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Abstract— Continuous-time adaptive controllers for systems
with a matched uncertainty often comprise an online parameter
estimator and a corresponding parameterized controller to
cancel the uncertainty. However, such methods are often impos-
sible to implement directly, as they depend on an unobserved
estimation error. We consider the equivalent discrete-time
setting with a causal information structure, and propose a novel,
online proximal point method-based adaptive controller, that
under a sufficient excitation (SE) condition is asymptotically
stable and achieves finite regret, scaling only with the time
required to fulfill the SE. We show the same also for the
widely-used recursive least squares with exponential forgetting
controller under a stronger persistence of excitation condition.

I. INTRODUCTION

Adaptive control studies controllers that can adapt to or
learn unmodelled changes in the dynamics [1], while often
guaranteeing perfect asymptotic tracking and/or parameter
convergence [2], [3]. The theory of online optimization was
established concurrently with the developments in adaptive
control, with the aim to minimize an a priori unknown,
sequentially revealed cost [4]. The connections between
the two have recently been highlighted [5], [6], showing
that adaptive controllers are closely linked to an online
cost optimization problem and are often proportional to an
online estimation cost gradient. In this work, we consider
such controllers that aim to minimize a cost function while
controlling the system, similar to the goal-oriented control
formulation in [7]. Since asymptotic stability alone does not
automatically imply performance guarantees on the cost [8],
[9], we also provide finite-time guarantees by characterizing
the regret [4] of the controller: a concept borrowed from
online learning to quantify the additional cost incurred by the
controller over a horizon due to partial model knowledge.

We consider systems with matched uncertainty [2], where
the unknown dynamics is parameterized by an unknown pa-
rameter vector and a known, state-dependant feature matrix.
In this setting, the uncertainty can be exactly canceled by
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the control input given knowledge of the true parameter.
We aim to find causal adaptive controllers that estimate
this parameter recursively while stabilizing the system and
minimizing regret. Most continuous-time adaptive controllers
in this setting utilize Lyapunov theory and provide only
asymptotic stability guarantees, see for example [1], [2], [3].
Using the same tools, recently, a finite O(1) regret bound was
shown in [10] for linear systems, and in [11] for nonlinear
time-varying systems. In [11], the authors also extend the
results to a discrete-time setting, achieving a o(T ), sublinear-
in-time, bound with a causal formulation, and a O(1) with
a non-causal one. In contrast to our proposed method, the
Lyapunov-based adaptive controllers in [10], [11] are not
realizable in discrete time, as the parameter update depends
on the current, unobserved error, making it non-causal. The
online gradient descent-based algorithm in [11], although
causal, achieves o(T ) regret even in the deterministic case.
The difficulty is inherent in the discrete-time formulation
of the problem, which introduces a one-step delay in the
error observation. In discrete time, the convenient Lyapunov
function cancellation [2] no longer holds and discrete-time
Lyapunov functions are known to be harder to construct [12].

The recursive learning algorithm for the adaptive con-
troller can be set up to relate to an online or “running” cost.
This setting is also studied in the time-varying optimization
literature providing asymptotic tracking and convergence
guarantees for online costs, e.g., [13], [14]. However, in
this line of work, the problem setup considers no underlying
dynamics for the state, and the regret is generally not studied.

We design causal, uncertainty-matching, recursive meth-
ods for discrete-time, nonlinear, time-varying systems. Our
contributions are threefold. Firstly, we introduce a recursive
proximal learning (RPL) parameter estimation algorithm
based on the proximal point method [15]. Under a weak
notion of persistence of excitation (PE), which we refer
to as sufficient excitation (SE) as in the continuous-time
adaptive control litarature [16], RPL produces estimates of
the unknown parameters that are contractive with respect to
the true one. Secondly, we show that RPL-based adaptive
control achieves finite regret scaling with the time required
to achieve the SE condition. By contrast, in [11] finite regret
is only achieved through access to a Lyapunov function or by
a non-causal controller. Finally, we analyze the regret of the
recursive least-squares with forgetting factor (RLSFF) [17].
We show that while both RPL and RLSFF achieve finite
regret with similar bounds, RLSFF requires a stronger PE
condition. We demonstrate the algorithms on a discrete-time
model reference adaptive control (MRAC) [18] example.



