
Infinite-Dimensional Sparse Learning in Linear System Identification

Mingzhou Yin, Mehmet Tolga Akan, Andrea Iannelli, and Roy S. Smith

Abstract— Regularized methods have been widely applied to
system identification problems without known model structures.
This paper presents an infinite-dimensional sparse learning
algorithm based on atomic norm regularization. Atomic norm
regularization decomposes the transfer function into first-
order atomic models and solves a group lasso problem that
selects a sparse set of poles and identifies the corresponding
coefficients. The difficulty in solving the problem lies in the
fact that there are an infinite number of possible atomic
models. This work proposes a greedy algorithm that generates
new candidate atomic models maximizing the violation of the
optimality conditions of the existing problem. This algorithm
is able to solve the infinite-dimensional group lasso problem
with high precision. The algorithm is further extended to
reduce the bias and reject false positives in pole location
estimation by iteratively reweighted adaptive group lasso and
complementary pairs stability selection respectively. Numerical
results demonstrate that the proposed algorithm performs
better than benchmark parameterized and regularized methods
in terms of both impulse response fitting and pole location
estimation.

I. INTRODUCTION

System identification investigates the problem of identi-
fying models of dynamical systems from measured input-
output data. This problem has been widely studied under
the parameter estimation framework, where the system is
modeled by a finite-dimensional parametrization [1]. The
optimal model parameters can then be estimated by tools in
classical statistics. One well-known approach in this category
is the prediction error method (PEM) based on maximum
likelihood estimation [2].

However, such approaches only work when model struc-
ture and complexity are known, and the associated op-
timization problems are only convex for particular noise
models, e.g., ARX models [3]. Alternative approaches have
been proposed in the last decade, which identify general
high-dimensional models with regularization techniques to
encode prior model knowledge [4], [5]. In particular, kernel-
based identification [6], [7] has received significant attention,
whereby, in its basic form, a truncated impulse response
model is identified with a Tikhonov regularization term. The
performance of this approach depends heavily on the choice
of kernels which need to be carefully designed [8]. This
kernel design step poses similar problems as model structure
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selection in the classical paradigm. In addition, kernel-based
identification controls model complexity through the norm
of the impulse response induced by an arbitrary reproducing
kernel Hilbert space [9]. Such complexity measures do not
have clear system theoretic interpretations.

Alternative regularization approaches have also been pro-
posed to directly control the number of poles of the model.
This measure has a more concrete meaning for system
analysis and control, either when the system is known to have
a low-order structure, or when a low-order representation is
desired. The Hankel nuclear norm of the impulse response
is used as a convex surrogate in [10], [11]. However, this
regularizer is known to be prone to stability issues [5]. A
different approach consists of modeling the system as a
summation of first-order “atoms”, which are some predefined
basis models. The model complexity can then be controlled
by regularizing the l1-norm of the coefficients. This is known
as regularizing the atomic norm with respect to the atomic
decomposition [12]. This results in a lasso-type problem that
promotes models with a small number of poles [13]. This
idea has also been used in periodic system identification [14]
and kernel design [15]. Another advantage of the first-order
atomic decomposition is that it directly identifies the pole
locations of the system. Pole locations are important in clas-
sical control design, yet hard to estimate with conventional
identification approaches.

Existing work on the atomic norm regularization approach,
however, has multiple known drawbacks. First, instead of
solving the group lasso problem on an infinite set of stable
atoms, only a finite discretization of the atomic set is
considered for tractability. This leads to an approximation
error which can only be reduced with a very large set of
atoms [12]. In addition, a large bias is induced by lasso-type
regularization [5], and the pole location estimation contains
a possibly large number of false positives due to the “p-value
lottery” in high-dimensional regression [16].

In this paper, we propose an infinite-dimensional sparse
learning algorithm based on atomic norm regularization,
which aims to tackle the above drawbacks. This algorithm
directly targets the group lasso problem with an infinite
feature set, which has been studied in the machine learning
literature [17], [18], [19]. Similar to Algorithm 1 in [17],
our proposed algorithm first solves the problem with a
small number of randomly generated features. Then, a new
atomic model feature is selected to maximize the optimality
condition violation for the previous iteration. The algorithm
guarantees a decrease in the objective value per iteration and
solves the infinite-dimensional problem with an arbitrarily
small tolerance.



