ∈ N0. A polynomial g(x) : Rn →
R, g(x) ∈ Pn≤r is called a sum-of-squares (SOS) if it can

be written as g(x) =
∑
i qi(x)2, qi(x) ∈ Pn≤r/2. More-

over, g is SOS if and only if there is a matrix Q � 0 such
that g(x) = v(x)TQv(x), where v(x) is a vector of mono-
mials. The set of all SOS polynomials in the indetermi-
nant x is indicated by Σ[x]. The degree of a polynomial
g in x is indicated by ∂(g).

2 Problem Statement and Background

In this work we are interested in estimating the region of
attraction of the equilibrium state of a stochastic non-
linear system.
The systems we consider are continuous time second or-
der random processes of the form

ẋ(t, ξ) = f(x(t, ξ), a(ξ)), (1)

where x(t, ξ) ∈ Rn is the random state variable,
a(ξ) ∈ L2(Θ, µ;Rm) is a random variable, and
f : Rn×Rm → Rn is assumed to be polynomial in x and
a. Further, we assume that ξ has finite support. In most
practical applications this is the case and uncertainty
distributions with typically infinite support, such as
Gaussian distributions, can here be considered to have
finite support with in practice negligible approximation
error (Hover and Triantafyllou 2006).
We consider systems with an uncertainty-dependent
attractive equilibrium point xEP(ξ). Let the set, given
by the evaluation of xEP(ξ) for each realization of the
uncertainty, be denoted by

I = {x ∈ Rn | f(x, a(ξ))=0, ξ∈L2(Θ, µ)}. (2)
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In the following, the set I of a system is referred to as
the equilibrium set.
Let ψ(t, xini(ξ), ξ) denote the uncertainty-dependent so-
lution of (1) at time t with initial condition xini(ξ),
where the initial state is also allowed to be random, i.e.
x(t = 0) = xini(ξ). The ROA of the equilibrium set I is
then defined as

R∗={xini∈Rn|P[ lim
t→∞

d(ψ(t, xini(ξ), ξ), I)= 0]=1}, (3)

where P denotes probability, and d is the distance mea-
sured in a chosen norm (e.g. the Euclidean norm).

2.1 Polynomial Chaos Expansion

Polynomial Chaos (PC) expansion can be used to ap-
proximate stochastic processes with finite second mo-
ment (which includes most stochastic processes of the
physical world (Xiu and Karniadakis 2003)) by a higher
dimensional set of deterministic equations. Most of the
notations and definitions used in this section can be
found e.g. in Sullivan (2015), Le Maitre and Knio (2010).
The PC expansion is performed within an orthogonal
polynomial basis where the basis is chosen according to
the type of probability distribution of the random vari-
able in order to obtain optimal (in the L2-sense) conver-
gence of the expansion. This is the case if the weighting
function of the orthogonality relationship of the poly-
nomial basis is identical to the probability function of a
random distribution.
For a given probability space, an orthogonal polynomial
basis is defined as follows.

Definition 1 Let µ be a non-negative measure on Θ.
A set of polynomials Q = {Φi|i ∈ N} ⊆ P is called
an orthogonal system of polynomials if for each i ∈ N,
∂(Φi) = i, Φi ∈ L2(Θ, µ) and

〈Φi(ξ),Φj(ξ)〉 =

∫
Θ

Φi(ξ)Φj(ξ)dµ(ξ) = γiδij , (4)

where
γi := 〈Φi(ξ),Φi(ξ)〉 (5)

are (non-negative) normalization constants of the basis.

The orthogonal polynomial basis is constructed using
a normalization such that Φ0 = 1. For any complete
orthogonal basis of the Hilbert space L2(Θ, µ) the PC
expansion is then defined as follows.

Definition 2 Let y(ξ) ∈ L2(Θ, µ) be a square-integrable
vector-valued random variable in Rm, m ∈ N. The
Polynomial Chaos expansion of y(ξ) with respect to
the stochastic variable ξ is the expansion of y(ξ) in the
orthogonal basis {Φi}pi=0

y(ξ) =

p∑
i=0

ȳiΦi(ξ) ∈ Rn, (6)

with vector valued polynomial chaos coefficients ȳi ∈ Rn,
ȳi = [ȳ1i , ..., ȳni ]

T , which are obtained from

ȳi =
〈y(ξ),Φi(ξ)〉

γi
. (7)

With p→∞ the series in (6) becomes an exact expansion
of y(ξ).

The coefficients {ȳi}i∈N0 can be obtained by computing
the integral in equation (7) for each component of y us-
ing, e.g., Galerkin projection.

2.2 Truncation error

For practical purposes, a PC expansion needs to be trun-
cated for a specified order p. As the expansion series is
L2-convergent for second order random processes, low
orders of p are in general sufficient to keep the error
introduced by the truncation small and represent the
original system sufficiently well (Sullivan 2015, Xiu and
Karniadakis 2002). Thus, in the remainder of the paper
the following working assumption is made.

Assumption 1 The PC expanded system (15) truncated
at order p accurately represents the stability properties of
the true stochastic system (1).

An analysis of possible effects of the truncation order
can be found in Field and Grigoriu (2004). In case a
guaranteed accuracy of the truncated system is required
the truncation error can be upper bounded and added to
the expansion as model uncertainty, see, e.g., Mühlpfordt
et al. (2018), and Fagiano et al. (2011).

