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Abstract— The H∞ synthesis approach is a cornerstone
robust control design technique, but is known to be conservative
in some cases. The objective of this paper is to quantify the
additional cost the controller incurs planning for the worst-case
scenario, by adopting an approach inspired by regret from
online learning. We define the disturbance-reality gap as the
difference between the predicted worst-case disturbance signal
and the actual realization. The regret is shown to scale with the
norm of this gap, which turns out to have a similar structure
to that of the certainty equivalent controller with inaccurate
predictions, obtained here in terms of the prediction error norm.

I. INTRODUCTION

In this work we focus on the control of linear time-

invariant (LTI) systems subject to process noise. The optimal

control of such systems for the case of stochastic noise

is well studied and is referred to as H2 control [1]. The

controller in this case is optimal for the expected value of the

associated cost. When the noise is non-stochastic, a popular

approach is to model it as adversarial and having finite

energy. In this case, the H∞ controller solves the disturbance

attenuation problem by ensuring that the system is internally

stable and that the infinity norm of the transfer function

mapping disturbances to a measurable performance metric is

minimized [2]. For LTI systems with quadratic performance

metrics this is equivalent to minimizing the induced 2-norm

of this transfer function matrix [3]. The closed-loop system is

thus robust to any allowable process noise. This robustness

proves vital in many applications, especially safety-critical

ones. However, as it plans for the worst, H∞ control can

in practice result in a conservative performance and incur a

high cost. The aim of of this work is to analyze and quantify

the degree of this conservatism using online learning tools

[4]. By doing so we study how the concept of robustness

from control theory is reflected in a regret formulation.

Recently there has been an increasing interest in quanti-

fying the performance of control algorithms for dynamical

systems in terms of regret [5]. Regret compares the incurred

cost of a given (online) algorithm with a clairvoyant one

that has full knowledge of the problem. When the latter is

restricted to a policy class, its associated regret is referred

to as policy regret. This is contrasted to dynamic regret with

no restrictions on the optimal controller [6]. The regret of

H2 controllers has been extensively studied in the literature

The authors are with the Department of Information Technol-
ogy and Electrical Engineering, Automatic Control Laboratory, ETH
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[7], [8], [6]. A number of approaches have been proposed

for linear time varying models and general convex costs that

achieve sublinear policy regret (with respect to the control

horizon length) [9], [10]. Similar regret bounds are also

achieved for cases with model uncertainties using adaptive

control techniques [5], [7]. The effect of predictions on

the performance of the controllers in the form of dynamic

regret has been studied in the context of receding horizon

control, both for fixed [11] and time varying costs [12].

The performance of a robust receding horizon controller for

general costs has been characterized in [13] in terms of the

disturbance gain. Regret-optimal controllers are considered

in [14], [15] with a classical H∞ approach and in [16], [17]

by adopting the framework of system level synthesis.

A number of online learning algorithms have been com-

pared to H∞ control in numerical experiments to show its

relatively poor performance in the absence of online updates

[5], [14]. By solving the disturbance attenuation problem,

the H∞ controller provides robustness guarantees on the

possible effects of the noise on the system. This is contrasted

to many recent online learning-inspired algorithms, whose

objectives differ from that of the robust controller.

In this work we seek to quantify the additional cost that

the H∞ controller incurs due to its cautious nature, thus

allowing direct analytical comparisons with other algorithms.

The upper bound of its dynamic regret is shown to scale

with the norm of the difference between the worst-case and

the observed disturbance signals, which we define as the

disturbance-reality gap. This is achieved using the game-

theoretic formulation of the disturbance attenuation problem,

which has been extensively studied in the robust control

literature [3], [18]. To the best of our knowledge, this is

the first work to derive regret bounds for the H∞ control. In

addition, it aims to promote the application of game-theoretic

concepts in the design of novel online algorithms in control.

