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Abstract— A dual adaptive model predictive control (MPC)
algorithm is presented for linear, time-invariant systems subject
to bounded disturbances and parametric uncertainty in the
state-space matrices. Online set-membership identification is
performed to reduce the uncertainty and thus control affects
both the informativity of identification and the system’s perfor-
mance. The main contribution of the paper is to include this
dual effect in the MPC optimization problem using a predicted
worst-case cost in the objective function. This allows the con-
troller to perform active exploration, that is, the control input
reduces the uncertainty in the regions of the parameter space
that have most influence on the performance. Additionally, the
MPC algorithm ensures robust constraint satisfaction of state
and input constraints. Advantages of the proposed algorithm
are shown by comparing it to a passive adaptive MPC algorithm
from the literature.

I. INTRODUCTION

Adaptive control is a technique where the controller pa-
rameters are updated using measurement data. Conventional
methods of adaptive control like gain scheduling are based
on certainty equivalence, and neglect the model uncertainties
[1]. For this reason, they cannot handle constraints on states
and inputs of the system. Model predictive control (MPC) is a
popular technique since it guarantees stability and constraint
satisfaction under uncertainty [2]. The structure of MPC con-
trollers facilitates easy integration of model adaptation into
the controller. Utilizing this advantage, a variety of adaptive
MPC schemes have been proposed in the recent past using
different model structures (state-space, impulse response,
etc.) and adaptation methods (set-membership identification,
recursive least-squares, etc.) [3], [4], [5], [6].

An adaptive MPC algorithm using set-membership iden-
tification is proposed in [4], which ensures robust constraint
satisfaction for systems affected by bounded measurement
noise. An extension of this algorithm was proposed in [7],
where a worst-case cost is used to improve robustness of
the performance. The algorithm uses an impulse response
model which depends on a large number of parameters. An
alternative method has been proposed in [5] which uses un-
certain state-space models subject to bounded disturbances.
Using tube-MPC, the algorithm ensures robust constraint
satisfaction while reducing the uncertainty online. However,
in all these methods the adaptation is passive, that is, the
MPC optimizer does not exploit the fact that identification
and control are being simultaneously performed.

These disadvantages can be addressed using dual control
[8], a technique which computes control inputs under deci-
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sion relevant, reducible uncertainty. An optimal dual control
problem can be formulated by modeling the dependence of
uncertainty reduction on the control inputs. The solution
to this problem is given by dynamic programming, whose
computational complexity is high [9]. Instead, the existing
dual control algorithms approximate the optimal control
problem using heuristics to add a probing effect on the con-
trol input. In [10], an adaptive MPC algorithm is presented
with a constraint on the control input to ensure persistent
excitation. Though parameter convergence is guaranteed,
this method could result in excessive probing, especially
after the uncertainty is reduced. In [11], the parameter error
covariance is penalized in the objective function of MPC.
However, a lower covariance of the parameter uncertainty
might not always translate into improved performance, and
the cost function requires tuning the probing effect. These
problems can be mitigated by using an application-oriented
approach to dual control [12], [13]. Here the probing effect
is induced by using a measure of the robust performance,
such as worst-case cost, instead of geometric measures of
uncertainty. This ensures that active exploration is performed,
that is, the uncertainty is reduced in regions of parameter
space to improve the control performance.

The main contribution of this paper is to formulate active
exploration in a dual adaptive MPC framework. For this
purpose, the regulation of a linear, time-invariant system with
affine uncertainty in the state space matrices is considered.
The system is subject to bounded disturbances and must
satisfy state and input constraints. Using an approach similar
to [14], the problems of feasibility and learning are decou-
pled by using two state tubes. A robust state tube is used
to ensure feasibility for all model parameters in an initial
parameter set, which can be large. A predicted parameter
set is then defined as a function of the control input, and a
predicted state tube is constructed such that it is robust to
uncertainties in predicted parameter set. The cost function is
defined as the worst-case cost over the predicted state tube.
The algorithm requires a non-convex optimization problem
to be solved online. The algorithm has the flexibility to trade-
off between the computational complexity and quality of
active exploration using the length of the predicted state tube.
The performance of the algorithm with varying predicted
state tube lengths is compared to a passive adaptive MPC
algorithm using numerical simulations.

