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Abstract— This work presents a dual system-level param-
eterization (D-SLP) method for closed-loop identification of
linear time-invariant systems.The recent system-level synthesis
framework parameterizes all stabilizing controllers via linear
constraints on closed-loop response functions, known as system-
level parameters. It was demonstrated that several structural,
locality, and communication constraints on the controller can be
posed as convex constraints on these system-level parameters.
In the current work, the identification problem is treated as a
dual of the system-level synthesis problem. The plant model is
identified from the dual system-level parameters associated to
the plant. In comparison to existing closed-loop identification
approaches (such as the dual-Youla parameterization), the D-
SLP framework neither requires the knowledge of a nominal
plant that is stabilized by the known controller, nor depends
upon the choice of factorization of the nominal plant and the
stabilizing controller. Numerical simulations demonstrate the
efficacy of the proposed D-SLP method in terms of identifi-
cation errors, compared to existing closed-loop identification
techniques.

I. INTRODUCTION

System identification estimates plant models from ob-
served input-output data [1]. The majority of system identi-
fication research assumes that the data are generated in open
loop, i.e., the inputs are independently selected. However, in
many applications, open-loop data collection is not possible
due to instability or operational constraints. Although open-
loop methods can be directly applied to closed-loop data
(known as direct identification), the performance is often not
satisfactory due to the correlation between the input and the
disturbance/noise [2]. Furthermore, the identified models are
not guaranteed to be stabilized by the closed-loop controller,
which makes the model practically unusable.

Therefore, specific algorithms for closed-loop identifica-
tion are required. Instead of directly identifying the plant,
these methods typically first identify some parametrizations
of the plant and recover the plant model indirectly. The clas-
sical idea for such indirect identification is to first estimate
the transfer function from the reference/ external signals
r1[t], r2[t] to the output y[t] represented in the Figure 1,
from which the plant model G is calculated algebraically [3].
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Fig. 1: Closed-loop configuration for identification.1

When the controller is unknown, this method is extended to
the input-output method where the transfer function from the
reference to the input u[t] is also identified [1, Section 13.5].
A more general approach, known as the coprime factor
identification [4], [5], solves two open-loop problems with a
filtered reference, where the filter is designed using a coprime
factorization of an initial plant estimate.

To guarantee the closed-loop stability of the identified
plant, the dual-Youla method is proposed [6], [7]. This
method originates from the Youla parametrization which
parameterizes all the stabilizing controllers for control de-
sign [8, Section 4.8]. The dual parametrization given by
reversing the role of the controller and the plant, provides a
parametrization of all plants stabilized by a known controller.
The dual-Youla parameter can then be identified by an open-
loop problem with filtered input, output, and reference, where
the filter depends on a coprime factorization of the controller
in addition to that of an initial plant estimate (also referred
to as the nominal model).

In this work, we apply a similar dual approach to the
system-level synthesis framework, recently developed in [9].
In this framework, the controller is parameterized in terms of
closed-loop response functions, also known as the system-
level parameters, which map the process and measurement
disturbances to the control actions and the states. The work
done in [9] illustrates the benefit of such a controller pa-
rameterization in terms of incorporating structural, locality,
and communication constraints, which occur naturally in
the context of decentralized controller design for large-scale
cyber-physical systems, as convex constraints in the synthesis
problem. In the current work, we present a dual system-level
parameterization (D-SLP) approach to the identification of
the plant transfer function from closed-loop data, where the

1Without loss of generality, we consider the configuration in which the
input to the controller is ŷ[t] − r1[t] and not the traditional r1[t] − ŷ[t].
This is for notational convenience in the later sections.



dual parameters characterize all possible transfer functions
that are stabilized by a given controller. These dual param-
eters are learned from the available closed-loop data, based
on which the plant transfer function is estimated.