Notation: The sets of positive real numbers, positive
integers, and non-negative integers are denoted by R+, N+

and N, respectively. For a given vector x, its Euclidean
norm is denoted by ∥x∥. The spectral norm of a square
matrix W is denoted by ∥W∥, and the largest and smallest
singular values and eigenvalues by σmin(W ), σmax(W ),
and λmin(W ), λmax(W ) respectively. For a positive scalar
r ∈ R+, we define the closed ball around the origin as
Br := {x ∈ Rn | ∥x∥ ≤ r}.

II. PROBLEM STATEMENT

We consider nonlinear dynamical systems with matched
uncertainty of the form

xk+1 = fk(xk) +Bk(xk) (uk − αk(xk)) , (1)

where f : N×Rn → Rn models the known nominal dynam-
ics and satisfies fk(0) = 0 for all k ∈ N, Bk : N × Rn →
Rn×m is a known input matrix, and αk : N × Rn → Rm

is an unknown mapping to the input space, capturing the
uncertain dynamics of the model. We assume that αk can
be exactly parameterized by possibly nonlinear, but known
and bounded basis matrices, ϕk : N × Rn → Rp×m, that
map the state to a feature in Rp×m. The uncertainty is
then given by αk(xk) = ϕ⊤k (xk)θ

⋆, where θ⋆ ∈ Rp is
an unknown, constant parameter vector1. We also assume
∥Bk(xk)ϕ

⊤
k (xk)∥ ≤ b for all k ∈ N, x ∈ Rn and some b ∈

R+. The tracking problem under partial model knowledge
can also be cast into this framework in the context of MRAC,
as shown in Section V.

We characterize the performance of a given controller for
system (1) over a time horizon T by comparing it to a
benchmark control signal u⋆ =

[
u⋆0

⊤ . . . u⋆T−1
⊤]⊤ that

cancels the uncertainty perfectly and is defined below. We
use regret to quantify the controller performance

RT (u) =

T−1∑
k=0

c(xk)− c(x⋆k), (2)

where u =
[
u⊤0 . . . u⊤T−1

]⊤
denotes the control signal

of a given controller, xk and x⋆k are state sequences due to
the control signals u and u⋆, respectively, and c : Rn → R
is a stage cost. We restrict our analysis to locally Lipschitz
continuous costs and assume for any R ∈ R+, there exists a
Lc ∈ R+, such that for all x, y ∈ BR,

∥c(x)− c(y)∥ ≤ Lc∥x− y∥. (3)

Assumption 1: (System Dynamics) The nominal dynam-
ics xk+1 = fk(xk) are uniformly, globally E-δ-ISS [19]. In
other words, there exist c0, cw, rw ∈ R+ and ρ ∈ (0, 1),
such that for any x0, y0 ∈ Rn, wk ∈ Brw , and all k ∈ N the
perturbed dynamics yk+1 = fk(yk) + wk satisfy

∥xk − yk∥ ≤ c0ρ
k∥x0 − y0∥+ cw

k−1∑
i=0

ρk−i−1∥wi∥.

1We drop the explicit state dependence on state for Bk := Bk(xk) and
ϕk := ϕk(xk), wherever required for readability.

The E-δ-ISS property characterizes only the known and
autonomous part of the dynamics. It is known that if fk is
smooth in the state and is contractive, then it is also E-δ-ISS
[20], [11]. If fk is not smooth, then under milder conditions,
we show in [21] that exponential stability implies E-δ-ISS.

