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Abstract— Two approaches to tackle the nonlinear robust
stability problem of a plant are considered. The first employs a
combination of the Describing Function method and µ analysis,
while the second makes use of Integral Quadratic Constraints
(IQCs). The model analyzed consists of an open-loop wing’s
airfoil subject to freeplay and LTI parametric uncertainties.
One of the main contributions of the work is to provide
methodologies to quantitatively determine the post-critical be-
haviour of the system, known as Limit Cycle Oscillation (LCO).
When the first approach is adopted, this is studied by means
of a worst-case LCO curve, whose definition is given in the
paper. The IQC framework, typically used to find asymptotic
stability certificates, is applied to this scenario by introducing
a restricted sector bound condition for the nonlinearity.

I. INTRODUCTION

In the last two decades great effort has been devoted in the
control community to develop methodologies able to handle
uncertainties and nonlinearities in a unified framework. One
of the main results is represented by Integral Quadratic
Constraints (IQCs) [1], a powerful tool to assess the robust
stability and performance of nonlinear systems. The idea is
to recast the system as a feedback interconnection of a Linear
Time Invariant (LTI) plant G with an operator ∆, gathering
nonlinearities and uncertainties, and describe the latter in
terms of constraints on its input and output channels. IQC
can be viewed as a comprehensive framework reconciling
small gain [2] and positivity/passivity techniques [3].

It is possible to deal with the nonlinear robust problem
within a less general framework than IQC by tackling the
uncertainties and nonlinearities of the system by means of
distinct tools for each. When the focus is only on LTI param-
eters or dynamic uncertainties, a well-established technique,
which specializes the small gain theorem to the case of a
structured ∆, is the structured singular value (s.s.v.) [4]. And
when the focus is the nonlinearities, a way to introduce them
in the frequency domain framework is represented by the
Describing Functions (DF) method [5]. This technique allows
to substitute the nonlinear operator with a quasi-linear one
whose output is a function of some input signal features.
The chief goal of this paper is to show and discuss the
application of these frameworks to an engineering problem
relevant to the design of modern aerospace systems, giving
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novel interpretations of the obtained results and proposing
their usage to study the post-critical behaviour.

A modern trend in the aeronautical industry is to design
lightweight aircraft configurations to reduce fuel consump-
tion and operating costs. The increase in flexibility is gen-
erally detrimental for the dynamic response of the aircraft,
determining phenomena such as flutter, a self-excited insta-
bility featured by aeroelastic coupling between aerodynamics
and structural dynamics. This problem is traditionally tackled
in industry with linear nominal techniques. However, the
increase in flexibility and the demand for a more realistic
description of the system, compel to consider cases where
these hypotheses no longer hold. The aerospace industry,
for example, has recently shown interest in research aimed
at evaluating the effect of the uncertainties on instabilities
prompted by the control surface freeplay [6]. Among the
goals of these studies, primary is the detection and charac-
terization of Limit Cycle Oscillations (LCOs). In fact, the
presence of nonlinearities leads to limited amplitude flutter,
whose investigation is of well-ascertained interest in order
to accomplish a satisfactory design [6].

The main contribution of this work is to propose the
application of the quasi-linear robust approach (with DF and
µ) and the nonlinear robust one (by means of IQC) to study
this problem. A discussion on the advantages and limitations
of the DF-µ approach, along with a possible interpretation
of the main outcomes in terms of a worst-case LCO curve,
is presented. Then, in the IQC approach, conservatism of the
analyses in terms of selection of the multipliers and global
validity of the results are investigated and possible strategies
to address them are proposed. These two issues represent an
active area of research in IQC analysis [7], [8], [9].

II. BACKGROUND

This Section presents the necessary theoretical background
by means of a cursory introduction to the techniques em-
ployed. Common notation is adopted [1], [2]. The goal of the
work is to study the stability of the feedback interconnection
shown in Fig. 1, where G is an LTI system and ∆ is a generic
causal and bounded operator.