A. Notation

The sets of real numbers and non-negative real numbers
are denoted by R and R≥0 respectively. The sequence of
integers from n1 to n2 is represented by Nn2

n1
. For a vector



b, bᵀ represents its transpose, and [b]i refers to its ith element.
The ith row of a matrix A is denoted by [A]i. The dimensions
of matrices and vectors are not explicitly specified when they
can be inferred from the context. For any real scalar-valued
function J , max

h∈H
J(h) refers to the maximum value of J

over the set H. The Minkowski sum of two sets A and B
is denoted by A ⊕ B, and 1 denotes a column vector of
appropriate length whose elements are equal to 1. The convex
hull of the elements of a set S is represented by co{S}.
The notation al|k denotes the value of a at time step k + l
predicted at the time step k.

II. PROBLEM CONFIGURATION

A. System description
We consider a discrete time, linear time-invariant system

with state xk ∈ Rn, control input uk ∈ Rm and disturbance
wk ∈W ⊂ Rn at the time step k. The system dynamics can
be described according to the parametric equation

xk+1 = A(θ)xk +B(θ)uk + wk, (1)

where θ ∈ Rp is an unknown, constant parameter and θ∗ is
its true value. It is assumed that all the state variables are
measurable. The state matrices are parameterized as

A(θ) = A0 +

p∑
i=1

Ai[θ]i, B(θ) = B0 +

p∑
i=1

Bi[θ]i, (2)

and θ belongs to the bounded polytope

Θ := {θ ∈ Rp|Hθθ ≤ hθ}, (3)

such that θ∗ ∈ Θ and Hθ ∈ Rnθ×p. The states and inputs of
the system must satisfy the constraints

Z =
{

(xk, uk) ∈ Rn × Rm
∣∣Fxk +Guk ≤ 1

}
, (4)

where Z is a compact set and F ∈ Rnc×n. The objective is
to regulate the system state from the initial condition x0 to
the origin, while robustly satisfying the constraints in (4).

Assumption 1: The disturbance set W is a bounded poly-
tope described by the nw constraints in the set

W = {w ∈ Rn|Hww ≤ hw}. (5)
B. Online set-membership identification

Set-membership identification is a technique used to iden-
tify systems affected by bounded noise with unknown sta-
tistical properties [15]. The identification procedure defines
a feasible parameter set (FPS), which contains the set of all
parameters to be robust against. The FPS is initialized with
Θ and updated at each time step k to Θk. To perform the
update, a set of non-falsified parameters is constructed using
measurement data from the previous s time steps as

∆k :=

{
θ ∈ Rp

∣∣∣∣xt+1−A(θ)xt−B(θ)ut ∈W, ∀t ∈ Nk−1
k−s

}
=

{
θ ∈ Rp

∣∣∣∣ −HwDtθ ≤ hw +Hwdt+1,∀t ∈ Nk−1
k−s

}
= {θ ∈ Rp |H∆θ ≤ h∆} ,

(6)

where Dt ∈ Rn×p and dk+1 ∈ Rn are

Dt := D(xt, ut) =
[
A1xt+B1ut, . . . , Apxt+Bput

]
,

dt+1 := A0xt +B0ut − xt+1, ∀t ∈ Nk−1
k−s.

(7)

Note that Dt and dt are quantities which linearly depend on
the measured state and input vectors, but the dependence is
omitted for clarity. This notation is adopted so that ∆ can
be represented by hyperplane constraints in Rp.

