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Abstract— The paper deals with the problem of de-
signing informative input trajectories for data-driven
simulation. First, the excitation requirements in the
case of noise-free data are discussed and new weaker
conditions, which assume the simulated input to be
known in advance, are provided. Then, the case of
noisy data trajectories is considered and an input
design problem based on a recently proposed maxi-
mum likelihood estimator is formulated. A Bayesian
interpretation is provided, and the implications of
using Hankel and Page matrix representations are
demonstrated. Numerical examples show the impact
of the designed input on the predictive accuracy.

I. Introduction
Predicting the response of a plant to given initial

conditions and input signals is a fundamental task for
analysis and control of dynamical systems. While this is
a basic problem when a model of the plant is available
(either derived from first principles or identified from
experiments), increasing interest has been devoted to
direct data-driven prediction methods, whereby future
responses are expressed in terms of past (data) trajecto-
ries. The behavioral approach [1] has found undisputed
success in recent years within this context. Building on
the seminal work [2] providing conditions under which
the subspace of trajectories of a linear system can be
spanned by noise-free data matrices, extensive research
has been done in this direction, especially with the goal
of using this non-parametric description for control [3].

As the success of such data-driven controllers highly
depends on the accuracy of the predictions, we focus
here on the data-driven simulation problem for linear
systems and consider two interrelated questions. The
first, to which Section II is devoted, is concerned with
characterizing the excitation requirements of the data
trajectory. This problem was originally addressed in [4]
by assuming persistence of excitation of the input and
then applying the result from [2]. It is shown in this paper
that, for a particular simulation task, the requirements
can be greatly relaxed. While these results guarantee
that the simulated output can be exactly reconstructed,
they all require clean (or noise-free) data trajectories.
Building on these weaker excitation requirements, the
second contribution, presented in Section III, is a design
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procedure to choose the input data trajectory in order to
maximize the accuracy of the simulated response when
the data trajectory is contaminated by noise. The accu-
racy criterion is formulated from a Bayesian viewpoint by
leveraging a maximum likelihood data-driven estimator
[5] and the concept of mutual information [6].

We put emphasis, in both results, on the effect of using
Hankel and Page matrix representations for the data
trajectory. While Hankel matrices have a rich history in
system identification [7], Page matrices, proposed in [8] in
the context of realization algorithms with noisy Markov
parameters, have received less attention. It was shown
in [8] that in the Page matrix case, since there are no
repeated entries, de-noising by thresholding the lowest
singular values is provably optimal. This is not the case
for Hankel matrices where low-rank approximations via
the SVD implicitly attribute a non-uniform weight on
the noisy Markov parameters. The advantages pertaining
to the use of Page matrices as distributionally robust
predictors were recently discussed in [9]. However, in
the behavioural setting Page matrices are reportedly less
accurate than Hankel ones, when the comparison is done
with equal data length, owing to their less favourable
sample efficiency [10]. Numerical results in Section IV
show that, by using the proposed input design strategy,
this aspect can be ameliorated and Page matrices do offer
better predictive accuracy, as conceptually expected as
they eliminate noise coupling among entries.

The input design problem in the data-driven setting
has recently started receiving attention [11], [12]. In
[11], an online procedure to select an input sequence
which satisfies the conditions in [2] without requiring
persistence of excitation is proposed in the case of clean
data. The work in [12] considered the case of impulse
response simulation with noisy Hankel matrices, and
used the standard excitation requirements [4].

Notation and definitions
The mutual information [6] of two multivariate random

variables x and y of size n is defined as

I(x; y) = H(x) +H(y)−H(x, y) = H(x)−H(x|y), (1)

where H(x) = −
∫
p(x) log(p(x))dx is the Shannon’s en-

tropy of x. If x has Gaussian distribution with covariance
Σx, it holds H(x) = 1

2 log(2πe)n + 1
2 log(det(Σx)).

Given a matrix X ∈ Rn×n, X† denotes its pseudo-
inverse and {λi(X), i = 1, ..., n} the set of its eigenvalues.
The symbol In denotes the identity matrix of size n.



