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Abstract— Limit cycle oscillations are phenomena arising in
nonlinear dynamical systems and characterized by periodic,
locally-stable, and self-sustained state trajectories. Systems con-
trolled in a closed loop along a periodic trajectory can also be
modelled as systems experiencing limit cycle behavior. The goal
of this work is to identify from data, the local dynamics around
the limit cycle using linear periodically parameter-varying
models. Using a coordinate transformation onto transversal
surfaces, the dynamics are decomposed into two parts: one
along the limit cycle, and one on the transversal surfaces. Then,
the model is identified from trajectory data using kernel-based
methods with a periodic kernel design. The kernel-based model
is extended to also account for variations in system parameters
associated with different operating conditions. The performance
of the proposed identification method is demonstrated on a
benchmark nonlinear system and on a simplified airborne wind
energy model. The method provides accurate model parameter
estimation, compared to the analytical linearization, and good
prediction capability.

I. INTRODUCTION

Nonlinear dynamical systems of two or higher dimen-
sions can exhibit periodic solutions known as limit cycle
oscillations [1]. Limit cycles are isolated closed orbits that
if locally stable, are local attractors, and thus lead to self-
sustained periodic oscillations. When a system is controlled
along a periodic reference, the closed-loop dynamics can
also be considered a limit cycle. In this regard, it is of
interest to identify a model that describes the dynamics of
limit cycles, which can then be used for simulation, analysis,
and control design. Nevertheless, identification of nonlinear
systems purely from data poses a difficult problem, which
requires prior knowledge of the model structure, and/or
complex nonlinear optimization schemes with tractability
issues [2]. Instead, local linear dynamics are often identified
for different operating points to construct a linear parameter-
varying (LPV) model and apply gain scheduling in control
design [3]. For limit cycles, oftentimes the local dynamics
are of main concern. However, conventional LPV methods
do not take into account that the underlying model converges
to a limit cycle. In comparison, linearization of the system
directly around the limit cycle as in [4] results in a linear
time-varying (LTV) model. This model fails to capture the
dynamics along the limit cycle, i.e. the velocity at which the
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perturbed trajectories traverse the points on the limit cycle
while converging to it. In this study, an alternative approach
that identifies the nonlinear dynamics around the limit cycle
as a linear periodically parameter-varying (LPPV) model is
investigated. The first step is to decompose the dynamics
into two parts: one moving along the limit cycle, and one
lying on the transversal hyperplanes of the limit cycle, which
are known as Poincaré sections. This decomposition implies
a transformation onto the so-called transverse coordinates
[5]. Next, the dynamics around the limit cycle are modelled
as a periodic system parametrized with the location on the
limit cycle. In the vicinity of the limit cycle, the system
can be approximated with a locally linearized model. LPPV
modelling bridges the gap between existing LPV and LTV
approaches for the periodic case.

The linearized transverse dynamics reduce the identifica-
tion problem to learning the system matrices as functions
of the location on the limit cycle, which are periodic in
nature. In this work, this function learning problem is tackled
by using kernel methods in an LPV system identification
framework [6]. Conventional parametric approaches require
a priori selection of an appropriate set of basis functions
that map the given inputs to a higher dimensional nonlinear
feature space. Kernel methods allow this mapping to be done
implicitly onto an infinite-dimensional function space and
the function can be estimated in this function space with
Tikhonov regularization. Such methods have been previously
used for the nonparametric identification of LPV systems
in [7] in an input-output setting, and in [8] with state-
space models. This work extends the method proposed in
[8] with a separate kernel design for each element of the
system matrices, and the periodicity in the learned system
matrices is enforced via periodic kernel design. In addition,
the flexibility of kernel design makes it possible to include
additional system parameters in the model, by augmenting
the periodic kernel with standard non-periodic kernels.

