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Abstract— This paper is concerned with the exper-
imental characterization of a thermoacoustic demon-
strator known as the Rijke tube. An approach which
leverages the prior qualitative knowledge of the sys-
tem’s behaviour to plan the experiment campaign and
identify reliable models of the system is described.
First, nonlinear features of the dynamics, e.g. the
type of Hopf bifurcation triggered by the thermoa-
coustic coupling and the periodic orbits arising from
it, are investigated. Then, a family of linear systems,
parameterized with a coefficient related to the heat
release, is constructed. Different approaches for input
design and identification are tested. The results show
that the identified models can favourably complement
the prior knowledge gained from first principles and
provide quantitative assessments on the linear and
nonlinear behaviour of the system.

I. Introduction
Thermoacoustics studies the dynamic interaction be-

tween pressure and heat transfer [1]. An example of
these phenomena is represented by thermoacoustic in-
stabilities, where acoustic waves adversely couple with
unsteady heat release determining loss of stability in
the form of self-sustained periodic responses, or Limit
Cycle Oscillations (LCO). This problem is particulary
relevant in jet engines and gas turbines, where acoustic
pressure amplitudes reaching 10% of the mean operating
pressure are not uncommon. As a result, research in this
domain has largely focused on finding ways to passively
or actively suppress these behaviours [2]. However, from
an energy harvesting perspective, thermoacoustic LCO
are a prospective green energy resource. Indeed, one can
think of extracting the mechanical power from the heat-
excited waves and convert it into electricity or directly
use it to drive other machines. Active control represents
then a possible key enabler since, depending on the
objective, it can increase performance and efficiency of
heat-driven thermoacoustic machines.

Great attention has therefore been devoted to mod-
eling these phenomena. Depending on the purpose of
the model, different directions have been taken. For
prediction purposes only, e.g. determine the range of
operating conditions for which LCOs arise, first princi-
ples models are typically considered. These are obtained
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from the fluid and heat release dynamics and their non-
linear coupling, described by complex nonlinear partial
differential equations [3]. In addition to their potential
robustness issues due to modeling assumptions and non-
exact parameters knowledge, the complexity of these
models are not amenable for control design purposes.
Most of the literature for control-oriented models has
considered a simplified representation consisting of a
linear single harmonic acoustic field coupled with the
heat release modelled as a static delayed saturation-like
nonlinearity [4]. While this schematization is sufficient
to justify the presence of LCO and capture the main
features, other research has suggested that it might not
be exhaustive [5]. Modeling, and its closely related task
of identification, of thermoacoustic instabilities is thus
an active area of research.

In this paper, the Rijke tube [6], a vertical tube with a
heater inside and equipped with microphone and speaker,
is used as laboratory test bed of thermoacoustic instabil-
ity. The aim is to show the potential of system identifi-
cation [7], when informed by first principles modeling, to
provide thermoacoustic models which achieve the trade-
off between complexity and reliability highly desirable in
models for control. After describing the configuration and
introducing the thermoacoustic problem in Section II,
important considerations concerning experiment design
and system identification, and representing the basis for
the studies reported in the paper, are discussed in Section
III. Section IV reports a set of experiments aimed at
characterizing the nonlinear response of the system. As
the amount of heat released in the tube is increased, the
system undergoes a Hopf bifurcation [8] above which the
equilibrium loses stability and self-sustained oscillations
are clearly audible. As known from the literature [6],
a proportional controller sensing pressure at the top of
the tube and actuating a speaker at the bottom, is able
to damp out the oscillations. An important new finding
discovered here is that, for a fixed value of the current,
the tube undergoes a subcritical Hopf bifurcation as
the controller gain is changed. Section V focuses on
the identification of a family of LTI models linearized
about the branch of (stable and unstable) equilibria. For
the latter, a closed-loop setting has to be used to first
stabilize the plant and then identify it. Different options
for the identification algorithms and input design are
presented and the results are critically discussed.