2.3 PC expansion of moments

In the PC framework the moments of a random variable
or stochastic process can be retrieved from the coeffi-
cients of the L2-optimal expansion. Let y(ξ) ∈ Rn be
a random variable. With the notation in (6), the P -th
moment, where 1≤ P <∞, is obtained from

E[|y(ξ)|P ] =

p∑
i,j,..,P=0

ȳiȳj · · · ȳP 〈ΦiΦj · · · ,ΦP 〉

=: M̄1..P (ȳ). (8)

For the first moment, i.e. the mean, (8) results in

m(y(ξ)) := E[y(ξ)] = 〈y(ξ),Φ0〉 = ȳ0. (9)

Further, for the variance of y(ξ), we obtain

E[|y(ξ)− E[y(ξ)]|2] =

p∑
j=1

ȳ2
jγj , (10)

and for the covariance matrix σ of xy(ξ)

σ(y(ξ)) :=

p∑
j=1

ȳj ȳ
T
j γj , (11)

where, in particular, we have for each entry of the matrix
σkl =

∑p
j=1 ȳkj ȳljγj , with ȳkj , ȳlj representing the j-th

PC coefficients of the k-th, respectively l-th, component
of the random variable y ∈ Rn.
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In the remainder of the paper we will denote any PC ex-
pansion coefficient or variable dependent on such with an
overbar-notation to distinguish them from the stochastic
variables. Since the mean and the variance are given by
separate sets of PC coefficients, the following notation is
used for the coefficients of the PC expansion of y ∈ Rm.

ȳ0 := [ȳ10
, . . . , ȳm0

]T ∈ Rm, (12)

ȳJ := [ȳ11 , . . . , ȳm1 , . . . , ȳ1p , . . . , ȳmp ]T ∈ Rm·p, (13)

ȳ := [ȳ0, ȳJ ]T ∈ Rm·(p+1), (14)

where the elements in ȳ0 are called the mean modes, the
elements in ȳJ the variance modes and together they are
referred to as stochastic modes ȳ.

2.4 PC expansion of stochastic polynomial ODEs

Applying the PC expansion to stochastic dynamical sys-
tems results in a deterministic representation of the sys-
tem at the expense of an increased state dimension. More
precisely, by expanding the random variables up to order
p and projecting the resulting expansion onto each of the
p basis functions, the n-dimensional stochastic system
is represented by a n · (p+ 1)-dimensional deterministic
system. We use the notation

˙̄x := f̄(x̄), (15)

where x̄ ∈ Rn(p+1) is the vector of PC expansion coef-
ficients, and f̄ : Rn(p+1) → Rn(p+1), to refer to the dy-
namics resulting from the PC expansion of a stochastic
system (1). The expansion is demonstrated for an exam-
ple system where n = 1.

ẋ(t, ξ) = a(ξ)x3(t, ξ). (16)

Expanding (16) and dropping the (ξ) and (t)-notation
for clarity results in

p∑
i=0

˙̄xiΦi =

p∑
j,k,l,m=0

āj x̄kx̄lx̄mΦjΦkΦlΦm. (17)

Projecting (17) onto the q-th basis polynomial

p∑
i=0

˙̄xi〈Φi,Φq〉=
p∑

j,k,l,m=0

āj x̄kx̄lx̄m〈ΦjΦkΦlΦm,Φq〉,

(18)
we obtain q deterministic differential equations

˙̄xq = γ−1
q ·

p∑
j,k,l,m=0

āj x̄kx̄lx̄m〈ΦjΦkΦlΦm,Φq〉. (19)

Remark 1 The polynomial basis for the PC expansion
of (16) is often chosen according to the L2-optimal basis
for ξ. While the PC expansion for a second order random
process such as (16) can be performed in any basis as
given by Definition 1, the convergence of the expansion
will be faster or slower depending on the choice. This
translates into the truncation order p needed to represent
the system sufficiently accurately by the expansion, with
slower convergence implying larger p.

3 Stability of Stochastic Systems

We are interested in analysing the stability properties of
the equilibrium set of a stochastic system (1) by means
of its PC expansion (15). In order to draw conclusions
from the stability properties of the PC expansion on the
stability of the stochastic system, a connection between
the behavior of both systems is established.

3.1 Relationship of equilibria

Before stating the notions of stability we first show the
relationship between the equilibria of (1) and (15).

Lemma 1 The stochastic system (1) has an equilibrium
set I as defined in (2) if and only if the PC expanded
system has an equilibrium point, x̄EP ∈ Rn(p+1).

