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Abstract— We present an online learning analysis of minimax
adaptive control for the case where the uncertainty includes a
finite set of linear dynamical systems. Precisely, for each system
inside the uncertainty set, we define the model-based regret by
comparing the state and input trajectories from the minimax
adaptive controller against that of an optimal controller in
hindsight that knows the true dynamics. We then define the
total regret as the worst case model-based regret with respect
to all models in the considered uncertainty set. We study how
the total regret accumulates over time and its effect on the
adaptation mechanism employed by the controller. Moreover,
we investigate the effect of the disturbance on the growth of
the regret over time and draw connections between robustness
of the controller and the associated regret rate.

I. INTRODUCTION

The interplay between machine learning, system
identification and adaptive control has unveiled a fertile area
of research which has the potential to answer some of the
standing research questions in the field of learning-based
control. Recent advances in online learning techniques have
provided new perspectives on the design of algorithms
where unknown systems can be controlled by acquiring
knowledge through repeated interactions with the unknown
environment [1]. This has close connections with adaptive
control [2] and in general with learning-based control
techniques [3]. Minimax adaptive control is taken in this
work as a prototypical example of the latter line of works to
draw connections with regret, i.e. the performance metrics
used in online learning. Design of minimax control for
uncertain systems was investigated as early as in [4], [5].
Subsequently, the design of minimax adaptive control
was investigated for scalar systems with unknown input
matrix sign in [6], for finite sets of linear systems in [7],
[8] and for the output feedback case in [9], respectively.
There have been earlier works on robust adaptive control
in [10], [11] where uncertainties in system dynamics
were considered. Minimax adaptive control problems are
generally challenging as obtaining exact `2-gain bounds as
explained in [7], [12], [13] can be hard for multiple input
multiple outputs systems with finite set of linear models
and optimality can only be achieved if the exploration and
exploitation trade-off is exactly captured.
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The recent interest developed towards analyzing control
algorithms for systems with unknown dynamics through the
lens of regret analysis has the promise to enable a better
understanding of this trade-off. There are quantities that
are of interest but are unknown in advance to the online
controller. We refer to such unknown entity as Quantity of
Interest (QI). Lack of knowledge about a QI determines an
accumulated cost, with respect to a control designed with
perfect knowledge, which denotes the notion of regret. For
instance, the growth of expected regret in linear quadratic
control was investigated in [14] when matrices (A,B) were
unknown. Regret bounds have been investigated in [15] for
adaptive control problems in stochastic setting. This paper
proposes an online learning analysis of minimax adaptive
control of linear-time invariant systems featuring adversarial
disturbance and a priori knowledge of a finite set of systems.
One of the distinctive novelty is a new definition of regret,
suitable for this setting in which the QIs are both the system
dynamics and the exogenous disturbance. From an online
learning perspective, efficient adaptive control algorithms
are characterized by limiting the growth of regret over
time. To quantify the regret, we usually require an optimal
control policy (policy regret) or a sequence of best control
actions (dynamic regret) available in hindsight as in [16].
Here, we propose studying the policy regret associated with
the minimax adaptive controller by comparing it against the
standard H∞ control which knows the dynamics.
Recently, [17] investigated the regret of robustness of an
H∞ controller (whose QI is just the adversarial disturbance)
when compared to an oracle controller which has knowledge
of the future disturbance trajectory. Also related is the work
in [18], which investigated the regret analysis for the
generic non-stochastic control problem and their system
identification approach employed random inputs before
controlling it using disturbance-based policy. Similarly,
[19] studied online control with adversarial disturbances
and proposed a disturbance action control policy based
efficient algorithm to obtain nearly tight regret bounds.
On the contrary, our work looks at nonlinear adaptive
state feedback policy which concurrently controls the
system under adversarial disturbance and implicitly learns
the system dynamics. This gives rise to an interesting
trade-off in the adversary strategy, whereby the worst-case
disturbance is the one that delays the learning process of
the controller while minimizing the energy spent (which is
penalized in the total cost).