II. Background material
This section provides a description of the experimental

setup (Section II-A) and an overview of approaches to the
modeling of thermoacoustic instabilities (Section II-B).
A. Experimental setup

The Rijke tube is a thermoacoustic resonator consist-
ing of a straight cylindrical tube with two open ends
and a heat source (typically an electrical resistance)
inside. For values of the electrical current Iw in the
resistance above a critical threshold value, the tube starts
generating a clear humming sound. This is the mani-
festation of self-sustained pressure oscillations caused by
the interaction between the heat release and the acoustic
field. In particular, the phasing between the gas pressure
and velocity in the region of the heat source must be
such that heat is added to (extracted from) the gas at the
moment of greatest compression (rarefaction), satisfying
in this way the Rayleigh criterion for the development of
heat-driven acoustic oscillations [9].

Due to its simplicity, the Rijke tube has been used
as a prototype of thermoacoustic instabilities to enable a
cheap and safe testing of dedicated modeling and control
strategies [9], [6]. The configuration employed here also
includes a microphone, which measures the pressure pm
at 95% height of the tube, and a loudspeaker at the lower
end to generate an exogenous sound pressure ps. In order
to perform system identification, possibly in closed loop,
data acquisition of these signals and real time control
were performed with a dedicated control signal generator
and data acquisition system (in the following termed
CDAQ) developed in-house. Details of the hardware and
software parts of the CDAQ are available in [10]. Figure
1 presents a schematic of the apparatus used in this
work. The tube is mounted in vertical position, which
guarantees the presence of a mean buoyancy flow around
the heat source (in some experiments the tube can be
found horizontally and the mean flow is provided with an
external fan [11]), and has a total length, Lt, of 120 cm
and an inner radius of 3.65 cm. The heat source consists
of three wires each with a resistance of 5 Ω

m and a length
of 1 m. The wires are coiled and placed side by side to
ensure that the heat source operates homogeneously over
the cross-sectional area of the tube at a specific height.

RIJKE TUBE

Speaker

Microphone

CDAQ
Heater

Fig. 1: Experiment configuration.

B. First principles models of thermoacoustic instabilities
Modeling thermoacoustic instabilities is a challenging

task due to the complexity of the phenomena involved
[1]. On the one hand, the thermodynamic variables (e.g.
pressure, velocity) are described by nonlinear partial
differential equations (PDEs). On the other hand, de-
scribing the heat release, and its coupling with the
thermodynamics variables, is a complex task, especially
when heat originates from combustion [3].

The Rijke tube is an instructive example as it allows
important simplifications in the modeling while retaining
the main physical features. The equations governing the
thermodynamic variables (namely density ρ, pressure p
and velocity u) consist of the mass, momentum and
energy balances (Euler equations) plus the state equation
[6]. By exploiting the rotational symmetry and the high
aspect ratio of the tube in the axial direction x, the
hypothesis of one-dimensional flow can be made. The
corresponding set of 1D nonlinear PDEs can then be
linearized about a steady-state solution (ρ̄,p̄,ū) and the
perturbation dynamics in terms of (ρ̃ = ρ− ρ̄, p̃ = p− p̄,
ũ = u − ū) is studied. Since the flow conditions are
subsonic inside the tube, ū ∼= 0, and as a result the
mass equation is decoupled from the others. Therefore,
the variable ρ̃ can be dropped. The resulting set of 1D
linear PDEs represents a wave equation:

ρ̄
∂ũ

∂t
+ ∂p̃

∂x
= 0,

∂p̃

∂t
+ γp̄

∂ũ

∂x
− (γ − 1)Q(ũw)δD(x− xw) = 0,

(1)

where γ is the ratio of specific heats of the gas, δD is
the Dirac delta function, xw is the axial location of the
wire and Q is the heat released from the wire acting
as source term in the energy balance. The latter is a
nonlinear function of the perturbed gas speed at the
wire location ũw, and its modeling is key to capture
the nonlinear response of the system. Note also that (1)
should be equipped with initial and boundary conditions
(the latter might account for control inputs when these
are employed). Since the heat source is a hot wire,
King’s law can be employed for this purpose [6]. This
provides an expression of the heat transfer as a function
of conduction and convection contributions:

Q = Lw(k1 + k2
√
| ũw |)∆T, (2)

where: Lw is the length of wire; k1 and k2 are respec-
tively conduction and convection constants empirically
determined and depending on several factors including
geometry and thermal properties (e.g. they will be pro-
portional to the current Iw circulating into the wire); ∆T
is the difference between the wire and unperturbed gas
temperature. It is apparent from (2) that the convection
is proportional to the speed of the gas near the flame,
but this relationship is not linear, with this amplification
factor decreasing as the speed increases. This saturation
effect is the key element triggering limit cycles and is



also common in combustion-driven instabilities, where
the concept of flame describing functions is commonly
used [12], [13]. Observe that (2) is a static map between
gas speed and heat release. However, in the presence of
gas fluctuations, dynamic effects in the thermoacoustic
coupling will not be negligible. It has been observed that
the main effect is a time lag τ between Q and ũw, and
so ũw(t− τ) should be considered in (2) [11].

III. System identification approach
Models relying on first-principles are likely to suffer

from two shortcomings. There is a potential issue of
robustness, e.g. the modeling assumptions might not
be correct and the value of some parameters might
only be approximately known. Secondly, the size and
complexity of the models might make them intractable
for control design. System identification is employed here
to overcome some of these issues by identifying models
from experiments while also exploiting prior knowledge
of the system gathered from first principles modeling.
This complementarity will be discussed in this section.

It is clear that the current Iw circulating in the wire
(which is proportional to the heat released into the tube)
is a fundamental parameter for the dynamics of the
plant. There is a threshold value Icrw below which the
system is at equilibrium and thus linearizing the original
nonlinear PDEs about ambient conditions in the range
Iw ∈ [0, Icrw ] leads to a wave equation in the domain
x ∈ [0, Lt] with the heat source term at x = xw. Its
solution consists of two pressure waves originating in
the coil and travelling in opposite directions, which after
refraction at the ends give rise to a standing wave in the
tube. Solving the wave equation thus involves finding the
functions p̃(x, t) and ũ(x, t) representing the amplitudes
of the wave at any position x and time t. A possible model
structure for the identification of the plant in this regime
is that of a family of linear time-invariant (LTI) systems
(parametrized with the current Iw) where the states
represent the modes of the waves. Since the underlying
dynamics are infinite dimensional, the order of the LTI
is not known a priori and the energy content associated
with each mode, identifiable in the experiments, can be
used as criterion to truncate the LTI order. Each mode
is known to have a pair of complex conjugate eigenvalues
with harmonically related frequencies ωk = k cπLt

(c is the
speed of sound) and real part depending on the damping
of the system. Note that ω1 is expected to be close to
the fundamental frequency of oscillation of a tube open
at both ends, namely a half-wavelength standing wave.
Indeed, for the experimental setup used in this work
ω1=898 rad

s and f1= ω
2π=142.9 Hz, which corresponds to

a wavelength λ= c
f1

equal to twice the length of the
tube. This information gives important indications (e.g.
frequency resolution and frequency range of interest)
for the input design identification experiments. As for
the damping, this is not usually considered in the first
principle equations (1), since its sources are difficult to

model, but it is very important to correctly determine
the onset of self sustained oscillations.