Given a signal z ∈ Rnz , we use z[i,j] to denote both
the concatenated vector

[
z>i ... z>j

]> and the sequence
{zk}jk=i of length N = j−i+1. Given z[i,j], the associated
block Hankel and Page matrices with L block rows are
defined respectively as

HL(z[i,j]) :=


zi zi+1 · · · zN+i−L
zi+1 zi+2 · · · zN+i−L+1

...
...

...
zi+L−1 zi+L · · · zN+i−1

 ,

PL(z[i,j]) :=


zi zi+L · · · zi+bN

L cL−L
zi+1 zi+L+1 · · · zi+bN

L cL−L+1
...

...
...

zi+L−1 zi+2L−1 · · · zi+bN
L cL−1

 .
where HL(z[i,j]) ∈ RLnz×(N−L+1) and PL(z[i,j]) ∈
RLnz×bN

L c. The signal z[i,j] is persistently exciting
(PE) of order L if HL(z[i,j]) has full row rank
[2] and L-Page exciting of order M if the matrix
PL(z[i,i+bN

L cL−1−(M−1)L])
PL(z[L+i,i+bN

L cL−1−(M−2)L])
...

PL(z[L(M−1)+i,i+bN
L cL−1])

 has full row rank [9].

Given a state-space model (A,B,C,D), the block
Toeplitz matrix of impulse response coefficients, the
extended observability matrix, and the reversed extended
controllability matrix are defined respectively as

Ti =


D 0 0 0
CB D 0 0

...
. . . D 0

CAi−2B CAi−3B · · · D

 ,
Oi =

[
C> (CA)> ... (CAi−1)>

]>
,

Ci =
[
Ai−1B ... AB B

]
.

II. Data-driven simulation
A. Problem setting and available results

Consider a linear time-invariant (LTI) system

xt+1 = Axt +But, (2a)
yt = Cxt +Dut, (2b)

where x ∈ Rnx is the state, u ∈ Rnu is the input, and
y ∈ Rny is the output. It is assumed that (2) is minimal,
i.e. the system is controllable, observable, and nx is its
McMillan degree. The lag l is defined as the smallest
integer i such that Oi has rank nx. The data-driven (or
model-free) simulation problem for (2) is stated next.

Problem 1: Given an input-output data trajectory
(ud [0,N−1], yd [0,N−1]), an input simulation trajectory
us [0,Ls−1], and an initial condition xini, find the (unique)
output simulation trajectory ys [0,Ls−1].
It was shown in [4] that Problem 1 can be solved in
a fully input-output (or representation-free) setting by
leveraging results from behavioral system theory [1]. The

first observation is that an input-output initial trajectory
(uini [0,L0−1], yini [0,L0−1]) of (2) can be used, if L0 ≥ l, to
uniquely define the initial condition xini of Problem 1.
Define L = L0 + Ls.

Lemma 1: [4] Given (uini [0,L0−1], yini [0,L0−1]), with
L0 ≥ l, (ud [0,N−1], yd [0,N−1]), and us [0,Ls−1]. Assume
that the data generating system is controllable and
that ud [0,N−1] is persistently exciting of order L + nx.
Partition Hankel matrices built using the data trajectory
according to the indices L0 (p) and Ls (f) as follows

[
U
Y

]
=


Up
Uf
Yp
Yf

 :=
[
HL(ud [0,N−1])
HL(yd [0,N−1])

]
. (3)

Then, ys [0,Ls−1] = Yfg, where g satisfiesuini [0,L0−1]
yini [0,L0−1]
us [0,Ls−1]

 =

Up
Yp
Uf

 g. (4)

The proof is an application of the so-called Funda-
mental Lemma (FL) [2], which guarantees, under the
assumptions of Lemma 1, that any trajectory generated
by (2) is spanned by

[
HL(ud [0,N−1])
HL(yd [0,N−1])

]
. Uniqueness of

the output simulation trajectory is guaranteed by the
fact that xini is uniquely defined by an input-output
trajectory of appropriate length. Lemma 1 thus provides
an answer to Problem 1 by virtue of Hankel data matrices
that characterize the system’s behavior. It has been re-
cently shown in [9] that Page data matrix representations
can be used as well to span the system’s trajectories. A
straightforward application of the results from [9] to the
same arguments used in [4] yields the following result on
data-driven simulation with Page matrices.