Proof. Let f(xEP(ξ)) = 0. The PC expansion of
f(xEP(ξ)) is f̄(x̄EP), where xEP(ξ) =

∑p
i=0 x̄EPiΦi(ξ)

from (6). Assume x̄EP was not an equilibrium of
f̄ , i.e. f̄(x̄EP) 6= 0. Then there exists a t > 0,
ψ̄(t, x̄EP) = x̄(t) 6= x̄EP. However, ψ̄(t, x̄EP) is the
PC expansion of ψ(t, xEP), and, by equation (2),
ψ(t, xEP(ξ)) = ψ(0, xEP(ξ)) = xEP(ξ), so ψ̄(t, x̄EP) =
x̄EP. This argument holds both ways, and thus
f(xEP(ξ)) = 0⇔ f̄(x̄EP) = 0. �
The equilibrium set can be obtained numerically
by explicit computation of the expansion xEP(ξ) =∑p
i=0 x̄EPiΦi(ξ). Using equation (8) for a known L2-

optimal basis, the equilibrium set can further be ex-
pressed in terms of its moments, I = {x ∈ Rn |x ∈
xEP(ξ) ∼ λ(M̄1..P (x̄EP))}.
Due to Lemma 1 the task of analysing the stability
of the uncertainty-dependent equilibrium point of the
stochastic system converts to the well-known problem
of analysing the stability of an equilibrium point of a
deterministic system. Moreover, it emphasizes the im-
portant aspect that an equilibrium point of the PC
expanded system not only corresponds to an equilib-
rium set of the stochastic system but also contains the
statistical information of the set. Note that the location
of x̄EP can be easily obtained by simulating a trajectory
of (15) with initial state in the region of interest.

Remark 2 If the variance modes of x̄EP are zero, i.e.
x̄EPJ = 0, then the stochastic system has an uncertainty-
independent equilibrium point located at xEP = x̄EP0.
The equilibrium set I thus only contains one element.
Moreover, if all stochastic modes are zero, x̄EP = 0, then
also xEP = 0.

Based on this relationship between the equilibria we
propose a connection between certain stability notions
which are specified for each system in the following.

3.2 P -th moment boundedness and stability

For stochastic systems there are various concepts of sta-
bility ranging from weaker forms such as stability in
probability to stronger forms such as P -th moment sta-
bility up to almost sure stability, see, e.g. Kozin (1969)
for an overview. In the following we focus on P -th mo-
ment boundedness and stability of stochastic systems
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where we employ the definitions as found in, e.g., Khas-
minskii (2012), Wu and Meng (2004), Khalil (2002):

Definition 3 The solutions of (1) are called ultimately
bounded in the P -th moment if there exists a c > 0 such
that for any b > 0 there exists a T = T (b) > 0 such that

|xini| < b → E[|x(t, ξ)|P ] < c, ∀t ≥ T. (20)

Further, if there is only one element in I then let this
element, without loss of generality, be the zero point. This
zero point is called stable in the P -th moment, if for each
ε > 0, there exists a δ > 0 such that

|xini| < δ → E[|x(t, ξ)|P ] < ε, ∀t ≥ 0, (21)

and asymptotically stable in the P -th moment if, further,

|xini| < δ → E[|x(t, ξ)|P ]→ 0 as t→∞. (22)

We now define a suitable notion of stability for the PC
expanded system. As we are interested in equilibrium
points of the PC expansion and, further, the PC ex-
panded system is deterministic, we use stability in the
sense of Lyapunov.

Definition 4 The equilibrium point x̄EP of (15) is lo-
cally stable if for each ε > 0 there exists a δ > 0 such that

|x̄ini| < δ ⇒ |x̄(t)− x̄EP| < ε, ∀t > 0. (23)

Further, x̄EP is locally asymptotically stable if it is locally
stable and δ can be chosen such that

|x̄ini| < δ ⇒ |x̄(t)− x̄EP| → 0 as t→∞. (24)

With Definition 4 we find the following result for the
stochastic system.

Theorem 1 Let the system (15) with f̄ : D̄ → D̄ ⊆
Rn·(p+1) be the PC expansion of the stochastic system (1).
If the equilibrium point x̄EP ∈ D̄ is locally asymptotically
stable then the solutions of the stochastic system (1) are
ultimately bounded in the P -th moment in a neighborhood
of I. If, further, x̄EP represents a I containing a single
point, then (1) is locally asymptotically stable in the P -th
moment.

Proof. If x̄EP is an equilibrium point of (15) then every
trajectory x̄(t) in a neighborhood of x̄EP will eventually
converge to x̄EP. As all components x̄i(t) in this case con-
verge to a finite value, so does every term in the expres-
sion in (8) and thus E[|x(t, ξ)|P ] will eventually converge
to a finite value, which is given by inserting x̄EP into the
right hand side of equation (8). The ultimate bounded-
ness of the P -th moment as defined in (20) follows. If the
equilibrium point x̄EP represents an I consisting of a sin-
gle point then this implies that x̄EPJ = 0 (see Remark
2). Thus, every component of x̄J(t) will converge to zero
and every component of x̄0(t) will converge to x̄EP0 as
t → ∞. Assuming without loss of generality x̄EP0 = 0,
it follows that equation (8) converges to zero and thus
equation (22) holds. �

Remark 3 Note that the reverse is not true: ultimately
bounded solutions of the stochastic system (1) do not im-
ply a convergence of the components x̄(t) to constant val-
ues. One example for this is readily provided by systems
with a stable limit cycle. The trajectories in a neighbor-
hood of the limit cycle converge to the limit cycle and thus
are locally ultimately bounded, however the PC expansion
coefficients x̄i(t) do not converge to an equilibrium point
but instead remain ultimately bounded to a set as well.

