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Abstract—In this paper, we present a novel method for
solving a class of quadratically constrained quadratic optimiza-
tion problems using only additions and multiplications. This
approach enables solving constrained optimization problems
on private data since the operations involved are compatible
with the capabilities of homomorphic encryption schemes. To
solve the constrained optimization problem, a sequence of
polynomial penalty functions of increasing degree is introduced,
which are sufficiently steep at the boundary of the feasible
set. Adding the penalty function to the original cost function
creates a sequence of unconstrained optimization problems
whose minimizer always lies in the admissible set and converges
to the minimizer of the constrained problem. A gradient descent
method is used to generate a sequence of iterates associated
with these problems. For the algorithm, it is shown that the
iterate converges to a minimizer of the original problem, and
the feasible set is positively invariant under the iteration. Finally,
the method is demonstrated on an illustrative cryptographic
problem, finding the smaller value of two numbers, and the
encrypted implementability is discussed.

I. INTRODUCTION

Optimization algorithms are key elements of many modern
technologies such as artificial intelligence, machine learning
or model predictive control (MPC). At the same time,
these applications often deal with sensitive data and handle
safety-critical tasks. To enable privacy-preserving control
and optimization, homomorphic cryptosystems have been
adopted to perform computations entirely on encrypted data.
However, one of the limitations of this technology is that
only polynomial operations, i.e., addition and multiplication
are supported. More complex operations, e.g., divisions and
comparisons, have to be approximated, which leads to a higher
computational effort and less accuracy. This challenge has
prevented powerful state-of-the-art optimization algorithms
to be applied under encryption, in particular for constrained
optimization problems, since these solvers generally need
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projections or comparisons, which cannot be natively handled
in homomorphic cryptosystems.

In this paper, we present a novel approach to constrained
optimization using only polynomial operations. This enables
a straightforward implementation in a homomorphically
encrypted fashion. In the proposed algorithm, the constraints
are replaced by a sequence of polynomial penalty functions,
which are added to the original cost function. To gradually
approach the minimum of the original problem, a sequential
gradient descent on the resulting sequence of unconstrained
optimization problems is performed.

A. Related work

For convex unconstrained quadratic optimization problems,
encrypted gradient and accelerated gradient methods have
been analyzed and implemented in [1], and distributed en-
crypted alternating direction method of multipliers (ADMM)
has been proposed in [2]. The works [3]-[6] consider a
linearly constrained quadratic program with private inputs
from multiple parties. The solution is obtained via a projected
gradient ascent or projected fast gradient descent algorithm,
where the critical projection operation is done by a target
node in plaintext or a two-party protocol [7], involving
more communication steps. To solve quadratically constrained
quadratic programs (QCQPs) occurring in encrypted MPC,
there are approaches using real-time iterations of the proximal
gradient method [8] or ADMM [9]-[11]. Thereby, the
projections are done by the plant in plaintext. Alternatives
to online optimization for MPC were proposed in [11]-[14],
where an explicit MPC solution was computed offline and
the identification of the active region was performed by the
plant, a two-party protocol, or a garbled circuit. All existing
approaches to deal with constraints need a trusted party and
decryption or two-party concepts, which are demanding from
a computation or communication perspective.

For our approach, we utilize ideas from penalty and barrier
methods. For an introduction, see, e.g., [15]. Both types
replace the constrained optimization problem by a sequence
of unconstrained problems, which are easier to solve and
approximate the solution of the original problem. Penalty
functions are usually defined as being zero inside the feasible
set, and larger than zero outside [16]. Barrier functions
approach infinity at the boundary of the feasible set [17].
The auxiliary problems then weigh the original cost function
with a growing/decreasing influence of the penalty/barrier
function. Because penalty functions are often defined piece-
wise, and the barrier functions have to grow unbounded on a
finite domain, they cannot directly be used with polynomial-
based homomorphic encryption.