The algorithm is first tested on the Van der Pol oscillator.
The identified model is demonstrated to be close to analytical
linearization when training data are close to the limit cycle,
and outperform analytical linearization in terms of prediction
accuracy when the training data are close to the prediction
task. Then, the algorithm is applied to a simplified kinematic
model of a tethered kite controlled to fly along a periodic
figure-of-eight trajectory for airborne wind energy generation
[9]. Accurate prediction can be obtained with an additional
system parameter. The proposed method performs signif-
icantly better than global nonlinear identification without
knowledge of the limit cycle.



II. TRANSVERSE DYNAMICS OF LIMIT CYCLES

In this section, the background of transverse dynamics
of limit cycles is summarized. For detailed definitions and
derivations, see [10], [5].

Let us consider a nonlinear system described by a set of
ordinary differential equations (ODEs):

ẋ = f(x, d), (1)

where x ∈ Rn is the state vector and d ∈ Rnd is an
exogenous input. The autonomous solution of this system,
i.e., ẋ = f(x, 0), starting from an initial condition x(0) = x0
is denoted by x(t) = Φ(x0, t). The system exhibits limit
cycle behaviour if it has a T ⋆-periodic solution x⋆(t) =
Φ(x⋆0, t), i.e., T ⋆ > 0 is the minimum period such that the
relationship x⋆(t) = x⋆(t+T ⋆) holds for all t. Then, the limit
cycle is defined as Γ⋆ = {x ∈ Rn : x = x⋆(τ)|τ ∈ [0, T ⋆)},
where it is parametrized with a new time scale τ ∈ [0, T ⋆). In
this study, we consider asymptotically stable periodic orbits.
The periodic orbit Γ⋆ is said to be asymptotically stable if
it fulfills Lyapunov stability, i.e., ∀ϵ > 0, ∃δ > 0 such that
∀x0 ∈ Rn with dist(x0,Γ⋆) < δ, dist(Φ(x0, t),Γ⋆) < ϵ,
∀t > 0, and if it is an attractor, ∃δ > 0 such that ∀x0 ∈ Rn
with dist(x0,Γ⋆) < δ, limt→∞ dist(Φ(x0, t),Γ⋆) = 0, where
dist(x,Γ⋆) = infy∈Γ⋆ ||y−x||2. The disturbance d is assumed
to be such that the perturbed trajectories remain close to
the nominal limit cycle. At each τ , one can construct an
(n − 1)-dimensional hyperplane S(τ) that is transversal to
Γ⋆, i.e., ẋ⋆(τ) /∈ S(τ). The transversal hyperplanes are
uniquely defined by normal vectors denoted by z(τ). On
this hyperplane, a new coordinate system is defined such that
the origin is x⋆(τ) and the coordinate axes can be chosen
as any orthonormal basis that spans the surface S(τ). The
coordinates of a given state x ∈ S(τ) in this new coordinate
frame are denoted by x⊥ ∈ Rn⊥ , where n⊥ = n − 1.
Thus, a mapping of the state to its transverse coordinates
is created for a given family of transversal surfaces moving
along the periodic orbit: x→ (x⊥, τ). The collection of the
basis vectors of S(τ) defines a projection operator Π(τ) =
[ξ1 . . . ξn−1]

⊤ that characterizes the transformation to the
transverse coordinates:

x = x⋆(τ) + Π(τ)⊤x⊥, (2)

and the inverse relationship is

x⊥ = Π(τ)(x− x⋆(τ)). (3)

The transversality condition can be rewritten in terms
of the normal vector as requiring the existence of some
δ > 0 such that z(τ)⊤ẋ⋆(τ) > δ, ∀τ ∈ [0, T ⋆). The
most straightforward choice of surfaces is then those that
are orthogonal to the orbit, i.e., the normal vectors are set to
be tangential to the flow as

zorth(τ) =
ẋ⋆(τ)

||ẋ⋆(τ)||2
. (4)

