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Abstract— The problem of designing adaptive stepsize se-
quences for the gradient descent method applied to convex and
locally smooth functions is studied. We take an adaptive control
perspective and design update rules for the stepsize that make
use of both past (measured) and future (predicted) information.
We show that Lyapunov analysis can guide in the systematic
design of adaptive parameters striking a balance between
convergence rates and robustness to computational errors or
inexact gradient information. Theoretical and numerical results
indicate that closed-loop adaptation guided by system theory
is a promising approach for designing new classes of adaptive
optimization algorithms with improved convergence properties.

I. INTRODUCTION

Convex optimization algorithms are at the core of many es-
tablished methodologies in control and reinforcement learn-
ing, for example receding horizon control [1] and convex Q-
learning [2]. In all these applications, one typically requires
algorithms that are fast (to reduce computational time) and
robust (e.g., to be less sensitive to error in the problems data).
Developing systematic methods to analyze these properties
and design for them is a very important step to make these
tools of more widespread and dependable use in applications.
Because iterative optimization algorithms can be seen as
open dynamical systems, tools and viewpoints from control
theory can be a valid standpoint to approach these tasks
[3], [4]. Towards this goal, we consider here the basic
unconstrained optimization setting where the objective f is
convex and only locally smooth. We approach the design of
a stepsize sequence pαkqkPN as an adaptive control problem
where the goal is to guarantee that the interconnection
between the algorithm and the stepsize law converges to the
minimizer set. We do this while capturing performance and
robustness trade-off of this adaptive closed-loop.

Even though gradient descent (GD) methods are standard
in optimization, analysis and design of varying stepsizes is an
active area of research. For the case of Ls-smooth objective,
one line of work has developed pre-defined sequences of
large stepsizes (i.e., with instances where these are larger
than 2

Ls
) and showed that they can accelerate convergence

[5]. While convergence guarantees and the sequence of
stepsizes generally depend on the value of the stopping time
which must be selected a-priori, very recently [6] showed
that this strategy provably achieves anytime convergence
guarantees that strictly improves upon the classic Op 1

k q.
Besides the restriction to smooth objectives, the fundamental
idea of these approaches is to pre-compute the sequence
of stepsizes independently of f (except for its smoothness
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constant) and of the initial iterate, thus the stepsize sequence
is effectively an open-loop input to the GD dynamics. In
another line of work, the case of locally smooth objective
has been addressed by proposing stepsizes that adapt to the
local geometry [7]–[9], including extension to the proximal
gradient method for composite problems. In these works,
feedback from the current and past iterates is leveraged to
estimate a sequence of local smoothness constants which
are used in the stepsize’s update. By doing so, the standard
requirement of global smoothness is lifted, and progress to
the optimal value is empirically much faster even though a
better rate than Op 1

k q could not proved.
Inspired by this prior work, we make a first attempt

to combine feedback and feedforward (or predictive) ac-
tions in the selection of stepsize laws for gradient-based
methods applied to locally smooth objective. We approach
the problem similarly to the analysis-informed design of
adaptive controllers whereby appropriately constructed Lya-
punov functions guide the selection of parameters so that
boundedness and convergence guarantees can be established.
We also investigate questions on robustness of such adaptive
systems, and recognize components of the designed adaptive
mechanisms that can mediate between performance and
robustness, e.g., to errors in the gradient information. Besides
the new technical results, we see as central contribution
of this work the consideration of the role of feedback and
predictive actions in adaptive optimization algorithms. Even
though in a different context, connections between convex
optimization and adaptive control were also studied in [10].
For space constraints and readability, the proofs of all new
technical results are either in the Appendix or in the extended
version of this paper [11].

Notation: We denote by xx, yy the standard Euclidean
inner product in Rn and by } ¨ } its induced norm. We use
N for the set of natural numbers. Given u, v P Rn, we refer
to the following as the Pythagoras identity

}u}2 “ }u ´ v}2 ´ }v}2 ` 2xu, vy

The convex hull of a set of points is denoted by conv.

II. PRELIMINARIES

We consider the unconstrained problem

min
xPRn

fpxq (1)

and we denote with X‹ its set of minimizers and with f‹

its optimal value.