Contributions: We provide a detailed analysis for the
minimax adaptive control algorithm proposed in [7] with



the aim to improve our understanding on the role of the
adaptation mechanism and the adversary disturbance on the
regret. Since an explicit expression for the optimal minimax
adaptive controller is not known, we apply our analysis to the
candidate sub-optimal minimax adaptive control algorithm1

developed in [7], [8]. Specifically, the main contributions are:
1) Definition of the: model-based regret corresponding to

a specific model in the uncertainty set characterizing
the accumulated cost with respect to an optimal con-
troller in hindsight which knows the true dynamics;
total regret as the worst-case model-based regret cor-
responding to any model in the uncertainty set.

2) Construction of an adversarial disturbance policy
which provably prevents the minimax adaptive con-
troller from learning the true dynamics (Theorem 1).

3) Despite the possible difficulty in the identification of
the true dynamics, we show that the minimax adaptive
controller enjoys a sub-linear regret rate with respect
to the best H∞ controller in hindsight (Theorem 2).

The rest of the paper is organised as follows. The problem
formulation is discussed in §II. The online learning analysis
is performed in §III, and some of its features are further
elucidated through numerical simulation in §IV. Finally, the
main findings of the paper are summarized in §V.
Notation and Preliminaries. The cardinality of the set A
is denoted by |A|. The set of real numbers, integers and the
natural numbers are denoted by R,Z, and N respectively. For
a matrix A ∈ Rn×n, we denote its transpose and its trace
by A> and Tr(A) respectively. We denote by Sn, the set of
symmetric matrices in Rn×n. For A ∈ Sn, we write A � 0
and A � 0 to say that A is positive definite and positive
semi-definite, respectively. An identity matrix of dimension
n is denoted by In. Given x ∈ Rn, A ∈ Rn×n, B ∈ Rn×n,
the notations ‖x‖2A and ‖B‖2A mean x>Ax and Tr

(
B>AB

)
respectively. A signal {xk} is said to be in `2 space if it has
finite energy meaning that

∑∞
k=0 x

2
k < ∞. For any time

T ∈ N, if the truncation of a signal {xk} to the interval
[0, T ] lies in the `2 space, then the signal is said to be lying
in the extended `2 space denoted by `2e.

II. PROBLEM FORMULATION USING MINIMAX
ADAPTIVE CONTROL

In this section we introduce the minimax adaptive control
subject of our investigations through online learning.

A. Minimax adaptive control with finite set of linear systems

Consider the following discrete-time linear system

xk+1 = Axk +Buk + wk, k ∈ N, (1)

where xk ∈ Rn and uk ∈ Rm denote the system states
and control inputs, respectively, and the additive disturbance
wk ∈ Rn is assumed to be adversarial. The true system ma-
trices A ∈ Rn×n and B ∈ Rn×m are unknown but assumed
to belong to a set M with |M| = F ∈ N defined such

1The distinction between the optimal and the sub-optimal minimax
adaptive control policies will be made clear at appropriate places.

that Mi := (Ai, Bi) ∈ M, i = 1, . . . ,F , where all pairs are
assumed throughout to be stabilizable. For instance, control
of a discrete-time linearized inverted pendulum dynamics
falls under the above setting when the pendulum length
is uncertain. Generally, minimax adaptive control approach
can be a suitable design solution when multiple systems
who do not share common Lyapunov function need to be
controlled by a single controller. Let us denote by Π the set
of admissible control policies such that

uk = πk (x0, x1, . . . , xk, u0, . . . , uk−1) , πk ∈ Π. (2)

An optimal adaptive control policy should interact with the
system in order to extract information about the unknown
system matrices A,B while also guaranteeing good perfor-
mance and robustness to the adversarial disturbance. This
can be achieved by optimizing the following minimax cost

inf
π∈Π

sup
w,A,B

∞∑
k=0

(
c(xπk , u

π
k , Q,R)− γ2‖wk‖2

)
︸ ︷︷ ︸

Jπ(x0,γ)

. (3)

where c(xπ, uπ, Q,R) := ‖xπ‖2Q + ‖uπ‖2R for given penalty
matrices Q � 0, R � 0; xπ denotes the evolution of the
state of (1) starting from x0 under the control input uπ

from the policy π; and γ > 0 quantifies the desired level
of robustness to the external disturbance (higher γ resulting
in weaker robustness requirements). The optimal minimax
control policy π† and the associated cost are given by