Lemma 2: Given (uini [0,L0−1], yini [0,L0−1]), with L0 ≥
l, (ud [0,N−1], yd [0,N−1]), and us [0,Ls−1]. Assume that the
data generating system is controllable and that ud [0,N−1]
is L-Page exciting of order nx+1. Partition Page matrices
built using the data trajectory according to the indices
L0 (p) and Ls (f) as follows

[
U
Y

]
=


Up
Uf
Yp
Yf

 :=
[
PL(ud [0,N−1])
PL(yd [0,N−1])

]
. (5)

Then, ys [0,Ls−1] = Yfg, where g satisfiesuini [0,L0−1]
yini [0,L0−1]
us [0,Ls−1]

 =

Up
Yp
Uf

 g. (6)

While, by uniqueness, they provide the same output
simulation trajectory, the Hankel and Page matrices
formulations are markedly different as far as data length
requirements are concerned, because of the different
excitation requirements. To guarantee the conditions of
Lemma 1, it must hold N ≥ (L + nx)(nu + 1) − 1.
Instead, one needs N ≥ L((nuL + 1)(nx + 1) − 1)



to apply Lemma 2. This of course implies that the
Page formulation typically requires a much longer data
set, with potential negative effects on experimental and
computational costs. Another more subtle consequence
is related to the fact that, for a given N , the number of
columns cH of a Hankel matrix will always be larger than
the number of columns cP of a Page matrix. Specifically,
L(cH(N) − cP (N)) = N(L − 1) − L2 + L, thus this
gap increases linearly with N . The implication is that,
in the range of N for which the two formulations can
be compared (i.e. N ≥ L((nuL + 1)(nx + 1) − 1)),
cH � cP . This represents a strong disadvantage of the
Page matrix when working with noisy data trajectories,
since the effect of noise can be averaged by increasing the
number of columns of the data matrices. This fact plays a
decisive role when comparing Hankel and Page predictive
performance with noisy data, as recently observed in [10].

B. Weaker excitation conditions
The excitation conditions prescribed by Lemmas 1 and

2 are required because the respective data matrices are
used to solve the simulation problem for any input sim-
ulation trajectory and initial condition. However, when
these are known in advance, the requirements on the data
trajectory can be significantly relaxed, as shown next.

As a preamble, it is recalled that a necessary and
sufficient condition for a generic input-output trajectory
(u[0,T−1], y[0,T−1]) to be generated by (2) is that there
exists x0 ∈ Rnx such that

y[0,T−1] = OTx0 + TTu[0,T−1], (7)

as can be shown by writing (2b) for t ∈ [0, T − 1]. Since
by assumption (uini [0,L0−1], yini [0,L0−1]) is a trajectory
of (2), it satisfies (7), and we denote by x̂ the initial
condition of the state for which (7) is verified. We also
denote by xd [0,N−1] the state trajectory associated with
the input-output data trajectory.

Lemma 3: Given (uini [0,L0−1], yini [0,L0−1]), with L0 ≥
l, (ud [0,N−1], yd [0,N−1]), and us [0,Ls−1]. Partition Hankel
matrices as in (3). Assume thatuini [0,L0−1]

us [0,Ls−1]
x̂

 ∈ Im

Up
Uf
Xp

 , (8)

where Xp = [xd,0 xd,1 ... xd,N−L].
Then, ys [0,Ls−1] = Yfg, where g satisfiesuini [0,L0−1]

yini [0,L0−1]
us [0,Ls−1]

 =

Up
Yp
Uf

 g. (9)

Proof: Specializing (7) to the initial trajectory gives

yini [0,L0−1] = OL0 x̂+ TL0uini [0,L0−1], (10a)
x̂ = O†L0

yini [0,L0−1] −O†L0
TL0uini [0,L0−1], (10b)

where the vector x̂ is unique, since by assumption L0 ≥ l
and thus OL0 has full rank. Using (8), we conclude from

(10) that

uini [0,L0−1]
yini [0,L0−1]
us [0,Ls−1]

 ∈ Im

 Up
OL0Xp + TL0Up

Uf

.