Assumption 1: We make the following standing assump-
tions:

‚ f : Rn Ñ R is locally smooth, i.e., f is differentiable
and, for every convex and compact set D Ă Rn, there
exists LD P p0,8q such that @x, y P D:

}∇fpyq ´ ∇fpxq} ď LD}y ´ x}. (2)

‚ f is convex, i.e., @x, y P Rn

fpyq ě fpxq ` x∇fpxq, y ´ xy. (3)

‚ X‹ ‰ H and f‹ ą ´8

Local smoothness, or equivalently local Lipschitz continuity
of the gradient, defines a rather general class of functions. For
example, any twice differentiable f is locally smooth since
(2) holds with LD “ maxvPD }∇2fpvq}, which is finite due
to continuity of the Hessian and compactness of D.

One of the most popular methods to solve (1) is gradient
descent (GD), which generates a sequence of iterate pxkqkPN
by applying the following simple recursion

xk`1 “ xk ´ αk∇fpxkq, k P N, (4)

starting from a given x0 and choosing an appropriate se-
quence of stepsizes pαkqkPN. We will denote by Fk :“
fpxkq ´ f‹ the optimality gap at iteration k.

Standard convergence analyses of GD assume that f is
(globally) Ls-smooth, i.e., f is differentiable and there exists
Ls P p0,8q such that @x, y P Rn

}∇fpyq ´ ∇fpxq} ď Ls}y ´ x}, (5)

or equivalently @x, y P Rn

fpyq ď fpxq ` x∇fpxq, y ´ xy `
Ls

2
}y ´ x}2. (6)

In this case, one can guarantee global convergence of (4)
to an element of X‹ by restricting the choice of step-
size [12]. Most of the analyses show convergence with
constant stepsizes in the ranges Lsα P p0, 1s or Lsα P

r1, 2q. As a summary of the available analysis results, we
provide a Lyapunov-based analysis that encompasses any
time-varying stepsize sequence satisfying1: Lsαk P p0, 2q;
lim supkÑ`8 Lsαk ‰ 2; lim infkÑ`8 αk ‰ 0.

Theorem 1: Let pxkqkPN be a sequence generated by the
GD method (4) applied to a Ls-smooth function f also satis-
fying Assumption 1 with any time-varying stepsize sequence
satisfying Lsαk P p0, 2q, k P N. Define the function

V s
k px‹q :“ }xk ´ x‹}2, x‹ P X‹. (7)

1We make the last two technical restrictions to simplify some steps in the
derivation of the rates in view of the very unrestricted range of time-varying
stepsizes; this is without loss of generality, e.g., [13, Section 4] consider
the specific case where Lsαk P r1, 2q, limkÑ`8 Lsαk Ñ 2.

Then for any x‹ P X‹, k P N and x0 P Rn, it holds2

V s
k`1 ´ V s

k ď ´
αk

Ls
p2 ´ αkLsq p1 ` αkLsq }∇fpxk`1q}2

(8a)

Fk ď
2F0V

s
0

2V s
0 ` c1

Ls
F0k

, (8b)

}∇fpxkq} ď
Ls

c2

}x0 ´ x‹}

k
, (8c)

where c1, c2 P p0,8q are problem-independent constants.
The proof builds on standard results [12], [13], but an analy-
sis encompassing arbitrary sequences pαkqkPN, and yielding
(8) is not present in the literature. Precisely: (8a) gives the
existence of a Lyapunov function for (4) which can be used to
show boundedness of the iterates and global convergence to
the set X‹; (8b) and (8c) show convergence rates for function
values and gradient which have no worse dependencies on
Ls and k than those found in the literature and focusing on
constant or smaller ranges of stepsizes [12], [13].

The goal of this work is to develop a GD algorithm
achieving similar guarantees to Theorem 1 under the standing
Assumption 1 only. The only degree of freedom in (4) is the
stepsize sequence, and we approach its design as an adaptive
control problem where pαkqkPN is an input that can be chosen
based on feedback and feedforward information to steer the
iterate towards the set X‹.