Fig. 1. Feedback interconnection



A. LFT modeling and µ analysis

The LFT framework provides a formal description of
the feedback interconnection depicted in Fig. 1. Let M ∈
C(n+p)×(m+q) be partitioned as M = [M11 M12; M21 M22]
and ∆ ∈ Cm×n. The upper LFT [2] with respect to ∆ is:

Fu(M,∆) = M22 +M21∆(I −M11∆)−1M12 (1)

A crucial feature apparent in (1) is that the LFT is well posed
if and only if the inverse of (I−M11∆) exists. If the operator
∆ contains structured LTI uncertainties (we will indicate this
by writing ∆ = ∆u), a robust stability (RS) certificate can
then be obtained applying µ analysis.
The structured singular value [4] µ∆u(M11) of the complex-
valued matrix M11 with respect to the set ∆u is:

µ =

(
min
∆u

(β : det(I−βM11∆u) = 0; σ̄(∆u) ≤ 1

)−1

(2)

where β is a real positive scalar. The result can then be
interpreted as follows: if µ∆u

(M11) ≤ 1 then there is no
perturbation matrix inside the allowable set ∆u such that
the determinant condition is satisfied, that is, the associated
plant is robustly stable. On the contrary, if µ∆u

(M11) ≥ 1
a candidate (i.e. belonging to the allowed set) perturbation
matrix exists which violates the well-posedness. It is known
that µ∆(M) is in general an NP-hard problem, thus all µ al-
gorithms work by searching for upper and lower bounds [4].

B. Describing Function

The Describing Function method [5] aims to provide
an analogous concept of frequency response for nonlinear
systems. This is pursued by means of a quasi-linearization
of the nonlinear operator φ, after the input signal form has
been specified. In this work we focus on sinusoidal-input
describing functions (SIDF), later abbreviated DF.

The key hypothesis of the DF method is that only the
fundamental harmonic component has to be retained from the
generical periodic output at the nonlinearity. This approxima-
tion relies on the assumption that the linear element filters
out the higher harmonics. The DF of a nonlinear element
with output w is thus the complex fundamental harmonic
gain N(B,ω) of a nonlinearity in the presence of a driving
sinusoid v of amplitude B and frequency ω:

N(B,ω) =
Dej(ωt+θ)

Bej(ωt)
=
D

B
ejθ =

b1 + ja1

B

with D(B,ω) =
√
a2

1 + b21; θ(B,ω) = arctan(
a1

b1
)

v = B sin(ωt); w w a1(B,ω) cos(ωt) + b1(B,ω) sin(ωt)
(3)

where a1 and b1 are the Fourier coefficients of the first
harmonic of w. This method treats the nonlinear operator
of Fig. 1 (∆ = φ when it only gathers nonlinearities) in the
presence of a sinusoid inputs as if it were a linear element
with a frequency response N(B,ω). Linear theory is then
applied to the quasi-linearized system, searching for points
of neutral stability which are interpreted as LCOs in the
nonlinear system.

C. Integral Quadratic Constraints

IQC is a well established technique to deal with stability
and performance analysis of nonlinear and uncertain systems
[1] in a unified framework. Let Π : jR→ C(n+m)×(n+m) be
a measurable Hermitian-valued function, named multiplier.
Two signals v ∈ Ln2 [0,∞] and w ∈ Lm2 [0,∞] (with Fourier
transforms v̂ and ŵ) satisfy the IQC defined by Π if:∫ +∞

−∞

[
v̂(jω)
ŵ(jω)

]∗
Π(jω)

[
v̂(jω)
ŵ(jω)

]
dω ≥ 0 (4)

A bounded and causal operator ∆ satisfies the IQC defined
by Π if (4) holds for all v and w = ∆(v) . Conditions for
absolute stability of the feedback interconnection of G and
∆ are given in terms of matrix inequalities to be verified over
the entire frequency spectrum [1]. In order to facilitate the
numerical solution of this problem, it is common practice to
factorize the multiplier Π as Ψ∼ S Ψ where S = ST is a real
matrix variable and Ψ is a transfer matrix constructed from
pre-selected basis transfer functions. The search for stability
certificates can then be recast into a Linear Matrix Inequality
(LMI) problem. In particular, stability is guaranteed if there
exists a matrix P = PT such that:[

ǍTP + PǍ PB̌
B̌TP 0

]
+

[
ČT

ĎT

]
S
[
Č Ď

]
< 0 (5)

with [Ǎ, B̌, Č, Ď] obtained from the state-space realizations
of G and Ψ. The core effort to reduce the conservatism as-
sociated to the results consists in finding suitable multipliers
Πi describing the input/output relation of the operator ∆.