To put the H∞ control results in perspective, the regret

of a certainty equivalent (CE) controller with an erroneous

prediction of the noise signal is also derived. It is shown to

be proportional to the square of the norm of the prediction

error, in agreement with results from [12]. Moreover, when

the value of this norm is equal to the norm of the disturbance-

reality gap, the CE controller attains a lower upper bound

as compared to the H∞ one. This reinforces the empirically

observed good performance of many “optimistic” algorithms

[12], [19]. We show that, while similar in structure to that of

the CE, the regret of the H∞ controller has additional terms

arising due to a mismatch between its stabilizing and the lin-

ear quadratic regulator (LQR) optimal state feedback gains.

An exemplifying numerical example is finally provided.



Notation: For a matrix A the spectral radius and the

spectral norm are denoted by ρ(A), and ‖A‖, respectively;

λmax(A) denotes the maximum and λmin(A) the mini-

mum eigenvalue of A. For a vector w ∈ R
na, w[1:a] :=

[w⊤
1 , ..., w

⊤
a ]

⊤ and ‖w‖ denotes its Euclidean norm. The

Kronecker product between two matrices is denoted by ⊗.

II. PRELIMINARIES

We consider a LTI system

xt+1 = Axt +But + wt, (1)

with initial state x0 ∈ R
n and known matrices A ∈ R

n×n

and B ∈ R
n×m. The control input is denoted by ut ∈ R

m,

and xt, wt ∈ R
n are the state and disturbance vectors,

respectively. The state is assumed to be fully observed. The

control objective is to minimize the total accumulated cost

over a horizon of length T

JT (u,w;x0) = x⊤
TQTxT +

T−1∑

t=0

x⊤
t Qxt + u⊤

t Rut, (2)

where Q,QT ∈ R
n×n and R ∈ R

m×m are design matrices,

u := [u⊤
0 , ..., u

⊤
T−1]

⊤ ∈ R
mT and w := [w⊤

0 , ..., w
⊤
T−1]

⊤ ∈
R

nT . Moreover, it is assumed that Q,QT � 0, R ≻ 0, and

the pair (A,Q) is detectable, the pair (A,B) is stabilizable,

and ‖x0‖ ≤ X for some X ∈ R
+. We consider finite

energy disturbance signals [3], [18] in the space L2(0, T ) =
{w : N → R

n : ‖w‖[0,T−1] < ∞} where ‖w‖[0,T−1] =
(
∑T−1

k=0 ‖w(k)‖2
) 1

2

over a finite horizon and L2(0,∞) =

{w : ‖w‖ < ∞} over an infinite horizon1. Disturbance

signals considered in this paper will generally take values in

the space of L2 signals with total energy less than or equal

to 1, denoted by L̄2. This allows us to define the infinite

horizon cost J(u,w;x0) := limT→∞ JT (u,w;x0).

A. The H∞ Problem

The robust H∞ controller minimizes the induced spectral

norm of operator Tµ mapping the disturbance signal w ∈ L̄2

to an output signal z ∈ L2 and internally stabilizing the

system for the infinite horizon case [3]. The optimization

problem can be written as

inf
µ∈M

sup
w∈L̄2

‖Tµw‖

‖w‖
= inf

µ∈M

sup
‖w‖=1

‖Tµw‖ := γ⋆, (3)

where M is the set of policies with access to current and

past state measurements [18]. With an appropriate definition

of the output signal z, the above can be written in terms of

the total cost2

γ⋆ = inf
µ∈M

sup
‖w‖=1

(
J(µ,w;x0)

) 1

2 , (4)

or with J replaced by JT for the finite horizon case [18]. A

policy µ⋆ that attains the minimum in (4) will be referred to

as the H∞ controller.