A straightforward benefit of the D-SLP methodology over
approaches such as the indirect or input-output identification
methods is that it guarantees that the identified plant transfer
function is stabilized by the known controller - similar to
the dual-Youla parameterization [6]. In addition to that, and
contrary to the dual-Youla and the co-prime factorization
approaches, the D-SLP identification scheme is independent
of the choice of the nominal plant and its factorization,
as well as the factorization of the controller, which makes
it a tuning-free approach to identification in the closed-
loop setting. Our simulations demonstrate that the D-SLP
approach performs better than the dual-Youla and the co-
prime identification methods for different choices of the
nominal plants (that are required by the latter two schemes).
This work is a fundamental contribution to the existing
literature on closed-loop identification, wherein the identified
model is stabilized by the known controller. As far as we are
aware more recent developments in closed-loop identification
[10], [11], [12] do not specifically address the issue of
stabilized models, i.e., they do not guarantee the closed-loop
stability of the identified plant.

Notations and problem setting: Lower case (e.g., x) and
bold lower case (e.g. x) Latin letters denote vectors and
signals, respectively. Upper case Latin letters (such as A)
denote matrices, and bold upper case letters (for example
G) denote transfer functions. The set RH∞ comprises of all
the stable proper transfer function matrices. For the purpose
of system identification, we consider the closed-loop system
configuration illustrated in Figure 1. Here, G is a discrete-
time linear time-invariant (LTI) system (possibly unstable)
that is stabilized by the LTI controller K, and S is a stable
filter for the independent and identically distributed noise
e[t]. It is assumed that the measurements of the output
y[t] and the reference signal r1[t] and r2[t], as well as the
knowledge of the controller K are available.

The paper is organized as follows. Section II gives a
brief introduction to the system-level parameterization. In
Section III, we present the D-SLP of all the plants that are
stabilized by a known controller. Section IV develops the D-
SLP methodology to identify the plant from closed-loop data,
and Section V compares our identification scheme with the
existing closed-loop identification strategies. We conclude
the paper in Section VI.

II. SYSTEM-LEVEL PARAMETERIZATION

In this section, we briefly review the system-level param-
eterization (SLP) [9] developed for output feedback control
design, as it forms the basis of the proposed identification
approach. Let P = [P1 P2] be an open loop plant, such
that its output is given by

y = P1w +P2u, (1)

C 1/z

A

B
δy x

δx
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Fig. 2: Output feedback controller with R̃+ = z(I − zR),
M̃ = zM, and Ñ = zN. Note that R̃+, M̃, Ñ ∈ RH∞.

where the transfer function P1 filters the exogenous signals
w, and P2 filters the control input u (as in Figure 1).
Drawing parallels with the configuration illustrated in Figure
1, we note that w⊤ = [e⊤ r⊤1 r⊤2 ], P1 = [S − I G],
u is the output from the controller K, and P2 = G. Under
the assumption that P2 is a strictly proper transfer function,
the dynamics of the plant P are described as follows

x[t+ 1] = Ax[t] +Bu[t] +B1w[t],

y[t] = Cx[t] +D1w[t],
(2)

where x, u, w, and y denote the state, control input, exoge-
nous input, and output vectors, respectively. Let δx[t] :=
B1w[t] be the disturbance to the plant state, and δy[t] :=
D1w[t] be the disturbance to the plant output. Taking the
z-transform of (2), and substituting the output feedback
law u = Ky, we obtain the following closed-loop system
responses from disturbance pair (δx, δy) to the state and
control input signal pair (x,u) as[

x
u

]
=

[
R N
M L

] [
δx
δy

]
. (3)

The following theorem from [9] algebraically characterizes
the set {R,M,N,L} of system responses that are achieved
by the internally stabilizing controller K, as well as param-
eterizes a internally stabilizing controller K in terms of the
system responses.

Theorem 1. Consider the system (1) with output feedback
u = Ky. The following statements are true.

1) The closed-loop system responses (3) from (δx, δy) to
(x,u) lie in the following affine subspace[

zI −A −B
] [R N

M L

]
=

[
I 0

]
,[

R N
M L

] [
zI −A
−C

]
=

[
I
0

]
.