Two different strategies are further presented to debias the
estimate and reject false positives respectively. Iteratively
reweighted adaptive group lasso [20], [21] is applied to
reduce the amount of regularization on significant modes
of the identified model, and thus reduce the bias. Comple-
mentary pairs stability selection (CPSS) [22], [23] solves the
problem repeatedly on subsamples of the identification data
and estimates the pole location by selecting atoms that are
consistently active.

Numerical results demonstrate that the proposed algorithm
performs better than PEM with an ARX model, kernel-
based identification with tuned/correlated (TC) kernel design,
and the existing atomic norm regularization algorithm in
terms of impulse response fitting on a benchmark system. In
addition, adaptive group lasso is able to reduce the bias of
the algorithm and CPSS obtains more accurate pole location
estimation than PEM with fewer false positives.

II. ATOMIC NORM REGULARIZATION IN SYSTEM
IDENTIFICATION

In this work, we consider a strictly causal and stable
linear time-invariant single-input single-output discrete-time
system y(t) = G0(q)u(t)+v(t), where u(t), y(t), v(t) are the
inputs, outputs and additive noise respectively, and q is the
shift operator. The transfer function G0(q) is assumed to have
a low number of poles. The additive noise is assumed to be
zero-mean i.i.d. Gaussian with a variance of σ2. An input-
output sequence of the system

u = [u(1) u(2) . . . u(N)]⊤, y = [y(1) y(2) . . . y(N)]⊤ (1)

has been collected. We are interested in identifying the
transfer function G0(q) from the data sequence (u,y).

In regularized system identification, the transfer func-
tion G0(q) is expressed with a general high-dimensional
parametrization G0(q) = ∑k∈K ckAk(q), where Ak(q) are the
basis transfer functions known as atoms [12], ck are the
corresponding coefficients, and K denotes the set of indices.
Denote the set of coefficients as C = {ck|k ∈ K}. The fol-
lowing regularized optimization problem is solved:

minimize
C

V

(
y− ∑

k∈K
ck φ(Ak(q),u)

)
+λJ (C) , (2)

where φ(A(q),u) denotes the length-N output response of the
system A(q) to the inputs u, V (·) is the loss function that
penalizes the output residuals, J(·) is the regularization term
that encodes prior knowledge of the coefficients, and λ is the
regularization parameter to tune the amount of regularization.
For the rest of the paper, the loss function is selected as
V (x) = ∥x∥2

2, which is related to the maximum likelihood
estimator when the noise v(t) is i.i.d. Gaussian.

In this paper, the atomic decomposition of the transfer

function in [12] is employed, where Ak(q)=
1−|k|2

q− k
, and the

corresponding coefficients ck are complex numbers. Unlike
conventional parametrizations, here k is a stable pole within
the open unit disk. The set of indices is thus

K = {k = α exp( jβ ) |α ∈ [0,1),β ∈ [0,2π)} , (3)

which has infinite elements. The atoms Ak(q) are normalized
to have a Hankel nuclear norm of 1. Define the pole locations
of the system as S = {k | |ck|> 0}, which is also known as
the active atomic set. Since the system is known to have a
small number of poles, a sparsity-promoting regularization
term J(C) is desired. In particular, an l1-norm regularizer