1Arguments and subscripts are dropped from this notation when clear
from the context

2We abuse the notation slightly, J(µ,w;x0) denotes here the cost
associated with the control inputs generated by the policy µ

B. Regret Definition

The regret is a metric designed to measure the performance

of sequential decision making algorithms under uncertainty

[4], [20]. This idea has been extended to dynamical systems

subject to process noise [5]. Given a noise signal w, the

dynamic regret of an algorithm A is defined as

RT (A, w) = JT (uA, w;x0)− JT (u⋆, w;x0), (5)

where the system dynamics are given by (1), uA is the

control input generated by the algorithm A, and u⋆ is the

optimal offline control input. This is obtained by solving the

following optimization problem

u⋆ =argmin
u

JT (u,w;x0)

s.t. xt+1 = Axt +But + wt,

given full knowledge of the noise realization w and the cost

function sequence. Here the optimal inputs are not restricted

to any policy set, that is, we consider here the case of

dynamic regret.

III. REGRET BOUNDS FOR H∞ CONTROL

A. The Worst-Case Disturbance

In this section, the disturbance signal that attains the

highest cost for the H∞ controller, µ⋆, is characterized.

For this we adopt the zero-sum game formulation [18], [3]

that makes use of the game theoretical toolkit to derive the

optimal controller, and is also relevant for getting regret

bounds.

For a given γ > 0, let JT
γ (u,w, x0) be defined as follows

JT
γ (u,w;x0) = JT (u,w;x0)− γ2

T−1∑

t=0

‖wt‖
2,

with the infinite horizon case defined as T → ∞. Signals

u and w are considered to be two adversarial players in the

game trying to respectively minimize or maximize the cost

JT
γ (u,w;x0). The following min-max inequality defines the

upper and lower values of the game

inf
µ∈M

sup
w∈L̄2

{JT
γ (µ,w;x0)}

1

2 ≥ sup
w∈L̄2

inf
µ∈M

{JT
γ (µ,w;x0)}

1

2 ,

where the upper value is, effectively, the soft constrained

version of the original problem (4). If there exists a policy

pair (uSP , wSP ) such that the lower and upper values are

equal then it constitutes a saddle-point (SP) solution. The

cost JT,SP
γ that these policies attain is called the value of

the game.

1) Finite horizon: Consider the following condition on γ,

Ξ = γ2I −Mt+1(γ) > 0, ∀t ∈ [0, T − 1], (6)

where Mt(γ) is a sequence of matrices generated by the

following coupled generalised Riccati equations

Λt(γ) = I + (BR−1BT − γ−2I)Mt+1(γ),

Mt(γ) = Q+ATMt+1(γ)Λ
−1
t (γ)A,

(7)

for all t ∈ [0, T − 1] and with MT (γ) = QT . For the case

with perfect state measurements, if γ satisfies (6), then JT
γ



is strictly convex in u and strictly concave in w [18], [3],

and Λt(γ) is nonsingular [21]. In this case the game has a

SP solution, and its value is equal to xT
0 M0(γ)x0 [18]. The

SP policies can be formulated as a feedback on the current

state, and are defined for all 0 ≤ t < T by

u∞
t = −R−1BTMt+1(γ)Λ

−1
t (γ)Axt := −K∞

t xt, (8)

w∞
t = γ−2Mt+1(γ)Λ

−1
t (γ)Axt. (9)

As shown in [21], if both players play the optimal strategies,

then the resulting system will evolve according to

x∞
t+1 = Λ−1

t (γ)Ax∞
t , x∞

0 = x0 ∀0 ≤ t < T. (10)

It then follows from the ordered interchangeability property

of zero sum games that the disturbance policy (9) with xt

replaced by x∞
t from (10)

w⋆
t := γ−2Mt+1(γ)Λ

−1
t (γ)Ax∞

t ∀0 ≤ t < T (11)

constitutes an open loop strategy in saddle point equilibrium

with (8). Moreover, [22], [21] show that the feedback policy

(8) with γ = γ, the lowest possible value that satisfies (6),

and with initial state x0 = 0, is the H∞ minimax controller.