R,M,N ∈ 1

z
RH∞, L ∈ RH∞,

(4)

2) For the set of transfer function matrices {R,M,N,L}
that lie in the affine subspace (4), the controller



K = L−MR−1N is internally stabilizing, and can be
implemented as in Figure 2.

Proper plant G: The extension to the case of proper G
is straightforward (see [9, Section III-D]). In this case, the
dynamics of the open-loop plant P are given by

x[t+ 1] = Ax[t] +Bu[t] +B1w[t],

y[t] = Cx[t] +Du[t] +D1w[t].
(5)

Define a new measurement ŷ[t] = y[t] − Du[t] for this
case, which results in the controller structure as illustrated
in Figure 5 in [9], and internally stabilizes the plant G. In
other words, the controller that internally stabilizes a proper
plant G is given by

K = Ǩ
(
I +DǨ

)−1
,where Ǩ = (L−MR−1N). (6)

In the following section, we build upon the above param-
eterization of a stabilizing controller, and present a D-SLP
for all the plants G that are stabilized by a given output-
feedback controller K.

III. DUAL SYSTEM-LEVEL PARAMETERIZATION

Consider the open-loop system Q = [Q1 Q2] given by

ū = Q1w +Q2ȳ, (7)

where Q1 filters the exogenous signal w, and Q2 filters ȳ.
Drawing analogies with Figure 1, ū and ȳ are as illustrated
in the figure, w⊤ = [e⊤ r⊤1 r⊤2 ], Q1 = [KS −K I], and
Q2 = K. Analogous to the case in Section II, we begin by
considering a strictly proper Q2 (or, strictly proper K). The
dynamics of the open-loop system Q under this assumption
are given by

ξ[t+ 1] = Akξ[t] +Bkȳ[t] +B1kw[t],

ū[t] = Ckξ[t] +D1kw[t].
(8)

Let δξ[t] := B1kw[t] denote the disturbance to the state ξ,
and δū[t] = D1kw[t] be the disturbance to the output ū.
For the plant model ȳ = Gū, the closed-loop dual system
responses (or the dual system-level parameters) are defined
as the transfer functions {Rk,Mk,Nk,Lk} that map the
disturbance pair (δξ, δū) to the state ξ and ȳ as follows[

ξ
ȳ

]
=

[
Rk Nk

Mk Lk

] [
δξ
δū

]
. (9)

The following corollary directly follows from Theo-
rem 1. It algebraically characterizes the dual parameters
{Rk,Mk,Nk,Lk} in (9), as well as parameterizes the set
of plants G that are stabilized by the controller K.

Corollary 1. Consider the dynamics (8) with the plant model
ȳ = Gū. Then, the closed-loop dual system-level parameters
{Rk,Mk,Nk,Lk} in (9) lie in the affine subspace.[

zI −Ak −Bk

] [Rk Nk

Mk Lk

]
=

[
I 0

]
,[

Rk Nk

Mk Lk

] [
zI −Ak

−Ck

]
=

[
I
0

]
,

Rk,Mk,Nk ∈ 1

z
RH∞, Lk ∈ RH∞,

(10)
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Fig. 3: Dual closed-loop structure. R̃+
k = z(I−zRk), M̃k =

zMk, and Ñk = zNk. Note that R̃+
k , M̃k, Ñk ∈ RH∞.

and the plant Ĝ = Lk −MkR
−1
k Nk is internally stabilized

by the output feedback controller K.

Proper controller K: The extension to the case of proper
controllers K is straightforward, where the dynamics of the
open-loop system Q are given by

ξ[t+ 1] = Akξ[t] +Bkȳ[t] +B1kw[t],

ū[t] = Ckξ[t] +Dkȳ[t] +D1kw[t].
(11)

Analogous to the case of proper plants discussed in Section
II, the plant

Ĝ = Ǧ
(
I +DkǦ

)−1
where Ǧ = Lk −MkR

−1
k Nk, (12)

is stabilized by the proper controller K.
In the next section, we illustrate the use of the above

characterization in terms of the dual system-level parameters
in closed-loop identification of the plant G.