In (6), the non-falsified set ∆k defines the set of all param-
eters that could have generated the measurement sequence
{xk−s, . . . , xk}. The set Θk is defined using a fixed number
of polytopic constraints given by

Θk := {θ ∈ Rp|Hθθ ≤ hθk}. (8)

The matrix Hθ is chosen offline and hθk is updated online
such that

Θk ⊇ Θk−1 ∩∆k (9)

is satisfied. This is ensured by calculating hθk as a solution
to the following set of linear programs:

[hθk ]i = max
θ∈Rp

[Hθ]iθ

s. t.
[
Hθ

H∆

]
θ ≤

[
hθk−1

h∆

]
, i = 1, 2, . . . , nθ.

(10)

III. ROBUST STATE TUBE AND CONSTRAINTS

A. Tube MPC

To ensure robust constraint satisfaction, the tube MPC
approach proposed in [16] is used. The prediction horizon
of the MPC problem is N , and the control input is parame-
terized using a feedback gain K as

ul|k = Kxl|k + vl|k, (11)

where {vl|k}N−1
l=0 are decision variables in the MPC opti-

mization problem.
Assumption 2: The feedback gain K is chosen such that

Acl(θ) = A(θ) +B(θ)K is asymptotically stable ∀θ ∈ Θ.
The gain K can be computed using standard robust control
techniques, for example, following the approach in [17].
A state tube is defined using the set-based dynamics

X0|k 3 {xk}, (12a)
Xl+1|k ⊇ A(θ)Xl|k ⊕B(θ)ul|k ⊕W, (12b)

∀θ ∈ Θk, l = 0, 1, . . . , N − 1,

which ensures that xl|k ∈ Xl|k for all the realizations of
uncertainty and disturbance. The tube cross-section at each
time step, Xl|k, is parameterized by translation and scaling
of the set

X0 := {x|Hxx ≤ 1} = co{x1, x2, . . . , xv}, (13)

where the vertices {x1, x2, . . . , xv} and the matrix Hx ∈
Rnx×n are computed offline. The variables zl|k ∈ Rn and



αl|k ∈ R≥0 define the translation and scaling of X0 respec-
tively, and are decision variables in the MPC optimization.
Then, for l = NN0 , the state tube is parameterized as

Xl|k = {zl|k} ⊕ αl|kX0 = {x|Hx(x− zl|k) ≤ αl|k1}
= {zl|k} ⊕ αl|kco{x1, x2, . . . , xv}.

(14)
B. Reformulation of constraints

The state and input constraints defined in (4) and the set
dynamics proposed in (12) must be robustly satisfied for all
θ ∈ Θk and disturbances in W. To reformulate these in a
convex manner, the following notation is defined

xjl|k = zl|k + αl|kx
j , djl|k = A0x

j
l|k +B0u

j
l|k − zl+1|k,

ujl|k = Kxjl|k + vl|k, Dj
l|k = D(xjl|k, u

j
l|k),

(15)
where j ∈ Nv1, l ∈ NN−1

0 . Note that unlike the definition in
(7) where Dt, dt are a function of known states and inputs,
the quantities Dj

l|k, d
j
l|k linearly depend on the decision

variables of MPC. Additionally, the vectors f̄ and w̄ are
computed offline such that for i ∈ Nnc1 , j ∈ Nnx1

[f̄ ]i = max
x∈X0

[F +GK]ix, [w̄]j = max
w∈W

[Hx]jw. (16)

The following proposition from [5] reformulates the robust
constraints and set-dynamics as linear equality and inequality
constraints.

Proposition 1: Let the state tube {Xl|k}Nl=0 be parame-
terized according to (14). Then, the constraints (4) and set-
dynamics (12) are satisfied if and only if ∀j∈Nv1 , l∈NN−1

0

there exists Λjl|k ∈ Rnx×nθ≥0 such that

(F +GK)zl|k +Gvl|k + αl|kf̄ ≤ 1, (17a)
−Hxz0|k − α0|k1 ≤ −Hxxk, (17b)

Λjl|khθk +Hxd
j
l|k − αl+1|k1 ≤ −w̄, (17c)

HxD
j
l|k = Λjl|kHθ. (17d)

C. Terminal set
To obtain an MPC algorithm which ensures recursive

feasibility, the state tube is directed to a terminal set. The
terminal constraints are imposed on zN |k and αN |k since
they define the last cross section of the state tube.