Theorem 1 allows us to obtain information about the
behavior of the stochastic system by analysing the local
stability properties of an equilibrium point x̄EP of the
PC expanded system. In the following we formulate the
criteria with which the attractive region of x̄EP can be
obtained.

4 PC Expansion-based Region of Attraction
Analysis

In this section we first define the ROA of an equilibrium
point x̄EP of the PC expanded system and state the cri-
teria with which an inner estimate of it can be obtained.
We then show how this ROA translates to an inner esti-
mate of R∗, the ROA of the stochastic system. Finally,
optimization programs to maximize inner estimates of
both ROAs are proposed.

4.1 Formulation of the ROA based on a PC Expansion

Let the ROA of x̄EP be defined by the set

R̄∗= {x̄ini∈ Rn·(p+1)| lim
t→∞

d(ψ̄(t, x̄ini), x̄EP)= 0}, (25)

where ψ̄(t, x̄ini) denotes the solution of the PC expanded
system at time t with initial state x̄ini. An inner estimate
of R̄∗, denoted by R̄, is then obtained from the following
arguments.

Theorem 2 Let D̄ ⊂ Rn·(p+1) be a compact domain
containing x̄EP and let V be a continuously differen-
tiable function V (x̄) : D̄ → R. For a scalar ρ > 0 let
ΩVρ = {x̄ ∈ D̄ |V (x̄) ≤ ρ} be the ρ-sublevel set of V . If
V satisfies

V (x̄) > 0 ∀x̄ ∈ ΩVρ\{x̄EP}, V (x̄EP) = 0, (26)

V̇ (x̄) < 0 ∀x̄ ∈ ΩVρ\{x̄EP}, (27)

then V is a Lyapunov function and every trajectory x̄ini
starting in ΩVρ will converge to x̄EP as t → ∞. Thus,

the set R̄ = {x̄ini ∈ D̄|x̄ini = x̄, ∀x̄ ∈ ΩVρ} is an inner

estimate of R̄∗.

The proof uses Lyapunov arguments which are standard
in ROA analysis and can be found, e.g. in Khalil (2002).
Theorem 2 presents a criterion for a set R̄ to be an esti-
mate of the ROA, where R̄ is in terms of the PC expan-
sion coefficients. We now provide the means to infer in-
formation aboutR∗, the ROA of the equilibrium set I of
the stochastic system, from R̄. More precisely, we show
how the inner estimate R̄ translates into an inner esti-
mate R of the stochastic ROA. Recalling the expression
(3) for the ROA of the equilibrium set I of a stochastic
system, the following arguments can be made.
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Lemma 2 Let R̄ be an inner estimate of the ROA of
x̄EP, R̄ ⊆ R̄∗ . Then the set

R={xini∈ Rn|xini(ξ)∼λ(M̄1..P (x̄ini)),∀x̄ini∈ R̄},(28)

is a subset of the ROA of xEP, R ⊆ R∗.

Proof. We first establish the relationship between
xini(ξ) and x̄ini ∈ R̄. The PC coefficients x̄ini ∈ R̄
represent the stochastic variables xini(ξ) by the re-

lation (6), such that any x]ini(ξ) ∈ R is given by

x]ini(ξ) =
∑p
i=0 x̄

]
iniiΦi(ξ). For this x]ini(ξ), from equation

(8) the moments are given by M1..P (x]ini) = M̄1..P (x̄]ini).
This reasoning holds for all xini ∈ R. We now turn
to prove R ⊆ R∗. Recall, that from Theorem 2 we
have x̄ini ∈ R̄ =⇒ lim

t→∞
ψ̄(t, x̄ini) = x̄EP. Let further

x̄(t) = ψ̄(t, x̄ini) and x(t, ξ) = ψ(t, xini(ξ), ξ). With (8)
and from Theorem 1, it follows that if x̄ini ∈ R̄ then

E[|x(t, ξ)|P ] =

p∑
i,..,P=0

x̄i(t)··x̄P (t)〈Φi ··,ΦP 〉,

t→∞−−−→
p∑

i,.,P=0

x̄EPi ··x̄EPP 〈Φi ··,ΦP 〉=E[|xEP(ξ)|P ], (29)

where 1 ≤ P < ∞ and for a given xEP(ξ) and P
the term E[|xEP(ξ)|P ] is a constant. So far, we have
shown the moment convergence of a random variable
xini(t, ξ) ∈ R. It remains to show that from this follows
lim
t→∞

P[d(ψ(t, xini(ξ), ξ), I) = 0] = 1 almost surely. To

this end, recall that ξ has finite support and thus Θ is
bounded. Assume there is a subset Θ† ⊂ Θ for which
ξ† ∈ Θ† : d(x(t, ξ†), I) 6→ 0 as t→∞. Consider first the
case where x(t, ξ†)→∞ as t→∞. Then

E[|x(t, ξ)|P ] =

∫
Θ

|x(t, ξ)|P dµ(ξ)