As Iw increases beyond Icrw , the tube starts producing
a steady humming sound generated by the pressure
oscillations. This is due to a Hopf bifurcation at Icrw
where the branch of equilibria associated with the LTI
system discussed above loses stability and a branch of
LCO emanates. This requires a radical change in the
identification approach to be used in the range Iw >
Icrw . Since the system is now in a nonlinear regime,
if the goal is to provide a linear characterization then
the steady state about which the model is linearized
should be defined. Indeed, for each value of Iw there is
a stable periodic orbit and an unstable equilibrium. In
an open-loop experiment, only stable steady states can
of course be observed. This consists of an LCO, hence
the associated model structure is a linear time-periodic
(LTP) system, describing the behaviour of the system
around this attractor, and system identification methods
for this class of systems [14] could be adopted for that
purpose. The approach taken here (Section V) is to first
stabilize the response with a controller and then identify
the associated closed-loop stable plant and, from this, the
(unstable) open-loop plant. Note that, while the model
structure is here unchanged with respect to the case of
Iw ∈ [0, Icrw ], the identification approach should change
as experiments are now done in closed-loop [7].

An alternative approach consists of identifying directly
a nonlinear system which captures the different attrac-
tors in the system. The underlying nonlinear PDE, or a
reduced order version of it, has to be identified from es-
sentially periodic responses, leading to experiment design
and identifiability difficulties. An incremental approach,
investigated in Section IV, consists of identifying features
of the nonlinear systems. Examples of these are the
exact nature of the Hopf bifurcation (subcritical and
supercritical), and the main properties of the response
(the frequency content of the oscillations, and the effect
of system parameters on it).

IV. Experiments on the Rijke tube
A. Characterization of the system’s behaviour

Experiments for low values of the heater current (that
is, Iw < Icrw ) have been first carried out. An example
of the response in this regime (Iw=8.4 A) is presented
in Fig. 2. The input signal (top), applied through the
speaker, was constructed as the multiplication of two
signals: a chirp sweeping the frequencies between 100 Hz
and 1 kHz in 20 s, and an exponentially decaying signal
(with time constant 4 s). The output signal (bottom),
measured by the microphone, shows peaks caused by
the excitation of the tube’s modes. The output however
decays to zero as the input signal vanishes, showing that
the value of the current in the resistance is not high
enough to trigger self sustained oscillations.

By increasing Iw, the damping of the system decreases
and the critical current value Icrw at which the system
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Fig. 2: Exponentially decaying chirp input and output of
the tube at Iw=8.4 A.

starts humming is reached, with the response converging
to an LCO. The threshold value found in the experiments
is approximately Icrw ≈8.8 A. Figure 3 shows the steady-
state response of the system at 60 s for Iw=9.6 A > Icrw .
This experiment was performed with zero input signal,
and thus shows that an infinitesimal perturbation in the
environment is able to lead to an oscillatory response.
The measured signal is converted from V to pressure
units by using the gain factor of the microphone (see
[10]) and pressure variations p̃ are plotted.
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Fig. 3: Steady-state pressure oscillations p̃ relative to the
ambient pressure (for Iw=9.6 A).

Once the bifurcation point and the existence of an
LCO have been ascertained, a more quantitative char-
acterization of the nonlinear response is performed by
analyzing the frequency content of the oscillations. Fig-
ure 4 shows the power spectral densities (PSD) of the
LCO for different heater currents. Those were obtained
by averaging data measured at the steady state (as those
in Fig. 3) and using Welch’s method for the spectral
estimate. The highest peak (at approximately 143 Hz),
corresponds to the first resonant mode and is very close
to the frequency f1 of the fundamental mode of the
linearized system discussed in Section III. By closer
inspection it can be observed that the peak frequency
shifts towards higher frequencies with increasing heat,
in particular for 9.6 A, 10 A, and 11 A the highest peak
is at 142.7 Hz, 143 Hz, and 143.9 Hz respectively. The
other peaks occur at approximately multiples of the
fundamental frequency and correspond to higher modes.
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Fig. 4: PSD of the LCO for different heater currents.