B. Contribution

We propose a novel method to solve a class of constrained
optimization problems only using polynomial operations
(additions and multiplications). A detailed analysis of the
algorithm is provided, in which convergence to a minimizer
and positive invariance with respect to the constraints are
shown. In particular, we make the following contributions:
We introduce a sequence of polynomial penalty functions for
convex quadratic constraint sets. When added to the original
cost function, we obtain a sequence of unconstrained optimiza-
tion problems. For the resulting sequence of unconstrained
problems, we prove that

o each minimizer always lies inside the feasible set, and

« the sequence of minimizers converges to a minimizer of

the original problem as the polynomial degree increases.
To solve the original problem, we then propose a sequential
gradient descent method generating a sequence of iterates
associated with the aforementioned sequence of unconstrained
problems. For this algorithm, we show that

« the feasible set is positively invariant, and

« the iterates converge to a minimizer of the original

problem.
Finally, we discuss its benefits for homomorphically encrypted
implementations and give an illustrative example.

C. Notation

We define the natural numbers as N={1,2,3...}. By (x,)
we denote the inner product of the vectors x and y. By >0
(= 0) we denote positive (semi-) definiteness. For positive
semi-definite matrices, we use the Loewner order, i.e., we say
that A > B if A-B>0. The boundary of a set C is denoted
by dC. By o(A) we denote the set of singular values, and
by 6(A) (o(A)) the largest (smallest) singular value of A.
The smallest integer greater than or equal to a given number
is obtained using the ceiling operation, denoted by |[-].

II. PROBLEM SETUP AND MAIN IDEA

In this section, we introduce the original constrained
optimization problem and describe the overall approach, that
is detailed in the following sections.

A. Problem setup
We want to solve the constrained optimization problem
X* =argmin f(x)
* ey
s.t. xeC

with the quadratic cost function
1
f(x)= EXTQ)HCITX
and the constraint set

C={xlg) <1}, IC={x|gx)=1},
§(x) = (x—v)"A(x-v)

with xe R", 0>0, A>0 and ¢g,veR". This is a special case
of a convex QCQP. Further, C should have nonzero volume,

* * kK
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Fig. 1. Example for the sequence of cost functions {J;}; based on the
original cost function f and the sequence of penalty functions {py }; for the
set C for ke {1,2,3,N} with N = 15. The sequence of minimizers {x; }
converges to the minimizer x* of the constrained problem as k — oo (cf.
Proposition 1).

i.e., A should be bounded. Since f is continuous and C is
compact, the set of minimizers X'* is nonempty and compact,

but the minimizer might not necessarily be a singleton.

B. Main idea

Our solution approach is based on the fact that un-
constrained convex polynomial optimization problems can
be solved by gradient descent algorithms only involving
polynomial computations. Since the gradient of a polynomial
function is a polynomial, and gradient descent steps only
involve multiplication by a step size and addition to the
previous value, the overall approach is polynomial and
suitable for encrypted evaluation.

However, since the constrained problem cannot be exactly
transformed into a polynomial unconstrained problem, we
employ techniques from interior point methods and construct
a converging sequence of unconstrained auxiliary problems.
For this purpose, we introduce a sequence of polynomial
penalty functions py and a sequence of auxiliary cost functions
Ji(x) = f(x) + pr(x). The construction of the penalty is based
on the observation that monomials of increasing power tend
towards zero for small values and grow rapidly for large
values. By using penalty polynomials that tend to zero inside
the allowed set and grow rapidly outside, our approach is a
novel intermediate concept between the classical barrier and
penalty methods. A key distinction of our approach is that
instead of defining the sequence of problems only by adjusting
a weighting parameter, the shape itself of our penalty function
changes. Specifically, the penalty term is chosen such that
the auxiliary cost functions have their minimum within the
feasible set and this minimizer converges to a minimizer of
the original problem as the index k increases. An exemplary
sequence of cost functions is depicted in Figure 1. Since the



penalty function cannot approach infinity at the boundary of
the feasible set, and we cannot use Newton-style iterations,
we need new concepts and proof techniques.

To solve this sequence of problems and thus find a solution
to the original constrained problem, we apply a sequential
gradient descent algorithm to the sequence of auxiliary
problems. After each gradient step, the index of the cost
function increases by one. Intuitively, the gradient steps track
the auxiliary minimizer, which converges to the original
minimizer, resulting in a convergent algorithm.

We make the construction of the penalty function and the
minimization algorithm precise in the following sections.

ITII. SEQUENCE OF UNCONSTRAINED PROBLEMS

In this section, we introduce the sequence of auxiliary
unconstrained problems and analyze its properties.