=

∫
Θ†
|x(t, ξ†)|P dµ(ξ†)+

∫
Θ†C
|x(t, ξ†C)|P dµ(ξ†C), (30)

where ξ†C ∈ Θ†C and Θ†C denotes the complement of
Θ†, such that Θ†C ∪Θ† = Θ. The first term in (30) and
by that the P -th moment of x(t, ξ) will, however, tend
to infinity as t goes to infinity, unless the elements in
Θ† have µ-measure zero. Consider now the case where
d(x(t, ξ†), I) → c as t → ∞, where 0 < c < ∞ is
a constant. In order to not contradict (29), consider-
ing (30) we find that either x(t, ξ†) = x(t, ξ) for all
ξ† = ξ, but this implies d(x(t, ξ†), I) → 0 as t → ∞,
or µ(ξ†) = 0. Hence, from moment convergence follows
here the almost sure convergence of x(t, ξ) to I, such that
lim
t→∞

P[d(ψ(t, xini(ξ), ξ), I) = 0] = 1 for all xini ∈ R and

thus R ⊆ R∗. �
If ξ has infinite support then almost sure convergence
of trajectories from moment convergence cannot be con-
cluded. Based on the proof above, the meaning of the
computed region R∗ would change and could now be
characterized as the region for which the moments of all
trajectories starting inR∗ converge to the moments of I.

4.2 Algorithmic computation of R̄

In the following we present algorithms by which R̄ can
be computed. In order to make the following implemen-
tations generalizable, a coordinate shift is introduced,
similar to the one proposed in Iannelli et al. (2018):

z̄ = x̄− x̄EP, (31)

This shift centers the analysed system around the zero
point. Note that while in Iannelli et al. (2018) x̄EP is not
known because it depends on the uncertainty, in this for-
mulation x̄EP is deterministic and can be obtained, e.g.
by simulation of the PC expanded system.
Using polynomial functions for V , the conditions on the
set R̄ as stated in Theorem 2 are in polynomial form.
This allows to employ an approach introduced in Par-
rilo (2000), and formulate the ROA conditions as semi-
algebraic set emptiness conditions. These can be effi-
ciently solved through a relaxation to sum-of-squares
(SOS) programs employing Stengle’s Positivstellensatz
(Stengle 1974). Details on the procedure of formulating
conditions such as those in Theorem 2 and Lemma 1
into SOS constraints are omitted for brevity and can be
found in, e.g. Parrilo (2000), Tan and Packard (2006),
and Topcu et al. (2010). The resulting SOS program con-
sists of polynomial objectives and constraints. Each of
the constraints is a requirement that the polynomial is
SOS. Since an SOS constraint is a positive-definiteness
constraint (see Section 1.1), the aim is to solve the SOS
program as a semidefinite program (SDP).
Applying the procedure to the conditions on R̄ as stated
in Theorem 2 results in the following SOS program.

max
V (z̄),s1(z̄),ρ

vol(R̄(z̄)) (32a)

subject to V (z̄)− l(z̄) ∈ Σ[z̄], (32b)

− V̇ (z̄)− s1(z̄)(ρ− V (z̄))− l(z̄) ∈ Σ[z̄], (32c)

s1(z̄) ∈ Σ[z̄], (32d)

where the multiplier s1 is an SOS polynomial of poten-
tially arbitrarily high degree which results directly from
the Positivstellensatz and, once obtained, certifies that
the solution of the program adheres to the constraints.
The term l(z̄) is an even polynomial with small fixed
coefficients (e.g., l(z̄) = 10−4z̄T z̄), which results from
the definiteness of the conditions in (26) and (27) for all
x̄ except for x̄EP.
In order for the problem (32) to be solvable as an
SDP it has to be convex in the decision variables. This
can be achieved by the following steps. The set ΩVρ
is formulated as the sublevel set ΩVρ=1

= {z̄ |V (z̄) :=

v(z̄)TQV v(z̄) ≤ 1, QV > 0} where v(z̄) is the vector
of monomials in z̄ and ρ is fixed to 1 as optimizing
over ρ is redundant when optimizing over QV . Further-
more, the objective in (32a) is a generic expression for
the volume of the ROA and needs to be replaced by
a convex expression. It has been previously observed
(Tan and Packard 2006) that higher degree functions
V have the potential to verify larger estimates of the
ROA. For ∂(V ) > 2 the volume of a sublevel set cannot
be computed from a convex expression and thus a sur-
rogate that is a computationally tractable measure for
the ROA is employed. We use a convex measure in the
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form of the geometric mean of the eigenvalues of the
matrix B of the sublevel set B = {z̄| b := z̄TBz̄ ≤ 1}
of a quadratic function b(z̄). This geometric mean is a
monotone function of the determinant, which itself is
inversely proportional to the volume of the set. Mini-
mizing this geometric mean thus maximizes the volume
of a quadratic set. With the constraint that the surro-
gate set B lies inside the sublevel set ΩV1

, B ⊆ ΩV1
, a

maximization of the set B leads to the estimate of R̄
being increased simultaneously. Utilization of this sur-
rogate set requires adding the following constraints to
the optimization program (32):

− s2(z̄)(1− b(z̄))− (1− V (z̄)) ∈ Σ[z̄], (33a)

s2(z̄) ∈ Σ[z̄]. (33b)

The objective function (32a) is then replaced by the ge-
ometric mean of the eigenvalues of B,

min
V,s1,s2,B

det(B)1/n(p+1). (34)

The resulting optimization program then consists in

solve (34) (35a)

subject to (32b), (32c), (32d), (33a), (33b). (35b)

This SOS program is bilinear in the multipliers s1, re-
spectively s2 and V , respectively B, which prevents its
direct solution as an SDP. However, the optimal solu-
tion can be approximated by iteratively solving (35) as
an SDP by fixing one of the two bilinear variables and
optimizing over the other, and vice versa, until a pre-
defined convergence tolerance is reached. This requires
an initial estimate for ΩV1

which is obtained by solving
the Lyapunov matrix inequality for the linearized state
matrix at the equilibrium point, and scaling it suitably.
Similarly, the initial estimate of the matrix B is found
by using a suitably scaled unit diagonal matrix.