A. Online Estimation

We consider adaptive control laws that produce control
inputs of the form uk = ϕ⊤k (xk)θk where θk ∈ Rp is an
online estimate of θ⋆ at time k. The closed-loop dynamics
for a controller of this form is given by

xk+1 = fk(xk) +Bk(xk)ϕ
⊤
k (xk) (θk − θ⋆)︸ ︷︷ ︸
wk(xk)

, (4)

where wk(xk) can be thought of as a state-dependant ar-
tificial disturbance introduced due to an inexact uncertainty
matching. One can also consider a benchmark counterfactual
control input u⋆k := ϕ⊤k (x

⋆
k)θ

⋆ and the corresponding signal
u⋆ that perfectly cancels out the uncertainty in (1) leading
to a benchmark state evolution

x⋆k+1 = fk(x
⋆
k). (5)

Note that u⋆ is a counterfactual policy that is not realizable,
as θ⋆ is unknown. To simplify the analysis, we take x0 = x⋆0.

A standard setup in adaptive control design is to produce
estimates θk that minimize the magnitude of wk(xk), effec-
tively steering the state of (4) to that of (5) thanks to the
E-δ-ISS property. This is often done by setting up a least
squares estimation problem, minimizing the following online
estimation cost for all k ∈ N+

θk = argmin
θ

hk−1(θ), (6)

hk−1(θ) :=
1

2

k−1∑
i=0

∥Biϕ
⊤
i (θ − θ⋆) ∥2 =

1

2
∥Φkθ − Yk∥2,

Yk =


y0
y1
...

yk−1

 , Φk =


B0ϕ

⊤
0

B1ϕ
⊤
1

...
Bk−1ϕ

⊤
k−1

 ,
yi = xi+1 − fi(xi)−Biϕ

⊤
i θi = Biϕ

⊤
i θ

⋆, ∀i ∈ N.

Note that at time k, the latest available online estimation
cost is hk−1, as yk is not yet available. Solving (6) directly
requires computing an expensive matrix inverse at each time
step and maintaining an increasing memory. In this work, we
study two recursive methods that alleviate this issue, both
optimizing an online cost related to (6). In particular, we
introduce and analyze a recursive proximal learning method
in Section III, and also study the well-established recursive
least squares with forgetting factor [17] in Section IV.

B. Regret

Speed or velocity-gradient controllers are introduced in
[7] to solve the continuous-time equivalent of the online
estimation problem (6) in the framework of (integral) goal-
oriented control. It is shown that these methods achieve



finite estimation error in the limit, under the assumption
that the controller at time t can depend on the estimation
error θt− θ⋆. Recent works [10], [11] noted that if an expo-
nential Lyapunov function exists for the nominal system, a
speed-gradient descent-based uncertainty matching controller
achieves finite quadratic cost on the state. In particular, the
suboptimal closed-loop state trajectory xt satisfies

Jcont(x0, u) := lim
T→∞

∫ T

0

∥xt∥2dt = O(1).

Moreover, the existence of the exponential Lyapunov func-
tion also implies that Jcont(x0, u⋆) for the optimal state
evolution is finite. Defining continuous-time regret as
Rcont(u) := Jcont(x0, u) − Jcont(x0, u

⋆), an O(1) bound
for the extra cost accumulated by the adaptive control law
as compared to the benchmark follows directly. In [11]
a discrete-time version of the speed-gradient algorithm is
introduced with a finite cost bound, but with the same
assumption that at time k the error θk − θ⋆ is available,
making the controller non-causal. Without this assumption,
the authors achieve o(T ) sublinear regret using an online
learning toolkit. In this work, we consider causal controllers
that minimize (6) at time k with access only to yk−1. To char-
acterize the performance of such an adaptive, uncertainty-
matching controller, we analyze the regret (2).