B. Control for stabilization and periodic orbit tracking
A feedback controller, measuring pressure and actu-

ating the speaker, is then implemented in the CDAQ
(Fig. 1) with a twofold aim. Firstly, a controller is needed
to identify the LTI systems associated with the branch
of unstable equilibria. Indeed, it is known from the
literature [6] that a proportional controller Kc (with pos-
itive feedback) is sufficient to damp out the oscillations.
Secondly, since the controller has a simple architecture,
it is possible to use the gain Kc as bifurcation parameter
and track the periodic orbits experimentally.

In Fig. 5 the effect of a proportional controller on
the LCO response at 9.6 A for different values of Kc is
investigated. Starting from a pre-existing steady state
oscillation (i.e. the one in Fig. 3), the controller is
activated at time 1 s, and the envelopes of the maximum
and minimum of the signals for 4 values of Kc are plotted.
While the effect of Kc = 0.072 is only to decrease the
LCO amplitude, Kc = 0.144 features a slowly decaying
response, and the other two gains successfully achieve
convergence to a stable equilibrium.
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Fig. 5: Effect of the controller gain Kc on the envelope
of the LCO at Iw=9.6 A.

Tracking of the LCO with respect to the parameter Kc
is performed by exploiting the capability of the CDAQ
to adjust the controller in real time and with very fine
increments. In other words, by using Kc as bifurcation
parameter, experimental continuation of the system is
performed, which represents a conceptually equivalent
analysis to the one done with numerical continuation [8]
when a model is available. At a current of 9.6 A, starting
from a gain of Kc = 0 (i.e. open loop conditions), the
gain is first increased up to Kc = 0.2 and then decreased



back to Kc = 0. Figure 6 shows for Kc ∈ [0.05,0.14] the
experimental bifurcation plot in terms of maximum and
minimum of the envelope of p̃.
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Fig. 6: Experimental bifurcation plot.

Two distinct branches can be observed. The one de-
noted by the black marker + indicates datapoints that
were obtained by increasing the gain. It can be observed
that the amplitude decreases as the gain is increased and
for Kc > 0.115 the LCO has practically disappeared. The
second family of branches, denoted by the red marker
©, is obtained starting the experiment at Kc = 0.2
and then decreasing the gain. In this case the branch
of equilibria remains stable until Kc = 0.106, below
which the system exhibits an oscillatory response. The
evident hysteresis points out that the system undergoes
a subcritical Hopf bifurcation at Kc = 0.106. While it is
known that thermoacoustic instabilities (and the Rijke
tube in particular [11]) are prone to subcritical Hopf
bifurcations with respect to parameters related to the
heat exchange (e.g. the current Iw), to the best of the
authors knowledge, a similar behaviour with controller
gains has not been shown previously. This is a very
important aspect since subcritical Hopf bifurcation are
notoriously more dangerous in applications than super-
critical ones, being associated with bi-stable regions in
the bifurcation parameter space [8], [15]. In the context of
control of thermoacoustic instabilities, these results show
that it is important to characterize, both numerically
and experimentally, the nonlinear behaviour with respect
to both the controlled and open-loop parameters of the
system. The bi-stability is demonstrated in Fig. 7, where
the measured responses at Kc = 0.112 for the two
different branches are plotted.
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Fig. 7: Bi-stable response at Kc = 0.112.

V. Identification of LTI models

In this section, linear system identification techniques
are employed to identify the family of LTI models as-
sociated with the thermoacoustic equations (1)-(2) as
the current in the resistance is varied. While in [6]
identification of linear models for the Rijke tube has been
previously carried out, here different options for input
design, closed-loop identification algorithms, and transfer
function realizations are investigated.

For values of Iw above the critical threshold the branch
of equilibria about which the system is linearized loses
stability and for identification it has to be stabilized.
Therefore, closed loop system identification has to be
performed for Iw > Icrw , while below the critical current
open loop identification can be used.

