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Abstract— In Iterative Learning Control (ILC), a sequence
of feedforward control actions is generated at each iteration on
the basis of partial model knowledge and past measurements
with the goal of steering the system toward a desired reference
trajectory. This is framed here as an online learning task,
where the decision-maker takes sequential decisions by solving
a sequence of optimization problems having only partial knowl-
edge of the cost functions. Having established this connection,
the performance of an online gradient descent-based scheme
using inexact gradient information is analyzed in the setting of
static and dynamic regret, standard measures in online learning.
Fundamental limitations of the scheme and its integration with
adaptation mechanisms are further investigated, followed by
numerical simulations on a benchmark ILC problem.

I. INTRODUCTION

Online learning-based optimization approaches have been
increasingly studied in recent literature [1]–[4]. The online-
learning setting usually assumes an unknown cost function
that changes at each time-step, and an optimization algorithm
that aims to minimize the unknown cost by using any prior
information, e.g., a model, and observations of the cost
and/or the gradient at each time-step. A natural generaliza-
tion of this online learning setting is to consider an online-
learning control problem, where the decision maker aims to
control a dynamical system while minimizing a control cost
at each time step. One of the first works studying online-
learning and adaptive control was [5]. Since then, there have
been many works focusing on solving the online-learning
control problem under various assumptions on the type of
model, uncertainty, constraints, and noise characteristics [3],
[4], [6]. Regret is a common metric in many of the online-
learning problems, as it provides a characterization of the
cost incurred at each time step due to unknown changes to
the cost function or problem structure. Additionally, since a
fixed point convergence is not well-defined in many cases
of online-learning problems, regret provides an alternative
metric to assess the effectiveness of a given algorithm.

The class of online convex optimization (OCO) methods
has been widely used for online learning problems [7].
Among the family of OCO methods, online gradient descent
is of specific interest due to its simplicity and favorable
guarantees on achievable regret under mild assumptions
on the cost function and constraints [7]. However, many
online gradient descent algorithms assume access to gradient
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observations, which may not be available in many practical
control applications. Recent work has considered variants of
the online gradient descent using inexact gradient informa-
tion for proximal-type optimization algorithms in an online
setting [2] with additive errors on the gradient. Iterative
approaches for control in an inexact gradient setting are
studied in [1], where only additive errors to the known
dynamics are considered.

Online optimization problems have a close relationship
with Iterative Learning Control (ILC) methods. In ILC,
the controller utilizes an input-output model of the pro-
cess and learns from past iterations dealing with iteration-
invariant [8]–[10] as well as iteration-varying problems [11]–
[13]. While convergence properties under various assump-
tions on the dynamics and model uncertainty have been
analyzed, regret analysis in an online learning ILC setting has
not been considered yet in the literature. This work proposes
an online-learning-based ILC method that utilizes a pre-
conditioned online gradient descent method in the presence
of model mismatch. After formulating the proposed control
algorithm, its static and dynamic regret are quantified and
variants are discussed and investigated. Our general analysis
encompasses common ILC schemes previously proposed
in the literature, and thus their regret characterization is
an additional outcome of the work. The contribution of
this work is therefore threefold: (i) a new online learning-
based ILC methodology inspired by online gradient descent
methods, (ii) a detailed regret analysis of the proposed ILC
method and its variants, and (iii) regret analysis of existing
ILC methods from the literature as special instances of the
proposed ILC method.

Section II formulates the problem and proposes the online
ILC controller. Section III provides a detailed analysis of
regret in the transient and limit cases, while Section IV
extends the results to the iteration-invariant ILC methods
from the existing literature. Section V provides a numerical
demonstration and Section VI gives concluding remarks.

Notation: Given a square matrix A, ∥A∥2 denotes its
spectral norm and ||A||P = ||P 1/2AP−1/2||2, where P is a
symmetric positive definite matrix of appropriate dimension.
Given a vector x, the weighted norm is ||x||P =

√
xTPx.