III. PROBLEM STATEMENT

In the past two decades it has been clearly asserted the
need to take into account the effects of nonlinearities and
uncertainties [10] when studying aeroelastic phenomena. In
particular, LCOs must be avoided in mechanical systems
since they are likely to degrade fatigue life and provoke
critical damages. Aircraft design requirements (for both
civil and military aviation) formulate constraints on LCO
accelerations in prescribed points of the airframe [6]. These
quantities can be estimated provided that a characterization
of the LCO in terms of amplitude and frequency is available,
hence motivating the focus of this work.

In the first Section an overview of the model employed
to analyze the benchmark is presented. The interested reader
is referred to [11] for a detailed discussion on the aeroe-
lastic modeling aspects. The other Sections describe how
uncertainties and nonlinearities are treated in the pursued
approaches.

A. Aeroelastic model

The aeroelastic system consists of a rigid airfoil with
lumped springs simulating the 3 degrees of freedom (DOFs):
plunge h, pitch α and trailing edge flap β.
Theodorsen’s unsteady formulation is employed to model the
aerodynamics. If X = [h α β]T and L = [−Lh Mα Mβ ]T

are defined as the vectors of the degrees of freedom and



corresponding aerodynamic loads respectively, the aerody-
namic model provides the generalized Aerodynamic Influ-
ence Coefficient (AIC) matrix Ag , where Ag(ij) represents
the transfer function from the degree of freedom j in X to the
aerodynamic load component i in L. Since the AIC matrix
has a non-rational dependence on the Laplace variable s,
a rational approximation of Ag by means of the Minimum
State method [11] is employed, which enables to obtain a
state-space description of the dynamics:

ẋ =

[
ẋs
ẋa

]
=

[
Ass Asa
Aas Aaa

] [
xs
xa

]
= Ax (6)

where A is the state-matrix (function of the airspeed V ), x
is the vector of states and xs and xa are respectively the
structural and aerodynamic states, the latter needed for the
rational approximation of the unsteady operator. The total
size of the plant in our example is 9 (6 structural and 3
aerodynamic states).
Flutter analysis evaluates the conditions at which the dy-
namic aeroelastic system (6) loses its stability. The result is
the prediction of the so-called flutter speed Vf , below which
the system is guaranteed to be stable.

B. Model uncertainties

Parametric uncertainties are used to describe parameters
whose values are not known with a satisfactory level of
confidence. Considering a generic uncertain parameter d,
with λd indicating the uncertainty level with respect to a
nominal value d0, a general representation is given by:

d = d0 + λdδd (7)

where ‖δd‖ ≤ 1. This study will take into account a
10% uncertainty in the following parameters: Kh, and Kα

(bending and torsional stiffness); static moment of the airfoil
Sα; Iα, and Iβ (airfoil and flap moment of inertia). As
explained later in Sec. III-C, the flap stiffness Kβ , affected by
freeplay nonlinearity but not uncertainty, will also be handled
within the LFT framework.

The LFT paradigm enables to manipulate the nominal
system by simply introducing the expression (7), specialized
for each uncertain parameter, into the state-matrix (6) and
using well-established realization techniques (in this work by
means of the LFR toolbox [12]) to obtain the correspond-
ing upper LFT (1). Particularly relevant is the state-space
realization of the transfer matrix M11(s):

M11(s) = CG(sIn −AG)−1BG +DG (8)

where AG = A from (6). The subscript G is to remark that
M11 coincides with the plant G in Fig. 1. This representation
of the uncertain plant is the starting point for the study of
the system robust stability with either µ or IQC analysis.
µ analysis can be straightforwardly applied to evaluate

the robustness of the system. Once the LFT is built up,
calculating the matrix M11 in (2) basically amounts to
evaluating (8) at s = jω, where ω belongs to the set of
frequencies employed in the analyses. The Robust Control
Toolbox in MATLAB [4] will be adopted here.