The block diagram in Fig. 8 illustrates the signal
and block interconnections conceptually describing the
experiments. The transfer function from the speaker
voltage u to microphone voltage y is denoted by G and
is the object of the identification. The plant G1 includes
also the gain of the power amplifier Ka and the signal
conditioning gain Ks of the CDAQ, both known by the
design of the control board [10]. Thus, G1 is the transfer
function between the signals actually measured in the
CDAQ. The reference signal r is used for identification
purposes, while Kc is the proportional controller used to
suppress the LCO.

Kc Ka G Ks
u1

r

u y y1

G1

Fig. 8: Block diagram for identification.

For the reference signal r, Pseudo Random Binary Sig-
nals (PRBS) are a popular choice in experiment design
([7], Chapter 13). PRBS have the favourable feature,
especially when identifying plants without much prior
knowledge, of distributing an equal amount of energy
over all the frequency spectrum (below the Nyquist
frequency of the signal). The CDAQ has a sample rate
of 20 kSamples/s, and thus a frequency resolution of
0.5 Hz was obtained with a PRBS-16 sequence, which
is a periodic signal of period N = 216 − 1 = 65535
Samples ≈ 3.21 s. To improve the statistical properties of
the estimates, 110 periods of this signal were used. The
first 10 periods were discarded from each experiment to
reduce the effect of transients and consequently decrease
the bias error. The remaining 100 periods of data were
then split into blocks of 10, that were averaged to result
in one set of data containing only 10 periods (thus
achieving a reduced variance error).

The empirical transfer function estimate (ETFE), a
nonparametric frequency-domain method for identifica-
tion of linear systems ([7], Chapter 6), is used to identify
the transfer function G for different values of Iw. In the



case of open-loop experiments (used to identify G for Iw
< 8.6), the estimate is straightforward:

Ĝ
(
ejω
)

= Ĝ1(z)
KaKs

= 1
KaKs

Y1
(
ejω
)

U1 (ejω) , (3)

where Y1 and U1 are the Fourier transforms of the
signal y1 and u1. In closed-loop experiments, the direct
method in (3) is likely to provide inaccurate results as
the measured output includes some noise which, due to
the feedback, is correlated with u1. To achieve a bet-
ter estimate, two alternative techniques for closed-loop
identification were tested ([7], Chapter 13). Both recast
the problem as the identification of transfer functions
for which the noise in the output is uncorrelated with
the input. In the indirect method, the transfer function
between the reference signal r and y1 is identified:

Ty1,r = G1

1 +KcG1
= SG1, (4)

where S is the sensitivity function. Once an ETFE
estimate for Ty1,r is obtained, an estimate for the plant
G can be obtained by inverting (4):

Ĝ
(
ejω
)

= Ĝ1(z)
KaKs

= 1
KaKs

T̂y1,r

(
ejω
)

1−KcT̂y1,r (ejω)
. (5)

A drawback of this method is that it requires per-
fect knowledge of the controller. The joint input-output
method (used here unless otherwise stated) overcomes
this issue by also considering the transfer function from
r to u1, i.e. the sensitivity function S. The new estimate,
which no longer depends on the controller, can then be
obtained as a ratio of the two ETFE:

Ĝ
(
ejω
)

= Ĝ1(z)
KaKs

= 1
KaKs

T̂y1,r

(
ejω
)

T̂u1,r (ejω)
= 1
KaKs

SG1
(
ejω
)

S (ejω) .

(6)
Note that the latter method is also more robust to
possible non ideal behaviours of some of the CDAQ
internal components since it makes direct use of the
measured signal u1. A comparison of the estimate Ĝ
obtained with the two methods at a current of 9.6 A is
shown in Fig. 9.
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Fig. 9: Comparison of Ĝ for the two closed loop identifi-
cation methods at a current of 9.6 A.