II. PROBLEM FORMULATION

The considered iterative learning control problem is mod-
elled by the following input-output dynamics in the absence
of exogenous disturbances

y(xk) = Hkxk, (1)



where, yk ∈ Rny is the output, and xk ∈ Rnx is the
input at iteration k. The input-output dynamics map Hk is
commonly employed in the ILC literature and is referred to
as the lifted representation of a system. Concretely, Hk may
represent the temporal evolution of a linear parameter or time
varying, or invariant dynamics along an iteration [8]–[10].
Importantly, Hk is assumed to be only partially known, with
an uncertainty structure formally stated below, and a nominal
estimate M ≈ Hk. In each k, the goal is to minimize

fk(x) =
1
2

(
||Hkx− r||2Q + ||x||2R

)
, (2)

where r is a reference to be tracked, Q = QT ≻ 0 is a
weighting matrix, and the second term with R = RT ≻ 0
is used for regularization. This term is a flexible design
choice used to penalize undesired features of the solution,
such as high inputs. The weighting matrices Q,R may also
be positive semi-definite in certain cases, see [10]. Note that
following the same formulation, iteration varying and a priori
known rk may be used in place of r. We focus on the case
with iteration invariant r in this work for simplicity. The
gradient of (2) is given by

∇fk(x) = HT
k Q(Hkx− r) +Rx. (3)

Notice that while the term Hkx can be evaluated directly by
running an iteration on the true system with the input x and
measuring the output y(x), the adjoint dynamics of the true
system HT

k are unknown. To circumvent this problem, one
can use the nominal estimate, M , to estimate the gradient,
leading to

∇̃fk(x) = MTQ(y(x)− r) +Rx. (4)

The ILC update applied to generate new inputs at each
iteration is given by the following Preconditioned Online
Gradient Descent (POGD) step

xk+1 = ΠW
X

(
xk − αkW

−1∇̃fk(xk)
)
, (5)

where W =WT ≻0 is a preconditioner matrix, X is a convex
input constraint set, and αk is the step-size at iteration
k. The projection operator to the set X in the weighted
preconditioner norm is

ΠW
X (x) := argmin

u∈X
||u− x||W . (6)

The concrete uncertainty representation of Hk is stated next.
Assumption 1: For all k, the true dynamics Hk belongs

to the set H(M,∆) := {H| H = M +M∆}, where M is a
nominal estimate with full column rank and the uncertainty
∆ belongs to the unstructured norm bounded set ∆(W,γ) :=
{∆| ||∆||W ≤ γ}, where γ ≥ 0 is the known uncertainty
size, and W is the preconditioner matrix.
Uncertainty representations similar to Assumption 1 have
been used in the past literature [8], [14], [15]. Note that due
to y(x), the updates (4) and (5) denote the interconnection of
a dynamical system and a controller algorithm. Additionally,
(4) with Assumption 1 introduces a gradient mismatch that
has not been studied in the past OGD literature.

The main technical contribution of the paper is the analysis
of this POGD-ILC in terms of two notions of regret. The
most general case corresponds to the dynamic regret

Jd(T ) =
∑T

k=1 fk(xk)−
∑T

k=1 fk(x
∗
k), (7)

where x∗
k = argminx∈X fk(x), i.e., the regret with respect

to an iteration-wise optimal control policy. Additionally, we
consider the traditional static regret [7]

Js(T ) =
∑T

k=1 fk(xk)−minx∈X
∑T

k=1 fk(x). (8)

The static regret is with respect to a controller that defines
a single fixed optimal input with the hindsight information
about the full sequence of iteration-varying fk. The regret
analysis is based on the following assumptions:

Assumption 2: For each k, fk is locally Lipschitz con-
tinuous in X with Lipschitz constant Lk in the weighted
preconditioner norm, i.e., ||fk(x)−fk(y)||W ≤ Lk||x−y||W
∀ x, y ∈ X ; moreover, L̄ := supk{Lk} < ∞.

Assumption 3: The optimal input between consecutive
iterations is bounded as ||x∗

k − x∗
k+1||W ≤ ek.

Assumption 4: There exist a sequence σk such that
||W−1(M∆)TQ(Hkx

∗
k − r)||W ≤ σk for all k with

σ̄ := supk{σk} < ∞.
Assumption 2 holds for example when X is compact. As-
sumption 3 ensures that the change in the optimal inputs
are bounded and an upper bound estimate is available.
Assumption 4 is due to the model mismatch term ∆, and
characterizes the distance between the fixed point of (5) for
fixed k, and the optimizer x∗

k. We formally show how this
term appears in some of the regret bounds and discuss its role
under various settings in later sections. Finally, we define

ϕk := ||I − αkW
−1(MTQHk +R)||W , Φj,k :=

∏k
i=j ϕi

The missing proofs in Sections III and IV are given in [16].