III. ADAPTING STEPSIZE TO LOCAL SMOOTHNESS

A. A local smoothness estimate

The intuitive idea for using the GD method without
assuming (global) smoothness of the objective is to adapt the
stepsize sequence to the local geometry of the cost function.
A natural measure of it along the GD iterates is the local
smoothness estimate

Lk “ Lpxk`1, xkq :“
}∇fpxk`1q ´ ∇fpxkq}

}xk`1 ´ xk}
,

“
}∇fpxk ´ αk∇fpxkqq ´ ∇fpxkq}

αk}∇fpxkq}
.

(9)
At iterate k, this estimate depends both on past information
through xk (feedback) and one-step ahead future information
through xk`1 (feedforward).

While after Theorem 1 it would be tempting to conjecture
that a stepsize sequence satisfying Lkαk P p0, 2q could
satisfy our goal, the following results instill caution.

Lemma 1: Consider a convex and differentiable f .
(i) Given Lpy, xq defined in (9), @y, x P Rn

fpyq ď fpxq`x∇fpxq, y´xy`Lpy, xq}y´x}2. (10)

(ii) The sequence generated by (4) GD satisfies

Fk`1 ď Fk ´ p1 ´ Lkαkqαk}∇fpxkq}2. (11)

(iii) If Lkαk P
`

0, 1
2

˘

, then

V s
k`1px‹q ´ V s

k px‹q ď ´2αkFk`1. (12)
2We omit the argument of V s for brevity and formatting reasons.



Item (i) shows that, compared to the global smoothness
constant Ls, the local smoothness estimate Lk can be larger
up to a factor of two, compare (6) and (10). A direct
consequence of this is item (ii), where Eq. (11) clearly
implies that a guaranteed function value decrease holds if
Lkαk P p0, 1q. Finally, item (iii) shows that setting the
stepsize to Lkαk P

`

0, 1
2

˘

guarantees the existence of the
same Lyapunov function V s in (7).

We note that the sufficient condition Lkαk P p0, 1q for
function value decrease in item (ii) is, in general, also
necessary. Indeed (11) follows immediately from (10), which
has recently been shown to be tight [14].

Lemma 2: [14, Proposition 2.3] Given β P p0, 1q, there
exist a convex and differentiable fβ , y, x P Rn such that

fβpyq ě fβpxq`x∇fβpxq, y´xy`βLpy, xq}y´x}2. (13)

B. Adaptive feedback-feedforward gradient descent

We propose here a novel stepsize update law that uses Lk

to adapt to the local geometry by combining feedback and
feedforward mechanisms.

The update law reads as:

αk “ min

"

α
p1q

k , α
p2q

k

*

,

where α
p1q

k “
γk
Lk

, α
p2q

k “
αk´1

γ2
k

ˆ

1 ´ γ2
k

1 ´ γ2
k´1

˙

,

pγkqkPN Ă p0, 1q.

(14)

where pγkqkPN is a scalar sequence of parameters inside the
specified range. The stepsize αk is chosen as the smallest
between the two upper bounds α

p1q

k and α
p2q

k . The former
one is the intuitive choice discussed in III-A. It is worth
observing that, whenever γk P

`

1
2 , 1

˘

, Lkα
p1q

k P p0, γkq. That
is, αk in (14) can be up to two times larger than the bound
in item (iii) of Lemma 1 guaranteeing the existence of V s in
item (iii), and can become as large as the fundamental limit
in item (ii) of Lemma 1. The bound α

p2q

k instead limits the
increase of stepsize across two consecutive iterations and
does not depend directly on the local geometry, but only
on the last value of the stepsize. As it will be shown in
Section III-C, this bound also gives some inherent robustness
to the algorithm. Intuitively, the first constraint is active in
regions of the variable space where f changes rapidly (or
is less smooth), whereas the second is active when, due to
the function’s flatness, the stepsize would tend otherwise to
overly increase. Finally, the parameters pγkqkPN are a tuning
knob to navigate the speed of convergence vs. robustness
trade-off discussed later. While any value (constant or time-
varying) in p0, 1q is valid, one intriguing option is to use them
as additional adaptive parameters. For example, they could
be modified online so that the two upper bounds are as close
as possible and thus αk is maximized at every iteration. This
option will be further explored in Section IV.

The interconnection between the classic GD recursion (4)
and the adaptation law (14) is shown schematically in Figure
1 and we will refer to in the following for brevity as AFFGD
(adaptive feedback-feedforward gradient descent).