J(C) = ∑
k∈K
|ck| (4)

is used and defined as the atomic norm of the model [24].
Observe that for real-rational systems, the pole locations
should be in conjugate pairs and the corresponding atomic
responses are also complex conjugates of one another, i.e.,
φ(Ak̄(q),u) = φ̄(Ak(q),u), where the overbar denotes the
complex conjugate. This means that coefficients for a con-
jugate pole pair should also be complex conjugates, i.e.,
ck̄ = c̄k. Adding this constraint on the coefficients of (2),
the problem can be reformulated as

minimize
{ck}k∈K̂

∥∥∥∥∥y− ∑
k∈K̂

(
ck φk + c̄k φ̄k

)∥∥∥∥∥
2

2

+2λ ∑
k∈K̂

|ck| , (5)

where φk := φ(Ak(q),u) and

K̂ = {k = α exp( jβ ) |α ∈ [0,1),β ∈ [0,π]} (6)

denotes the upper half of the open unit disk.
Using ℜ and ℑ to denote real and imaginary parts, let

γk =
[
ℜ(ck) ℑ(ck)

]⊤
, ζk =

[
2ℜ(φk) −2ℑ(φk)

]
. (7)

Substituting (7) into (5), (5) can be expressed as a real-valued
problem,

Γ
⋆ := {γ⋆k }k∈K̂ = argmin

{γk}k∈K̂

∥∥∥∥∥y− ∑
k∈K̂

ζkγk

∥∥∥∥∥
2

2

+2λ ∑
k∈K̂

∥γk∥2︸ ︷︷ ︸
J(Γ)

,

(8)
where Γ :=

{
γk |k ∈ K̂

}
. Note that (8) is a standard group

lasso problem [13]. The identified transfer function can be
recovered by

Ĝ(q) = ∑
k∈K̂

[1 j ]γ⋆k Ak(q)+ [1 − j ]γ⋆k Ak̄(q), (9)

and the estimated pole locations are

Ŝ =
{

k
∣∣∥γ⋆k ∥2 > 0

}
∪
{

k̄
∣∣∥γ⋆k ∥2 > 0

}
. (10)

However, problem (8) cannot be directly solved since it is
an infinite-dimensional problem. Existing algorithms relax
this problem by approximating K̂ with a discrete grid [12].
As shown in Proposition 4.1 of [12], the discretization
induces a relative error in the atomic norm that is inversely
proportional to the square root of the number of elements in
the discretized K̂.



III. ALGORITHM FOR INFINITE-DIMENSIONAL ATOMIC
NORM REGULARIZATION PROBLEMS

In this section, an algorithm is proposed to directly solve
the infinite-dimensional problem (8). This algorithm is in-
spired by the feature generation algorithm in [17].

Problem (8) is a non-differentiable convex program, whose
optimality conditions are given by 0 ∈ ∂J(Γ), where ∂ de-
notes the subdifferential. In detail, the optimality conditions
of (8) are{∥∥ζ⊤k R

∥∥
2 ≤ λ , if

∥∥γ⋆k

∥∥
2 = 0,

ζ⊤k R+λγ⋆k /
∥∥γ⋆k

∥∥
2 = 0, if

∥∥γ⋆k

∥∥
2 > 0,

(11)

for all k∈ K̂, where R := y−∑k∈K̂ ζkγ⋆k is the vector of output
residuals. The derivation makes use of the property

∂ ∥γ⋆k ∥2 =

{
{w | ∥w∥2 ≤ 1} ,

∥∥γ⋆k

∥∥
2 = 0,

γ⋆k /
∥∥γ⋆k

∥∥
2 ,

∥∥γ⋆k

∥∥
2 > 0.

(12)

Let K̂d =
{

k1,k2, . . . ,kp
}

be a finite subset of K̂ with p
elements. Then, with an abuse of notation, by replacing K̂
with K̂d in (8), a discretized optimal solution, denoted by
Γ⋆(K̂d) :=

{
γ⋆i (K̂d)

}p
i=1, can be obtained, which satisfies

∥∥ζi(K̂d)
⊤R(K̂d)

∥∥
2 ≤ λ , if

∥∥γ⋆i (K̂d)
∥∥

2 = 0,

ζi(K̂d)
⊤R(K̂d)+λ

γ⋆i (K̂d)∥∥γ⋆i (K̂d)
∥∥

2

= 0, if
∥∥γ⋆i (K̂d)