Moreover, it can be shown starting from (2), see e.g. the
subspace identification literature [7], that the data trajec-
tory (ud [0,N−1], yd [0,N−1]) satisfies the matrix equation
Yp = OL0Xp + TL0Up. Thereforeuini [0,L0−1]

yini [0,L0−1]
us [0,Ls−1]

 ∈ Im

Up
Yp
Uf

 . (11)

Consider now (7) for the simulation trajectory

ys [0,Ls−1] = OLs
xini + TLs

us [0,Ls−1], (12)

where, to obtain xini, write (2a) in the interval [0, L0]

xini = xL0 = AL0 x̂+ CL0uini [0,L0−1]. (13)

Because x̂ is unique, xini is uniquely defined. Substituting
the explicit expression of x̂ (10b) in (13) yields

xini =
(
CL0 −AL0O†L0

TL0

)
︸ ︷︷ ︸

P

uini +AL0O†L0︸ ︷︷ ︸
Q

yini.

Rewrite (12) equivalently as

ys [0,Ls−1] =
[
OLs

P OLs
Q TLs

] uini [0,L0−1]
yini [0,L0−1]
us [0,Ls−1]

 ,
=
[
OLs

P OLs
Q TLs

] Up
Yp
Uf


︸ ︷︷ ︸

K

g,

(14)

where the existence of the vector g in the last equality
is guaranteed by (11). Because (12) uniquely defines
ys [0,Ls−1], showing K = Yf proves the statement. To
see this, note that writing (2) in matrix form for the
data trajectory (ud [0,N−1], yd [0,N−1]) also yields Yf =
OLs

Xf+TLs
Uf, where Xf = [xd,L0 xd,L0+1... xd,L0+N−L].

Note also that, by their definition, P and Q predict the
current state given previous input and output sequences.
This of course also holds for the data trajectory, and thus
we have that Xf =

[
P Q

] [Up
Yp

]
. Therefore

K = OLs

[
P Q

] [Up
Yp

]
+ TLsUf = Yf, (15)

which concludes the proof.
The result is proved for Hankel data matrices,

but it can be seamlessly extended to Page matri-
ces by simply changing the notation. That is, de-
fine Xp = [xd, 0 xd, L... xd, (bN

L c−1)L] and Xf =
[xd, L0 xd, L0+L... xd, L0+(bN

L c−1)L], and replace partition
(3) by (5). Notably, the excitation requirements do not
change between the two data representations, in contrast
to the previous results discussed in Section II-A.

Remark 1: Equation 8 can in principle be satisfied
with rank 1 data matrices, i.e. the minimum number of



columns is 1 and the minimum length N of the data
trajectory is L. In this case, the range condition on x̂ is
satisfied if and only if the initial conditions of the initial
and data trajectories coincide up to a scaling factor,
while for N > L this is only a sufficient condition. Note
also that the assumption on x̂ in (8) is only required
to guarantee (11). The latter is a condition that can be
checked directly from the data, and can thus be used
in lieu of (8) to define the set of yini [0,L0−1] which can
be simulated given an input trajectory satisfying the
excitation conditions in (8). For controllable systems this
is in principle w.l.o.g. because, as also shown in (13), any
xini can be generated by uini [0,L0−1] alone.

III. Input design for simulation with noisy data

The main question to be addressed is: What is the best
input data trajectory ud [0,N−1] to solve Problem 1? Lem-
mas 1, 2, and 3 are already experiment design results, as
also recognized in [11] with respect to the Fundamental
Lemma, because they provide both the minimum exper-
iment length and the required signal properties by char-
acterizing the span of the associated data matrices. In
fact, when the initial condition and the input simulation
trajectory are set in advance, Lemma 3 gives the less
restrictive excitation requirements. However, all of these
results rely on the assumption of working with clean
data. If the data trajectory is contaminated with noise,
computing exactly the output simulation trajectory is
not possible as these results no longer hold. A possible
strategy to make use of these methodologies while reduc-
ing the effect of the noise was presented in [5], under the
name of signal matrix model (SMM). This is reviewed
next, with an emphasis on some novel aspects, since it
will be used later to frame the input design problem.