III. REGRET ANALYSIS

In this section we analyze the dynamic and static regrets of
the sequential actions taken using the POGD algorithm (5).

A. Dynamic Regret: Transient and Asymptotic Behavior

The following theorem provides an upper bound on the
dynamic regret of the POGD algorithm under the design
choices and assumptions discussed so far.

Theorem 1 (Dynamic Regret of POGD-ILC): Under
Assumptions 1, 2, 3, and 4, consider the choice
of preconditioner W = MTQM +R and define
w := ||W−1MTQM ||W . If wγ < 1 and the step-size
is chosen as αk ∈

(
0, 2

1+wγ

)
, then the dynamic regret of

POGD is upper bounded by

Jd(T )≤ L̄δx1

T∑
k=1

Φ1,k+L̄σ̄

T∑
k=1

k∑
j=1

αjΦj+1,k+L̄

T∑
k=1

Ek

where Ek :=
∑k

j=1 ejΦj+1,k and δx1
:= ||x1 − x∗

1||W .



Proof: We first bound the distance between the input
updates and the corresponding optimal inputs.

||xk+1 − x∗
k+1||W ≤||xk+1 − x∗

k||W +||x∗
k − x∗

k+1||W
= ||ΠW

X

(
xk − αkW

−1∇̃fk(xk)
)

−ΠW
X

(
x∗
k − αkW

−1∇fk(x
∗
k)
)
||W + ek

≤ ||xk − αkW
−1

(
MTQ(Hkxk − r) +Rxk

)
+ x∗

k−αkW
−1

(
HT

k Q(Hkx
∗
k − r) +Rx∗

k

)
||W +ek

≤ ||
(
I − αkW

−1
(
MTQHk +R

))
(xk − x∗

k)||W
+ αk||W−1(M∆)TQ(Hkx

∗
k − r)||W + ek

≤ ϕk||xk − x∗
k||W + αkσk + ek, (9)

where in the first inequality we use the triangle inequality
and in the second equality the fact that x∗

k is a fixed
point of the POGD with the true gradient ∇fk, x∗

k =
ΠW

X
(
x∗
k − αkW

−1∇fk(x
∗
k)
)
, and Assumption 3. For the

other inequalities we use the fact that the weighted projection
operator is nonexpansive in the weighted preconditioner
norm, Cauchy-Schwartz inequality and Assumption 4. Next,
we show the step-size parameters required to ensure ϕk < 1.
Using Assumption 1 and the specific choice of preconditioner
we have

ϕk = ||I − αkW
−1(MTQ(M +M∆) +R)||W

= ||(1− αk)I − αkW
−1MTQM∆)||W

≤ |1− αk|+ αk||W−1MTQM∆||W
≤ |1− αk|+ αkwγ, (10)

where ||I||W = 1 was used in the first inequality. To ensure
that ϕk < 1, αk must be chosen such that

|1− αk| < 1− αkwγ. (11)

Then since wγ < 1, αk ∈
(
0, 2

1+wγ

)
implies ϕk < 1. By

iterating (9) one gets

||xk+1 − x∗
k+1||W ≤ ||x1 − x∗

1||W
∏k

j=1 ϕj

+
∑k

j=1

(
(σjαj + ej)

∏k
i=j+1 ϕi

)
,

where we adopt the convention
∏j

j+1 aj = 1. Using the
Lipschitz constant Lk we get

fk+1(xk+1)− fk+1(x
∗
k+1) ≤ Lk||xk+1 − x∗

k+1||W
≤Lk

(
||x1−x∗

1||WΦ1,k+σ̄
∑k

j=1 αjΦj+1,k+
∑k

j=1 ejΦ1,k

)
.

Taking the sum from 1 to T and using the upper bound L̄
instead of Lk at each step gives the desired result.