∥∥
2 > 0,

(13)
for i = 1, . . . , p, where R(K̂d) := y−∑

p
i=1 ζi(K̂d)γ

⋆
i (K̂d) and

ζi(K̂d) := ζki .
Suppose we want to add a new element kp+1 to K̂d . Then

the optimal solution with respect to K̂+
d := K̂d ∪{kp+1} is

γ
⋆
i (K̂

+
d ) =

{
γ⋆i (K̂d), i = 1, . . . , p,
0, i = p+1,

(14)

iff
∥∥ζp+1(K̂+

d )⊤R(K̂d)
∥∥

2 ≤ λ . In other words, adding such
new elements does not improve the optimal objective func-
tion value, or change the transfer function estimate Ĝ(q). So
the new element only reduces the objective function value
when

∥∥∥ζ⊤kp+1
R(K̂d)

∥∥∥
2
> λ . This also guarantees kp+1 /∈ K̂d

since
∥∥∥ζ⊤ki

R(K̂d)
∥∥∥

2
≤ λ for i = 1, . . . , p.

Motivated by the above observation, Algorithm 1 is pro-
posed to solve the infinite-dimensional group lasso problem
(8), where a greedy strategy is applied that chooses the new
element by maximizing

∥∥∥ζ⊤kp+1
R(K̂d)

∥∥∥
2
. Note that K̂l

d denotes

the set K̂d at the l-th iteration in Algorithm 1. The transfer
function and the pole location estimates Ĝ(q) and Ŝ can
be calculated by (9) and (10) respectively with discretized
atomic set K̂l

d , which is the output of Algorithm 1.
Let

Γ̂
⋆ =

{
γ
⋆
k

∣∣∣∣∣γ⋆k =

{
γ⋆i (K̂

l
d), k = ki ∈ K̂l

d

0, k ∈ K̂ \ K̂l
d

}
. (16)

Algorithm 1 guarantees the following property.

Algorithm 1 A greedy algorithm for the infinite-dimensional
group lasso problem (8)

1: Input: identification data (u,y), ε > 0, lmax
2: Initialize K̂0

d =
{

k1,k2, . . . ,kp0

}
.

3: Calculate Γ⋆(K̂0
d ).

4: l← 0
5: repeat
6: Construct a candidate new atom

k+← argmax
k∈K̂

∥∥∥ζ
⊤
k R(K̂l

d)
∥∥∥

2
. (15)

7: if
∥∥ζ⊤k+R(K̂l

d)
∥∥

2 ≥ λ + ε then
8: begin
9: kp0+l+1← k+, K̂l+1

d ← K̂l
d ∪{kp0+l+1}

10: Calculate Γ⋆(K̂l+1
d ) via program (8).

11: end
12: else
13: Break
14: l← l +1
15: until l ≥ lmax
16: Output: K̂l

d , Γ⋆(K̂l
d)

Proposition 1: If Algorithm 1 terminates without reaching
the maximum number of iterations (l < lmax), Γ̂⋆ satisfies the
approximate optimality conditions{∥∥ζ⊤k R

∥∥
2 < λ + ε, if

∥∥γ⋆k

∥∥
2 = 0,

ζ⊤k R+λγ⋆k /
∥∥γ⋆k

∥∥
2 = 0, if

∥∥γ⋆k

∥∥
2 > 0,

(17)

for all k ∈ K̂.
Proof: Since γ⋆k = 0 for k /∈ K̂l

d in Γ̂⋆, we have R =
R(K̂l

d). For k ∈ K̂l
d , the discretized optimality conditions (13)

guarantee the satisfaction of (17). According to Algorithm 1,∥∥ζ⊤k R(K̂l
d)
∥∥

2 =
∥∥ζ⊤k R

∥∥
2 < λ + ε . So for k /∈ K̂l

d , (17) is
satisfied since

∥∥γ⋆k

∥∥
2 = 0.