For this value of γ the optimal disturbance attenuation

problem (4) and its soft constrained version coincide, and

γ = γ⋆. For any other fixed γ > γ⋆ the solution becomes

suboptimal. In [23] the case for non-zero initial states is

considered and it is shown that a saddle point solution also

exists for the original hard-constrained problem (4), given

that the energy of the disturbance is at its maximum. Here we

only consider the initial states x0 that belong to the following

set

Xs =
⋃

γ>γ

{x0 ∈ R
n : ‖w⋆(γ)‖ = 1}, (12)

such that the maximum energy is achieved with the policy

(11). Thus, for all initial states in the set Xs, a pure

strategy saddle point exists for the H∞ problem. The optimal

strategies are given by (8) and (11) with γ = γ̄ satisfying

‖w⋆(γ̄)‖ = 1, i.e. having the maximum allowable energy.

2) Infinite horizon: In the infinite horizon case, the

minimal non negative-definite, stationary solution to (7) is

considered. In this case, (7) become coupled generalized

algebraic Ricatti equations (ARE-s) with solutions M(γ) and

Λ(γ). For the disturbance attenuation problem (4), a saddle

point equilibrium exists also in this case and is given for all

0 ≤ t < T by

u∞
t = −R−1BTM(γ̄)Λ−1(γ̄)Axt := −K∞xt, (13)

w∞
t = γ̄−2M(γ̄)Λ−1(γ̄)Axt, (14)

where γ̄ is obtained through a trial-and-error method to

satisfy ‖w⋆(γ̄)‖2 = 1, along with certain conditions that

allow the minimization problem to be well-posed [24], [25].

The worst-case open loop disturbance signal can then be

defined similar to the finite horizon case

w⋆
t := γ̄−2M(γ̄)Λ−1(γ̄)Ax∞

t ∀t ≥ 0, (15)

where

x∞
t+1 = Λ−1(γ̄)Ax∞

t , x∞
0 = x0 ∀t ≥ 0. (16)

B. Regret Analysis

In this section an upper bound for the regret of the H∞

problem is obtained. We consider first the infinite horizon

case with the minimax controller (13), then the finite one

with the controller (8). For a given control input u and

disturbance signal w, at a generic timestep i (with 0 ≤ i <

T ) the cost-to-go function is defined as

JT
i (u∞, w;xi) = x⊤

TQTxT +

T−1∑

t=i

x⊤
t Qxt + u⊤

t Rut, (17)

and J(u,w;xi) := limT→∞ JT
i (u,w;xi).

1) Infinite horizon: The following result is introduced to

characterize the cost in the infinite horizon case.

Lemma 3.1: For all F with ρ(F ) < 1, Pi ≻ 0 ∀i ≥ 0
and Q ≻ 0, the iteration Pi+1 = F⊤PiF + Q converges to

a unique value P .

Following [6], [11], we claim that J(u∞, w;xi) can be

expressed in the form of an extended quadratic function, as

formulated in the following lemma.

Lemma 3.2: The infinite horizon cost of the H∞ con-

troller (13), solving the disturbance attenuation problem (4),

is given by J(u∞, w;xi) = x⊤
i P

∞xi + x⊤
i v

∞
i + q∞i , with

P∞ ∈ R
n×n, v∞i ∈ R

n, q∞i ∈ R ∀i ≥ 0 given in (19).

Proof : The finite horizon cost for the controller (13) is

claimed to be given by JT
i (u∞, w;xi) = x⊤

i P
∞
i xi+x⊤

i v
∞
i +

q∞i , with some P∞
i ∈ R

n×n, v∞i ∈ R
n, q∞i ∈ R. Indeed, for

i = T this holds trivially, with P∞
T = QT and v∞T , q∞T = 0.