4.3 Recovering R from R̄

We propose an approach in form of an optimization prob-
lem in which the set R, as given by Lemma 2 for initial
conditions with specified stochastic properties, can be re-
covered from the set R̄. In particular, the program shows
how to obtain a maximized estimate R of the true ROA
R∗ from a given set R̄. The set R is given by stochastic
variables x which represent the initial state, whose sta-
tistical properties are given by all possible states of the
PC coefficients contained in R̄. In the set R̄, the mean
modes x̄0 and the variance modes x̄J can be traded off,
allowing for a wide range of statistical properties. In or-
der to obtain a set R of the stochastic system in the x
variables, one of the two statistical properties, either the
mean or the covariance, of the initial states can be fixed
and the set R obtained in terms of the other. We here
choose to fix the covariance of the initial states x to a
specified level, which is denoted by σ̂, and compute R
in terms of the mean of x. The R obtained in this way
will be denoted by R0 in the following. Since m(x) = x̄0

(equation (9)), the set R0 is given by

R0 = {x̄0 ∈ R̄ | x̄ ∈ R̄,
p∑
j=1

x̄j x̄
T
j γj = σ̂}. (36)

The set R0 can be computed from a given R̄ by the fol-
lowing optimization problem. Let R0 hereby be repre-
sented by the 1-sublevel set of the polynomial function
R0 := {x̄0 | v(x̄0)TQ0 v(x̄0) ≤ 1}. The aim is to maxi-
mize R0 inside R̄ while keeping the size of the polyno-
mials in (11), representing the covariance of the initial
states xini, fixed.

max
Q0

vol(R0) (37a)

subject to v(x̄)TQV v(x̄) ≤ 1, (37b)
p∑
j=1

x̄j x̄
T
j γj = σ̂, (37c)

v(x̄0)TQ0v(x̄0) ≤ 1, (37d)

Q0 > 0, (37e)

R0 ⊆ R̄, (37f)

where QV is the optimizer of (32). Note that (37c) is
a matrix equality constraint with polynomial entries.
Since σ̂ is a symmetric matrix, equation (37c) results

in n(n+1)
2 scalar constraints. As ∂(R0) = ∂(V ), a con-

vex surrogate set similar to that in (33) is introduced to
tractably maximize R0 for ∂(R0) > 2. To this end we
use a quadratic sublevel set in terms of the mean modes,
B0 = {x̄ | b0 := x̄T0 B0x̄0 ≤ 1}, constrained to remain
within R0. The following constraints are added to pro-
gram (37) to give a convex optimization of a lower bound
on the volume of R0.

b0 ≤ 1, B0 > 0, B0 ⊆ R0. (38)

The following optimization program shows the imple-
mentation of the problem in (37)-(38) that efficiently ob-
tains an estimate of R0.

min
s1,s2,hlk...,Q0,B0

det(B0)1/n (39a)

subject to:

− s1(x̄)(1−v(x̄0)TQ0v(x̄0)) + (1−v(x̄)TQV v(x̄))+

+

n∑
l=1,k≥l

hlk(x̄)(σ̂lk − x̄TlJΓx̄kJ ) ∈ Σ[x̄], (39b)

−(1− b0)s2(x̄0)+(1− v(x̄0)TQ0 v(x̄0)) ∈ Σ[x̄], (39c)

s1(x̄) ∈ Σ[x̄], (39d)

s2(x̄0) ∈ Σ[x̄0]. (39e)

The objective function is now the volume of the surrogate
set B0 represented by the geometric mean of the eigen-
values of the matrixB0. The vector x̄dJ := [x̄d1 , ..., x̄dp ]T

contains the variance modes of the d-th dimension with
d = 1, . . . , n and Γ = diag[γ1, ..., γp]. The sum in the
second term of (39b) represents the scalar equality con-
straints given by the matrix equality in (37c). The poly-
nomials s1, s2 are the SOS-multipliers, resulting from the
application of the Positivstellensatz, which certify the in-
equality constraints. The polynomials hlk are indefinite
multipliers certifying the equality constraints. The high-
est monomial degree in v(x̄0) is chosen to be equal to the
highest monomial degree of v(x̄) in V (x̄). As the con-
straint (39c) involves only the x̄0 coordinates, the associ-
ated multiplier s2 contains polynomial terms only in x̄0.

7



The algorithm has bilinear terms in the SOS-multipliers
and B0, respectively Q0. As is the case in the program
in (35), we solve (39) iteratively.

Remark 4 If ∂(V ) = 2 then the optimization can be
performed to directly minimize det(Q0)1/n without using
the surrogate set. This removes the constraints (39c) and
(39e) from the algorithm.