GD p4q

γk

αp2q

αp1q 1
Lk

∇f

∇f`

minp¨, ¨q

xk

αk

Fig. 1. The adaptive feedback-feedforward gradient descent algorithm
(feedforward paths with dashed line).

The following result gives convergence guarantees for
AFFGD by using a Lyapunov analysis which, albeit de-
parting from the one used in Theorem 1 and under weaker
requirements, yield qualitatively similar results.

Theorem 2: Let pxkqkPN be a sequence generated by the
GD method (4) applied to a function f satisfying Assumption
1 and with stepsize law (14). Define the function

V a
k px‹q :“ }xk ´ x‹}2 `

2αk´1

1 ´ γ2
k´1

Fk, x‹ P X‹. (15)

Then for any x‹ P X‹ and k P N, it holds that

V a
k`1 ´ V a

k ď ´
2γ2

k

1 ´ γ2
k

´

α
p2q

k ´ αk

¯

Fk ´ vk (16a)

Fk ď
}x0 ´ x‹}2 ` 2α0

γ2
0

1´γ2
0
F0

2
řk´1

i“1 αi

(16b)

}∇fpxkq}
kÑ8

ÝÝÝÑ 0 (16c)

where

vk :“
αk

LDk

}∇fpxkq}2 `
α2
k

1 ´ γ2
k

}∇fpxk`1q}2 (17)

and LDk
is the local smoothness constant over a convex and

compact set Dk containing xk and x‹.
Eq. (16a) shows that function V a is a valid Lyapunov
function for the closed-loop dynamics (4)-(14) which gives
boundedness of the iterates, asymptotic optimality (16c) and
global convergence to the set X‹. Eq. (16b) gives a guar-
anteed last iterate convergence. As shown in the proof (cf.
Eq. 36), the stepsize sequence pαkqkPN is separated from 0,
and thus (16b) yields immediately a guaranteed convergence
rate of Op 1

k q, as in the standard smooth case. However,
the denominator of (16b) points out that we can accelerate
convergence by maximizing the sum of stepsizes. We can
achieve this by adapting online the parameters pγkqkPN to
make α

p1q

k and α
p2q

k as close as possible. Compared to
the recent literature on adaptive gradient descent [7], [9],
AFFGD provides convergence rate guarantees on the last
iterate (16b), a Lyapunov function with the two standard
terms relating to suboptimality distances (15), and a larger
available upper bound on the stepsize with respect to the
local geometry, compare with [8, Table 1]. On the other
hand, it is also important to recognize that the computation



of α
p1q

k is a disadvantage of the proposed formulation as it
involves forward prediction. While for some special cases
this can be done without extra computation (e.g., when f is
quadratic with Hessian M , then Lk only depends on M and
the current gradient), in general this requires a linesearch
procedure that can be easily automated but might result in a
more expensive per-iteration cost. Most importantly, we show
next that limiting the growth rate of αk (e.g., as currently
done via α

p2q

k ) provides robustness to inexact gradients, for
example due to errors in the linesearch procedure.

C. Robustness

The system theoretic view on AFFGD (Figure 1) prompts
the question of robustness of the closed-loop. For example,
one can consider stepsize updates where the first upper bound
in (14), involving forward prediction, is not exactly satisfied

αk ď α̃
p1q

k :“
γk

akLk
, ak P p0, 1q. (18)

Because α̃
p1q

k ą α
p1q

k , this can capture errors in the gradient
information (e.g., noisy evaluation, inexactness of the line-
search) inversely proportional to the parameter ak.

Let us define the scaled sequence pγ̃kqkPN with
γ̃k :“ γk

ak
ą γk. If ak P pγk, 1q, then γ̃k P pγk, 1q@k P N.