The two methods are in very good agreement, which
is expected since the controller here only consists of

a gain thus the indirect method should not encounter
issues. Only at higher frequencies differences between
the estimates can be noticed. This region is particularly
sensitive to noise and thus the mismatch can be ascribed
to it. Another interesting observation is that the identi-
fied transfer function highlights an instability of the first
mode, which can be seen by the fact that the phase of the
plant increases by approximately 180° at the resonance
peak of the first mode. This is expected since the Rijke
tube at Iw= 9.6 A exhibited an LCO (Fig. 4). It is also
noted the phase roll-off, from which an estimate of the
time delay in the system, resulting from a combination of
the delay in the CDAQ (known from its design) and the
delay τ in the heat equation (see end of Section II-B),
can be obtained.

In order to improve the frequency resolution around
the first mode (upon which the stability of the system
depends), a linear chirp signal with a frequency sweep
between 100 Hz and 200 Hz was used. The length of the
signal was increased to 400 000 Samples per period (with
the same sample rate) to have a frequency resolution
of approximately 0.05 Hz. A similar pre-filtering of the
identification signals, as used in the PRBS case, was
employed. A comparison of the plant estimate with the
two different input signals is shown in Fig. 10.
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Fig. 10: Comparison of Ĝ for different input at 9.6 A.
The estimate obtained with the chirp is smoother than

the PRBS one (note that no smoothing is applied to
the estimates). This is because the chirp has a higher
power in this frequency range, reducing the variance of
the estimates, and allowing the resonance peak, and the
associated damping, to be better captured.

The identification strategy presented so far was re-
peated for different values of Iw to characterize the
influence of this key parameter in the thermoacoustic
coupling, and the results are shown in Fig. 11(a).

It can be concluded (especially from closeup of the
phase plot in Fig. 11(b)) that 8.8 A is the critical value for
the current. This is a confirmation of the experimental
evidence gathered in Section IV-A, where the humming
sound was only observed for currents above that value.
In [6] it was noted that some estimates failed to capture
the loss of stability of the plant (for values above Icrw ) due
to the high precision required around the resonant peak
to detect it. The identification strategy proposed here,
consisting of mixed input signals, signals pre-filtering,
no artifical smoothing and a more robust closed-loop
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(a) First to eighth mode.
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(b) Closeup around the first mode.

Fig. 11: ETFE Ĝ for various heater currents.

identification algorithm, seems to overcome these issues.
Another interesting aspect is the effect of Iw on the
modal frequencies, which all slightly shift towards higher
frequencies for increasing currents. The same trend was
detected in Fig. 4 for the spectrum of the LCO.

Finally, for each of the identified ETFE a state-space
model capturing the first 5 modes (i.e. 10 states) was con-
structed using frequency-domain subspace identification.
A weighting emphasizing the frequency points around the
resonance peaks was employed to obtain accurate results.
In Fig. 12 the pole map of the first five modes as the
current increases from 8.4 A to 11 A is plotted.
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Fig. 12: Pole map of the family of state-space models.
The main effect of the parameter Iw is to move towards

the right half plane the eigenvalues associated with the
first mode, causing by doing so the unstable response
discussed in Sec. IV and observed experimentally for
Iw > 8.8 A. The spectrum is that of a damped wave
equation, where the imaginary part of the poles is an
integer multiple of the fundamental frequency. As for
the damping, it is observed that this increases for higher
modes. While there exist damping models that mimic
this effect [11] (by introducing a lumped damping param-
eter which is proportional to the frequency of the mode),

it is not common in the control literature to model
damping in first-principles models (e.g. Eq. 1), despite
its clear importance for the onset of thermoacoustic
instability and thus active control applications.

VI. Conclusions
The paper presents experiments and system identifica-

tion results of a laboratory prototype of thermoacoustic
instabilities. The nonlinear closed-loop response of the
system is characterized in terms of LCO main features
and onset of bifurcations with respect to a heat param-
eter and the controller gain. Once the dynamic response
as a function of the current has been characterized,
LTI systems describing the system around the branch
of equilibria are identified. These models can be used
to study the effect of macroscopic parameters (such as
the amount of exchanged heat) on the spectrum of the
system, and can be used to design controllers for active
suppression or enhanced energy harvesting.
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