Remark 5 In the case of σ̂ = 0, i.e. the covariance in
the initial state is fixed to zero, R0 can be obtained di-
rectly from the computed estimate R̄ by setting all terms
containing variance modes to zero. In this case there is
no need to solve (39).

Remark 6 The complementary problem of maximizing
the allowed covariance in the initial conditions for a fixed
mean can be done by inserting the desired fixed matrix Q0

and moving σ̂ into the objective. The objective then con-
sists of the convex expression det(σ̂)1/n and the resulting
problem can be solved without the use of a surrogate set
and its associated constraints.

5 Illustrative Examples

We demonstrate the proposed method for an uncertain
Van-der-Pol (VDP) system and for the dynamics in-
vestigated in Iannelli et al. (2018). Both dynamics are
affected by uniformly distributed uncertainty. While
the first example has an uncertainty-independent equi-
librium point, the second has an uncertainty-dependent
equilibrium and thus converges to a set I.
We denote in the following a uniform distribution be-
tween the boundary values u and v by Unif(u, v). The
choice of a uniform distribution is motivated here by the
possibility to compare the results to previous studies.
However, any other L2-distribution can be considered
using the methods presented by simply changing the
polynomial basis.
The numerical results were computed with Mat-
lab 2018b, using the open-source toolbox YALMIP
(Lofberg 2009) to formulate the SOS programs and
the commercial solver Mosek to solve the SDPs. The
scripts used to compute these examples can be found in
https://github.com/evaahbe/roa-analysis.git

5.1 Uncertain Van-der-Pol dynamics

The first example consists of the VDP dynamics

ẋ1 = −x2,

ẋ2 = −c(ξ)(1− x2
1)x2 + x1,

(40)

where c(ξ) ∼ Unif(0.7, 1.3) is a random variable depend-
ing on the stochastic germ ξ ∼ Unif(−1, 1). In order to
obtain optimal convergence properties we use the Legen-
dre polynomial basis for the PC expansion of the dynam-
ics which is the basis associated with uniform probabil-
ity distributions. The PC dynamics have an equilibrium
point x̄EP = 0 and thus the equilibrium set I consists of
the zero point which implies an uncertainty-independent
equilibrium point of (40) at xEP = 0. This equilibrium
point is stable for c > 0 and for any fixed c > 0 the true

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-4
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-2

-1

0

1

2

3

Fig. 1. Estimates of R0 in terms of the initial mean states for
various cases of fixed variance on the initial state. The results
are obtained from a quartic V for several variance sizes and
from a quadratic V for the case of zero minimum variance
for comparison. An equal variance in both initial coordinate
states is considered. The black dashed and dotted lines show
the VDP limit cycle for the extreme realizations of c(ξ).

ROA is given by a unstable limit cycle.
In order to choose the truncation order of the PC expan-
sion which satisfies Assumption 1 we simulate the PC
dynamics and truncate after the significant modes found
at p = 3, resulting in a total of p + 1 = 4 modes per
dimension. This procedure is explained in more detail
in Section 5.3. The sublevel set R̄ is obtained from the
program (35) for ∂(V ) = 4, and the results used to com-
pute the ROA estimate R0 as in (39) for different values
of fixed variance on the initial condition. Thereby, a di-
agonal covariance matrix σ̂ with equal diagonal entries
is chosen. The results are presented in Figure 1 (solid
lines). As intuitively expected, the R0 in terms of the
initial state of the mean modes decreases with increas-
ing size of variance in the initial state. Additionally, for
comparison of different Lyapunov function degrees, the
R0 estimate with zero initial variance for a quadratic V
is compute (red dash-dot line). Figure 1 shows how the
higher degree V returns larger estimates of the ROA in
this case. Further, Figure 1 reveals the true ROA of the
stochastic system which here consists of the intersection
of the two simulated limit cycles for the extreme realiza-
tions of c(ξ) (black lines).

5.2 Dynamics with uncertainty dependent equilibria

In the second example we consider the following uncer-
tain dynamics studied in Iannelli et al. (2018),

ẋ1 = −x2 −
3

2
x2

1 −
1

2
x3

1 + c(ξ),

ẋ2 = 3x1 − x2 − x2
2,

(41)

where c(ξ) ∼ Unif(0.9, 1.1) with ξ ∼ Unif(−1, 1). This
system has one stable and one unstable equilibrium point
whose location is uncertainty-dependent. Also here we
use the Legendre polynomial basis for the PC expansion
of the system for which the simulation of a sample trajec-
tory provides the exact location of the stable equilibrium
point. From the validation procedure for Assumption 1
(see Section 5.3) we find that choosing p = 2 captures
the significant modes. With this the stable equilibrium
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Fig. 2. The result for R0 is shown in the red solid line.
For various initial conditions on the boundary of R0 a MC
simulation of the system (41) for various realizations of the
random variable is shown (blue lines). Note that as such the
blue lines are each a trajectory of a deterministic system
and since for deterministic variables the mean equals the
nominal value, xnom = m(xnom), the trajectories are plotted
here in the mean coordinates x̄0 for consistency. The close-up
shows how depending on the realization of uncertainty the
trajectories converge to different equilibrium points, which
together build the equilibrium set I as given by Lemma 1. For
three neighboring initial states with diverging trajectories
the worst-case result of the MC simulation is plotted.