III. RECURSIVE PROXIMAL LEARNING

The recursive proximal learning algorithm corresponds
to the ε-scaled proximal operator of (6) evaluated at the
previous estimate

θk = proxεhk−1
(θk−1)

= argmin
θ

(
hk−1(θ) +

ε

2
∥θ − θk−1∥2

)
,

(7)

for some θ0 ∈ Rp and ε ∈ R+. From the online learning
perspective [4], θk can be thought of as the minimizer of the
latest available cost gk−1 at time k, where we define

gk−1(θ):=hk−1(θ) +
ε

2
∥θ − θk−1∥2. (8)

While a closed-form solution to (7) exists, it requires
memory increasing with time. The following equivalent set
of updates to (7) provides a recursive implementation. In
particular, for all k ∈ N, the following is equivalent to (7)

P−1
k+1 = P−1

k + ϕkB
⊤
k Bkϕ

⊤
k ,

Hk+1 = Hk + ϕkB
⊤
k Bkϕ

⊤
k

sk+1 = sk + ϕkB
⊤
k yk

θk+1 = θk − Pk+1 (Hk+1θk − sk+1) ,

(9)

initializing with H0 = 0p×p, s0 = 0p×1 and P−1
0 = εIp.

A. Contraction in Parameter Space
We define SE as follows.
Definition 1: A matrix signal ϕk : N → Rp×n is called

sufficiently exciting if there exist Ts ∈ N, and δ ∈ R+ such
that

0 < δIp ≤
Ts∑
i=0

ϕiϕ
⊤
i .

We show below that under a SE assumption, the RPL
update (7) enjoys a contraction property on the parameter;
moreover, under an additional boundedness assumption, the
lifted input vector Φkθk is also contractive.

Assumption 2: There exists a β ∈ R+ such that
limT→∞

∑T
i=0 ϕiB

⊤
i Biϕ

⊤
i ≤ βIp

Lemma 1: Assume Bkϕ
⊤
k is sufficiently exciting, then the

RPL estimate (7) satisfies

∥θk − θ⋆∥ ≤ η∥θk−1 − θ⋆∥, ∀k ≥ Ts

∥θk − θ⋆∥ ≤ ∥θk−1 − θ⋆∥, ∀0 < k < Ts
(10)

where η = ε
δ+ε ∈ (0, 1). Moreover, if Assumption 2 holds,

and ε < δ
√
δ√

β−
√
δ

then there exists a γ ∈ (0, 1) such that

∥Φk+1 (θk − θ⋆) ∥ ≤ γ∥Φk (θk−1 − θ⋆) ∥, ∀k ≥ Ts,

∥Φk+1 (θk − θ⋆) ∥ ≤
√
β∥θ0 − θ⋆∥, ∀0 ≤ k < Ts.

Proof: The proximal update (7) can equivalently be
represented by a single online Newton step update [22] on
(8). At time k, it is equivalently represented by

θk = θk−1 −
(
∇2gk−1(θ)

∣∣∣
θ=θk−1

)−1

∇gk−1(θ)
∣∣∣
θ=θk−1

.

Subtracting the true θ⋆ from both sides, denoting θ̃k := θk−
θ⋆, noting that Yk = Φkθ

⋆ and recalling the definition of
hk−1 from (6)

θ̃k = θ̃k−1 −
(
Φ⊤

k Φk + εIp
)−1

Φ⊤
k (Φkθk−1 − Yk)

= θ̃k−1 −
(
Φ⊤

k Φk + εIp
)−1

Φ⊤
k Φkθ̃k−1

=
(
Ip −

(
Φ⊤

k Φk + εIp
)−1

Φ⊤
k Φk

)
θ̃k−1

:= (Ip −Mk) θ̃k−1,

where Mk =
(
Φ⊤

k Φk + εIp
)−1

Φ⊤
k Φk. Using the orthonor-

mality property of singular value decomposition of symmet-
ric matrices and the sufficient excitation of Bkϕk, for all
k ≥ Ts

σmin (Mk) ≥
δ

ε+ δ
∈ (0, 1),

ηk := ∥Ip −Mk∥ ≤ ε

δ + ε
∈ (0, 1),

obtaining the contraction result for parameter since
σmax(Mk) ∈ (0, 1). For all 0 < k < Ts, the SE condition is
not fulfilled, hence σmin(Mk) = 0 and ∥θ̃k∥ ≤ ∥θ̃k−1∥.