π† := argmin
π∈Π

Jπ(x0, γ), J†(x0, γ) := Jπ†(x0, γ) (4)

and the resulting disturbance attenuation level achieved by
the control policy π† from disturbance to the regulated output
ζ :=

[
x> u>

]>
is denoted by γ† and is defined as

γ† :=

√√√√√ sup
w† 6=0

∑∞
k=0 c(x

π†
k , u

π†
k , Q,R)∑∞

k=0

∥∥∥w†k∥∥∥2 . (5)

This formulation provides a family of minimax control policy
parameterized by γ, which are guaranteed to exist ∀γ > γ†.
We cast the problem as a zero-sum dynamic game with
the control policy π being the minimizing player and the
adversaries (w,A,B) being the maximizing players [7].
The solution boils down to solving a minimax dynamic
programming problem, which is intractable in most cases.
An approximate (i.e. sub-optimal) solution has been recently
proposed in [7], [8], and this will be the subject of this study.
The following lemma summarizes the main result of [7], i.e.
an explicit expression for an adaptive controller satisfying a
pre-specified `2-gain bound from disturbance to error.

Lemma 1. Given a compact set of linear models M, and
positive definite penalty matrices Q ∈ Rn×n, R ∈ Rm×m,
suppose that there exists K1, . . . ,KF ∈ Rm×n and matrices
Pij ∈ Rn×n with 0 ≺ Pij = Pji ≺ γ2I such that

‖x‖2Pil ≥ ‖x‖
2
Q + ‖Klx‖2R − γ

2
∥∥(Āil − Ājl)x/2

∥∥2

+
∥∥(Āil + Ājl)x/2

∥∥2

(P−1
ij −γ−2I)−1 , (6)



where Āil = Ai − BiKl denotes the closed loop system
matrix for x ∈ Rn with i, j, l ∈ {1, . . . ,F}. Then, the
bound Jπ̄(x0, γ) ≤ maxi,j ‖x0‖2Pij is valid for the minimax
adaptive control policy π̄ defined by

uk = −Klkxk, where, (7a)

lk := argmin
i∈{1,...,F}

k−1∑
τ=0

‖xτ+1 −Aixτ −Biuτ‖2︸ ︷︷ ︸
:=αi

. (7b)

The controller defined in (7a), and denoted by π̄ in the re-
minder, is sub-optimal compared to π† (4), i.e. the associated
`2 gain is γ̄ > γ†. Further, the cost Jπ̄(x0, γ) is finite as long
as γ > γ̄. The control input (7a) is nonlinear as it depends
on all the past history, an approach based on least squares
estimation from [5].

B. Known Dynamics Case: Standard H∞ Control

When the system matrices A,B are known, problem (3)
reduces to the standard H∞ control. That is, a control input
u = Kx,K ∈ Rm×n is sought such that it minimizes the
H∞ norm of the closed loop system from d to ζ

Td→ζ [K](z) :=

[
I
K

]
(zI −A−BK)−1. (8)

where Td→ζ is related to the cost function in (3) by appro-
priate choice of matrices Q,R. Using this observation, we
define for every system model Mi := (Ai, Bi) ∈ M, the
associated H∞ control policy π?i ∈ Π, which can be found
by solving the coupled Riccati equations below [20]

Mi = Q+A>i MiΛ
−1
i Ai, Mi ≺ (γ?i )2I, (9)

Λi = I +
(
BiR

−1B>i − (γ?i )
−2
I
)
Mi. (10)

The dynamic game has an unique saddle point solution

u
π?i
k = π?i (xk) = −K?

i xk, and (11)

w
ψ?i
k = ψ?i (xk) = L?i xk, (12)

where K?
i = R−1B>i MiΛ

−1
i Ai and L?i =

(γ?i )−2MiΛ
−1
i Ai. Here, ψ?i denotes the worst case

adversarial disturbance policy and it is, like π?i , a linear
function of xk. The quantity

γ?i :=

√√√√√√ sup
wψ

?
i 6=0

∑∞
k=0 c

(
x
π?i
k , u

π?i
k , Q,R

)
∑∞
k=0

∥∥∥wψ?ik ∥∥∥2

2

(13)

denotes the corresponding worst-case `2 gain from the dis-
turbance to the regulated output for the model Mi, i ∈M.