A. Design of the unconstrained problems

We choose the sequence of penalty function as

pelx) = mog(2)

for ke N and a parameter m > 0 that must satisfy a precise
relationship described later. Its gradient is given by

Vpi(x) = mg(x)* "' Vg (x).

The auxiliary cost function is
Jie(x) = f (x) + pr(x)
and we obtain the auxiliary unconstrained problem
Xp = argrrkin Ji(x). 2)

To make sure that every auxiliary Problem (2) has a minimum
inside the feasible set, the parameter m has to be chosen such
that —VJi(x) is zero or points towards the interior of C
for every point on the boundary dC. Hence, we make the
following requirement.

Requirement 1 (Scaling for minimum inside C): The pa-
rameter m satisfies m > mp;, := max (fuyin, 0) with

(Ve(x), V/(x))
(Ve(x),ve(x))

s.t. g(x)=1.
This condition is equivalent to VJi(x) and Vg(x) forming
an acute angle at the boundary (g(x) =1), that is

(Ve(x), 7 (1) 50 o V8@V - g

(Vg(x),ve(x))
This is clearly satisfied if m is chosen as in Requirement 1.
The value myy,;, can be interpreted as the largest ratio between
the directional derivatives of f(x) and g(x) in the direction of
Vg(x) at the boundary dC. While finding the exact mp;, can
be challenging, we note that any upper bound m > my;, is valid.
A negative niy;; means that the minimizer of the original
problem is inside the constraint set. We require mp;, > 0, since
a negative penalization could render the problem nonconvex.

Mmin = m;lx -

B. Analysis of the unconstrained problems

Consider the auxiliary unconstrained Problem (2) satisfying
Requirement 1. First, let us show that the minimizer is well-
defined.

Lemma 1: For every k € N, Problem (2) has a unique
solution.

Proof: The objective function J; is smooth, radially
unbounded, and strictly convex. Hence, the minimum is
attained at a finite value x; and unique. [ ]

The intuition of a vanishing penalty inside the feasible set
as k tends to infinity can be made precise as follows.

Lemma 2: The auxiliary cost function J; uniformly con-
verges on the set C to the original cost function f as k — oo,
ie., Ve>0IN:Vk>NVxeC:|Ji(x) - f(x)| <e.

Proof: Pick £>0 and N =2[2]. Then, [Jx(x) - f(x)| =
pr(x) =mpg(x)k <my <my; < L& <€, where we used that
g(x)<1 for xeC. |

With this, we arrive at our first important result concerning
convergence towards the set of minimizers X’*.

Proposition 1: Let Requirement 1 hold. Then, the auxiliary
minimizer x; of Problem (2)

1) is contained in the set C for every k€N, i.e., x; eCVkeN,
2) converges to x* = argmingy+ g(x) € X* as k > oo, i.e.,

x; > x* as k— oo,

Proof: Assume x; ¢ C. Then, there exists a point x € JC,
and a vector d # 0 pointing out of C, such that the directional
derivative of J; at that point x along the vector d is negative.
However, by Requirement 1, the directional derivative of
Ji along any vector pointing out of C is nonnegative. By
contradiction, x; € C. This proves Part 1).

The minimizer x* = argmin,y+ g(x) exists and is attained
at a unique point since g is strongly convex and X is convex
and compact. Let us define the sets @ = { x| g(x) <g(x*)}cC
and Q; = {x| f(x) < f(x*)+pr(x*) }. Then, x;; e ®NQy. This
is true since x; is the minimizer of Ji, in particular,

FOx) +pico) < f(7) + pre(x™).

Since f(x*) < f(x;), we have pi(x;) < pr(x*), and hence
g(xg) < g(x*). Thus, x; € ® c C. Further, since pi(x;) >0,
also f(x;) < f(x*)+pe(x*), and hence, x; € Q.

Since due to Lemma 2 pi(x*) uniformly converges to
zero, the set Q; converges to the set X'* as k — oo. Hence,
ONQ > ONX" as k — oo. Since x* = argmin, y+ g(x) is
the only element of @ N X", x; - x*. This proves Part 2). W

The following property becomes important for the gradient
method in the next section.