IV. IDENTIFICATION IN THE DUAL-SLS FRAMEWORK

The objective of the D-SLP developed in Section III is
to aid the closed-loop identification of the transfer func-
tion G. In the proposed identification scheme, we pose
an optimization problem to identify the dual parameters
{Rk,Mk,Nk,Lk} that conform with the collected closed-
loop data, as well as the affine subspace constraints in
(10). More precisely, an open-loop identification equation
from the reference signal r := Kr1 + r2 to the output
signal y is first derived in terms of the dual parameter Lk.
Secondly, an optimization problem is posed to estimate the
dual parameters {R̂k, M̂k, N̂k, L̂k} that comply with the
above open-loop equation as well as the affine subspace
constraints in (10). Finally, the plant is estimated from
Corollary 1 with Ĝ = L̂k − M̂kR̂

−1
k N̂k. The following

lemma is required to derive the mapping from the reference
signal r := Kr1 + r2 to the output y in terms of Lk.

Lemma 1. For the closed-loop representation illustrated in
Figure 1, where ȳ = Gū, the dual system response Lk =
(I −GK)−1G.



Proof. Without loss of generality we consider the controller
K to be strictly proper, i.e., K = Ck(zI − Ak)

−1Bk. Note
that from Figure 3 we have ū = Ckξ + δū, which gives

ȳ = G
(
Ckξ + δū

)
= GCk(zI −Ak)

−1
(
Bkȳ + δξ

)
+Gδū

= GKȳ +GCk(zI −Ak)
−1δξ +Gδū.

Since ȳ = Mkδξ + Lkδū from (9), we have Mk = (I −
GK)−1GCk(zI −Ak)

−1 and Lk = (I −GK)−1G.

Below we derive the equation that maps the signal r :=
r2 − Kr1 to the output y in terms of Lk. The closed-loop
representation in Figure 1 results in the following equation

ŷ = Gū+ Se = G(Kŷ + r) + Se (13a)

= (I −GK)−1Gr+ (I −GK)−1Se (13b)

⇒ y = Lkr− r1 + (I −GK)−1Se. (13c)

We pose the following optimization problem

min
{R̂k,M̂k,N̂k,L̂k}

g(y, L̂k, r1, r2) (14a)

subject to
[
zI −Ak −Bk

] [R̂k N̂k

M̂k L̂k

]
=

[
I 0

]
, (14b)[

R̂k N̂k

M̂k L̂k

] [
zI −Ak

−Ck

]
=

[
I
0

]
, (14c)

R̂k, M̂k, N̂k ∈ 1

z
RH∞, L̂k ∈ RH∞, (14d)

to estimate the dual parameters {Rk,Mk,Nk,Lk}, where
g(·) is a functional capturing the estimation criteria of Lk

using the open-loop equation (13c). See Section V for an
example choice of g(·). The estimate Ĝ of the transfer
function G is given by Ĝ = L̂k − M̂kR̂

−1
k N̂k for strictly

proper controllers K, or as described in (12) for the case of
proper controllers.

Remark 1. Note that the signal r and the noise e in (13c)
are uncorrelated. Let L, M, N , and R be the model class for
the dual parameters comprising of the admissible solutions
to (14b)-(14d). It is known that [1] under the assumption that
the model class L, M, N , and R contains the actual dual
parameters Lk, Mk, Nk, and Rk, respectively, the estimates
L̂k, M̂k, N̂k, and R̂k can be obtained consistently with an
independently parameterized noise model.