To prove the second part, note that for a full column
rank matrix A, ∥Aθ̃k+1∥ = ∥θ̃k+1∥A⊤A, and λmin(A

⊤A) =
σmin(A

⊤A) , and likewise for λmax. Then, for all k ≥ Ts

σmin

((
Φ⊤

k+1Φk+1

)−1
)
∥θ̃k∥2Φ⊤

k+1Φk+1
≤ ∥θ̃k∥2

≤ η2∥θ̃k−1∥2 ≤ η2σmax

((
Φ⊤

k Φk

)−1
)
∥θ̃k−1∥2Φ⊤

k Φk
.

It follows that

∥Φk+1θ̃k∥ ≤ η

√
σmax

(
Φ⊤

k+1Φk+1

)
σmin

(
Φ⊤

k Φk

) ∥Φkθ̃k−1∥, (11)



where we used the fact that σmax

(
(A⊤A)−1

)
=

1/σmin(A
⊤A) and σmin

(
(A⊤A)−1

)
= 1/σmax(A

⊤A).
The proof is completed by noting that for all k ≥ Ts

γ := η

√
σmax

(
Φ⊤

k+1Φk+1

)
σmin

(
Φ⊤

k Φk

) ≤ ε
√
β

ε
√
δ + δ

√
δ
< 1,

given ε < δ
√
δ√

β−
√
δ

. Finally, for all k ∈ N, ∥Φk+1θ̃k∥ ≤
∥Φk+1∥∥θ̃k∥ ≤

√
β∥θ̃0∥.

B. Closed-loop Analysis

Consider the suboptimal state evolution (4) under the RPL
controller uRPL

k = ϕ⊤k (xk)θk, with θk given in (7). We can
represent it equivalently as

xk+1 = fk(xk) + Sk (Φk+1θk − Φk+1θ
⋆)︸ ︷︷ ︸

wk(xk)

, (12)

where Sk :=
[
0 . . . 0 In,

]
∈ Rn×n(k+1) is a selector

matrix that selects the last component of Φk+1 (θk − θ⋆),
corresponding to Bkϕ

⊤
k (θk−θ⋆). Similarly, the optimal state

evolution under u⋆ is given by

x⋆k+1 = fk(x
⋆
k) + Sk

(
Φ⋆

k+1θ
⋆ − Φ⋆

k+1θ
⋆
)︸ ︷︷ ︸

0

, (13)

where Φ⋆
k+1 := Φ(x⋆[0,...,k]). In the following theorem,

we characterize the closed-loop system (12) in terms of
asymptotic stability and regret. In particular, we show that
the regret of the RPL controller scales with O

(
∥θ̃0∥Ts

)
.

Theorem 1: Let Assumption 1 hold, and Bkϕ
⊤
k (xk) be

sufficiently exciting under the RPL adaptive controller, then
this controller

(i) renders the closed-loop system asymptotically stable,
(ii) achieves finite regret

RT (u
RPL) ≤ cwbLc∥θ̃0∥

(
Ts

1− ρ
+
ρT +(1− η)ρ+ η

(1− ρ)2(1− η)

)
,

for the η established in Lemma 1. If in addition, Bkϕk also
satisfy Assumption 2 and ε < δ

√
δ√

β−
√
δ

, then

RT (u
RPL) ≤ cwcpLc∥θ̃0∥

(
Ts

1− ρ
+
ρT +(1− γ)ρ+ γ

(1− ρ)2(1− γ)

)
,

where cp := ∥ΦTs
∥ ≤

√
β and γ is defined in Lemma 1.