III. REGRET OF MINIMAX ADAPTIVE CONTROL

Regret analysis compares the performance of an online
algorithm that takes decisions in the presence of uncertainty
with respect to a clairvoyant policy with hindsight knowl-
edge. For this reason, it is used here in order to better
understand the performance achieved when controlling the
system (1) using minimax adaptive control algorithm.

Definition 1. Regret of an online control algorithm A
operating in the presence of uncertainty is defined as the
additional cost incurred by the algorithm A in comparison to
an optimal controller in hindsight that operates by knowing
the uncertainty.

We choose here the H∞ controller associated with the
true system as the optimal policy in hindsight. Note that
∀i ∈ 1, . . . ,F , Jπ?i (x0, γ) < J†(x0, γ) as the minimax
adaptive control policy π† can never do better than the H∞
policy π?i of the corresponding true system. It is possible
to use a different policy other than the H∞ policy for the
comparison. One could compare against a control policy that
solves the linear quadratic problem with known disturbance
but the true (A,B) ∈ M being unknown. However, to
the best of our knowledge, there is no causal solution for
the optimal control policy to that problem. In principle, the
optimal policy in hindsight should know apriori about any of
the QIs that minimax does not know and also have a closed
form causal solution.

The study of the minimax adaptive control problem
through online learning is divided in three steps: investi-
gation of adversarial disturbance strategies that can lead
to performance deterioration of the policy π̄; definition of
suitable notions of regret for this problem; investigation of
the regret properties of the policy π̄. We do not advocate the
regret as a metric to measure the robustness of a control
policy. Rather, we suggest to use the regret as a tool to
identify areas of improvement of an online control policy by
comparing it against multiple optimal policies in hindsight.
Regret analysis could also give insights for the online control
design to foresee and counteract against several possible
strategies of adversaries trying to worsen its performance.
One such possible strategy of an adversary with respect to
the policy π̄ is illustrated below.

A. Adversarial disturbance strategies for minimax control

The key adaptive mechanism of policy π̄ in (7) can be
interpreted as an implicit identification of the underlying
plant. It is then natural to ask whether this is provably
able to eventually converge to the correct estimate for the
system. The following theorem gives a negative answer by
constructing an adversarial disturbance strategy preventing
the controller from optimally controlling the true system.

Theorem 1. Given a compact set of modelsM with |M| =
F including the true model of the system (1), consider the
policy π̄ given by (7). Let j ∈ {1, . . . ,F} denote the index
of the true model unknown to the policy π̄. Then, ∀k ∈ N,
∃θf,k ∈ R, f = 1, . . . ,F such that the disturbance given by

wk =

F∑
f=1

θf,k(Afxk +Bfuk), (14)

lets π̄ to determine a minimizer lk 6= j in (7b).

Proof. Recall from (7b) that when i = j, we simply get
αj =

∑k−1
τ=0 ‖wτ‖

2. For other cases when i 6= j, we expand



αi using the wk given by (14) to get

αi =

k−1∑
τ=0

∥∥∥∥∥∥v(i)
τ +

F∑
f=1,f 6=j

θf,k(Afxk +Bfuk)

∥∥∥∥∥∥
2

, (15)

with v(i)
τ = (θj,kAj − Ai)xτ + (θj,kBj − Bi)uτ . Then, the

disturbance can let the controller choose lk = i as per (7b)
deviating from the true value of j through the appropriate
selection of the constants {θf,k}Ff=1 such that αi < αj . One
simple choice would be to choose θj,k = −1, θi,k = 1 and
{θf,k}Ff=1,f 6=i,f 6=j = 0 at time k such that αi = 0 in (15).
Such a disturbance strategy would let the controller choose
lk = i rather than j. Note that the adversary has the freedom
to make αi = 0 for its own choice of i ∈ {1, . . . ,F}, i 6= j
at any time step k using {θf,k}Ff=1.