Lemma 3: For every k €N, the auxiliary cost function J is
Li-smooth inside C, i.e., Vke NIL; > 0: V2Ji(x) < LiI VxeC,
and a smoothness constant is given as Ly = 6(Q+m(4k-2)A).

Proof: The proof is given in Appendix A. [ ]

IV. SEQUENTIAL GRADIENT DESCENT

To find a solution to the problem presented in Section III,
and thus to the original problem, we employ gradient descent
since it only involves multiplication of the step size and the
gradient, and addition to the previous iterate.



Consider a sequential gradient descent algorithm

X1 = X = NV (), 4

where we sequentially update the cost function after every
gradient step. We choose 0 < ¥ < 1 as step size, and require
that the sequence {1} is summable, whereas {7}« is not.
This is fulfilled, e.g., for ¥ = L% Further, we make the
following standard assumption for interior point methods.

Assumption 1: The initial point is feasible, i.e., x; €C.
The center of the constraint ellipsoid x =v is always a feasible
starting point; however, better warm starts might be possible.

For the following results, we impose a further requirement
on the scaling parameter m.

Requirement 2 (Scaling for invariance of C): The param-
eter m satisfies m > myyy := max (fjny,0) > My, with

Mijpy = Min m

s.t. |[Vf(x)+mVg(x)| <2rLicos(¢(x)) VxedC,

_Vo(4) (Vf(x)+mVg(x), Vg(x))
=5 » and cos(0 (%)) = 17700 nve V]
the angle between Vf(x)+mVg(x) and Vg(x%

As for Requirement 1, finding the exact m;y,, can be challeng-
ing, however, any upper bound m > mj,, is valid.

Remark 1: In the scalar case n =1, Requirement 1 and
Requirement 2 are equivalent.

Then, we can show the following important property.

Proposition 2: Let Requirement 2 hold. Then, the set C is
positively invariant under the gradient descent step (4) with
the step size 0 < ¥ < Ll\’ i.e., if x; €C, then also xi,1 €C.

Proof: The proof is given in Appendix B. [ ]
This invariance property allows to stop the sequential gradient
descent after any finite number of iterations N without
violation of the constraints.

Now, we can show our main result, convergence of the
sequential gradient descent to a minimizer of the original
constrained problem.

Theorem 1: Let Requirement 2 hold. Let {x;}; be the
sequence of iterates resulting from sequential gradient de-
scent (4) and x* € X* a minimizer of the original Problem (1).
Then,

describing

fOk) = f(x") as k— co.

Proof: For the proof, we use ideas from [18], [19]. By
the update law (4) and convexity of J, we have
ke r =" 7 = e = 90 () =
= e =" = 2%V () T (=) + [ Vi () |
< e =" 2 = 20 (i (k) = T () + R |9k () |
By applying this inequality recursively, we obtain

0< e —x* |

< oy =2 [* - 22%(J(xz) —Ji(x")) + Z?’ZHVJ()CZ)II2

i=1

and hence,
k 5 k 5
23 1) = Ji () <l ="+ RV () |
i=1 i=1
£ 2 J 2
< 23 %) - f(7)) o =xT P+ D RV () |
i=1 i=1

k
1 *\ 1
+2m2y,;g(x ).
i=1

Finally, since by Lemma 4 (in Appendix C) Ji(x;) < Ji(x;)
for all i <k,

Ji(o) = f(x7) <
ey = |2+ Sy RIS () |2+ 2m iy vt g )’

221 1Y

From Lemma 5 (in Appendix C), we have that

Y?(VJi(x;)|? is summable. Further, we know that 3+ < 1} 1=
1 1 1

G (OrmE-2)A)i < m@E-2)6(A) ~ (Fi-2)i mc(A) Thus, 75 rg(x”)!
is summable. Since we required that the step size ¥ is not
summable, the denominator of the right-hand-side of (5)
diverges, whereas the nominator converges to a finite value.
From this, it follows that the right-hand-side of (5) converges
to zero as k — oo. Hence, Ji(x¢) - f(x*) = 0 as k — oo. Since
Je(xie) 2 f (i) 2 f(x*), also f(xe) - f(x") >0 as k — oco.

|

&)

A. Encrypted implementation

The sequential gradient descent steps of (4) only involve
polynomial operations. Computing the parameters needed by
the algorithm is more difficult. The required parameters are
m and the functions’ parameters Q, ¢, A, v, and possibly L.
If the problem is known beforehand, the analysis for m and
Ly can be done offline. In a private implementation without
problem knowledge, an upper bound of the parameters m
and L; can be used. Then, any problem that has lower true
parameters can be solved by the algorithm; however, it will
be conservative and possibly slower.