Proof: To show (i), recall the definition of E-δ-ISS,
and the fact that fk(0) = 0 for all k ∈ N, then consider the
suboptimal state evolution of the nonlinear system under the
RPL adaptive controller (12) for all k ∈ N+, recalling that
θ̃k = θk − θ⋆

∥xk∥ ≤ c0ρ
k∥x0∥+ cw

k−1∑
i=0

ρk−i−1∥Biϕiθ̃i∥

< c0∥x0∥+
cwb∥θ̃0∥
1− ρ

,

(14)

where we use the submultiplicativity property of the norms,
the bound on Bkϕk and non-expansivity of ∥θ̃k∥ from

Lemma 1. The asymptotic stability follows from the input-to-
state stability [23] of the closed-loop state in (14): by Lemma
1, limk→∞ ∥θ̃k∥ = 0 implies that limk→∞ ∥xk∥ = 0.

Next, we show (ii), by first noting that since xk and x⋆k
are bounded from (14), it follows from (3)

RT (u
RPL) ≤ Lc

T−1∑
k=Ts+1

∥xk − x⋆k∥︸ ︷︷ ︸
I

+Lc

Ts∑
k=0

∥xk − x⋆k∥︸ ︷︷ ︸
II

,

where II represents the cost in the initial Ts-long non-PE
phase, and I the cost improvement afterwards.

Using the E-δ-ISS condition on the nominal system and
noting that xk and x∗k, given by (12) and (13), respectively,
are equal in the first time step, for all k > Ts

∥xk − x⋆k∥ ≤ cwb

k−1∑
i=0

ρk−i−1∥θ̃i∥

≤ cwb

Ts∑
i=1

ρk−i∥θ̃i−1∥+ cwb
k−1∑
i=Ts

ρk−i−1∥θ̃i∥

≤ cwbρ
k−Ts∥θ̃0∥

Ts∑
i=1

ρTs−i + cwb

k−1∑
i=Ts

ρk−i−1∥θ̃i∥

≤ ρcwcTs
b∥θ̃0∥ρk−Ts + cwb∥θ̃0∥

k−1∑
i=Ts

ρk−i−1ηi−Ts+1,

(15)

where, defining cTs
= 1−ρTs

1−ρ , the second inequality follows
from the boundedness of Bkϕk, the third from the non-
expansivity of ∥θ̃k∥ from Lemma 1 and rearrangement of
the constants, and the last one from the contraction of ∥θ̃k∥.
For 0 < k ≤ Ts, we may only use the non-expansive result
from Lemma 1 and hence

∥xk − x⋆k∥ ≤ cwb

k∑
i=1

ρk−i∥θ̃i−1∥ ≤ cwb∥θ̃0∥
k∑

i=1

ρk−i.

(16)
Using the Cauchy Product inequality defined for two finite
series {ai}Ti=1 and {bi}Ti=1∑T

i=0

∣∣∣∑i
j=0 ajbi−j

∣∣∣ ≤ (∑T
i=0 |ai|

)(∑T
j=0 |bj |

)
,

and summing (16) and (15) over Ts − 1 and T − Ts − 2,
respecitvely, we get

II ≤ cwbLc∥θ̃0∥
Ts−1∑
k=0

k∑
i=0

ρk−i ≤ cwcTsTsbLc∥θ̃0∥

I ≤ cwbLc∥θ̃0∥

(
ρcTs

T−Ts−1∑
k=1

ρk+

T−Ts−2∑
k=0

k∑
i=0

ρk−iηi+1

)

≤ ρcwbLc∥θ̃0∥
ρT + ρ

(1− ρ)2

+ cwbηLc∥θ̃0∥
(
1− ρT−Ts−1

) (
1− ηT−Ts−1

)
(1− ρ) (1− η)

.