Remarks: Disturbances with smaller magnitudes maximise
the cost given in (3). Though, the disturbance given by (14)
can make the learning hard for the controller, it need not have
a smaller magnitude for a given γ > 0 and {θf,k}Ff=1, and
hence it may not lead to the worse cost. Further, for certain
range of {θf,k}Ff=1, the associated closed loop system may
turn out to be unstable. The negative result formulated in
Theorem 1 justifies further analysis on the sub-optimality
faced by the minimax adaptive controller, which is studied
in the next sections through the concept of regret.

B. Regret Definitions

Note that each model (Ai, Bi) ∈ M suffers different
regret when compared against the optimal H∞ controller
in hindsight. Hence, we quantify the regret of each model in
the set M in the following definition.

Definition 2. Given a model Mi := (Ai, Bi) ∈ M, i ∈
{1, . . . ,F}, we define the model-based regret of the minimax
adaptive control policy π† ∈ Π with respect to the optimal
control policy π?i for γ ≥ γ† > γ?i and time T ∈ N as

R(π†, π?i , T ) = sup
w∈`2e

T∑
k=0

dk
(
π†, π?i

)
, where, (16)

dk
(
π†, π?i

)
:=
∥∥∥xπ†k − xπ?ik ∥∥∥2

Q
+
∥∥∥uπ†k − uπ?ik ∥∥∥2

R
.

Any disturbance that is not in the `2e space will result
in diverging states. We note that the choice of regret metric
is not conventional, as the standard approach would be to
define it as difference of costs, that is,

R̄(π†, π?i , T ) = sup
w∈`2e

T∑
k=0

d̄k
(
π†, π?i

)
, (17)

d̄k
(
π†, π?i

)
:= c

(
xπ
†

k , u
π†

k , Q,R
)
− c

(
x
π?i
k , u

π?i
k , Q,R

)
While (17) captures how close the systems controlled by the
minimax adaptive controller and the optimal H∞ controller
in hindsight are in terms of the performance, it does not
provide information on how close the two state and inputs
trajectories are. Further, (17) cannot account for the direction

of the control input being applied to the system. For these
reasons, we propose to use (16) as the definition of model-
based regret in this work. Note that the model-based regret
in (16) is a function of the chosen level of robustness γ
because this parameter affects the two policies π† and π?i
(this dependence is omitted for the sake of clarity). The regret
is defined for γ ≥ γ† > γ?i to ensure that a fair comparison is
made between the resulting trajectories from controllers that
share the same level of disturbance attenuation capabilities.
To compute (16), we need to characterize the trajectories of
the system xπ

†

k and xπ
?
i

k given by (1) under the same sequence
of adversarial disturbance inputs affecting the system using
the control policies π† and π?i respectively. This naturally
leads us to investigate what would be the worst-case model-
based regret corresponding to any arbitrary model Mi ∈M,
i.e., the total regret.

Definition 3. The total regret of the minimax adaptive
controller is defined as

R(π†, T ) := max
i∈{1,...,F}

R(π†, π?i , T ). (18)

While comparing policies, it is important to compare
their disturbance attenuation levels too. Sub-optimality gap
indicates a room for improvement in terms of the robustness.
Since, minimax adaptive controller can never match the H∞
controller, the difference in their disturbance attenuation level
is referred as the model-based sub-optimality gap.

Definition 4. Given a model (Ai, Bi) ∈M, i ∈ {1, . . . ,F},
the model-based sub-optimality gap of the minimax adaptive
control policy π† is defined as

O(π†, π?i ) := γ† − γ?i . (19)

The model-based sub-optimality gap satisfies by definition
O(π†, π?i ) ≥ 0 and characterizes how the lack of knowledge
about the QIs results in a worst disturbance attentuation level
of the minimax adaptive controller (or reduction in robust
performance). In a similar spirit to the definition of total
regret, we define below the minimal and the maximal sub-
optimality gaps, which are by definition both non-negative.

Definition 5. The minimal sub-optimality gap and the max-
imal sub-optimality gap of the minimax adaptive control
policy π† are respectively defined as

O(π†) := γ† − max
i∈{1,...,F}

γ?i , and (20)

O(π†) := γ† − min
i∈{1,...,F}

γ?i . (21)

C. Study of Minimax Adaptive Control Regret

The following theorem establishes the asymptotic be-
haviour of the total regret associated with the minimax
adaptive control policy R(π̄†, T ).