Then we can simply observe that we can still guarantee the
results of Theorem 2 if we tighten the second upper bound
in (14) correspondingly, that is we impose

α̃
p2q

k :“
αk´1

γ̃2
k

ˆ

1 ´ γ̃2
k

1 ´ γ̃2
k´1

˙

. (19)

Indeed the conditions prescribed for the stepsize (14) are sat-
isfied with respect to the scaled sequence pγ̃kqkPN Ă p0, 1q.
This observation provides two insights. First, limiting the
growth rate of αk (through α

p2q

k ) adds robustness to inexact
gradient information, which also contributes to understanding
the role of the second upper bound (14). Second, the tuning
parameters pγkqkPN provide a means to navigate the trade-off
between speed of convergence (when it is chosen adaptively
to make α

p1q

k and α
p2q

k close and thus maximize the rate of
convergence) and robustness (when it is chosen away from
1 to have robustness against perturbations ak P pγk, 1q).

It is natural to ask what happens when ak P p0, γks,
which models scenarios where perturbations are large or γk
is chosen close to 1. In this case the analysis in Theorem
2 does not apply but the following result provides a first
answer.

Lemma 3: Let pxkqkPN be a sequence generated by the
GD method (4) applied to a function f satisfying Assumption
1 and with stepsize law

αk “
γk

akLk
, γk P p0, 1q, ak P p0, γks. (20)

Define the function

V p
k px‹q :“ }xk ´ x‹}2 `

αk´1

αk
}xk`1 ´ xk}2, x‹ P X‹.

(21)

Then for any x‹ P X‹ and k P N, it holds that

V p
k`1 ´ V p

k ď ´

ˆ

α2
k´1

α2
k

´
γ2
k

a2k

˙

}xk`1 ´ xk}2 ´ 2αkFk`1.

(22)
Note that Eq. (20) allows perturbations to even determine
stepsizes that results in Lkαk ą 1. Condition (22) shows
that, even in such extreme scenarios, limiting the growth rate
of αk guarantees robust convergence. Indeed, if in addition
to (20) it holds

αk ď
ak
γk

αk´1 (23)

then the decrease of V p is guaranteed. While (23) is restric-
tive as for large perturbations it effectively prevents αk from
increasing, it provides another important characterization of
the robustifying effect of limiting the growth rate even in
this large perturbations regime. Moreover, we observe that
requiring (23) is not necessary because we are ignoring the
second negative term on the r.h.s. of (22). We conjecture
that positive growth rate conditions allowing Lkαk ą 1 are
possible, but for space reasons we leave this for future work.

IV. NUMERICAL STUDY

We study and compare numerically the performance of the
proposed AFFGD algorithm3. We consider logistic regres-
sion, that is, given N features si P Rn and labels yi “ ˘1,
the goal is to find a linear classifier x‹ P Rn by solving

min
xPRn

1

N

N
ÿ

1

logp1 ` expp´yix
Jsiqq. (24)

The objective is convex and globally smooth with Ls “
1

4N σmaxpSq2, where S P RNˆn is the feature matrix. The
application of GD to (24) has recently received attention [15]
due to the complex behavior of the iterates for large stepsizes
(i.e., greater than 2

Ls
) with not linearly-separable data. To test

this regime, we generate random data with N “ 50, n “ 2.
In a first set of results displayed in Figure 2, we compare

five GD algorithms (4) that differ for the step-size: GD uses
the classical choice αk “ 1

Ls
(» 1 in this case); GD TV is the

dynamic update rule proposed in [13, Theorem 4] whereby
Lsαk P r1, 2q and the stepisze is monotonically increased
according to a pre-determined law with Lsαk Ñ 2; AdGD
[9, Algorithm 1] and AdaGM [7, Algorithm 2] are recently
proposed adaptive GD schemes which also adapt to the local
geometry by only using past information. Finally, AFFGD is
the update rule proposed in this work (14) with a constant
tuning parameter γ “ 0.7 and arbitrary initialization α´1.

The results show the clear impact that adaptation has
on accelerating convergence. Even though the problem is
globally smooth and the first two methods are guaranteed
to asymptotically converge, they are slow compared to the
adaptive ones. In that regard, the right plot shows that the
sequence of adaptive stepsizes, during the iterations before
convergence, sum up at a rate which is faster than linear. We
also observe that AFFGD, implemented here using a simple

3Codes to reproduce the results are available at:
https://github.com/col-tasas/2025-AFFGD



5 10 15 20 25 30
0

5

10

15

20

25

30

5 10 15 20 25 30
0

20

40

60

80

Fig. 2. Optimality gap and stepsizes of algorithms solving (24).

linesearch to verify the condition imposed by α
p1q

k , markedly
outperforms the other two methods at the cost of a slightly
increased computational time (0.13s against 0.1s). We finally
note that, when simulating GD with α ą 20 1

Ls
and GD TV

with Lsαk Ñ 40, we observed non-converging behaviours as
described in [15]. This is interesting because these stepsizes
are still quite smaller than those (succesfully) employed in
many iterations by the adaptive schemes (see the y scale of
the right plot in Figure 2).