Assumption 3: There exists a nonempty terminal set
XT = {(z, α) ∈ Rn×R| z=0, α∈[0, ᾱ]}, such that for all
θ ∈ Θ it holds that

α ∈ [0, ᾱ] =⇒ ∃α+ ∈ [0, ᾱ] s.t.
Acl(θ)(αX0)⊕W ⊆ α+X0,

α ∈ [0, ᾱ] =⇒ (x,Kx) ∈ Z ∀x ∈ αX0.
Assumption 3 implies that the set XT is a robust positively
invariant (RPI) set for the set-dynamics in (z, α), with an
additional constraint that the set XN |k remains centered at
origin. Note that Assumption 2 is a necessary condition for
Assumption 3 to be satisfied, but they are stated separately
to emphasize that the stronger assumption is only needed
to implement the terminal condition. Thus, the terminal
constraint for the MPC algorithm is

zN |k = 0; αN |k ≤ ᾱ. (18)

IV. PREDICTED STATE TUBE FOR EXPLORATION

In this section predicted variables and sets are defined,
which are analogous to the variables and sets defined in the
previous section. Each of the predicted quantities is denoted
with a hat (̂ ) on the top. Using the predicted sets and
variables, the dual effect of the input is captured by the
MPC optimization problem. The control input uk and the
future parameter set Θk+1 are connected by the identification
step (9). By predicting the next state measurement x̂1|k, a
predicted parameter set Θ̂k is defined as a function of uk.
A predicted state tube is then constructed to contain all the
state trajectories generated by the predicted parameter set.

A. Predicted parameter set

To predict the next measurement, an estimate of the param-
eters is required. For this purpose, a least mean squares filter
is used to calculate θ̂k as an estimate of θ∗ [10]. Alternative
filters such as recursive least squares can also be used for
this purpose. Using θ̂k, the predicted state measurement at
the next time step can be written as

x̂1|k = A(θ̂k)xk +B(θ̂k)uk. (19)

Using the predicted state x̂1|k, the future constraints on the
parameter set Θk are given by

∆̂k := {θ ∈ Rp|x̂1|k−A(θ)xk−B(θ)uk ∈W},
= {θ ∈ Rp| −HwDkθ ≤ hw−HwDkθ̂k},

(20)

where uk = Kxk + v0|k is the first control input calculated
by the MPC controller. Since uk is the only input applied
in closed loop, the predicted constraints from other inputs
are not considered. A predicted parameter set Θ̂k ⊆ Θk can
now be defined as

Θ̂k := Θk ∩ ∆̂k =

{
θ ∈ Rp

∣∣∣∣ Hθθ ≤ hθk
−HwDkθ ≤ hw −HwDkθ̂k

}
= {θ ∈ Rp|Ĥθθ ≤ ĥθk}.

(21)

Note that Θ̂k is dependent on the control input through the
definition of Dk (7), but this dependence is omitted for
clarity. This captures the effect of the control input on the
identification. Figure 1a shows the parameter estimate θ̂k,
the parameter sets Θk and Θ̂k, and the predicted constraints.

B. Predicted state tube

Using the set Θ̂k, a predicted state tube of length N̂ ≤ N
is constructed such that ∀θ ∈ Θ̂k and l = NN̂−1

0

X̂0|k 3 {xk}, X̂l+1|k ⊇ A(θ)X̂l|k ⊕B(θ)ul|k ⊕W. (22)

The control input applied is the same for the set-dynamics
(12) and (22), while the parameter sets used are different.
The evolution of the predicted state tube and the robust state
tube is shown in Figure 1b. Since the parameter sets satisfy
Θ̂k ⊆ Θk, the predicted state tube lies within the robust
state tube

(
X̂l|k ⊆ Xl|k

)
. Each set in the predicted state tube



Θk Θ̂k
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(a) The estimated parameter is θ̂k. The parameter set
Θk is bounded by the blue constraints and the dashed
lines represent the predicted constraints. The shaded
region shows the predicted parameter set Θ̂k.
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(b) The state tube {Xl|k}4l=1 is shown in blue and predicted state tube {X̂l|k}2l=1

is shown in red (dashed). The values of N and N̂ are 4 and 2 respectively. The
depiction of the terminal set XT in Rn is shown in black and contains the set
XN|k centered at origin.