An additional challenge that is common to all encrypted
algorithms is the lack of ability to evaluate a stopping criterion.
Typically, such stopping conditions involve a comparison of
online obtained values to a threshold. Since this comparison
is difficult to do for ciphertexts, the number of iterations N
of the optimization algorithm has to be set beforehand.

Another aspect to be considered in encrypted implemen-
tations is the multiplicative depth of the algorithm and the
cryptosystem, respectively. During every multiplication of
encrypted numbers, the additive noise in the ciphertext that
guarantees the security can be amplified. Therefore, leveled
homomorphic cryptosystems only allow for a limited number
of multiplications. The number of iterations N has to be
chosen accordingly. Fully homomorphic cryptosystems such
as [20], however, support an infinite number of operations at
the cost of higher computational complexity of the involved
bootstrapping operation. For an overview of bootstrapping
in different cryptosystems, see [21], and for an analysis of
bootstrapping in a dynamic control context, see [22].



V. EXAMPLE: min(a,b)

An important special case of the considered problem is
finding the minimum of two encrypted numbers a and b, i.e.,
x* =argmin x
X
s.t. x€[min(a,b),max(a,b)].
This is a well-known problem for encrypted computations
since comparing encrypted numbers is a difficult task (cf. [23],

[24]). We can recover the general problem formulation by

setting =0, g=1, A= ﬁ, V= # and choosing the

functions f(x)=x and g(x) = ﬁ(x— %)2
The optimal slope ratio m™ = my,y = my,;, is given by
b -b
- :_mm(vf(a)’vf( )): ja—b]
vg(a) vg(b) 4

Let us assume that we know an upper bound m on m* with
m=am”* and a > 1. Then, the auxiliary cost function is

1 4 a+b\2\'
Ji(x) =x+am k((a—b)z(x_Z) ) .

The step size ¥, can be chosen as

_ 1 (a-b)? ~ l|a—b\
Ly 4(4k-2)m o dk-2

Ye

Then, the gradient descent iterations for every ke N are

a-b)? _ a+b\*!
! :xk_4((4k—z))m_2Ak l(x"_T) ©
la-b| 1 4 "‘1( a+b)2k_1
=Xp—— - Xp— ——
Y adak-2 2k-1\(a-b)? L ’
@)

where (6) is in a form ready for implementation, and (7) will
be used for analysis later.

For the encrypted implementation as in (6), we require
encrypted values of a, b and A. We note that the availability of
A is a strong assumption as it requires division of encrypted
numbers. If these values are not available, encrypted division
algorithms as in [25] can be used once before the iteration
starts. Note that for the iteration with k=1, no A is needed.
The constant m can be chosen large enough prior to knowing
the specific problem. The specific problem just should satisfy
m* < m, then it can be solved by the algorithm. Particularly,
if we provide an algorithm with a value m, any problem with
l|a—b| < 4m can be solved.

Remark 2: This bound on compatible problems can be

understood similar to an approximation interval if we approx-
imated the minimum function by polynomials in the first place.
However, here, we can provide guarantees on invariance of
the solution and convergence to the true minimum.
Note also that the minimizer x; of the auxiliary problem
would still converge to the true minimizer x; even if 0 <m <
m*. Just the guarantees of the gradient descent do not hold
any more but in many cases the iteration still converges.