For the sake of readability, the time indexes are
dropped from the sequences’ subscripts. The same time
indexes employed in the previous section apply for the
respective trajectories (e.g. ys will denote ys [0,Ls−1]).

A. The SMM estimator
The signal matrix model is a maximum likelihood

estimator of the vector g introduced in the previous
lemmas. This was proposed in [5] in conjunction with
Lemma 1, and, under its assumptions and Hankel data
matrices partitions, provided a predicted output simula-
tion trajectory ys = YfgSMM with favourable statistical
properties.

In the same spirit, a maximum likelihood estimator
gSMM can be defined building on Lemma 3. We consider
the case where the output data trajectory (ny = 1 is
assumed here for simplicity of representation) is subject
to i.i.d. Gaussian noise

ỹd,i = yd,i + wi, wi ∼ N (0, σ2), i = 1, ..., N − 1. (16)

The rest of the problem’s data (ud, uini, and yini) are
assumed to be noise-free because either they will be

optimized over later (i.e. the input data trajectory) or
are fixed by the analyst (i.e. the initial trajectory).

Lemma 4: Given (uini, yini), with L0 ≥ l, (ud, ỹd), and
us satisfying the assumptions of Lemma 3. Partition the
Hankel matrices as in (3). Define the random variable
ȳ := Y g − [ yini

0 ] where the usual partition applies. The
value of g that maximizes E(ȳ|g), i.e. the conditional
probability of observing the realization ȳ corresponding
to the available data given g, is given by

min
g∈G

logdet(Σy(g)) +
[
Ypg − yini

0

]>
Σ−1

y (g)
[
Ypg − yini

0

]
,

(17)
where G is the set

G =
{
g ∈ RN−L+1

∣∣∣∣[Up
Uf

]
g =

[
uini
us

]}
, (18)

and

(Σy)i,j = (cov(ȳ|g))i,j = σ2
N−L+1−|i−j|∑

k=1
gkgk+|i−j|.

(19)
The maximum likelihood simulation trajectory is then

ŷs,SMM = YfgSMM, (20)

where gSMM ∈ arg min(17).
Lemma 4 combines the maximum likelihood formula-

tion from [5], which leads to problem (17), with the result
in Lemma 3. The SMM estimator can also be postulated
for Page matrix representations. Besides the notational
difference of replacing partition (3) by (5), an important
distinction is that for Page matrices

Σy = cov(ȳ|g) = σ2 ‖g‖22 IL.

That is, the covariance matrix appearing in the optimiza-
tion problem (17) is diagonal. This comes from the fact
that cov(ȳ|g) =

(
g> ⊗ IL

)
cov (vec(Y )) (g ⊗ IL). Due to

the absence of repeated entries in the Page matrix (5),
vec(Y ) is a vector of uncorrelated random variables with
covariance σ2IN . This is of course not the case when the
structured Hankel matrix is used, due to the repetitions
in each column, which leads to the banded structure
in (19). Nonetheless, setting to zero the off-diagonal
terms simplifies the solution of problem (17), thus the
approximation to a diagonal Σy was proposed in [5] even
when working with Hankel matrices.

B. Input design for SMM
In [12] the input design problem for identification of

the truncated infinite impulse response using the SMM
estimator with Hankel matrices was investigated. The
mean-square error (MSE) matrix [13] of the estimated
response was chosen to measure the accuracy of the
estimates. The input design problem was then formu-
lated as the minimization of A-, D-, and E- optimality
criteria. The main finding was that, if the off-diagonal
entries of Σy are neglected, minimizing these criteria is
equivalent to minimizing the Euclidean norm of gSMM.