However, this choice leads to singularities that occur espe-
cially around τ sections where the curvature of the orbit

is large [5]. These singularities are due to the violation
of the so-called well-posedness condition that arises from
the nonlinear τ dynamics. This condition restricts the re-
gion where the transformation to transverse coordinates is
well-defined. An alternative set of surfaces is considered,
originally proposed in [11]. These surfaces, referred to as
center surfaces, connect x⋆(τ) with a fixed center (e.g., the
geometric center of the limit cycle). The first basis vector ξ1
is

ξcenter
1 (τ) =

x⋆(τ)− xc
||x⋆(τ)− xc||2

, (5)

where xc represents the designated center point. The remain-
ing basis vectors can be selected such that the angle between
the center surface and the orthogonal surface is the smallest.
The normal vector zcenter(τ) can be consequently determined
as the unit vector perpendicular to all the basis vectors.

Subsequent to the relationships established in (2) and (3),
the dynamics of the transverse states can be analytically
obtained. We are interested in the local linearized model of
the transverse system of the form

ẋ⊥ = A(τ)x⊥ +B(τ)d, (6a)
τ̇ = 1 + g(τ)x⊥ + h(τ)d, (6b)

where A(τ) : [0, T ⋆) → Rn⊥×n⊥ , B(τ) : [0, T ⋆) →
Rn⊥×nd , g(τ) : [0, T ⋆) → R1×n⊥ , and h(τ) : [0, T ⋆) →
R1×nd are periodically-varying matrix functions of τ . When
the nonlinear model is known, the system matrices can
be obtained by analytical linearization of the transverse
dynamics [5]. Note that if x is on the limit cycle, i.e.,
x⊥ = 0, τ would be equal to t when no exogenous input is
applied. Otherwise, the τ dynamics would differ from t and
the transverse model encapsulates this behavior. In contrast,
the LTV approach in [4] results in the following model which
ignores the τ dynamics (6b): ˙̃x = Ã(t)x̃ + B̃(t)d, where
x̃(t) = x(t)− x⋆(t).

III. IDENTIFICATION OF LINEAR PERIODICALLY
PARAMETER-VARYING MODELS

To simplify the notation, define θ =
[
x⊤⊥ d⊤

]⊤ ∈ Rnθ ,
where nθ = n⊥ + nd, and ζ =

[
ẋ⊤⊥ τ̇ − 1

]⊤ ∈ Rn. The
dynamics (6) can then be compactly rewritten as:

ζ = Ω(τ)θ, (7)

where

Ω(τ) =

[
A(τ) B(τ)
g(τ) h(τ)

]
: [0, T ⋆) → Rn×nθ . (8)

Assume that measurements of the original state trajec-
tories, their time derivatives, and the exogenous inputs are
given as {x(tk), ẋ(tk), d(tk)}Nk=1, and the periodic orbit Γ⋆

is known. To convert a state x to its transverse counterpart
(x⊥, τ), the corresponding hyperplane must first be deter-
mined. The problem can be reformulated as finding the τ that
satisfies the hyperplane equation and minimizes the distance
between x and the corresponding point on the limit cycle:

min
τ

||x− x⋆(τ)||2,

s.t. z(τ)⊤(x− x⋆(τ)) = 0.
(9)



This optimization problem is solved for each τ(tk) by a
nonlinear solver initialized from τ(tk−1). The transverse
coordinates x⊥ are then computed using the projection in
(3). Finally, the time derivatives of the transverse states
(ẋ⊥(tk), τ̇(tk)) can be calculated from ẋ using the nonlinear
analytical expressions from Theorem 1 in [5]. Thus, the
dataset {θ(tk), ζ(tk), τ(tk)}Nk=1 is obtained.