Invariance to the state-space realization of K: Note that
even though the realization (Ak, Bk, Ck) of the controller
K define the affine constraints in (14), the optimization
problem remains invariant to feasible linear transformations
of the realization. More precisely, consider the non-singular
linear transformation matrix T̄ of the state ξ in (8). The
corresponding transition matrices are Āk = T̄−1AkT̄ , B̄k =
T̄−1Bk and C̄k = CkT̄ , and the constraint (14b) becomes[

zI − T̄−1AkT̄ −T̄−1Bk

] [R̂k N̂k

M̂k L̂k

]
=

[
I 0

]
. (15)

With simple algebraic manipulations, it can be shown that
the above constraint is equivalent to the following[

zI −Ak −Bk

] [T̄ R̂kT̄
−1 T̄ N̂k

M̂kT̄
−1 L̂k

]
=

[
I 0

]
. (16)

Similarly, for the realization (Āk, B̄k, C̄k), the constraint
(14c) can equivalently be written as[

T̄ R̂kT̄
−1 T̄ N̂k

M̂kT̄
−1 L̂k

] [
zI −Ak

−Ck

]
=

[
I
0

]
. (17)

Note that the dual parameter L̂k remains invariant to the
above transformation. Thus, the functional g(·), which quan-
tifies the estimation criteria of L̂k, is invariant. Further,
defining Řk := T̄ R̂K T̄−1, M̌k := M̂kT̄

−1, Ňk := T̄ N̂k,
in the constraints (16) and (17), we recover an equivalent op-
timization problem to (14). Thus, the identification problem
presented in (14) is independent of the realization of K.

Remark 2. It is evident from above that, the D-SLP method
does not depend on an initial nominal plant G0 that is sta-
bilized by the controller K, as well as the realization of the
controller K. This is contrary to some of the popular closed-
loop identification approaches (such as [4], [6]) illustrated
in the Section I which depend on an initial nominal plant G0,
along with its co-prime factors, and the co-prime factors of
the controller K. We further illustrate on this upside of D-
SLP approach using simulations in the following section.

V. SIMULATIONS

In this section, the D-SLP identification scheme is com-
pared with the existing benchmark approaches: a) the co-
prime identification scheme [4] and b) the dual-Youla method
[6]. Note that, by design, the dual-Youla method and our
proposed D-SLP framework, guarantee that the estimated
transfer function Ĝ is stabilized by the known controller K.
However, our proposed D-SLP method is independent of the
several hyperparameters that are otherwise required by the
co-prime factorization and the dual-Youla methods. Below
we provide very concise illustrations of the latter approaches.

1) Brief Overview of the Benchmark Methods: Let G
be the transfer function to be identified in the closed-loop
representation in Figure 1, and K be its stabilizing controller.
Let G0 be a nominal plant that is stabilized by K and let N0

and D0 be the stable co-prime factors of G0. The dual-Youla
identification involves the following steps.
(a) Let X0 and Y0 be the stable co-prime factors of K.
(b) Determine the signals β := D0y−N0u and α = Y0r.
(c) Estimate the Youla parameter R ∈ RH∞, using

β = Rα+ Fe. (18)

(d) The G estimate is given by Ĝ = N0+R̂Y0

D0−R̂X0
, where R̂ is

the estimate of R in (18).
The steps involved in the co-prime factorization method are
(a) Let N ∈ RH∞ and D ∈ RH∞ be the right co-prime

factors of G. These co-prime factors are identified in
an open-loop way using the following equations

u = Dx−X0Se, y = Nx+Y0Se, (19)

where the signal x = (D0 + CN0)
−1r in the context

of the representation in Figure 1, and X0 and Y0 are
the right co-prime factors of the controller K.



Fig. 4: Each box plots shows the minimum, first quantile, median, third quantile, and the maximum. The choice of nominal
plant G0 for the dual-Youla (DY) and the co-prime (CP) methods is mentioned in each figure. D-SLP corresponds to the
dual system-level parameterization method. (a1)-(a2) The DY and CP methods do not perform well for the given choice
of G0 in (a), and D-SLP outperforms both. (b1)-(b2) and (c1)-(c2) The choice of nominal plant G0 in (b) and (c) show
improvements for the DY and CP method, however, the performance of D-SLP is still better than the former methods.