IQC analysis requires to characterize ∆u in terms of a
multiplier Π satisfying (4). It is well-known that for constant
real scalar uncertainties δd ≤ 1, a candidate is:

ΠR =

[
X(jω) Y (jω)
Y (jω)∗ −X(jω)

]
(9)

where X(jω) = X(jω)∗ ≥ 0 and Y (jω) = –Y (jω)∗ are
generic bounded and measurable matrix functions (named
D-G scalings in robust control theory) [1].
The IQCβ toolbox [13], employed in this work for the
analyses, allows to formulate the problem declaring the
connections among the signals of the system by linking
them through appropriate sub-functions. The LTI system
G gives, by means of the state-space realization (8), the
transfer matrix from w and v. The relation between v and
w can instead be defined by means of the sub-function
iqc ltigain, which implements a parametrization of the
multiplier (9) with first order low-pass filters with poles af .

C. Freeplay nonlinearity

Freeplay, also called dead-zone, often arises in mechanical
and electrical systems where the first part of the input is
needed to overcome an initial opposition at the output. The
freeplay nonlinearity for the system is concentrated in the
control surface stiffness Kβ . The mathematical expression
for the elastic moment ME

β can be written as:

ME
β =

{
KL
β (β − δ̄); |β| > δ̄

0; |β| < δ̄
(10)

where δ̄ is defined as the (positive) freeplay size and KL
β is

the flap stiffness in the linear case (δ̄=0). It is worth noting
some important properties of this nonlinearity: it is odd (i.e.
the relation is symmetric about the origin), memoryless (i.e.
only one output is possible for any given value of the input),
and static (i.e. no dependence upon the input derivatives).

The DF function NF associated to freeplay can be ob-
tained analytically [5] and is here normalized such that
0 < NF < 1. Due to the aforementioned properties held by
freeplay, its describing function is a pure real gain (i.e. θ =
0 ) not depending on frequency, but only on the amplitude
of the input signal B (here specified as βs), in particular on
its ratio with δ̄. The application of DF enables to give an
expression for the elastic moment ME

β in (10) as:

ME
β = KQL

β β; with KQL
β = NF (βs)K

L
β (11)

where KQL
β is the quasi-linear flap stiffness. The flutter

speed Vf , obtained from an eigenvalue analysis of (6), is
thus associated to an LCO of amplitude βs and frequency
ωs equal to the imaginary part of the unstable eigenvalue.

When IQC analysis is pursued, a set of multipliers,
describing different properties of the nonlinearity, can be
selected. In this work we will consider: sector multiplier
ΠS with bounds [α, η]; Popov multiplier ΠP reflecting the
time-invariance; Zames-Falb multiplier ΠZF for monotonic
and odd nonlinearities, whose slope is restricted in the sector
[α1, η1]. For the latter, the user must define, other than the



sector bounds, also the length NH and the pole location aH
of the multiplier parametrization.

To conclude the IQC description of freeplay, it is proposed
here to compute the plant G by building an LFT of the
nonlinear stiffness Kβ , that is, treating it as if it was
an uncertain parameter. Once the sector bound [α, η] is
specified, a range of variation Kβ−1 < Kβ < Kβ−2 is
defined, with Kβ−1 = 2α − η and Kβ−2 = η. In this way,
after the range normalization ‖δKβ‖ ≤ 1, the sector [0,1]
automatically holds for ΠS (note that δKβ = 0 corresponds
to Kβ = α and δKβ = 1 corresponds to Kβ = η). With
this implementation, the nonlinear uncertain system can be
manipulated efficiently [12] within a unified framework.