A. Kernel-Based Identification

A natural approach to function learning problems is to
assume that the underlying function can be decomposed into
a set of continuous basis functions:

Ωi(τ) =

nψ∑
m=1

wimψ
i
m(τ) =WiΨi(τ) (10)

where Ωi(τ) denotes the i-th row of Ω(τ), ψim(τ) :
[0, T ⋆) → R1×nθ represent the preselected vector-valued
basis functions, wim ∈ R are the associated weights, and

Ψi(τ) =
[
ψi1(τ)

⊤ . . . ψinψ (τ)
⊤
]⊤
, Wi =

[
wi1 . . . winψ

]
(11)

collects the basis functions and the weights respectively.
Here, each row Ωi(τ) of the system matrix is considered
separately and solved independently. In machine learning
practices, such transformations are referred to as feature
maps.

The learning problem is then posed as a regularized least-
squares problem:

min
Wi

N∑
k=1

(ζi(tk)−WiΨi(τ(tk))θ(tk))
2
+λi||Wi||22, (12)

where a Tikhonov regularization with the weighting factor
λi ∈ R is applied. The predictions of state derivatives ζi is
denoted as

ζ̂i =WiΨi(τ)θ. (13)

Problem (12) can be solved directly. However, the process of
selecting the basis functions is not trivial and the dimension
nψ is typically very large. Instead, the kernel method is used
to reformulate the problem. In detail, by formulating the dual
problem of (12), it is shown that the optimal solution of the
weights Wi lies in the span of the training data [8], [12]:

Wi =

N∑
k=1

αi,kθ(tk)
⊤Ψi(τ(tk))

⊤, (14)

where αi,k ∈ R are the coefficients associated with each
training point. The predicted ζi can thus be expressed as

ζ̂i(tk′) =

N∑
k=1

αi,kθ(tk)
⊤Ψi(τ(tk))

⊤Ψi(τ(tk′))θ(tk′). (15)

Then, problem (12) can be reformulated in terms of αi =
[αi,1 αi,2 . . . αi,N ]⊤, which only depends on the inner
product of the feature map Ki(τ, τ

′) := Ψi(τ)
⊤Ψi(τ

′) ∈
[0, T ∗) × [0, T ∗) → Rnθ×nθ instead of Ψi(τ). This inner
product function Ki(·, ·) is known as the kernel, which can
be conceptually thought of as a similarity measure between

two data points. Since nψ is usually much larger than nθ,
one can directly design Ki instead of Ψ to avoid explicitly
choosing maps and implicitly work with features of higher
or infinite dimensions. The idea of replacing inner products
of feature maps with kernels is known as the kernel trick
[13]. Substituting the kernel into (15), we obtain

ζ̂i(tk′) =

N∑
k=1

αi,kθ(tk)
⊤Ki(τ(tk), τ(tk′))θ(tk′). (16)

Assuming that the elements of the system matrices can
be modelled independently from each other, the ker-
nel functions Ki are designed as diagonal matrices, i.e.,
Ki = diag (ki,1, ki,2, . . . , ki,nθ ), where scalar kernels ki,j :
[0, T ⋆) × [0, T ⋆) → R are designed for each system matrix
element Ωi,j . This kernel design generalizes [8] where the
same kernel is used for each element, i.e., Ki = kiInθ .

Remark 1: The matrix-valued kernel function Ki(·, ·) can
also be directly designed as a full matrix to model corre-
lations between the elements in Ωi [14]. However, this is
beyond the scope of this paper.

Then, the predictions on all training points can be ex-
pressed as Ẑi = [ζ̂i(t1) ζ̂i(t2) . . . ζ̂i(tN )]⊤ = Υiαi,
where Υi ∈ RN×N is a positive semi-definite matrix, whose
(k, k′)-th element is constructed as

(Υi)k,k′ = θ(tk)
⊤Ki(τ(tk), τ(tk′))θ(tk′). (17)

Define the collection of state derivative measurements as
Zi = [ζi(t1) ζi(t2) . . . ζi(tN )]

⊤. The solution to problem
(12) can then be indirectly given by the closed-form solution
of αi:

αi = (Υi + λiIN )−1Zi, (18)

through the transformation (14). Finally, the system matrices
are retrieved as

Ωi(τ) =

N∑
k=1

αi,kθ(tk)
⊤Ki(τ(tk), τ). (19)

Remark 2: The learned system matrix function (19) can
also be interpreted as the solution to the regularized function
learning problem within the reproducing kernel Hilbert space
associated with the kernel Ki(·, ·), denoted by HKi [13]:

min
Ωi∈HKi

N∑
k=1

(ζi(tk)− Ωi(τ(tk))θ(tk))
2
+λi||Ωi||2HKi

. (20)

B. Periodic Kernel Design

Since the system matrices are periodic, the periodic kernel
design first proposed in [15] will be used for ki,j . Periodic
kernels of period T ⋆ are constructed by applying the warping
χ(τ) =

[
sin( 2πT⋆ τ) cos( 2πT⋆ τ)

]⊤
to any standard kernel. We

consider the squared exponential (SE) kernel described by

kSE
i,j(τ, τ

′) = exp

(
−||τ − τ ′||22

2l2i,j

)
, (21)

where li,j are the hyperparameters, known as the length
scale, which control the smoothness of the functions to be



learned. The corresponding periodic kernel is then obtained
by substituting τ with χ(τ) and rearranging using trigono-
metric identities:

kPSE
i,j (τ, τ ′) = exp

(
−
2 sin2( πT⋆ (τ − τ ′))

l2i,j

)
. (22)

Note that for any τ − τ ′ = mT ∗, m ∈ Z, kPSEi,j (τ, τ ′) = 1.
This means that the function values at τ and τ ′ are perfectly
correlated, so the functions learned with such kernels are
periodic with period T ⋆.

C. Extension to the Multivariate Case

The above identification method can be extended to the
case where the system is operated around different operating
points, such that the dynamics are also parameter varying
with a parameter p:

ẋ = f(x, d; p). (23)

In terms of the transverse dynamics, (23) implies an addi-
tional dependence on p for the limit cycle x⋆(τ, p) and the
linearized model ζ = Ω(τ, p)θ. The kernel method provides
a straightforward way to incorporate such dependence in
identification. Multivariate functions can be learned by mul-
tiplying kernels [16]. In our case, to model the dependence
on p, the periodic kernel can be multiplied with an SE kernel:

kMulti
([
τ
p

]
,

[
τ ′

p′

])
= kPSE(τ, τ ′)kSE(p, p′). (24)

D. Hyperparameter Selection

The empirical Bayes, or the maximum marginal likeli-
hood approach, is used to identify the hyperparameters in
the kernel method [16], which are the length scales li =
[li,1 . . . li,nθ ]

⊤ ∈ Rnθ , associated with each kernel and the
regularization parameters λi:

max
li,λi

log p(Zi|{θ(tk), τ(tk)}Nk=1, li, λi), (25)

where the log marginal likelihood function is given by

log p(Zi|{θ(tk), τ(tk)}Nk=1, li, λi) =

− 1

2
(Z⊤

i Ῡ
−1
i Zi − log detῩi)−

N

2
log(2π),

(26)

where Ῡi = Υi + λiIN .

The proposed identification algorithm is summarized in
Algorithm 1.

IV. NUMERICAL EXAMPLES

A. Van der Pol System

The nonlinear benchmark system known as the Van der
Pol oscillator is described by:

ẋ1 = x2, (27a)

ẋ2 = µ(1− x21)x2 − x1 +D sin(ωt), (27b)

where a sinusoidal forcing term corresponds to the external
input d in (6). The damping coefficient µ is set to 1, which
results in a limit cycle with period T ⋆ = 6.663.

Algorithm 1 Kernel-based identification of local limit cycle
dynamics with LPPV models

1: Input: training data {x(tk), ẋ(tk), d(tk)}Nk=1, limit cycle
Γ⋆.