Then if the claim holds at i+ 1 the cost-to-go at i satisfies

JT
i (u∞, w;xi) = x⊤

i Qxi + u∞⊤
i Ru∞

i

+ (Axi +Bu∞
i + wi)

⊤P∞
i+1(Axi +Bu∞

i + wi)

+ (Axi +Bu∞
i + wi)

⊤v∞i+1 + q∞i+1

= u∞⊤
i (R+B⊤P∞

i+1B)u∞
i

+ 2u∞⊤
i B⊤(P∞

i+1Axi + P∞
i+1wi +

v∞i+1

2
)

+ x⊤
i Qxi + (Axi + wi)

⊤P∞
i+1(Axi + wi)

+ (Axi + wi)
⊤v∞i+1 + q∞i+1.

(18)

Substituting u∞
i = −K∞xi, defining F∞ = A−BK∞ and

grouping terms leads to

JT (u∞;xi) = x⊤
i (F∞⊤P∞

i+1F
∞ +Q+K∞⊤RK∞)

︸ ︷︷ ︸

P∞

i

xi+

x⊤
i (F∞⊤(2P∞

i+1wi + v∞i+1))
︸ ︷︷ ︸

v∞

i

+w⊤
i v

∞
i+1 + w⊤

i P
∞
i+1wi + q∞i+1

︸ ︷︷ ︸

q∞
i

.

(19)

The claim then follows by induction. To complete the proof,

we note that ρ(F∞) < 1 [18] and invoke Lemma 3.1 to

replace P∞
i and P∞

i+1 by P∞ in (19). We note that while



P∞, v∞i and q∞i are independent of xi, the last two depend

on the noise realisation w. �

Remark: Lemma 3.2 also holds for any stabilising state

feedback matrix Ks, with the coefficients in the cost-to-go

appropriately defined.

The optimal offline controller, as defined in Section II-B,

has access to all future disturbances w and minimizes the

cost function (2) without constraining the inputs to a policy

set. It is shown in [6] that for the infinite horizon case the

controller has the following form

u⋆
t = −Kxt − (R+B⊤PB)−1B⊤

∞∑

i=0

(F⊤)iPwt+i, (20)

where K = −(R + B⊤PB)−1B⊤PA, P is the solution

of the discrete ARE and F := A − BK, with ρ(F ) < 1.

Moreover, the cost-to-go at a state xi, J(u⋆, w;xi) has

the same extended quadratic structure as in (19) with the

following coefficients

P = F⊤PF +Q+K⊤RK, (21)

vi = F⊤(2Pwi + vi+1) = 2
∞∑

j=0

(F⊤)j+1Pwi+j , (22)

qi = qi+1 + w⊤
i vi+1 + w⊤

i Pwi −Gi
⊤HGi, (23)

where Gi :=
∑∞

j=0(F
⊤)jPwi+j and H := B(R +

B⊤PB)−1B⊤ [6], [11]. Using the result of Lemma 3.2, the

regret of the H∞ controller for a given w is then

R(H∞, w) := lim
T→∞

RT (H∞, w)

= J(u∞, w;x0)− J(u⋆, w;x0)

= x⊤
0 (P

∞ − P )x0 + x⊤
0 (v

∞
0 − v0) + q∞0 − q0.

(24)

The disturbance-reality gap ∆w is defined as

∆w := w − w⋆. (25)

This vector is the difference between the disturbance w,

experienced by the system and the worst-case disturbance,

w⋆, assumed by the H∞ controller, defined in (15). The main

result of this paper is formulated in the following theorem.

Theorem 3.1: The H∞ controller, that solves the distur-

bance attenuation problem (4) attains dynamic regret

R(H∞, w) ≤ k1‖∆w‖+ k2‖∆w‖2

for all initial states in (12) and constants k1, k2 ∈ R
+, given

below in (26).