IV. QUASILINEAR ROBUST ANALYSIS WITH µ-DF
This Section shows the results obtained from the applica-

tion of the DF-µ approach to the study of LCOs in the wing
section affected by freeplay and uncertainties. The values
of the parameters defining the nominal model are reported
in [14], where the benchmark study is presented.
If no uncertainties are included in the model, the strategy
outlined in Sec. III-C can be employed. Fig. 2 showcases
the values of flutter speed Vf and associated frequency ωs
corresponding to a variation of flap stiffness between 0 and
the linear value KL

β = 3.9 N (that is, as the associated
describing function NF varies from 0 and 1).
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Fig. 2. Flutter speed and frequency vs. flap stiffness

Due to the existing relation between KQL
β and βs (11),

these results can be shown in a plot with airspeed versus.
oscillation amplitude, see Fig. 3. The DF method is in-
strumental in guaranteeing this connection and enabling to
transfer the information coming from multiple linear flutter
analyses to an LCO characterization [15]. Stable and unstable
oscillations are depicted respectively with solid and dashed
lines, according to the criterion in [16]. Four regions can
be identified as the airspeed increases: (i) V <V0(= 3.8ms ),
where the system is stable; (ii) V0<V <V1(= 9ms ), where
the system undergoes LCOs associated with the plunge
instability (with amplitude given by the upper stable branch);
(iii) V1<V <V2(= 23.2ms ) where the LCO switches to the
pitch instability (the frequency correspondingly changes, as
in Fig. 2) and the amplitude visibly increases; and (iv), for
speeds greater than V2 where there is an asymptote.

If the nonlinear system is also affected by uncertainties, it
is of interest to estimate how the stability properties (in terms
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Fig. 3. Flap rotation LCO amplitude βs
δ̄

against airspeed (nominal system)

of V0), and the LCO features (represented by amplitude βs,
frequency ωs and the other characteristic speeds) vary due
to the terms in ∆u. This task can be approached as follows:
for a given amplitude βs, the block φ has a fixed value and
the LFT only consists of uncertain parameter (∆ = ∆u); the
problem can then be formulated as a standard RS calculation
with µ, looking at the smallest airspeed at which the system
is robustly unstable (i.e. the smallest V such that µ = 1) and
at the related peak frequency. This procedure leads to what is
named here as the worst-case LCO curve, i.e. the equivalent
of Fig. 3 but where a measure of the LCO properties
degradation in the face of the uncertainties is provided. To
this end, a flap stiffness gridding is calculated and, at each
point, a bisection-like algorithm searching for the airspeed V
which attains first the RS violation condition is implemented.
Two curves are thus obtained: one for µUB = 1 (dashed) and
one for µLB = 1 (dotted). The results, with the nominal case
(solid), are shown in Fig. 4.
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This plot can be interpreted as a worst-case analysis of the
nonlinear flutter problem in terms of LCO onset and ampli-
tude. In fact, it assesses how the properties discussed before
(with reference to Fig. 3) degrade. The first information that
can be inferred is the smallest airspeed for which the system
experiences LCO. The assumed set of uncertainties slightly
decreases this value from V0 = 3.8ms to V N0 = 3.6ms . As the
airspeed is increased, the regions highlighted in Fig. 3 are
still detectable but V1 and V2 are also shifted towards smaller
values (V N1 and V N2 ). Furthermore, the plot also allows to



clearly appreciate, especially in the third region, a sizable
growth in amplitude. Although not reported in the plot, at
each LCO point it is possible also to associate the oscillation
frequency (corresponding to the peak value of µ).

V. NONLINEAR ROBUST ANALYSIS WITH IQCS

This Section presents the application of IQC analysis to the
studied test case. It is known that a possible drawback of this
approach lies in the conservatism associated to the results.
This work investigates two related aspects: the selection of
the multipliers and the local/global validity of the results.

A. Sensitivity to multipliers’ selection and parametrization

The first analysis considers the nominal airfoil affected
by freeplay nonlinearities. Once the IQC description of the
freeplay nonlinearity is provided as documented in Sec. III-
C, the airspeed is increased until the LMI problem in (5)
becomes unfeasible (the first airspeed for which this happens
is referred to as Vunf ). In these first analyses it is assumed
that the nonlinearity is in the sector [0,KL

β ]. In Tab. I
the analyses performed are shown reporting for each test
the multiplier (with parametrization if any), the number of
decision variables, and the airspeed Vunf .