2: Select transversal surfaces S(τ) and corresponding pro-
jection operators Π(τ).

3: Find {x⊥(tk), τ(tk)}Nk=1 by (9) and (3).
4: Find {ẋ⊥(tk), τ̇(tk)}Nk=1 by Theorem 1 in [5].
5: for i := 1 to n do
6: begin
7: Find li, λi by solving (25) with kernel design (22).
8: Find Ωi(τ) by (18) and (19).
9: end

10: Output: transverse system matrix Ω.

Fig. 1: Effects of surface selection. Trajectory simulations in
(a)-(b) and τ dynamics around a sharp turn in (c)-(d) using
orthogonal (a),(c) and center (b),(d) surfaces.

In Figure 1, nonlinear trajectories generated from (27) with
D = 0 , denoted by x(t), are compared to those obtained
from the analytical transverse linear approximation xlin(t)
using (a) orthogonal, and (b) center surfaces (the center point
is chosen as the origin). For orthogonal surfaces, the well-
posedness condition is violated around the sharp turns where
the surfaces clash into each other, which causes a discontinu-
ity in the nonlinear τ dynamics (Figure 1(c)). Around these
regions, the transverse linear dynamics become unstable for
large x⊥ values (Figure 1(a)). This behavior is prevented
by center surfaces, in which the linear dynamics τ̇lin can
effectively approximate τ̇ (Figure 1(d)). These conclusions
prompt the use of center surfaces for identification purposes.

Two sets of data, D1 and D2, are generated for identifica-
tion, which contain trajectories starting from x⊥(t0) = 0.1
and x⊥(t0) = −0.5, respectively. For both sets, the forcing
term is set as D = 1 and ω = 10ω⋆, and zero-mean
Gaussian noise with a signal-to-noise ratio (SNR) of 40 dB is
injected to state and state time-derivative measurements. The
computation time is around 4 s in this example (on an Intel
Core i7-9750H processor at 2.60GHz), which is dominated
by the hyperparameter search step.

Figure 2 displays the identified system functions from



Fig. 2: Comparison of the identified LPPV models for the
Van der Pol system using different training datasets. Ω(τ):
analytical model, Ω̂(τ)(1), Ω̂(τ)(2): identified models using
D1 and D2 respectively.

Fig. 3: Prediction of a test trajectory from the Van der Pol
system, shown in (a) the phase space and in (b) the time
series of x⊥ and (τ − t).

D1 and D2, denoted by Ω̂(τ)(1) and Ω̂(τ)(2) respectively,
alongside the analytical transverse linear system functions
derived from the nonlinear system ODE, Ω(τ). For D1, the
identified model matches the analytical one linearized around
x⊥ = 0. Predictions on a test trajectory with x⊥(t0) = −0.5,
τ(t0) = 1.5, D = 0.5, ω = 20ω⋆ are shown in Figure 3 in
(a) the phase space, and (b) time series plots of x⊥ and
(τ − t). By observing that Ω̂(τ)(2) outperforms the other
models in terms of prediction error, it can be concluded
that the performance of the identification improves when the
training data is chosen based on the regions in which the
predictions are to be made, and can even be superior to an
analytical linearization with a known nonlinear model.

Fig. 4: Identified LPPV models for the tethered kite system
with v

r parametrization. Case 1: vr = 0.11, Case 2: vr = 0.27.