We focus next in Figure 3 on AFFGD and investigate
the effect of the sequence of tuning parameters pγkqkPN.
We compare three scenarios where this parameter is kept
constant at some pre-defined value (γ “ t0.2, 0.7, 0.95u)
with the adaptive case where γ0 “ 0.95 and then it is
changed adaptively using the simple recursion

γk “

$

’

&

’

%

1
θγk´1; αk´1 “ α

p1q

k´1,

θγk´1; αk´1 “ α
p2q

k´1,
, k P Z` (25)

where θ “ 0.9 is a free parameter defining the strength
of adaptation of γk. The rationale is to recursively update
γk based on the last active constraint in order to determine
similar values for the two upper bounds α

p1q

k and α
p2q

k , and
by doing so maximize the sum of αk which, as shown by
our analyses (16b), accelerates the convergence rate. The
left plot shows, as expected, that γ “ t0.2, 0.95u yield low
performance as they increase one of the bounds at the cost of
strongly decreasing the other (which is then always active).
On the contrary, the dynamic update rule (25) is able to
recover from the bad initialization γ0 and determine larger
values of stepsize and faster progress than those achieved
with γ “ 0.7 (which was fine tuned offline).

Finally, we take a numerical perspective on the robustness
of AFFGD. Guided by the analytical results in Section III-
C, showing that limiting the growth rate of αk through α

p2q

k

robustifies the algorithm, we compare AFFGD with a simple
backtracking line search (BLS) that sets αk “

γk

Lk
. We

implement the update rule as xk`1 “ xk ´p1`δqαk∇fpxkq

to analyze the effect of numerical or gradient estimation
errors quantified by the positive scalar δ. Figure 4 shows,
in agreement with Lemma 3, that AFFGD (solid) is only
marginally affected by such errors, while the convergence of
BLS (dashed) degrades and is lost for δ ą 1.1.
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Fig. 3. Analysis of AFFGD for different choices of γk . Asterisk and circle
markers denote points at which αk “ α
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k , respectively.

5 10 15 20 25 30 35
0

50

100

150

200

250

Fig. 4. Robustness of AFFGD vs. a simple backtracking strategy.

V. CONCLUSIONS

We consider the design of adaptive stepsize sequences
for gradient descent methods driven by local properties of
the objective. We frame the problem as an instance of
adaptive controller where the input (stepsize) to the plant
(GD method) is computed as a combination of feeedback
and predicted information. Theoretical results and numer-
ical experiments support the idea of pursuing closed-loop
adaptation to accelerate convergence while increasing robust-
ness. Future directions include online optimization problems,
where adaptation should capture both local geometry and
instantaneous variations of the objective. We view the system
theoretic framework in [16] as a promising starting point.

APPENDIX

Lemma 4: [17, Theorem 5.8] For any Ls-smooth and
convex function f it holds @x, y P Rn

fpyq ě fpxq ` x∇fpxq, y ´ xy `
1

2Ls
}∇fpyq ´ ∇fpxq}2.

(26)Proof of Theorem 2
Eq. (16a). We start off by applying Pythagoras identity

(for the equality) and using Lemma 4 (for the inequality)

}xk`1 ´ x‹}2 ´ }xk ´ x‹}2 “ ´2αkx∇fpxkq, xk ´ x‹y

` α2
k}∇fpxkq}2 ď ´2αkFk `

ˆ

´
αk

LDk

` α2
k

˙

}∇fpxkq}2

(27)
where x‹ P X‹. While we could have simply used convexity
in the inequality (and drop the second term), local smooth-
ness implies that Lemma 4 holds @x, y P Dk, where Dk is



a convex and compact set containing xk and x‹, and LDk
is

the associated local smoothness constant (2). We now work
on the third term, where we use again Pythagoras identity
but now with u “ xk`1 ´xk and v “ xk`2 ´xk`1 yielding