The condition wγ < 1 can be fulfilled by choice of
the regularization matrix R. To see this, define w1 and
γ1 the values of w and γ associated with R1 and W1. If
w1γ1 ≥ 1, we can always find R2 such that w2γ2 < 1.
This is because, from the choice of preconditioner W and
the definition of w in Theorem 1, w scales approximately
with ||W−1|| and thus is O(||R−1||). On the other hand,
a valid (possibly not the tightest) upper bound on the

uncertainty size γ is O(1) in R. Consider without loss of gen-
erality R1 = ρ1I and R2 = ρ2I , with ρ2 > ρ1 > 0. Using
the definitions, we have ||∆||W1

≤ cond(W 1/2
1 )||∆|| = γ1,

where cond(·) denotes the condition number of the
matrix. Since ρ2 > ρ1, cond(W2) < cond(W1) and thus
||∆||W2

≤ cond(W 1/2
2 )||∆|| = γ2 < γ1, i.e. γ1 is still a valid

uncertainty size for the new choice of R2.
Using the upper bound obtained in Theorem 1, we char-

acterize the asymptotic behavior of the dynamic regret.
Corollary 2 (Average Regret of POGD-ILC): Under the

same conditions as Theorem 1, if αk = α0k
−c, with α0 ∈(

0, 2
1+wγ

)
, 0 ≤ c < 1, then

lim
T→∞

Jd(T )

T
≤ O(1) +

L̄
∑T

k=1 Ek

T
. (12)

Proof: From Theorem 1, Jd(T ) is bounded by

L̄δx1

T∑
k=1

Φ1,k︸ ︷︷ ︸
Term I

+ L̄σ̄α0

T∑
k=1

k∑
j=1

j−cΦj+1,k︸ ︷︷ ︸
Term II

+ L̄

T∑
k=1

Ek︸ ︷︷ ︸
Term III

(13)

where in Term II the explicit expression of the step size has
been used. Term I can be interpreted as the contribution to the
regret due to distance of the initial decision from the optimal
one. Define ϕ̄k := supi{ϕi}ki=1 and recall that ϕ̄k < 1 by
(10), (11), and the choice of the step size. Then

L̄δx1

T∑
k=1

Φj,k≤ L̄δx1

T∑
k=1

(ϕ̄k)
k≤ L̄δx1

T∑
k=1

(ϕ̄T )
k ≤ L̄δx1

1− ϕ̄T
,

where we used the monotonicity of ϕ̄k in the second in-
equality, and the upper bound of the infinite sum in the last
inequality. From (10) there exists a finite T̄ , which depends
on α0 and c, such that for T > T̄

ϕ̄T ≤ 1 + (wγ − 1)α0T
−c (14)

and thus

lim
T→∞

L̄δx1

T (1− ϕ̄T )
≤ lim

T→∞

L̄δx1
T c

T (wγ − 1)α0
= 0 (15)

whenever c < 1. Next, consider Term II and define Sk :=∑k
j=1 j

−cΦk
j+1, which thus describes the growth of this term

at each step k. Observe that

Sk+1 = ϕk+1Sk + (k + 1)−c (16)

where we know from (10) that ϕk+1 < 1. For our choice
of αk, two cases should be considered. When 0 < c < 1
(i.e., vanishing step size), ϕk+1 → 1 for k → ∞. In the
limit k → ∞, the sequence Sk will thus converge to a finite
constant value S∞. When c = 0, ϕk+1 < 1 as k → ∞, and
thus Sk can be bounded between zero and the trajectory of
an asymptotically stable linear system with constant input of
1. Therefore, by using the asymptotic behavior of the linear
time varying system (16) we are able to characterize the
asymptotic behavior of the regret for Term II. In both cases
Term II achieves linear regret, leading to O(1).



It is worth noting that the presented case relaxes some
assumptions in the existing literature. As an example, [2]
presents a similar result for fixed step-size case and general
strongly convex cost functions, which corresponds to the
case with c = 0. Additionally, the interpretation of the regret
bound in terms of the dynamical equation (16) provides
additional insights in terms of algorithm design and provides
a basis for developing system-level synthesis-type regret
optimal design [17].

Corollary 2 shows that the POGD algorithm applied to
the ILC with model mismatch does not lead to a sublinear
regret. The latter is regarded as a favorable property for
sequential decision-making algorithms because it suggests
that on average the decisions asymptotically converge to the
optimal ones at each stage. Convergence is prevented here
by two terms, namely Term II and Term III. Term III with
Ek is known as complexity [18] term in the dynamic regret
literature and captures the effect of the temporal variability
of the optimal sequence of actions. It is well-known that
an upper bound on the dynamic regret will have an explicit
dependence on it and, in this setting, little can be said about
its growth without prior information or assumptions on Hk.
By inspecting the derivation of the second term on the right-
hand-side in the bound (9), Term II is the contribution to
the regret due to the suboptimality of the direction taken to
update the decision at k. More precisely, this term is related
to the term upper bounded by σk in Assumption 4.