Fig. 1: Depiction of parameter set, predicted parameter set, state tube and predicted state tube

is parameterized as X̂l|k = {ẑl|k} ⊕ α̂l|kX0 where ẑl|k ∈
Rn, α̂l|k ∈ R≥0, for l = NN̂0 are decision variables in the
MPC optimization problem. To reformulate the predicted set-
dynamics in (22), the following definitions are used for j ∈
Nv1, l ∈ NN̂−1

0

x̂jl|k= ẑl|k + α̂l|kx
j , d̂jl|k = A0x

j
l|k +B0u

j
l|k − ẑl+1|k,

ûjl|k= Kx̂jl|k + vl|k, D̂j
l|k = D(x̂jl|k, û

j
l|k).

(23)
The next proposition formulates the dynamics of the pre-
dicted state tube as constraints. The proof is similar to
Proposition 1 and is omitted.

Proposition 2: The predicted state tube {X̂l|k}N̂−1
l=0 satis-

fies the set-dynamics (22) if and only if for all j ∈ Nv1 and
l ∈ NN̂−1

0 there exists Λ̂jl|k ∈ Rnx×(nθ+nw)
≥0 such that

−Hxẑ0|k − α̂0|k1 ≤ −Hxxk, (24a)

Λ̂jl|kĥθk +Hxd̂
j
l|k − α̂l+1|k1 ≤ −w̄, (24b)

HxD̂
j
l|k = Λ̂jl|kĤθ. (24c)

The constraints are bilinear in the variables since Ĥθ, ĥθk are
linearly dependent on the control input uk as seen in (21).

C. Predicted worst-case cost

The cost function to be minimized is

J(v, N̂ , N) =

N̂∑
i=0

l(X̂i|k, vi|k) +

N∑
i=N̂+1

l(Xi|k, vi|k), (25)

where l(X, v) = maxx∈X ||Qx||∞ + ||R(Kx + v)||∞,, and
Q,R are positive definite matrices. A linear cost is chosen
so that it can be reformulated using linear inequalities. The
cost function is the sum of the predicted worst-case cost over
the horizon N̂ and the worst-case cost over the remaining
prediction horizon. This combination is used because propa-
gating the predicted state tube is computationally expensive
due to the bilinear constraints (24), and results in a non-
convex optimization problem. The parameter N̂ offers a
trade-off between the computational complexity and active

Algorithm 1 Adaptive MPC with active exploration

Offline Choose K, ᾱ and X0. Initialize hθk and θ̂k.
Online

1: k ← 1
2: repeat
3: Obtain the measurement xk
4: Construct ∆k according to (6)
5: Update hθk using (10) and compute θ̂k
6: Solve optimization problem (27)
7: Apply the control input uk = Kxk + v0|k
8: k ← k + 1
9: until

exploration. A higher value of N̂ increases the effect of
a smaller parameter set Θ̂k and thus promotes exploration.
However, it also increases the number of bilinear constraints
and the computational complexity. This trade-off will be
exemplified in the numerical tests shown in Section V.