Theorem 2. Consider the uncertain linear dynamical system
given by (1) with the uncertainty described by M. If the
disturbance signal is in `2 space, then the associated total



regret (18) is sub-linear, i.e.

lim
T→∞

R(π̄†, T )

T
= 0. (22)

Proof. Recall that both minimax adaptive control policy π̄
given by (7a) and H∞ control policy given by (11) are
stabilising (with exponential decay of states and controls)
for any adversarial disturbance in `2 space. That is, given
any disturbance signal wk in `2 space for plant model
i ∈ {1, . . . ,F}, we have

lim
k→∞

∥∥∥xπ̄†k ∥∥∥2

Q
= 0, and lim

k→∞

∥∥∥xπ?ik ∥∥∥2

Q
= 0. (23)

Then, this means that limk→∞

∥∥∥xπ̄†k − xπ?ik ∥∥∥2

Q
= 0. Since

at any time k ∈ N both minimax adaptive control input uπ̄
†

k

given by (7a) and theH∞ control input uπ
?
i

k given by (11) are
functions of the states xπ̄

†

k and x
π?i
k respectively that decay

to zero asymptotically, we infer that

lim
k→∞

∥∥∥uπ̄†k ∥∥∥2

R
= 0, and lim

k→∞

∥∥∥uπ?ik ∥∥∥2

R
= 0. (24)

Then, this means that limk→∞

∥∥∥uπ̄†k − uπ?ik ∥∥∥2

R
= 0. There-

fore, the difference term decays as well to zero meaning that
limk→∞ dk(π̄†, π?i ) = 0. Hence, the result follows.

An insight gathered from the proof is that stability of the
policy implies certain regret properties. This has connections
with recent findings in [21] which studied the relationship
between stability and regret for disturbances in `∞ space.

IV. NUMERICAL SIMULATION

In this section, we exemplify our analysis using a linear
dynamical system with a model uncertainty consisting of four
different linear models.

A. Problem Setup

We consider the following numerical example of a linear
dynamical system with four possible models. The state and
control penalty matrices were Q = I3, R = 1 and T =
50. We simulated the system using the minimax adaptive
controller and the H∞ controller available in hindsight
separately when the pair (A2, B2) (corresponds to j = 2
as per Theorem 1) was the true model.

A1 =

1.908 0.853 0.633
0.853 0.142 0.645
0.633 0.645 0.018

 , A2 =

0.060 0.335 0.809
0.335 0.017 1.507
0.809 1.507 0.873

 ,

A3 =

0.182 1.435 0.730
1.435 1.714 1.183
0.730 1.183 0.452

 , A4 =

0.922 0.800 1.350
0.800 1.431 1.462
1.350 1.462 0.786

 ,

B1 =
[
1.830 1.285 0.002

]>
, B2 =

[
0.873 0.098 0.099

]>
,

B3 =
[
1.073 1.524 0.695

]>
, B4 =

[
0.358 1.266 1.248

]>
.

(25)
Three different disturbances constructions were used

1) worst case disturbance signal obtained from the dy-
namic game based H∞ approach given by (12).

2) sinusoidal disturbance with unit amplitude and its
frequency being selected as the frequency where the
H∞ norm of Td→ζ [K](z) given by (8) was maximum.

3) the disturbance given by (14) used in the proof of
Theorem 1 with i = 3 and tuned so that the controller
always choose the optimal controller for (A3, B3).

The gains for the sub-optimal minimax adaptive controller
were calculated using the method from [8] which is an
improved version of Theorem 3 in [7] and we used the
Yalmip toolbox with the MOSEK solver to solve the
associated convex optimization problem with linear matrix
inequality constraints. The code corresponding to the figures
given in the paper is made publicly available at https:
//github.com/venkatramanrenganathan/
minimaxadaptivecontrolregret.