B. Airborne Wind Energy System

A tethered kite system with ground-based power genera-
tion during the traction phase is investigated as a physical
system model. The position of the kite is expressed by the
elevation angle θ, the azimuth angle ϕ, and the line length
r. The unicycle kinematic model from [17] is considered:

θ̇ =
v

r
cos(γ), (28a)

ϕ̇ =
v

r cos(θ)
sin(γ), (28b)

γ̇ = u. (28c)

where x = [θ ϕ γ]⊤ is the state variable and u is the steering
input channel. The parameters v and r are assumed to be
constant over one cycle. The kite is controlled on an efficient
figure-of-eight path by setting γ⋆(τ) = a cos(ω⋆τ+b), where
the frequency ω⋆, the amplitude a, and the phase b are
determined from the desired midpoint angles and system
dynamics [17]. The control law is designed as transverse
state-feedback following [5], [18]:

u(τ) = u⋆(τ) + u⊥(τ) = u⋆(τ)−K⋆(τ)x⊥(τ). (29)

The nominal control input u⋆(τ) and the controller gains
K⋆(τ) can be computed off-line and a periodically time-
varying LQR controller is designed using the linearized peri-
odic system matrix A(τ). The associated periodic differential
Riccati equation [19] is solved with the one-shot algorithm
[20]. The center surfaces have been defined starting from the
first basis vector ξ1 (5). The second basis vector is chosen
as the vector perpendicular to both the first basis vector and
the flow direction at that point given by ẋ⋆(τ).

The kite system is simulated with ω⋆ = 0.8, θ⋆(0) =
π
4 , ϕ

⋆(0) = π
4 , Q = I2, R = 1. During the traction

phase, the line length and the kite velocity change as
the line reels out. In our model, the parameter v

r varies
during operation and both the limit cycle and the dynam-
ics around it would alter. The variations with respect to
v
r can be captured by modifying the periodic SE kernel
for the multivariate case as described in Section III-C.
The identification method with the extended kernel is ap-
plied on trajectory data from different operating conditions



Fig. 5: Prediction of a test trajectory from the tethered kite
system for v

r = 0.27, shown in (a) the phase space of θ and
ϕ, and in (b) the time series of x⊥,1. Pred Ω̂(τ): identified
multivariate model, Pred Ω̂med(τ): identified model without
v
r parametrization.

( vr ∈ {0.3, 0.2154, 0.1625, 0.1263, 0.1}), where the training
dataset consists of 16 trajectories with initial conditions ran-
domly chosen from a uniform distribution with ||x⊥(t0)||2 =
0.02. Zero-mean Gaussian noise is added to the original state
and state time-derivative measurements with an SNR of 60
dB. No disturbance is applied, i.e., d = 0. The computation
time in this example is around 1080 s.

Figure 4 displays the identified models for two parameter
values not used in training: Case 1: v

r = 0.11 and Case
2: v

r = 0.27, with A11(τ) and g2(τ) as examples. The
estimates Ω̂(τ) are very close to the analytical functions
Ω(τ). A trajectory is generated from Case 2 with an initial
condition randomly chosen from a uniform distribution with
||x⊥(t0)||2 = 0.1. Figure 5(a) shows the predictions in the
phase space of θ and ϕ using the identified model and a
black-box kernel-SVM model trained with (x, d, p) data as
the input and ẋ data as the output. The proposed method
predicts the true nonlinear trajectory accurately, and performs
significantly better than the black-box SVM method without
the knowledge of the limit cycle. In Figure 5(b), the identified
model is further compared with a model Ω̂med(τ) identified
only from the data at v

r = 0.1625. The multivariate model
clearly obtains better predictions than the model without v

r
parametrization.

V. CONCLUSIONS

A new methodology to identify the local limit cycle dy-
namics with an linear periodically parameter-varying model
is presented. Decomposing the dynamics via transverse co-
ordinates (done here by center surfaces) leads to linear peri-
odic models that can accurately capture the local nonlinear
dynamics around the limit cycle. The inherent periodicity

is encoded in the identification in a non-parametric fash-
ion by periodic kernels. This leverages the flexibility of
kernel design by capturing, e.g., model variations due to
changing operating conditions. Future research directions
include: tailored kernel design and transversal surface se-
lection approaches; applications to control design and large-
scale problems, possibly in conjunction with model order
reduction techniques. Other function learning algorithms
such as neural network and online adaptation of the model
are also interesting extensions to explore.
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