Proof : Regret (24) can be written in terms of ∆w and w⋆

R(H∞, w) = x⊤
0 (P

∞ − P )x0

+

∞∑

i=0

(

2x⊤
0

(

(F∞⊤)i+1P∞ − (F⊤)i+1P
)

(w⋆
i +∆wi)

+ (w⋆
i +∆wi)

⊤(v∞i+1 − vi+1) +Gi
⊤HGi

+ (w⋆
i +∆wi)

⊤(P∞ − P )(w⋆
i +∆wi)

)

.

Since the H∞ controller is in saddle point equilibrium with

w⋆, the optimal offline controller with knowledge of the

future disturbances, will attain the same cost as the H∞

controller if ∆w = 0. Hence R(H∞, w∗) = 0, leaving

R(H∞, w) =

lim
T→∞

T−1∑

i=0

(

2x⊤
0

(

(F∞⊤)i+1P∞ − (F⊤)i+1P
)

∆wi

︸ ︷︷ ︸
ai

+ w⋆⊤
i (v∞∆w

i+1 − v∆w
i+1)

︸ ︷︷ ︸

bi

+∆w⊤
i (v

∞w
i+1 − vwi+1)

︸ ︷︷ ︸
ci

+∆w⊤
i (P

∞ − P )∆wi
︸ ︷︷ ︸

di

+2∆w⊤
i (P

∞ − P )w⋆
i

︸ ︷︷ ︸
ei

+Gi
∆w⊤HGi

∆w

︸ ︷︷ ︸

fi

+2Gi
∆w⊤HGi

w⋆

︸ ︷︷ ︸
gi

)

,

where v∆w
i := F⊤(2P∆wi + v∆w

i+1), v∞∆w
i :=

F∞⊤(2P∞∆wi + v∞∆w
i+1 ) and Gi

∆w :=
∑T−i−1

j=0 (F⊤)jP∆wi+j ; the corresponding expressions

with w⋆ and w are defined analogously. This reformulation

of regret is then used to upper bound it in terms of the norm

of ∆w. For di and ei

lim
T→∞

T−1∑

i=0

di = ∆w⊤

(

∆P ⊗ InT

)

∆w ≤ 2‖∆w‖2‖P̄‖

lim
T→∞

T−1∑

i=0

ei = 2∆w⊤

(

∆P ⊗ InT

)

w⋆ ≤ 4‖∆w‖‖P̄‖,

where ∆P := P∞ − P , ‖P̄‖ := max{‖P∞‖, ‖P‖}, and

using ‖w⋆‖ = 1 and the fact [26] that ‖A⊗B‖ = ‖A‖‖B‖.

The sum of terms ai can be written as

T−1∑

i=0

ai = 2x⊤
0 ∆Lv∆w,

where ∆Lv ∈ R
n×nT is a block matrix with the term

(F∞⊤)iP∞ − (F⊤)iP on its i-th block column for all

1 ≤ i ≤ T . From Gelfand’s formula it can be shown that

there exists a constant c > 1 such that ‖F i‖ ≤ cλi and

‖(F∞)i‖ ≤ c(λ∞)i for all i ≥ 1 with λ := 1+ρ(F )
2 < 1,

λ∞ = 1+ρ(F∞)
2 , since ρ(F ) < 1, ρ(F∞) < 1 . Hence

lim
T→∞

T−1∑

i=0

ai ≤ 2c‖x0‖‖P̄‖

(
λ∞

1− λ∞
+

λ

1− λ

)

‖∆w‖

≤ 4cX‖∆w‖‖P̄‖

(
λ̄

1− λ̄

)

,

where λ̄ := max{λ∞, λ}. For the term with ci

T−1∑

i=0

ci = 2∆w⊤
[0:T−2]∆Luw[1:T−1],

where ∆Lu ∈ R
n(T−1)×n(T−1) is an upper triangular block

Toeplitz matrix, such that for all 1 ≤ i < T and i ≤ j < T ,



the matrix on the i-th block row and j-th block column is

(F∞⊤)j−i+1P∞ − (F⊤)j−i+1P . It follows that

lim
T→∞

T−1∑

i=0

ci ≤ 2c‖∆w‖

(

‖P∞‖
λ∞

1− λ∞
+ ‖P‖

λ

1− λ

)

≤ 4c‖∆w‖‖P̄‖

(
λ̄

1− λ̄

)

,

where we have used the properties of block Toeplitz matrices.