Proposition 1 shows that the infinite-dimensional problem
(8) is approximately equivalent to the finite-dimensional
problem with (p0 + l) atoms

argmin
{γi}

p0+l
i=1

∥∥∥∥∥y−
p0+l

∑
i=1

ζkiγi

∥∥∥∥∥
2

2

+2λ

p0+l

∑
i=1
∥γi∥2 . (18)

For the rest of the paper, define p = p0 + l.
The main difficulty in Algorithm 1 is solving the non-

convex problem (15). However, even if (15) is not solved ex-
actly, Algorithm 1 still guarantees a decrease in the objective
function value at each iteration as long as

∥∥ζ⊤k+R(K̂l
d)
∥∥

2 ≥
λ + ε is satisfied for the candidate atom k+.

IV. DEBIASING AND STABILITY SELECTION

Algorithm 1 provides a method to solve the group lasso
problem (8). However, solutions to lasso-type regularized
problems are known to have a large bias and a large number
of false positives in feature selection [22]. To mitigate these
problems, the following tools in high-dimensional statistics
are applied to debias the estimate and reject false positives
in pole location estimation from Algorithm 1.



Algorithm 2 Iteratively reweighted adaptive group lasso
1: Input: identification data (u,y), ε ′ > 0, ms

2: Find K̂l
d =

{
k1, . . . ,kp

}
, Γ⋆(K̂l

d) :=
{

γ
⋆,0
1 , . . . ,γ⋆,0p

}
from

Algorithm 1.
3: for m = 1 to ms do
4: begin
5: Find

{
γ
⋆,m
i

}p
i=1 by solving

argmin
{γi}

p
i=1

∥∥∥∥∥y−
p

∑
i=1

ζkiγi

∥∥∥∥∥
2

2

+2λ

p

∑
i=1

∥γi∥2∥∥∥γ
⋆,m−1
i

∥∥∥
2
+ ε ′

. (21)

6: end
7: Calculate Ĝ(q) by (9) with discretized atomic set K̂l

d and
coefficients

{
γ
⋆,ms
i

}p
i=1.

8: Output: Ĝ(q)

A. Iteratively Reweighted Adaptive Group Lasso

The l1-norm regularizer (4) is a convex relaxation of the
ideal sparsity promoting function J∗(C) = n(S), where n(·)
denotes the cardinality of the set, which counts the number
of poles in the model. Compared to the ideal regularizer
which penalizes all the active atoms with a fixed value of 1,
the l1-norm regularizer penalizes them with the magnitude
of the corresponding coefficients. This induces a negative
bias, especially for the atoms with larger coefficients, i.e.,
the dominant modes. This bias is a large source of error in
atomic norm regularization [5].

To reduce such bias, adaptive lasso [25] has been proposed
which adds a second step that applies a reweighted version
of the l1-norm regularizer

Ja(C) = ∑
k∈K

|ck|∣∣∣c⋆,0k

∣∣∣+ ε ′
, (19)

where c⋆,0k is the solution to the original problem, and ε ′ > 0
is a small constant to avoid singularity. This regularizer
reduces the amount of regularization for atoms estimated
with large coefficients in the original problem, and is close
to J∗(C) when ck ≈ c⋆,0k . This approach is extended to apply
this reweighting iteratively (Section 2.8.5 in [22]), which
is sometimes known as iteratively reweighted lasso. It is
pointed out in [21] that the iteratively reweighted lasso can be
interpreted as a difference of convex programming algorithm
to solve the regularized problem with a non-convex log
regularizer

Jlog(C) = ∑
k∈K

log(|ck|+ ε ′)

logε ′
. (20)

This iteratively reweighted adaptive approach is applied
to the group lasso problem (8) in Algorithm 2. It is easy
to see that the cardinality of the active atomic set J∗(C) is
non-increasing at each iteration.

B. Complementary Pairs Stability Selection

Lasso-type regularized problems are known to have fa-
vorable consistency properties in terms of prediction under

Algorithm 3 Complementary pairs stability selection
1: Input: identification data (u,y), τ ∈ (0.5,1], ns
2: Find K̂l

d from Algorithm 1.
3: for i = 1 to ns do
4: begin
5: Generate a random subsample Bi⊂{1,2, . . . ,N} with
⌊N/2⌋ elements.