D. MPC algorithm

The MPC optimization can now be defined using all the
elements described above. The decision variables are

qk =


{
zl|k, αl|k, {Λjl|k}

v
j=1

}N
l=0

, {vl|k}N−1
l=0 ,{

ẑl|k, α̂l|k, {Λ̂jl|k}
v
j=1

}N̂
l=0

 , (26)

and the optimization problem can be written as

minimize J(25)
s.t. qk ∈ Qk := {qk|(17), (18), (24)}, (27)

where Qk represents the feasible region at time step k. The
adaptive MPC algorithm with active exploration is described
in Algorithm 1. The values of the prestabilizing gain K, the
state tube shape X0, terminal set bound ᾱ must be computed
offline. The value of hθk is initialized according to (3), and
an initial guess is used for θ̂k. The following proposition
establishes the control theoretic properties of the algorithm

Proposition 3: Let the assumptions 1,2 and 3 be satisfied
and an initial feasible solution exist, that is, Q0 6= {∅}.



Then, the closed loop system using Algorithm 1 satisfies the
following properties for all k > 0:

(i) θ∗ ∈ Θk

(ii) Qk 6= {∅}
(iii) (xk, uk) ∈ Z.

Proof: The properties (i) and (ii) are proven by induc-
tion. Let θ∗ ∈ Θk for some k ≥ 0 which implies θ∗ ∈ ∆k

according to (9). Since wk ∈ W, the definition of the non-
falsified set ∆k+1 in (6) implies θ∗ ∈ ∆k+1. This is because
∆k+1 is constructed using the s − 1 measurements used in
∆k. Applying (9) for the time step k+ 1 proves θ∗ ∈ Θk+1.

Property (ii) implies recursive feasibility, i.e., if the MPC
problem is feasible at the first time step, it remains feasible.
For the proof, assume there exists a feasible solution at
time step k ≥ 0. It is sufficient to find a feasible solution
for the control variables {vl|k}N−1

l=0 and state tube variables
{zl|k, αl|k, {Λjl|k}

v
j=1}

N−1
l=0 at the next time step to prove that

the optimization problem is feasible. This is because the state
tube satisfies the set-dynamics of the predicted state tube
(22). Consider the state tube {Xl|k}Nl=0 computed at time step
k. Assumption 3 implies that the feedback controller u = Kx
maps the set XN |k to a set α+X0, where α+ ∈ [0, ᾱ]. Since
the relation Θk ⊇ Θk+1 holds according to (9), a feasible
sequence of control inputs at the next time step is

{vl|k+1}N−2
l=0 = {vl+1|k}N−2

l=0 , vN−1|k+1 = 0.

and a feasible sequence of sets defining the state tube is

{Xl|k+1}N−1
l=0 = {Xl+1|k}N−1

l=0 , XN |k+1 = α+X0.

Property (iii) is a direct result of Proposition 1 and
recursive feasibility.

V. NUMERICAL RESULTS

In this section, the performance of the dual adaptive MPC
(DAMPC) algorithm presented in this paper is compared
to a passive adaptive MPC (PAMPC) algorithm from [5].
The DAMPC algorithm performs active exploration using a
predicted state tube, and the dependence of the performance
its length N̂ is studied. The PAMPC algorithm uses the MPC
cost function with N̂ set to 0. The system matrices used in
the simulation are given by

A0 =

[
0.85 0.5
0.2 0.6

]
, A1 =

[
0.1 0
0 0.1

]
, A2 =

[
0 0
0 0

]
,

B0 =

[
1 0.4

0.2 0.4

]
, B1 =

[
0 0
0 0

]
, B2 =

[
0 0.5
0 0.4

]
.

The uncertainty in the parameters is described by
Θ=

{
θ ∈ R2

∣∣ ||θ||∞ ≤ 1
}
, with θ∗ = [0.95, 0.3]ᵀ. The dis-

turbance set is W =
{
w ∈ R2

∣∣ ||w||∞ ≤ 0.1
}

and the state
and input constraints are described by

Z =

{
(x, u)∈R2×2

∣∣∣∣ ||x||∞ ≤ 10
−0.5 ≤ [u]1 ≤ 1, −2 ≤ [u]2 ≤ 2

}
.

The initial state of the system is x0 = [1, 1.5]ᵀ. In both
PAMPC and DAMPC, the state tube is constructed by
translating and scaling the set X0 =

{
x ∈ R2

∣∣ ||x||∞ ≤ 1
}

.
The bounded complexity update of Θk is performed using

Fig. 2: Closed loop trajectories achieved under PAMPC and
two DAMPC schemes with predicted state tube length N̂ =
2, 5.