B. Adaptive POGD Algorithm

Modifications to the original POGD algorithm which are
sufficient for achieving sublinear regret of Term II are
discussed in this section.

Assumption 5: For all k, the true dynamics Hk belongs to
the set Hk(Mk,∆k) := {H| H = Mk +Mk∆k}. Mk is a
full column rank nominal estimate at k with MT

k QMk ⪯ m̄I
and the uncertainty ∆k belongs to the unstructured norm
bounded set ∆k(W,γk) := {∆| ||∆||W ≤ γk}, where γk ≤
γ for all k and γk → 0 as k → ∞.
This Assumption is a stronger version of Assumption 1
and requires the uncertainty size to asymptotically van-
ish. This could be achieved, for example, with an online
identification scheme providing updated estimates of the
model Mk and of the uncertainty based on input-output
measurements {(yi, xi)}Ti=1 gathered during the decision-
making problem. Asymptotic convergence to zero of the
estimation error ||Hk−Mk||W would also require appropriate
excitation conditions on r in the spirit of recursive parameter
identification schemes used in adaptive control [19].

Assumption 6: There exist σ̃k such that
||W−1(Mk∆k)

TQ(Hkx
∗
k− r)||W ≤ σ̃k for all k. Moreover,

σ̃k → 0 as k → ∞.
This Assumption replaces Assumption 4 and redefines the
sequence of upper bounds σ̃k for the case when the estimate
Mk changes across iterations. The asymptotic behavior of
σ̃k is implied by Assumptions 5. Further, define

ϕ̃k := ||I−αkW
−1(MT

k QHk+Rk)||W , Φ̃j,k :=
∏k

i=j ϕ̃i

Consider now an adaptive variation of the POGD algo-
rithm described in Section II which, leveraging Assumption
5, uses for its decisions the updated estimate of the model
Mk. The following Corollary shows that the associated dy-
namic regret is sublinear if the complexity term is sublinear.

Corollary 3 (Average Regret with Adaptation): Under
Assumptions 2, 3, 5, and 6, consider the choice of
preconditioner W = MT

1 QM1+R1, with R1 chosen so that
wkγ < 1 for all k, where wk := ||W−1MT

k QMk||W .
Consider also the regularizer weighting matrix
Rk = W −MT

k QMk ≻ 0. If the step-size is chosen
as αk = α0 with α0 ∈

(
0, 2

1+wγ

)
, then

lim
T→∞

Jd(T )

T
≤

L̄
∑T

k=1 Ek

T
. (17)

The proof is sketched here. Following the proof of Theorem 1
we have a similar upper bound on the regret with the
exception of the change in Term II, where now the stepsize
is constant and σ̃k is kept inside the inner summation. As
a result, the variable S̃k :=

∑k
j=1 σ̃kΦ̃j+1,k describing the

growth of Term II at each step k is such that

S̃k+1 ≤ ϕ̂S̃k + σ̃k (18)

where, from Assumption 6, σ̃k → 0 as k → ∞. Therefore
both Term I and Term II achieve sublinear regret and we
are left with Term III as given in the result. The condition
Rk ≻ 0 can be achieved by using m̄.

Compared to the originally considered POGD algorithm,
the adaptive version features three major changes: the model
estimate is updated online; the step size is kept constant (non-
diminishing); the regularization matrix is adapted as a func-
tion of the current model estimate. Note that at this stage this
is not a complete algorithm, as it needs to be complemented
by an online identification algorithm satisfying Assumption
5. The purpose of its presentation is primarily to establish
conditions on this complementary identification procedure to
make the commonly used POGD algorithm competitive from
a regret perspective.

C. Static Regret

While dynamic regret provides a powerful metric for
analyzing the performance of an online learning algo-
rithm, its upper bound depends on the limiting behav-
ior of the complexity term, Term III, which is unknown
in general. This term disappears in the static regret case
(8), which is studied next. The fixed input x∗ is com-
puted in hindsight to minimize the sum of observed costs,
i.e. x∗ = argminx∈X

∑T
k=1 fk(x), see (8). The analysis is

based on the following assumption.
Assumption 7: There exist ηk such that

||W−1/2∇̃fk(x
∗)|| ≤ ηk for all k, and η̄ = supk{ηk} < ∞.