As observed earlier, this is true only for Page matrices
and not in general for Hankel matrices. In the latter case,
minimization of the Euclidean norm of gSMM is justified
from an A-optimality viewpoint, since this consists of
minimizing the trace of the MSE matrix. Inspired by
the recent work in [14] concerning experiment design
using tools from information theory, we provide here a
Bayesian formulation of the SMM input design problem
and show the implications of Page and Hankel matrix
representations.

1) Bayesian perspective: The data-based SMM output
simulation trajectory can be modelled as a Gaussian
random variable (the subscript SMM will be dropped)

yD
s ∼ N (ŷs,Σy,f), (21)

where ŷs is given in (20) and Σy,f is the matrix made
of the last Ls rows and columns of Σy (evaluated at
g). Assume that prior knowledge on ys is encoded in a
positive definite kernel matrix ΣK, resulting in a prior
distribution y0

s ∼ N (0,ΣK). When the simulation prob-
lem consists of estimating the first Ls coefficients of the
truncated infinite impulse response [15], one can refer to
an extensive literature on choices of kernel matrices en-
coding priors related to system’s theoretic properties [16],
[17]. However, the idea of using priors to improve on and
regularize the estimate from data (21) can in principle
be used for other simulation problems as well. Examples
of priors might include smoothness and decay rate of the
response. We can then, in the spirit of Kalman filtering,
combine prior and data-based estimates to provide the
MSE estimate. This can be interpreted as the posterior
distribution of ys given the data trajectory

(ys|(ud, yd)) ∼ N (Kŷs,Σpost), (22)

where K = ΣK (ΣK + Σy,f)−1 is the Kalman gain and
Σpost = ΣK − ΣK (ΣK + Σy,f)−1 ΣK is the posterior
covariance. These expressions were already presented
in [5] and are standard filtering relationships [18]. The
novelty here is their interpretation in the data-driven
simulation setting. This is important as it enables the
formal definition of the input design problem as the
maximization of the distance between the prior and
posterior distributions of ys. By using an information the-
oretic result [6], the expected value of the KL divergence
between these distributions coincides with the mutual
information of ys and the data (ud, yd). Therefore, max-
imizing I(ys; (ud, yd)) yields, from a Bayesian viewpoint,
an informative experiment.

Using its definition (1), the mutual information for the
case of interest can be defined as

I(ys; (ud, yd)) = H(ys)−H(ys|(ud, yd)),

= 1
2 (log(det(ΣK))− log(det(Σpost))) , (23a)

= 1
2 log(det(ILs

+ ΣKΣ−1
y,f )), (23b)

where (23b) comes from the fact that

Σpost = ΣK −
(

ΣKΣ−1
y,f + ILs

)−1
ΣKΣ−1

y,f ΣK,

= ΣK −
(

Σ−1
y,f + Σ−1

K

)−1
Σ−1

y,f ΣK,

=
(

Σ−1
y,f + Σ−1

K

)−1 [(
Σ−1

y,f + Σ−1
K

)
ΣK − Σ−1

y,f ΣK

]
,

=
(

Σ−1
y,f + Σ−1

K

)−1
.

The following result shows an important relationship
between the mutual information and g.

Lemma 5: If Σy,f = σ2 ‖g‖22 ILs , then there exist func-
tions f and h such that

I(ys; (ud, yd)) = f(‖g‖22 ,ΣK) + h(ΣK),

where f(·, ·) is monotonically decreasing with respect to
the first argument irrespective of the second, and h does
not depend on g.

Proof: Substituting Σy,f = σ2 ‖g‖22 ILs
in (23a), the

mutual information can be written as

I = 1
2 log

(
det
(

1
σ2 ‖g‖22

ILs + Σ−1
K

))
+ 1

2 log(det(ΣK))︸ ︷︷ ︸
h(ΣK)

,

= −1
2Ls log(z) + 1

2

Ls∑
i=1

log(1 + zλi(ΣK))︸ ︷︷ ︸
f(z,ΣK)

+h(ΣK).

where z = σ2 ‖g‖22 ≥ 0 and in the second equality the
definition of the characteristic polynomial is used. It can
then be shown that f(z,ΣK) is monotonically decreasing
with respect to z, and thus ‖g‖22, irrespective of ΣK.
Rewrite f and its derivative as

f = 1
2 log


Ls∏
i=1

(
1 + zλi

z

)
︸ ︷︷ ︸

p(z, λi)