We can similarly get the same bound for
∑T−1

i=0 bi. With a

similar reformulation for fi and gi

lim
T→∞

T−1∑

i=0

fi ≤ ‖∆w‖2‖H‖‖P‖2
c2

(1− λ)2
,

lim
T→∞

T−1∑

i=0

gi ≤ 2‖∆w‖‖H‖‖P‖2
c2

(1− λ)2
.

Summing the terms and setting

k2 = 2‖P̄‖+ ‖H‖‖P‖2
c2

(1− λ)2

k1 = 4‖P̄‖+ 4c‖P̄‖ (2 +X)

(
λ̄

1− λ̄

)

+ 2‖H‖‖P‖2
c2

(1− λ)2
,

(26)

completes the proof. �

We note that the constraint of the noise signal having a

unit energy is without loss of generality and the same result

can also be attained by modifying the set (12).

2) Finite Horizon: A similar bound is obtained for the

dynamic regret of the finite horizon controller.

Theorem 3.2: The H∞ controller, that solves the distur-

bance attenuation problem (4) for a horizon length T , attains

dynamic regret

RT (H∞, w) ≤ k′1‖∆w‖+ k′2‖∆w‖2

for all initial states in (12) and constants k′1, k
′
2 ∈ R

+, given

below in (27).

The proof follows closely the structure for the infinite

horizon case. With the same induction hypothesis it is shown

that there exist P∞
i ∈ R

n×n, v∞i ∈ R
n and q∞i ∈ R,

such that at time step i, 0 ≤ i < T , JT
i (u∞, w, xi) =

x⊤
i P

∞
i xi + x⊤

i v
∞
i + q∞i . The optimal offline controller for

the finite horizon case has a similar structure to (20) and

JT
i (u⋆, w, xi) = x⊤

i Pixi + x⊤
i vi + qi ∀0 ≤ i < T for some

Pi ∈ R
n×n, vi ∈ R

n and qi ∈ R [6], [11].

The regret of the finite horizon H∞ controller is then the

difference of the two extended quadratic functions,

RT (H∞, w) = x⊤
0 (P

∞
0 −P0)x0+x⊤

0 (v
∞
0 − v0)+ q∞0 − q0.

Substituting the expressions for the coefficients, the above

can be written in terms of the disturbance-reality gap. Using

the same argument of equal costs for the worst-case distur-

bance signal, k′1 and k′2 are defined as follows to complete

the proof

k′2 = ‖P̄ ′‖

(

2 + τ̄2‖H̄‖‖P̄ ′‖
(1− η̄T )2

(1− η̄)2

)

k′1 = 2‖P̄ ′‖

(

2 + 2τ̄ η̄(2 +X)

(

1− η̄T

1− η̄

)

+ τ̄2‖H̄‖‖P̄ ′‖
(1− η̄T )2

(1− η̄)2

)

,

(27)

where P̄ ′ � Pi, P
∞
i and H̄ � B(R+B⊤PiB)−1B⊤ ∀0 ≤

i ≤ T . The constants τ̄ :=
√

λmax(P̄ ′)
λmin(Q) and η̄ :=

√

1− 1
τ̄2 <

1. The full proof can be found in the extended version of the

paper [27].

Remark: One could use the same technique to obtain

similar results for time-varying system matrices in (1) and

cost functions (2). We forego this extra generality in the

interest of consistent notation with the infinite horizon case.