}xk`1 ´ xk}2 “ α2
k}∇fpxkq}2 “ α2

k}∇fpxk`1q ´ ∇fpxkq}2

´ α2
k}∇fpxk`1q}2 ` 2αkx∇fpxk`1q, xk ´ xk`1y

ď α2
kL

2
k}xk`1 ´ xk}2 ´ α2

k}∇fpxk`1q}2 ` 2αkpFk ´ Fk`1q

(28)
where for the inequality we used the definition of Lk (first
term) and convexity (third term). Using now the upper bound
on αk due to α

p1q

k (14), we get

p1 ´ γ2
kq}xk`1 ´ xk}2 ď ´α2

k}∇fpxk`1q}2 ` 2αkpFk ´ Fk`1q.
(29)

Because pγkqkPN Ă p0, 1q, we can divide the latter expression
by p1 ´ γ2

kq and plug this bound in (27) to obtain

}xk`1 ´ x‹}2 ´ }xk ´ x‹}2 ď ´
2αk

1 ´ γ2
k

Fk`1

`

ˆ

2αk

1 ´ γ2
k

´ 2αk

˙

Fk ´ vk

(30)

where vk, defined in (17), is a positive term for all xk R X‹.
Simple manipulations of (30) yield

V a
k`1 ´ V a

k ď ´2

ˆ

αk´1

1 ´ γ2
k´1

´
αkγ

2
k

1 ´ γ2
k

˙

Fk ´ vk

p14q
“ ´

2γ2
k

1 ´ γ2
k

´

α
p2q

k ´ αk

¯

Fk ´ vk

(31)

where the upper bound on αk due to α
p2q

k (14) guarantees
negativity of the first term.

Eq. (16b). We sum (30) for k “ 0, 1, ..., n ´ 1 and obtain

}xn ´ x‹}2 `
2αn´1

1 ´ γ2
n´1

Fn `

n´2
ÿ

k“0

wkFk`1

ď }x0 ´ x‹}2 `

ˆ

2α0

1 ´ γ2
0

´ 2α0

˙

F0

(32)

with
wk :“ 2

ˆ

αk

1 ´ γ2
k

´
αk`1

1 ´ γ2
k`1

` αk`1

˙

. (33)

Observe now that, because of the upper bound on αk due to
α

p1q

k (14) and pγkqkPN Ă p0, 1q, from item (ii) of Lemma 1
we have that for all iterations Fk ě Fk`1. Note also that

2αn´1

1 ´ γ2
n´1

`

n´2
ÿ

k“0

wk “
2α0

1 ´ γ2
0

` 2
n´2
ÿ

k“0

αk`1. (34)

Using these facts in (32) we finally obtain

Fn ď
}x0 ´ x‹}2 ` 2α0

γ2
0

1´γ2
0
F0

2
řn´1

k“1 αk

. (35)

Note that the denominator of (35) grows at least as fast as
k because we can show that the stepsize sequence pαkqkPN
is separated from 0. Indeed, the existence of the Lyapunov
function V a for system (4)-(14) implies boundedness of
the sequence pxkqkPN. For any x‹ P X‹, define D‹ :“

convpx‹, x0, x1, ..q, which is closed and convex. Therefore,
by local smoothness there exists bounded LD‹ such that (2)
holds on D‹. It is then

αk ě
γk
Lk

ě
γk
LD‹

ą 0, @k P N (36)

which shows the desired property.
Eq. (16c). We sum again (30) for k “ 0, 1, ..., n ´ 1 but

this time also keep the last term vk (17). We obtain
n´1
ÿ

k“1

αk

LDk

}∇fpxkq}2 ď c3 (37)

where the constant c3 P p0,8q exists due to the bounded
quantities involved in (30) and discussed in the previous item.
Because LDk

ď LD‹ ă 8@k, (37) gives summability of
}∇fpxkq}2 and thus the result is proven. This shows that all
cluster points of the sequences generated by (4)-(14) belong
to X‹. Using the Lyapunov condition (16a) and classic fixed
point arguments, one can then conclude that any sequence
generated by the algorithm converges to a solution.
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