6: B̄i←{1,2, . . . ,N}\Bi
7: Calculate ŜBi , ŜB̄i

by solving (18) with the loss
function V (·) replaced by VBi(·), VB̄i

(·) respectively.
8: end
9: Ŝ←

{
k
∣∣∣ 1

2ns
∑

ns
i=1

(
1ŜBi

(k)+1ŜB̄i
(k)
)
≥ τ

}
, where 1 de-

notes the indicator function.
10: Output: Ŝ

mild conditions. However, in terms of estimating the active
atomic set S, they can only guarantee that the non-active
atoms are not in the true model with high probability under
practical assumptions (Chapter 2 in [22]). This means that the
number of false positives in the estimated pole locations is
not controlled. In fact, there are usually many more estimated
poles than the true poles, with many occurring at “random”
locations depending on the noise realization. This will be
shown in Section V. This phenomenon is known as “p-value
lottery” [16].

Subsampling techniques have been used to increase the
stability of the active atomic set estimation. In particular, the
complementary pairs stability selection (CPSS) is applied in
this work [23]. This method generates complementary pairs
of subsamples from the identification data, and repeats the
baseline variable selection procedure (group lasso problem
(8) here) on each subsample. For our problem, this corre-
sponds to replacing the loss function with

VB(·) =

∥∥∥∥∥y(B)−
p

∑
i=1

ζki(B, :)γi

∥∥∥∥∥
2

2

, (22)

where B⊂{1,2, . . . ,N} defines a random subsample of data.
Define the estimated pole locations on the subsample as ŜB.
Then the so-called stable solution of the problem is defined
as the atoms that have higher empirical probabilities of being
included in ŜB than a predefined threshold τ . The algorithm
has favorable false-positive rejection properties when τ > 0.5
[23]. The method is summarized in Algorithm 3. The transfer
function can also be estimated by least squares on the stable
solution of the atomic set.

V. NUMERICAL RESULTS

The performances of the proposed algorithms are assessed
by numerical simulation on a benchmark fourth-order system
previously analyzed in [26]:

G(q) =
0.10884q+0.19513

q4−1.41833q3 +1.58939q2−1.31608q+0.88642
.

(23)



Fig. 1. The number of additional atoms l in Algorithm 1 for σ2 = 0.1.
Blue: mean values, yellow: ranges within one standard deviation.

The system has been normalized to have an H2-norm of 1.
In what follows, results obtained with Algorithms 1, 2, and
3 are labelled by InfA, AdpInfA, and SS respectively.

Identification data of length N = 100 are generated with
zero-mean i.i.d. unit Gaussian inputs from a zero initial
condition. Two noise levels σ2 = 0.1 and 0.01 are con-
sidered. The atomic responses φk are also generated from
a zero initial condition. 100 Monte Carlo simulations are
conducted for each noise level. The initial discretized atomic
set K̂0

d contains p0 = 50 randomly generated atoms with
ki = αi exp( jβi), where αi and βi are subject to uniform dis-
tributions in [0,1) and [0,π] respectively. Finite-dimensional
group lasso problems are solved by MOSEK. The candidate
atom generation problem (15) is solved by the particle swarm
solver in MATLAB. The hyperparameter λ is selected by
cross-validation from a 15-point log-space grid between 0.05
and 5 for σ2 = 0.1, and between 0.005 and 0.5 for σ2 = 0.01,
except for SS where λ is fixed to 0.5 for σ2 = 0.1 and
0.05 for σ2 = 0.01. The following parameters are used in
simulation: ε = ε ′ = 10−5, τ = 0.9, ns = 50, ms = 2.

First, the number of additional atoms l required in Al-
gorithm 1 is plotted against the λ values in Figure 1. The
maximum l in all Monte Carlo simulations is 118, which
is below the lmax setting. Results show that the proposed
greedy atom generation approach is able to converge within
a reasonable number of iterations, and the required number
of additional atoms decreases with λ .