IV. CE OPTIMISTIC CONTROLLER

In this section, the certainty equivalent optimistic con-

troller that has an inaccurate prediction w̄ ∈ L2 of the

disturbance signal and acts optimally with respect to it is

considered. It solves the optimization problem (2) subject to

xt+1 = Axt + But + w̄t. For simplicity only the infinite

horizon case is considered, however, the results for the finite

horizon are derived analogously. The infinite horizon CE

controller is the same as in (20), only with feedback on w̄

uCE
t = −Kxt − (R+B⊤PB)−1B⊤

∞∑

i=0

F⊤iPw̄t+i. (28)

Its regret is shown to be proportional to ‖∆w̄‖2, where

∆w̄ := w̄ − w, is the error vector between the predicted

and the observed true disturbance signals, or the prediction

error. The result is formulated in the following proposition.

Proposition 4.1: The CE optimistic controller (28) attains

dynamic regret that is upper bounded by

R(CE, w) ≤ ‖∆w̄‖2‖H‖‖P‖2
c2

(1− λ)2
.

Proof: The induction hypothesis that for all timesteps the

cost-to-go is an extended quadratic function is still valid.

Following the same technique as in (18), regret is given as

R(CE, w) = J(uCE, w;x0)− J(u⋆, w, x0) = q̄0 − q0

=

∞∑

i=0

( ∞∑

j=0

(F⊤)jP∆w̄i+j

)⊤

H

( ∞∑

j=0

(F⊤)jP∆w̄i+j

)

.

Similar to the proof of the H∞ controller, the required upper

bound is then achieved. �

Comparing the above with the regret for the infinite

horizon H∞ controller we note that in addition to the

dependence on ‖∆w‖, the regret bound for the H∞ also has

additional terms in the coefficient of ‖∆w‖2. Thus, given

equal ‖∆w‖ and ‖∆w̄‖, H∞ has a strictly higher regret

upper bound compared to the certainty equivalent controller.

The additional terms in the upper bound of H∞ regret are
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Fig. 1. The theoretical regret upper bounds and worst-case simulated regret
for the H∞ and CE controllers.

due to the “sub-optimal” state feedback gain on the state.

This results in a mismatch between P∞ and P , as well as

v∞0 and v0, the coefficients of the initial state; this is not

the case for the CE controller. This makes the gap explicitly

dependent on the initial state leading to additional terms in

the regret bound.

V. NUMERICAL EXAMPLE

A simple system, also considered in [23], with A = 1, B =
1 and cost matrices Q = 1, R = 1 is controlled using both

the H∞ and the CE finite horizon controllers with T =
100. For each fixed ‖∆w‖ and ‖∆w̄‖, a number of random

noise signals are generated. The system evolution is then

simulated starting from an initial condition x0 = 4 ∈ Xs.

The parameter γ̄ is found for this initial state using a trial-

and-error method as described in [23]. The dynamic regret

of both controllers is then calculated and the highest regret

(for each ‖∆w‖ and ‖∆w̄‖) is plotted in Figure 1 along

with the upper bounds obtained in this work. It is inferred

from the plots that the analytic bounds capture the order

of the empirically calculated worst-case regret. Preliminary

numerical tests show that they can become tighter for certain

adversarial noise signals.

VI. CONCLUSIONS

The H∞ algorithm is considered in the context of dynamic

regret to characterize its extra cost due to planning for the

worst-case disturbance realization. The upper bound of this

regret is shown to scale with the norm of the gap between the

worst-case predicted by the H∞ controller and the true one.

This result is compared with the CE optimistic controller

with erroneous predictions. While both controllers have

similar regret upper bound structures, for equal disturbance-

reality gap and prediction error norms, H∞’s regret attains

a strictly higher upper bound. A numerical example is

presented to show that the order of the worst-case simulated

regret is captured by the theoretical bounds. A possible

direction for further research, is the consideration of the case

where no saddle point exists for the H∞ problem. The results

can also provide insights on the development of algorithms

that estimate the future disturbances online.
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