(b) The G estimate is given by Ĝ = N̂
(
D̂
)−1

, where N̂

and D̂ are estimates of N and D, respectively, in (19).
Note that both the co-prime factorization and the dual-

Youla parameterization methods are dependent on (i) the
choice of a nominal plant G0 that is stabilized by the
controller K, and (ii) the co-prime factors N0, D0 of G0.
Further, the signal α in the dual-Youla method is obtained
by filtering r through Y0, thus making it dependent on the
choice of the co-prime factors X0,Y0 of K. On the contrary,
the D-SLP method requires neither a nominal plant G0, nor
its co-prime factorization and the co-prime factors of the
controller. In other words, the D-SLP scheme presented in
Section IV is independent of the choice of hyper-parameters
that are otherwise required in [4] and [6].

2) Choice of Model Structure: Similar to what is pre-
sented in [9], under the dual system-level parameterization
of the transfer function G, one of the convenient ways
to solve the optimization problem (14) is under the as-
sumption that the dual parameters {R̂k, M̂k, N̂k, L̂k} are
finite impulse responses (FIR). For instance, the subspace
constraint R̂k ∈ 1

zRH∞ is easily satisfied for the FIR case
R̂k =

∑T
i=0 z

−i−1R̂k[i], where T denotes the horizon of
the impulse response, and R̂k[i] for all 0 ≤ i ≤ T are the
impulse response elements. Further, the affine constraints in
the optimization problem (14) translate to affine constraints
on the FIR coefficients {R̂k[t], M̂k[t], N̂k[t], L̂k[t]}Ti=0. It is
shown in [9] that for a controllable and observable system
(Ak, Bk, Ck) such FIR representations of the dual param-
eters are always feasible for suitably chosen horizons T .
When the system (Ak, Bk, Ck) is only stabilizable and/or
detectable such that the FIR feasibility cannot be satisfied,
the relaxation similar to those on the system-level param-

eters presented in [13] can be used. Note that similar FIR
modelling assumptions are also applicable to other closed-
loop identification techniques. For instance, the sensitivity
function identified in the indirect method [3], the Youla
parameter in [6], and the co-prime factors identified in [4]
are constrained to lie in RH∞.

3) Numerical Examples: Consider the example setting as
illustrated in [3], where

G =
z2

z2 − 1.6z + 0.89
, K =

z − 0.8

z2
,

S =
z3 − 1.56z2 + 1.045z − 0.3338

z3 − 2.35z2 + 2.09z − 0.6675
.

(20)

The external noise vector e[t] is sampled from a zero-mean
Gaussian distribution N (0, γ2). For the purpose of simula-
tions, we consider r1 to be 0, r2 to be a periodic pseudo-
random binary sequence (PRBS) of magnitude {+10,−10}
with m = 10 periods, each period of length n = 29− 1, and
γ = 2. We also consider FIR model structure (with a horizon
T = 15) for the dual system-level parameters, the Youla
parameters, and the co-prime factors as discussed in Section
V-.2. The impulse response elements in the D-SLP method
are determined by minimizing the cost g = ∥yn̄0−Φ(rn̄0 )L

T
k ∥22

subject to constraints in (14), where yn̄0 = [y0 y1 · · · yn̄]⊤ ∈
Rn̄ denotes the output data trajectory of length n̄ = nm,
rn̄0 = [r0 r1 · · · rn̄] ∈ Rn̄ denotes the input data trajectory of
length n̄, Φ(r) ∈ Rn̄×(T+1) is the Toeplitz matrix with first
column as rn̄0 and first row as [r0 0 · · · 0] ∈ RT+1, and LT

k =
[Lk[0] Lk[1] · · · Lk[T+1]]⊤ is a vector of impulse response
elements of Lk. Note that this choice of g fits the data to
the input-output relationship yk =

∑n̄
i=0 Lk[i]rk−i + v(k),

for all k ∈ {0, 1, · · · , T}, where the input rk = 0 for all



k < 0 assuming the system at rest, and v(k) is the filtered
noise. Similar, input-output relationship and cost functions
are chosen in the identification of R in (18) (dual-Youla),
and N,D in (19) (co-prime factorization scheme).