To demonstrate the performance of the proposed algo-
rithms, they are compared to three benchmark algorithms: 1)
least-squares estimation with an ARX model and a known
model order (ARX); 2) kernel-based identification with a
TC kernel design (TCK) [9]; 3) discretized atomic norm
regularization in [12] with 50 (Atom) and 500 (Atom2)
random atoms. Note that Atom2 uses a significantly larger
atomic set compared to Algorithm 1, as shown in Figure 1.

Figure 2 compares the identification accuracy of all algo-
rithms in terms of the impulse response fitting, defined as

W = 100 ·

1−

[
∑

N−1
i=1 (gi− ĝi)

2

∑
N−1
i=1 (gi− ḡ)2

]1/2
 , (24)

Fig. 2. Boxplot of impulse response fitting. Yellow: σ2 = 0.1, cyan: σ2 =
0.01.

TABLE I
BIAS-VARIANCE ANALYSIS OF IMPULSE RESPONSE ESTIMATION

TCK Atom Atom2 InfA SS AdpInfA
σ2 = 0.1

Bias2 [×10−2] 6.76 23.42 6.34 2.63 8.28 0.91
Var [×10−2] 13.04 13.59 8.52 3.80 15.68 2.70

MSE [×10−2] 19.80 37.01 14.86 6.44 23.96 3.60
σ2 = 0.01

Bias2 [×10−2] 1.78 15.92 2.22 0.43 0.47 0.07
Var [×10−2] 5.45 11.68 5.26 0.76 3.12 0.52

MSE [×10−2] 7.23 27.60 7.48 1.18 3.59 0.59

where gi are the true impulse responses, ĝi are the estimated
impulse responses, and ḡ is the mean of gi. It can be seen
that the three proposed algorithms all perform better than
the benchmark algorithms at both noise levels. In particular,
InfA obtains better fitting compared to Atom2 which uses a
much larger atomic set. This demonstrates the effectiveness
of the proposed atom generation approach. AdpInfA further
improves on the identification accuracy of InfA with iterative
reweighting.

To further investigate the sources of the estimation errors,
Table I shows the bias-variance analysis of impulse response
estimation. As an algorithm proposed to debias the estimate,
AdpInfA indeed produces a much smaller bias compared to
all other algorithms. This is also the main contributor to the
reduction of MSE compared to the baseline InfA algorithm,
on which AdpInfA is based.

Finally, the capability of estimating the poles of the system
is demonstrated in Figures 3 and 4. It is illustrated in
Figure 3 that all the algorithms that directly solve group lasso
problems estimate a much larger number of poles compared
to the true one. AdpInfA mitigates the over-estimation since
the active atomic set shrinks at each iteration, whereas SS
obtains a very accurate estimation of the model order.

To assess the accuracy of pole location estimation, Fig-
ure 4 further compares the distributions of estimated pole lo-
cations in all 100 Monte Carlo simulations. Despite knowing
the true model order, ARX fails to give accurate estimations
of the pole locations. Although the estimated model order is
close to the true one, AdpInfA estimates a significant number
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Fig. 3. Comparison of estimated model orders for σ2 = 0.1.
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Fig. 4. Comparison of pole location estimation distributions in all 100
Monte Carlo simulations for σ2 = 0.1.

of false positives in terms of the actual pole locations. Among
all the algorithms, only SS is able to obtain accurate pole
location estimations with few false positives, which proves
the effectiveness of the CPSS method.

VI. CONCLUSIONS

This work applies advanced techniques studied in high-
dimensional statistics to the atomic norm regularization
problem in linear system identification. A greedy algorithm
is presented to generate new candidate atomic models from
infinitely many possible pole locations. Common drawbacks
of lasso-type regularization are mitigated by adaptively ad-
justing the regularization weights for each atom and selecting
only repeatedly occurring pole locations from subsamples
of data. Results in this paper suggest that sparse learning
algorithms are a promising alternative to kernel-based meth-
ods with fewer design requirements and direct pole location
estimation. Further research directions include improvements
in computational efficiency, comparison with model order
reduction methods, and extensions to MIMO systems and
frequency-domain data.
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