 ,
∂f

∂z
= 1

2p(z, λi)
∂p(z, λi)

∂z
,

and observe first that λi(Σ−1
K ) > 0 for all i, because they

are eigenvalues of the inverse of a positive definite matrix.
Define pi(z, λi) =

( 1+zλi

z

)
. Since pi(z, λi) > 0, it follows

that p(z, λi) > 0 and thus the derivatives of f and p with
respect to z have the same sign. Monotonic decrease of
f with respect to z then follows from the fact that

∂pi(z, λi)
∂z

= − 1
z2 ,

∂p(z, λi)
∂z

=
(
Ls∏
i=1

pi(z, λi)
)

︸ ︷︷ ︸
≥ 0

 Ls∑
j=1

∂pj
∂z

1
pj


︸ ︷︷ ︸

≤ 0

.

Recall that, when Page matrices are used, Σy,f has
the diagonal structure assumed in the lemma. This has
two important implications for the input design problem.



First, searching for the input sequence which minimizes
the Euclidean norm of g also maximizes the mutual
information, and thus the distance (in expectation) be-
tween prior and posterior distributions of the simulated
trajectory. Second, the prior on the simulation output,
introduced via the kernel ΣK, has no effect on the
input design problem. That is, maximizing the mutual
information coincides with minimizing uncertainty in the
data estimate (21). Precisely, it coincides with the D-
optimality criterion applied to Σy,f. This is in contrast
with recent results on input design for kernel-based
impulse response identification [14], and is a property of
the SMM estimator with the Page matrix representation.

2) Optimization problem: Motivated by the Bayesian
interpretation, the experiment design optimization prob-
lem can be defined, at an abstract level, as the solution
to the bi-level optimization problem

min
g,ud
‖g‖22 , (24a)

s.t. ud ∈ U , (24b)
g ∈ arg min

g∈G,ud

(17), (24c)

where U defines input constraints. Using the relaxations
of the SMM objective function (17) suggested in [5], and
the idea to replace the inner optimization problem by
its KKT conditions used in [12], problem (24) can be
formulated as the following nonlinear program

min
g,ud,ν

‖g‖22 , (25a)

s.t. ud ∈ U , (25b)[
F (ud) U>

U 0

] [
g
ν

]
=
[
Ŷp(ud)>yini

ū

]
, (25c)

where: ν ∈ RL are Lagrangian multipliers; ū =[
u>ini u

>
s
]>; and F (ud) = Lσ2IM+Ŷp(ud)>Ŷp(ud), where

M = cH for Hankel matrices and M = cP for Page.
The matrix Ŷp is built with an output predicted data
trajectory ŷd which linearly depends on the optimized
input data trajectory ud. This can be done using a
baseline model, e.g. a previously identified impulse re-
sponse model of the system. Analyses in [12] showed
that the accuracy of the baseline model has generally
small impact on the input design problem. It is impor-
tant to recognize that the trajectory optimized via (25)
automatically satisfies the input condition of Lemma 3,
since the constraint Ug = ū effectively enforces the range
constraint. As for the state condition of Lemma 3, its
fulfillment will depend on the choice of initial condition
(see Remark 1). Finally, it is noted that, even though
the Bayesian interpretation of problem (25) only holds
exactly for Page matrices, the same program will later
be tested on Hankel matrices. This is justified by the fact
that, in the case of Hankel matrix, the objective function
(25a) can be interpreted in terms of A-optimality cri-
terion applied to the simulated response’s mean-square
error matrix [12].