Fig. 3: Parameter sets obtained after running the adaptive
MPC schemes for 10 timesteps. The square represents the
true parameter.

nθ = 58 hyperplanes which are initially chosen as outer
bounds of the set Θ. The cost matrices are given as Q =
R = I2×2, the prestabilizing gain used is

K =

[
−0.5625 0

0 0

]
,

and the corresponding terminal set bound ᾱ is 0.89. The
prediction horizon chosen is N = 8 time steps for all the
algorithms. Two different values of the N̂ are used, and
the corresponding adaptive MPC schemes are referred to
as DAMPC2 and DAMPC5 for N̂ = 2, 5 respectively. The
DAMPC schemes are initialized at θ̂0 = [0.5, 0.5]ᵀ.

The closed loop trajectories using each of the controllers
are shown in Figure 2. It can be seen that active exploration



Fig. 4: Colormap showing the distribution of closed loop
costs of MPC controllers as a function of the parameters. The
legend is same as in Figure 3, and is omitted for readability.

improves the regulation performance. The PAMPC scheme
achieves a closed loop cost of 6.04, while DAMPC2 and
DAMPC5 achieve 4.49 (25% lower) and 4.21 (30% lower)
respectively. The coefficients of control input [u]2 have high
uncertainty, and the PAMPC algorithm does not excite this
input since the MPC optimizer within does not explicitly
include the benefit of online identification. However, the
DAMPC algorithms use a higher value of [u]2 which im-
proves the identification and reduces the closed loop cost.
The updated uncertainty set Θk of each scheme after 10 time
steps is shown in Figure 3. Even though the uncertainty sets
for DAMPC2 and PAMPC have similar size, the DAMPC2

algorithm has a lower uncertainty in the parameter [θ]2 which
has a stronger influence on the performance. This can be
interpreted using Figure 4, which shows the closed loop
cost of an MPC controller specifically designed for each
plant in the uncertainty set, plotted as a function of the
corresponding parameters. Since the goal is to investigate the
exploratory actions of the three aforementioned controllers,
only the region around the uncertainty sets depicted in
Figure 3 is considered. Figure 4 reveals the relative difficulty
in controlling the systems, and thus motivates why some
regions of parameter space are removed from the uncertainty
set Θk rather than the others. The figure shows that compared
to the DAMPC2 controller, the PAMPC controller results
in a parameter set associated with worse performance. This
is because the predicted worst-case cost function induces
exploration so as to remove the systems difficult to control
from the future parameter set. Additionally, it can be seen
that using a larger N̂ improves exploration. The DAMPC5

algorithm has the smallest uncertainty set, while also having
the least closed loop cost. The cost-reduction offered by
DAMPC schemes is achieved at the price of computational
complexity. The simulations were performed on a laptop us-
ing Intel i7-8550U 1.8 GHz processor, and the optimization
problems were setup using YALMIP [18] and solved using
IPOPT [19]. The average solver time for the optimization
problem in PAMPC was 0.042s, while that of DAMPC2 and
DAMPC5 were 0.89s and 1s respectively. A similar trend was
observed for the performance and solver times with different
values of the predicted state tube length.

VI. CONCLUSION

A dual adaptive MPC scheme was presented for systems
with parametric uncertainty in state-space matrices. The al-
gorithm uses online set-membership identification to reduce
the uncertainty in the parameters and a tube MPC approach
to ensure robust constraint satisfaction. A predicted state-
tube is used to capture the effect of the future control
inputs on identification, and a predicted worst-case cost is
optimized. The resulting optimization problem in the MPC
is non-convex, but offers the flexibility to trade-off the
computational complexity with performance. The algorithm
ensures recursive feasibility and consistency of the parameter
set, and performs better compared to a passive adaptive MPC
approach from literature while regulating a system.
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