Corollary 4: Under the conditions of Theorem 1 and
Assumption 7, the static regret of POGD is bounded by

Js(T )≤ L̄δx1

∑T
k=1 Φj,k+L̄η̄

∑T
k=1

∑k
j=1 αjΦj+1,k (19)

Following the arguments of Corollary 2, it can be seen that
the static regret grows linearly due to the new Term II



(now depending on η̄). Note that the optimality of x∗ is not
necessary for the proof of Corollary 4. Therefore, the static
regret defines a worst-case cost gap against any static policy
played over the iteration horizon of T . This observation
provides further insight on the meaning of regret, and its
distinction with respect to other metrics such as optimality
gap or convergence rates.

IV. THE ITERATION INVARIANT PROBLEM

In this section, we specialize the results of Theo-
rem 1 to more commonly considered ILC settings fea-
turing the assumption on constant cost function, i.e.,
fk(x) = f(x) for all iterations k. Specifically, we assume
that f(x) = 1

2

(
||Hx− r||2Q + ||x||2R

)
, where the true dy-

namics H has the same uncertainty description defined in
Assumption 1 but is now iteration-invariant. This results in
the ILC update

xk+1 = ΠW
X

(
xk − αkW

−1∇̃f(xk)
)
, (20)

which now has a fixed point x̄ under suitable con-
ditions, see [10], [15]. Following our analysis in the
proof of Theorem 1, it is easy to see that the step-
size rule given in the theorem with the given precondi-
tioner choice ensures convergence to the fixed point, i.e.,
||xk+1 − x̄||W ≤ ϕk||xk − x̄||W . Additionally, note that the
fixed point x̄ is not necessarily the optimal point x∗ due to
the model mismatch, thus ||x̄−x∗|| is nonzero in the general
case (see [10] for further details).

The ILC update (20) with X = Rnx and αk = 1 results
in norm-optimal ILC under suitable preconditioner matrix
design [8], [13], [14], while the case of convex X ⊂ Rnx

with a suitably chosen fixed step-size αk = ᾱ is a variant of
the optimization-based ILC [10], [15]. Due to the model mis-
match, and also for the cases with bounded disturbance, such
ILC algorithms achieve nonzero asymptotic error. Therefore,
it is desirable to design control parameters to minimize the
asymptotic ratio (gain) of the fixed point mismatch ||x̄−x∗||
to the uncertainty size in the problem, e.g., size of the
uncertainty set or the disturbance set.

Since here we have fk(x) = f(x) for all iterations k, the
constant input x∗ = argminx∈X f(x) is the optimal action
for both the dynamic and static problems, thus the associated
notions of regret coincide and will be referred to as ILC
regret (JILC).

Proposition 5 (ILC regret for (20)): Under Assumptions
1 and 2, consider the choice of preconditioner W =
MTQM+R and define w := ||W−1MTQM ||W . If wγ < 1

and a constant step-size is chosen as α = α0 ∈
(
0, 2

1+wγ

)
,

the ILC regret for the controller update (20) is bounded by

JILC(T ) ≤ (1− ϕ)
−1 (

L̄ (δx1 + σα0T )
)
, (21)

where ϕ = ||I − α0W
−1(MTQH + R)||W , δx1 := ||x1 −

x∗||W , and σ ≥ 0 is such that ||W−1(M∆)TQ(Hx∗ −
r)||W ≤ σ.
The result follows directly from the proof of Theorem 1,
with constant x∗ instead of x∗

k and without the ek term

due to the iteration invariance. Following Corollary 3, it is
easy to see that the regret of the ILC update (20) becomes
sublinear if model learning takes place concurrently with the
controller iterations and Assumptions 5 and 6 are satisfied
for the iteration invariant problem, e.g., in certain model-free
ILC applications [20]. The bound for the iteration varying αk

follows similarly from Theorem 1 and is omitted here.
The linear regret is due to the mismatch term

||W−1(M∆)TQ(Hx∗ − r)||W , which characterizes the dis-
tance d = ||x̄ − x∗||. Therefore, we see here a clear
relationship between convergence and regret, where the case
of no model mismatch achieves sublinear regret. Therefore,
by improving on the fixed point by reducing d, it is possible
to achieve sublinear regret.