TABLE I
IQC ANALYSIS OF THE NONLINEAR NOMINAL SYSTEM

Multiplier & Options Size Vunf
ΠS 47 –

ΠS , ΠP 48 3.81 m
s

ΠS , ΠP ,ΠZF ([1,1 rad
s

]) 80 3.82 m
s

When only the sector bound condition is enforced, no
feasible solution is achieved. The Popov multiplier ΠP ,
encompassing the time invariance of the freeplay, is then
added and this enables to find Vunf = 3.8ms , confirmed also
via ΠZF . This value is the same as the airspeed V0 detected
in Fig. 3, and thus indicates that the approach of considering
the entire sector [0,KL

β ] is equivalent to look for the smallest
airspeed such that the system experiences an LCO. This is
in line with the standard application of IQC which looks for
asymptotic stability certificates of the analyzed system.

Next, the system is considered to be also affected by
uncertainties. The multiplier ΠR is employed to model the
uncertainties channels in ∆ and the obtained results are
presented in Tab. II. It is clear from the results that when
only one filter is used for ΠR, the algorithm is not able to
find a feasible solution. In fact, it is decisive to increase the
number of filters in order to match the largest stable airspeed
Vunf = 3.6ms found in the analyses of Fig. 4. Note that the
filters frequencies are chosen close to the expected flutter
frequencies (available from the analyses in Sec. IV).

The results presented confirm the well-known dependence
of IQC analysis on multipliers selection and parametrization.
However, in this study it is stressed the importance of having
reference results (here provided by the DF-µ approach).
Firstly, they provide a measure of the conservatism asso-
ciated to the infeasibility of the LMI problem and therefore
may point out the need to employ a more refined set of

TABLE II
IQC ANALYSIS OF THE NONLINEAR UNCERTAIN SYSTEM

Multiplier & Options Size Vunf

ΠR (40 rad
s

) , ΠS ,ΠP , ΠZF ([1,40 rad
s

]) 390 -

ΠR (40 rad
s

, 80 rad
s

) , ΠS ,ΠP , ΠZF ([1,40 rad
s

]) 890 3.1 m
s

ΠR (1 rad
s

, 40 rad
s

, 80 rad
s

) , 1590 3.6 m
s

ΠS , ΠP , ΠZF ([1,40 rad
s

])

multipliers. While this is typically accomplished with a
frequency sweep of the filter poles (time-consuming and
not always successful), the availability of auxiliary reference
results can inform the improvement of the parametrization
for the multipliers (e.g. characterizing the sensitivity of the
instability to the blocks ∆i and therefore focusing only on
the refinement of the associated multipliers Πi; highlighting
critical frequencies of the systems). As for the latter aspect,
the values of the filter poles are selected here considering
the expected unstable frequencies of the systems obtained
by DF-nominal analysis or DF-µ approach.

B. Local analysis

The analyses presented so far consider the standard sector
definition for the freeplay. The certificates found with this
approach guarantee asymptotic stability of the system. In
fact, only the largest airspeed at which the system settles
down to the original equilibrium when subject to any van-
ishing perturbation can be inferred. It is well understood in
the literature [1], [7], [9] that results holding locally can
greatly improve the analysis of systems via IQC. Therefore
now the IQC description of the nonlinearity is relaxed by
considering a local sector constraint definition. In Fig. 5 the
freeplay nonlinearity is depicted with dashed line, whereas
the proposed reduced sector consists of the grey area.

Fig. 5. Reduced sector constraint (grey) for freeplay nonlinearity (dashed)

The premise of this relaxation is that the DF method pro-
vides, for a given freeplay size δ̄, a relation between the
amplitude of the nonlinear response βs and the equivalent
stiffness associated to the freeplay KQL

β (11). If a lower
bound on βs is assumed, then KQL

β (βs) can be taken as the
lower limit of the sector Ks

β (dashed-dotted line). The bound
on βs can be interpreted as an oscillation level that can be
withstood by the structure, and thus it is tolerated as post-
critical response. IQC will then allow to determine the largest
airspeed Vunf such that the system does not experience any
oscillatory motion of amplitude greater than βs. The local
characteristic of the analysis is thus obtained by looking



at the post-critical behaviour of the system. In particular,
it prescribes to detect only unstable responses featured by
a minimum level of amplitude. In view of the importance
of the LCO amplitude characterization for the design of
aerospace structures (as remarked in the previous Sections),
this is believed to be a profitable tool for flutter analysis.
Although IQC-based synthesis is a non-convex problem and
thus still an active area of research, this formulation could
also be exploited to design feedback control laws for active
reduction of LCO amplitude.