B. Results & Discussions

The system dynamics with {(Ai, Bi)}4i=1 given by (25)
was solved for the minimax adaptive control policy π̄ to
get γ̄† = 31.0086. Then, the corresponding H∞ controller
was obtained using γ = γ̄†. The optimal `2 gains, namely
{γ?i }4i=1 corresponding to the optimal H∞ controller for
the plants {(Ai, Bi)}4i=1 were 1.266, 4.544, 2.913, 2.298 re-
spectively. The model-based sub-optimality gaps were found
using (19) as O(π̄†, π?1) = 29.7426, O(π̄†, π?2) = 26.4646,
O(π̄†, π?3) = 28.0956, and O(π̄†, π?4) = 28.7106. Further,
the minimal and maximal sub-optimality gaps were O(π̄†) =
26.4646 and O(π̄†) = 29.7426 respectively.

The results of simulating system with minimax adaptive
controller and H∞ controller with three different disturbance
strategies are shown in Figure 1. The sub-figures 1(a), and
1(b) depict the difference of states and inputs respectively
from the minimax adaptive controller and the H∞ controller
and precisely these are the main contributing factors of
regret as per (18). The regret quantities R(π̄†, π?2 , T ) and
R(π̄†,π?2 ,T )

T are abbreviated as R and R̃ respectively are
plotted in the sub-figure 1(c). When adversarial disturbance
constructed from the worst case disturbance policy given by
(12) was used, the associated regret was bounded as seen in
sub-figure 1(c). Moreover, the shown results fulfils (22) as
both the control policies were stabilising and the disturbance
was regulated to zero as it was a linear function of the
system states (as per (12)) which decayed in exponential
time. When a sinusoidal disturbance with unit amplitude was
employed with its frequency being selected as the frequency
where the H∞ norm of Td→ζ [K](z) given by (8) was
maximum (for (A2, B2) this happens at π rad/s), the regret
was not bounded anymore as the sinusoidal disturbance
does not belong to the `2 space. However, the ratio namely
R(π̄†, π?2 , T )/T went to zero asymptotically as the terms
contributing to the regret namely the differences of states and
controls remained small and did grow slower than linearly.
When the disturbance given by (14) was used, it ensured that
the lk value chosen by the minimax adaptive control policy
π̄† according to (7b) was never equal to j = 2,∀k ∈ [0, T ].
Even though the ratio R(π̄†, π?2 , T )/T went to zero asymp-
totically as disturbance was still a function of exponentially



(a) Minimax & H∞ States: xπ̄
†
k (b) Minimax & H∞ Controls: xπ

?
2
k

(c) Regret scaling vs time

Fig. 1: Simulation results with states and controls from the minimax adaptive controller and theH∞ controller are plotted here
along with the corresponding regret scaling over time. Only the first state of the system (25) is plotted for the demonstration
purpose. Note that the quantities R(π̄†, π?2 , T ) and R(π̄†,π?2 ,T )

T are abbreviated as R and R̃ respectively. The text in the
subscript of quantities in all sub-plots denotes the type of disturbance being used.

decaying states, it can be observed that the disturbance signal
had a larger magnitude than the one from (12). This shows
that the disturbance that hardens the learning process need
not necessarily worsen the performance as measured by (3)
because it results in a decrease of the total cost.

V. CONCLUSION

An online learning-inspired analysis for a recently pro-
posed solution for a class of minimax adaptive control
problems has been presented. Model-based regret and total
regret for the minimax adaptive control policy were de-
fined by comparing the state and input trajectories against
that of the optimal H∞ controller in hindsight (i.e. hav-
ing knowledge of the true system dynamics). One of the
highlights of the analysis is that the total regret is sub-
linear for exogenous disturbances in the `2 space, confirming
links between system theoretic properties and regret for
control systems. Future research will seek to characterize
transient properties of regret, and their connections with
the exploration-exploitation trade-off inherently captured by
the minimax adaptive control algorithms. Starting from the
definitions of regret proposed here, designing regret-optimal
adaptive controllers that lower the conservatism of minimax
solutions is also an important research question lying ahead.
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[20] T. Başar and P. Bernhard, H-infinity optimal control and related
minimax design problems: a dynamic game approach. Springer
Science & Business Media, 2008.

[21] A. Karapetyan, A. Tsiamis, E. C. Balta, A. Iannelli, and J. Lygeros,
“Implications of regret on stability of linear dynamical systems,” IFAC-
PapersOnLine, 2023, 22nd IFAC World Congress.