IV. Numerical examples
We consider the design of an input data trajectory ud

for a data-driven simulation of the SISO system

G(z) = 0.1159(z3 + 0.5z)
z4 − 2.2z3 + 2.42z2 − 1.87z + 0.7225 ,

which was originally investigated in [16] and then also
studied in [5], [12]. The accuracy of the estimated output
simulation trajectory ŷs is quantified via the following fit

W = 100

1−
[ ∑Ls−1

i=0 (ys,i − ŷs,i)2∑Ls−1
i=0 (ys,i − ȳs)2)2

]1/2
 ,

where ȳs is the mean of the true output sequence ys.
For the input constraint set U , a bound on the

total energy is imposed here by defining U ={
ud|
∑N−1
i=0 (ud,i)2 ≤ E0N

}
. Other constraint sets (e.g.

magnitude constraints) could be studied as well. The
following parameters are kept fixed throughout the anal-
yses: L0 = 4, Ls = 10, L = 14, E0 = 0.1. Note that L0
is equal to the system order, thus the condition L0 ≥ l
is satisfied. The baseline model consists of a truncated
impulse response model of length 4Ls estimated with the
impulseest MATLAB function using a prior experiment
with i.i.d. Gaussian inputs of length 100 with SNR=10.
The solver IPOPT [19] is employed to solve the nonlinear
program (25). The optimized input data trajectory is
then used to do data-driven simulation with SMM, i.e.:
compute g by solving the relaxed version of (17) proposed
in [5]; and then predict ŷs with (20).

In the first experiment, we compare the accuracy of
Page and Hankel data matrices when data trajectories
of same length N are used to predict the response
to an impulse. Figure 1 shows the mean fit W over
200 realizations of the noise as a function of N . Noise
contaminates the output data trajectory as in (16), and
two cases are considered, σ2 = 0.001 and σ2 = 0.01,
which correspond respectively to a signal-to-noise ratio
(SNR) of 100 and 10.
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Fig. 1: Mean fit of Hankel (red) and Page (blue) matrices
with optimally designed input as a function of N and σ2.

The plot shows that Page matrices always outperform
Hankel matrices. It is remarked that, since the com-
parison is made for equal length N of the experiments,



Hankel data matrices have a larger number of columns
(precisely, cH(N) − cP (N) = N(L − 1)/L − L + 1 as
discussed in Section II-A). In this type of comparison,
typically done using i.i.d. Gaussian inputs, Page matrices
are reportedly less accurate than Hankel matrices [10].
The favourable trend reported in Figure 1 is achieved
thanks to the relaxed excitation conditions from Lemma
3 and the optimally designed input using problem (25).
It is also noted that a comparison with standard per-
sistently exciting inputs is not possible, for the Page
matrix, because in the considered range of N the classic
excitation requirements (Lemma 2) do not hold.

In Figure 2, a comparison is made between the pre-
diction accuracy of Page and Hankel matrices for two
different simulation problems where ud is respectively a
heavily and lightly damped sine wave.
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Fig. 2: Fit box plots for Page and Hankel matrices with
N = 84 and SNR=100 (200 realizations of the noise).
Left: heavily, right: lightly, damped sine wave.

The advantage of employing Page matrices can be
appreciated here also in terms of dispersion. There are a
few aspects that can provide an explanation for these re-
sults. It is intuitively expected that input design is more
effective with the Page matrix representation, as the
matrix U can be designed without structural constraints.
In addition, Page matrices are known to have favourable
properties when dealing with noisy data matrices [8].
Moreover, the input design criterion and the expression
of the covariance Σy used in the SMM problem are only
exact for Page representations. All these reasons provide
valuable justifications for the use of Page matrices in
data-driven simulation problems. Lemma 3 is a key
enabler that makes this possible in the regime of data
length N where a comparison with Hankel matrices is
still meaningful.

V. Conclusions
Less restrictive excitation requirements have been pre-

sented for the data-driven simulation problem with clean
data and Page and Hankel matrix representations. Build-
ing on these, a Bayesian input design problem for the
case of noisy data has been formulated. For the Page
matrix case, this can be interpreted as the choice of

input trajectory maximizing the distance between prior
and posterior distributions of the output response, while
for the Hankel matrix this only holds approximately.
Numerical results show that, by leveraging the results
presented in the paper, the Page matrix representation
can markedly outperform the Hankel one with the same
data length. It is an interesting research question whether
a similar approach to data informativity can be used
when the data matrices are used for control.
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