A. Accuracy of the auxiliary solution

For this example, we can exactly calculate the minimizer
x; of the auxiliary problem depending on how conservative
the choice of m = am™ is. Due to strict convexity and radially
unboundedness of Ji, x,: is a minimizer if and only if
VJi(xz) = 0. For the analysis, we assume a < b without loss of

generality. Together with the ansatz x; = % — &, we obtain

k
la— Db 4 2%k-1
0=1+2a -€
4 \(a-b)2 (=)
w1/ 1 b-a

< & = ——.
o 2

This means that the distance to the minimizer of the original
problem can be expressed as

* * a—b( Qk_{/T)
X =xp=———|1- — 1,
2 a

which for any o >0 converges to zero as k — co. With this
result, we can even determine the number of iterations k for

. .. -b
a desired precision 6 < ‘“2 | as

1 1
" —x;|< 6 < k> n(a)

=2 2In(1-.%;8)

B. Accuracy of a single gradient step

For the case that the constraint parameter A is not available,
let us consider a gradient step for k = 1, where only encrypted
values of a and b are needed, since in

_a+b (a-b)?
2 8m

x

all nonpolynomial operations are done with public numbers.
For a < b this yields

_a+b 1la-b|

=TS 3
_a(t+ ) +n(%3)
- - ,

which is the exact minimum a for o = 1. Further, x, €
[a, bzﬂ) for @€ [1,00). Note that for ¢t = 1, (8) recovers the

well-known formula min(a,b) = %2 - 129 (cf. [23], [24)).
However, if we replace |a—b| naively by the same upper

bound % = ala-b|>|a-b|, we get
a+b m
X=—-—
2 8
1 -
= +Oca-kliotb,
2 2

which is also the exact minimum a for o =1, but for o €
[1,00) takes values in (—oo,a]. This might be less desirable
than the invariance property of our proposed algorithm.



VI. SUMMARY AND OUTLOOK

In this paper, we presented a novel optimization algorithm
to solve a special class of QCQP. It is tailored to encrypted
implementations as it explicitly only uses addition and
multiplication, which are the natively supported operations of
homomorphic cryptosystems. With this, we demonstrated how
this class of constrained optimization problems can be solved
in an encrypted fashion without the need of a trusted third
party, a multi-party protocol or naive polynomial approxima-
tions of standard optimization algorithms. For our proposed
method, we showed several desirable properties, such as
that the unique minimizers of the auxiliary unconstrained
problems as well as the gradient descent iterates always stay
inside the feasible set and converge towards a minimizer of
the original constrained problem. Further, we showed how
finding the minimum of two numbers can be formulated
in our framework, and explicitly analyzed the relationship
between accuracy, conservatism, and the number of iterations.

In future work, we plan to analyze the convergence speed
for the general algorithm and further compare it with existing
nonpolynomial barrier and penalty methods. It would also be
interesting to improve the handling of encrypted parameters
in the constraints and to extend the idea to more general
classes of optimization problems.

APPENDIX
A. Proof of Lemma 3:
From the definition of J(x), we get

V2(x) = V2 £(x) + V2 pr(x)

=Q+m((k-1)g(x) ?vg(x)vg(x)" +g(x) ' v?g(x))
<Q+m((4k-HA(x—v)(x—v)TAT +24),

where in the last inequality we used that the largest Hessian
in the Loewner order is found at the boundary dC, where
g(x) = 1. Now, we parameterize x on the boundary JdC as
(x—v) =VA-ly with |y| =1 and A = VA-1\/A-1. Further,
we observe that the singular values of yy' fulfill a(yy") =
{1,0,...,0}. This yields

V2 (x) < O+ m((4k - 4)AVA-Tyy VAT AT +24)
< Q+m((4k-4)AVATE(yy )IVA-T AT +24)
= 0+ m(4k-2)A
<6(Q+m(4k-2)A)I.

B. Proof of Proposition 2:

The proof works in three steps. First, we show that under
the gradient step (4), the image of a levelset of g, which is
an ellipsoidal surface, is again an ellipsoidal surface. Second,
we show that images that correspond to a lower level of
g, are contained in ellipsoids that correspond to a level of
g(x) = 1. In the third step, we explicitly show that if x; € dC,
then x;,1 € C, which, according to the first part of the proof,
bound all other levelsets inside the ellipsoid C, which is the
1-sublevelset of g.

For the current iterate x; € C with g(x;) =c€[0,1], we
define the ellipsoidal levelset dC. = {x | g(x) = ¢} and the
ellipsoidal levelset dC, = {x| gl.(x) = c} with the same level
¢ for a quadratic function g.(x) = (x—Vv')TAL(x-V") with
parameters v/ and A.. The center v’ of the ellipsoid dC. is
given as v/ =v—7.(g+Qv). The matrix A, can be computed
as AL =T 'AT! with the symmetric matrix T, =1 -%(Q+
2mc*~'A). Then,

g (er) = =) TT AT ' T (xp —v) = g(xx) = .