Table III shows the results obtained applying this ap-
proach. The upper sector limit η = η1 is fixed at KL

β as in
the previous analyses. A different lower limit for the sector
α = α1 = Ks

β , with an associated smallest amplitude βs
δ̄

,
is instead selected for each test and the smallest unfeasible
airspeeds (namely V 1

unf for the nonlinear nominal system
and V 2

unf for the nonlinear uncertain one) are reported.
This analysis, repeated on a grid of values of Ks

β , can be
interpreted as a nominal and robust characterization of the
nonlinear response of the system in that it provides the
highest airspeed at which the system can be operated if
oscillations below a certain threshold βs

δ̄
are tolerated.

TABLE III
LOCAL IQC ANALYSIS

Ks
β [N ] βs

δ̄
V 1
unf [m

s
] V 2

unf [m
s

]

0.32 1.21 5.9 4.3
0.86 1.5 9.0 8.45
1.15 1.69 12.2 9.2
1.39 1.9 23.05 10.3
1.72 2.2 23.5 12.3
2.00 2.5 23.6 15.7

Looking at Tab. III it can be noted that different speeds
are predicted for each lower sector bound. For βs

δ̄
≤1.5,

the degradation due to the uncertainties, measured by the
difference between V 1

unf and V 2
unf , is not remarkable. As

the amplitude is increased (note that a bold line is employed
in Tab. III to emphasize the two regions), it is evident a
greater effect of the uncertainties in worsening the response.
For example, assume a nominal analysis cleared the system,
able to withstand oscillations of amplitude up to 1.9δ̄, to
operate at V=16ms . The latter amplitude takes place in
nominal conditions at V 1

unf=23.05ms (see Tab. III). The
proposed analysis then reveals that in the face of uncertainties
the system could exhibit an LCO greater than 2.5δ̄ at
V 2
unf = 15.7ms , which is actually slightly less than the

cleared nominal airspeed- with the risks this represents.
The trend in Tab. III is in good agreement not only qualita-
tively, but also quantitatively, with the worst-case LCO plot
in Fig. 4. The intersections of horizontal lines (drawn for dif-
ferent values of the ordinate βs

δ̄
) with the nominal and robust

curves give points having as x coordinate approximately the
corresponding values of V 1

unf and V 2
unf .

It is important to note finally that the accuracy of the
conclusions inferred with this local approach is expected
to depend in general on the applicability of the hypotheses
underlying DF theory to the particular system examined

(these were commented on for this problem in [15]).

VI. CONCLUSION

This paper studied the stability and post-critical behaviour
of an airfoil subject to freeplay and LTI parametric uncer-
tainties. Two approaches were presented, the first featured by
a combination of Describing Function and µ analysis, and
the second based on Integral Quadratic Constraints.

When the DF-µ approach was adopted, the conditions at
which the system lost stability could be determined, and
changes in the nonlinear response with respect to the nominal
case, estimated. A methodology to build what was named
here a worst-case LCO curve was proposed.

In pursuing the IQC approach, emphasis was given to the
conservatism of the analyses. In a first step, this was ascribed
to the parametrization of the multipliers and a sensitivity of
the results was proposed. Then, the global and local nature
of the stability certificates obtained via IQC was considered.
It was proposed, based on a connection with the DF theory, a
restricted sector bound condition allowing to detect nonlinear
responses above a certain amplitude threshold. The prowess
of this description, believed to have practical consequences
for nonlinear stability analysis and control synthesis, was
validated with the outcomes of the DF-µ approach.
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