Proposition 6: Let Assumptions 1 and 2 be satisfied,
and assume further that γ < 1. Consider the choice of
preconditioner W = MTQM , cost f(x) = 1

2 ||Hx− r||2Q,
assume that minx∈X f(x) = 0 with the minimizer x∗, and
a constant step-size is chosen as α = α0 ∈

(
0, 2

1+wγ

)
and

define δx1 := ||x1 − x∗||W . Then, the ILC regret for the
controller update (20) is bounded by

JILC(T ) ≤ (1− ϕ)
−1 (

L̄δx1

)
, (22)

where, ϕ = ||I−α0W
−1(MTQH)||W . Hence, the average

regret is sublinear.
The proof of Proposition 6 follows from
Proposition 5 by recognizing that we have here
||W−1(M∆)TQ(Hx∗ − r)||W = 0 by assumption, since
minx∈X f(x) = 0 implies that Hx∗ = r. Therefore, by
having a small enough disturbance set, i.e., γ < 1, and
assuming that the optimal input is feasible for the true
dynamics, the ILC update (20) has sublinear regret.

V. NUMERICAL DEMONSTRATION

For the numerical demonstration, we turn to process
control for a Selective Laser Melting (SLM) additive manu-
facturing process. In SLM, fine metal powder is deposited,
melted with the help of a high-power laser, and left to solidify
in layers, to build a three-dimensional object in a layer-by-
layer fashion. The melt pool dynamics at the point where
the laser interacts with the material is of crucial importance
for the mechanical properties of the finished part. We use
the high-fidelity numerical simulations of an SLM process
presented in [21] to model the melt pool length output as a
function of the laser power input and extract a 5 dimensional
discrete-time linear time invariant single input single output
model

H :

{
ξ(t+ 1) = Aξ(t) +Bv(t),

y(t) = Cξ(t),
(23)

where v(t) is the instantaneous power input to the system
and y(t) is the melt pool length. The constraint set on the
input power is defined by the minimum power requirement
to initiate melting, and an upper limit based on actuator
constraints, given by V = [75, 165], in Watt, so that we
constraint our input to v(t) ∈ V . Using the model (23),
we construct the lifted input-output model of the system



Fig. 1. Dynamic regret with different step-size rules and Term III from
Theorem 1.

for an iteration duration of 100 time steps, representing a
single layer of the SLM process, so that M ∈ R100×100. The
input constraint set X for the POGD-ILC algorithm is then
constructed using V . Following our model assumption, we
compute the true input-output dynamics in each iteration as
Hk = M +M∆, where ∆ has a diagonal structure, and is
sampled from the set ∆(W,γ0) for each k.

We present results (i) for the dynamic regret of
non-adaptive POGD-ILC with diminishing step-size
αk = α0k

−c, chosen according to Corollary 2, and (ii) for
the case with model learning Adaptive POGD-ILC, with a
constant step size according to Corollary 3. For the adaptive
POGD-ILC, we emulate the adaptation by a diminishing
uncertainty set and γk = γ0k

−1/2, where γ0 is the initial
uncertainty, also used in the non-adaptive case.

The dynamic regret of the POGD-ILC controller under
three step-size choices is shown in Fig. 1. The top plot
also shows the complexity term (Term III from Theorem 1),
providing part of the upper bound as predicted analytically.
A close-up of the regret progression for the three step sizes is
shown on the bottom plot. We see that the regret progression
increases with diminishing c, which is captured analytically
by the dependence of Term II in Theorem 1, suggesting that
larger step sizes result in increased regret upper bounds. The
melt pool lengths of the two scenarios are given in Fig. 2. The
tracking performance of the adaptive POGD-ILC is much
better due to the model learning and adaptation. The non-
adaptive POGD-ILC still tracks the reference signal, albeit
with higher error.

VI. CONCLUSION

This work analyzes the regret of online learning iterative
learning controllers with model mismatch between the true
process and the controller model. We propose a projected
online gradient descent controller inspired by online convex
optimization methods and analyze the regret performance of
the proposed controller under various assumptions and con-
ditions. Thus, we study variations of existing ILC algorithms
in the context of online learning to study the closed-loop per-
formance of given algorithms with dynamical systems. Our
results motivate the need for online learning and adaptation
to achieve sublinear average regret, which is desirable in
many practical contexts. Accordingly, developing effective
model learning methodologies and incorporating additional
measurement noise, process noise, and state constraints are
foreseeable extensions of this work.

Acknowledgements: The authors thank Mamzi Afrasiabi
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Fig. 2. Comparison of the output trajectories at the last iteration k = 500,
for the adaptive and non-adaptive cases.
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