Thus, if x; € dC,, then x;.q € ICL.

Now, we show that dC/ = {x| g.(x) = c} is contained C| =
{x]g}(x) <c}. Since C; and C] have the same center V', the
condition dC/ c C] is satisfied if and only if

1
—Al=A e AxeTIT'ATT'TLC
¢

This holds if and only if 6(7;!7.\/c) < 1. Since T;' T,.\/c >0
and 7! > 0, this is equivalent to

T T /c-1<0

= (Ve-1)(I-%Q) +ym2A(ved ™ - 1) <0

- (\/E—l)(I—Li(Q—mZA)SO
k

= (Ve-1)(1- ! (Q-m2A)) <0,

5(Q+m2(2k-1)A)

which is satisfied for all k> 1.

Finally, we show that if x; € dC, then xi,; € C, which
implies that dC{ ¢ C. Consider x; € dC. If VJi(x;) =0, then
Xpt1 =X € C. Now consider the case VJi(x;) #0. The cosine
of the angle between VJi(x;) and Vg(x;) is given as

J)
cos(¢(xk)) _ <V k(xk)7vg(xk)> )
[V Ce) [ V8 (i) |
The radius of maximum curvature of the ellipsoid C is given

_ Ve

by r= S(A) - For every point x; € dC, a ball B, with radius r
can be placed such that x; € dB, and B, € C. Consider a line
from x;, in the direction of VJi(xy), i.e., with angle ¢ from the
normal Vg(x;) of the ellipsoid and the ball on x;. Then, the
length of the line inside B, is given as 2rcos(¢(x;)). Thus,
if the gradient step |xg+1 —xg| = || - % VJk(xx)| is not longer
than the line length inside the ball, invariance is guaranteed.
The condition is equivalent to

| =1V () | < 2reos(9(x))
= [ V(i) | < 2rLi cos(9 (x)),

where we used that 7y < i < Lil Vk ¢ N. Hence, by Require-
ment 2, the gradient descent step (4) leads to x| € C if x; € dC.
With this, we have shown x; € dC. €C == x441 €dC.cC{ cC.

[ ]

C. Auxiliary lemmas

In this section, we provide some intermediate results that
we need for the proof of Theorem 1.

Lemma 4: The sequence {Jy(x;)} is nonincreasing, par-
ticularly, Ji 1 (e1) ST (rer) < Ji ().



Proof: The descent relation Ji(xg11) < Ji(xx), is a stan-
dard property of gradient descent with the chosen sequence
of step sizes. From the construction of J, it follows that

Jk(xk+l):-]k+1(xk+l)_m( 8(xks1) — ) (1)

k+1

1 k
>J —
et (K1) — m(k+1 k)g(ka)
1
= Jer1 (K1) +mmg(xk+1 )

> Jirt (K1)

where we used that 0 < g(x41) < 1. [ ]
Lemma 5: The sequence {¥|VJi(xx)|*}x is summable,

e, 22 %IV () [|* < oo
Proof: From Li-smoothness and the gradient step xi. =
Xk = YNV (x) = Vi (x) = % it follows that

Ly
Ji(orer) < T () + Vi (i) T (et =) + > 1 = x|
1 L
= T () = = |vesn =% + S [xen —xe
Y 2
= T (X)) = || X1 _ka2

with & = ( —&) > ij With Jk(Xk+1) ZJkJr](ka) we get

1
Y 2
Sl xieet = x> < Te (k) = Tt (i)

If we sum from k=1 to N-1, we obtain

N1
S St — x| * <J1(x1) = In (xw)

k=1
<J1(xr) = fxn) < o0,

Thus, {8 |xs1 —x¢]*}x is a summable sequence. Since & >

sz and vt —xil = %l VI Go) |, also {ZLer |V (o) I e
is summable, and also {L;y?|VJi(xx)|?}x is summable. Since
Ly — oo as k — oo, also {y]§|\VJk(xk)H }x is summable. H
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