To assess the performance of each of the identification
schemes, 100 Monte Carlo simulations with different noise
realizations are performed. It is shown that the D-SLP
approach performs better than the dual-Youla (DY) and
the co-prime (CP) factorization methods on the closed-loop
system specified in (20), for different choices of the nominal
plant G0 that is required for the DY and CP methods. More
precisely, we consider the following three choices for G0:
(a) G0 = − 1

z+0.5 - randomly selected and stabilized by K.
(b) G0 = 0 - resulting closed-loop is zero transfer function.
(c) G0 = ĜDY - the estimate of the transfer function G

as given by the dual-Youla method for the case (b)
above. This choice is analogous to a two-stage approach
in which the dual-Youla method improves upon its
estimate of Ĝ from the first stage (i.e., when the choice
of G0 = 0), using additional data.

The performance of the different identification schemes is
quantified by the two metrics below

Err1(Ĝ) =

n∑
i=1

100

∥∥G(jωi)− Ĝ(jωi)
∥∥
2∥∥G(jωi)

∥∥
2

(21a)

Err2(L̂k) =

n∑
i=1

100

∥∥Lk(jωi)− L̂k(jωi)
∥∥
2∥∥Lk(jωi)

∥∥
2

(21b)

where Lk(jωi) =
(
I −G(jωi)K(jωi)

)−1
G(jωi), (21c)

L̂k(jωi) =
(
I − Ĝ(jωi)K(jωi)

)−1
Ĝ(jωi), (21d)

Ĝ is the estimate of the transfer function G, n is the length
of the signal r, and ωi’s are n equally spaced frequencies
in the range [0, π]. Note that Err1(Ĝ) captures the error in
the estimate of the plant G, and Err2(L̂k) captures the error
in the closed-loop plant resulting from the estimate Ĝ. As
illustrated in Figure 4, the median of Err1(Ĝ) and Err2(L̂k)
is the least for the D-SLP scheme for all the above three
choices of the nominal plant G0 in the DY and CP methods.
The same observation holds true regarding the spread of the
boxplots of Err1(Ĝ) and Err2(L̂k) as shown in Figure 4.
Note that the performance of D-SLP method remains the
same across Figures 4(a), 4(b), and 4(c), as it is independent
of the choice of nominal plant G0; however, very minute
difference arises due to different noise realization in each
experimental run performed for the simulations in Figures
4(a), 4(b), and 4(c). Similar observations as above are seen
for the case of the proper controller K = z2−0.8z

z2 that
stabilizes the plant G in (20). Note that here the estimate Ĝ
of the plant is given by (12). Finally, Figure 5 demonstrates
the asymptotical convergence of the error Err1(Ĝ) in the
estimated plant. This observation is in-line with the Remark
1 on consistency of the D-SLP method in Section III.

VI. CONCLUSION

In this work, we develop an identification methodology
which uses the dual system level parameterization of plants.

Fig. 5: Asymptotic convergence of error Err1(Ĝ).

We demonstrate its capabilities in terms of a) giving a
plant estimate that is stabilized by the controller, b) being
independent of the choice of controller realizations and
several hyper-parameters (such as a nominal plant, its co-
prime factors, and the factorization of the controller) that
occur in different benchmark methods, and c) outperforming
the benchmark methods in terms of the plant and closed-loop
identification errors. Just as the system level parameterization
[9] is useful for controller design in the large-scale decen-
tralized system, the utility of proposed D-SLP framework
in identification for large scale networks forms the future
research direction for this work.
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