point is found to lie at x̄EP = [0.4086, 0.7145, 0.0369,
0.0456, -0.0005, -0.0012].
As the PC expanded system has a non-zero equilibrium
point, we obtain from Lemma 1 the equilibrium set I
of the stochastic system. The close-up in Figure 2 illus-
trates this set by showing how trajectories converge to
a different equilibrium point for different realizations of
the uncertainty.
The ROA estimate is computed from (35) for a quartic
V and the results used to obtain the ROAR0 in terms of
the mean modes for zero variance on the initial state, as
described in Remark 5. The results can be seen in Figure
2. The comparison with the ROA estimates in Iannelli
et al. (2018) shows that the approach proposed here pro-
vides similar sizes of ROA. For illustration, three exam-
ples of a Monte-Carlo (MC) simulation starting at the
boundary of the ROA and using each 8 realizations of the
random variable over the distribution range are shown.
The true ROA for this system is unknown. In order to
obtain an upper bound on the conservatism of R0 we
search for diverging trajectories by performing MC sim-
ulations for a range of initial conditions located in the
neighborhood outside of R0. The closest diverging tra-
jectories found with the chosen sampling grid are shown
in Figure 2.

5.3 Pre- and post validation of Assumption 1

The truncation order for a PC expansion needs to be
decided such that Assumption 1 is satisfied. This can
be achieved by simulating the dynamics of the PC ex-
panded system for a high truncation order and a range of
initial conditions in the region of interest. Since we con-
sider second order random processes, the PC expansion
converges in the L2-sense. Hence, there will be a trun-
cation order for which the contribution from the higher
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Fig. 3. Right plot: Evolution of the stochastic modes of (40)
starting from the deterministic xini = [1, 1.5]. The modes for
p ≥ 4 are found negligible. All modes eventually converge to
zero, which is the equilibrium point. Left plot: Evolution of
the stochastic modes of (41) starting from the deterministic
xini = [0.8, 0.8]. Here, the modes for p ≥ 3 are found neg-
ligible. The coordinates of the attractive equilibrium point
correspond to the limit values of each mode.

stochastic modes can in practice be considered negligi-
ble, and the truncation order is thus chosen such that
only the significant modes are captured. For the example
of the VDP, the significance of the first five stochastic
modes has been investigated by simulating its PC dy-
namics for various initial conditions. Figure 3 shows the
evolution of the modes starting from the deterministic
initial condition xini = [1, 1.5]. It can be seen that the
stochastic modes for p > 3 are practically negligible. The
same procedure was conducted for the second example,
where Figure 3 reveals that choosing p = 2 captures the
significant modes.
Once the ROA estimates are calculated, a further val-

idation of Assumption 1 is performed by verifying the
computed ROA results for the true stochastic system.
In the first example this is directly done by confirming
in Figure 1 that the computed ROAs lie within the true
ROA of the system given by the intersection of the black
lines. For the second example, we ran an MC simulation
of the stochastic system (41) for 1000 initial conditions
on the boundary of the R0, considering for each of them
20 realizations of the uncertainty ranging over the dis-
tribution and confirmed their convergence to the equi-
librium set.

5.4 Comments on the numerical implementation

The computational tractability of solving any SOS-
program depends crucially on the size of the problem.
The problem size scales exponentially in the number of
states and polynomial degrees (polynomially, if scaled
in either state or polynomial degree alone). While the
PC expansion approach does not alter the polynomial
degrees it does lead to a (p + 1)-fold increase of the
number of states. Depending on the number of modes
needed to represent the system with sufficient accuracy,
the number of states can quickly become prohibitively
large for low-dimensional stochastic systems. Research
on more efficient SDP-solvers is ongoing and this limita-
tion is likely to be alleviated in the future. One immedi-
ate remedy is offered by the DSOS/SDSOS framework
introduced in Ahmadi and Majumdar (2019), which can
solve SOS-programs tractably for up to 50 states. While
potentially resulting in more conservative estimates
these relaxations promise a significant speed up of the
SOS program.
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6 Conclusion

In this work we present a method to compute inner esti-
mates of the region of attraction of stochastic nonlinear
systems. The proposed method is applicable to a broad
class of system consisting of second order random pro-
cesses which are affected by uncertainties coming from
any L2-distribution and which are further allowed to
have uncertainty-dependent equilibria. The analysis is
enabled by using Polynomial Chaos expansions through
which a stochastic ODE is converted into a deterministic
one. Using suitable stability notions in the form of mo-
ment boundedness and Lyapunov stability, it is shown
how the ROA analysis of the PC expanded system of-
fers direct information on the attractive behavior of the
stochastic system for which a notion of a ROA is de-
rived. A numerical implementation for obtaining inner
estimates of the ROA when the PC expanded system has
a polynomial expression are provided via SOS optimiza-
tion. The application to two examples taken from the
literature shows that the proposed approach provides es-
timates of the ROA which are comparable to literature
results obtained with less general methods. The analy-
sis method proposed here can be used and extended for
various purposes among which are the stability analysis
of systems with more complex equilibrium behavior, and
the use of stochastic ROA analysis in controller design.
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