The first regret bound then follows. When Assumption 2 is
satisfied and ε < δ

√
δ√

β−
√
δ

, one can make use of the lifted



input contraction in Lemma 1 to show the second regret
bound. The full proof can be found in [24].

The theorem states that given the assumptions on the
nominal system, both (12) and (13) state trajectories converge
to the origin. It is important to note that no further restrictions
are put on the stage costs c, other than local Lipschitz
continuity. Hence, the finite regret result of the theorem
does not imply the cost

∑T−1
k=0 c(xk) is minimized, but the

relative cost performance is bounded. Moreover, it shows
that this performance, in terms of regret scales with the
initial exploratory time period Ts, and cannot be avoided,
as during these transients the parameter updates are only
nonexpansive by Lemma 1. If the additional assumptions on
ε and Bkϕk are satisfied, then the constant term is updated
from a uniform bound b to cp := ∥ΦTs∥, which relates to
the regression matrix only in the initial period.

The following lemma states that Lipschitz continuity of
the basis matrices and ϕ(0) = 0p×m is a sufficient condition
to fulfill Assumption 2. The proof can be found in [24].

Lemma 2: Let Bkϕk be sufficiently exciting, ϕk(0) =
0p×m, and ϕk be uniformly L−Lipschitz continuous, that
is, there exists a L ∈ R+ such that

∥ϕk(x)− ϕk(y)∥ ≤ L∥x− y∥. ∀x, y ∈ Rn,∀k ∈ N,

then Assumption 2 holds.

IV. RLS WITH EXPONENTIAL FORGETTING

The RLSFF algorithm minimizes the online cost

gfk−1(θ) :=
1

2

k−1∑
i=0

λ2(k−1−i)∥Biϕ
⊤
i (θ − θ⋆) ∥2

+
λ2(k−1)ε

2
∥θ0 − θ⋆∥2,

(17)

for a fixed exponential forgetting factor λ2 ∈ (0, 1), where
the first term can be thought of as the discounted version of
(6) and the second, as a discounted regularizer on the initial
parameter error. The update can be recursively implemented
as follows [25] for all k ∈ N

P−1
k+1 = λ2P−1

k + ϕkB
⊤
k Bkϕ

⊤
k , (18)

θk+1 = θk − Pk+1ϕkB
⊤
k (Bkϕ

⊤
k θk − yk), (19)

where θ0 ∈ Rp is an initial guess and P−1
0 = εIp. The

convergence of the above update requires a persistence of
excitation condition in the following sense [17].

Definition 2: A matrix signal ϕk : N → Rp×n is called
persistently exciting if it is bounded and there exist δ ∈ R+,
and Ts ∈ N such that for all k0 ∈ N

δIp ≤
k0+Ts∑
i=k0

ϕiϕ
⊤
i .

This PE condition, commonly found in the adaptive control
literature [1], [17], is a stronger version of SE in Definition 1.
The latter requires the positive definiteness of the regressor
matrix only in some finite interval of time, rather than,
persistently, in all Ts-long time intervals. The following
Lemma from [25] shows convergence of θk given PE holds.

Lemma 3: Assume Bkϕ
⊤
k is persistently exciting, then the

RLSFF update (19) satisfies

∥θk − θ⋆∥ ≤ crλ
k−Ts∥θ0 − θ⋆∥, ∀k ≥ Ts

∥θk − θ⋆∥ ≤ ∥θ0 − θ⋆∥, ∀0 < k < Ts

where c2r = ε
(
λ2Ts − λ−2)

)
/
(
δ
(
1− λ−2

))
.

Consider the RLSFF controller uRLS
k = ϕ⊤k (xk)θk with

θk given by the recursive law (18)-(19).
Theorem 2: Let Assumption 1 hold, and Bkϕ

⊤
k (xk) be

persistently exciting under the RLSFF adaptive controller,
then this controller

(i) renders the closed-loop system asymptotically stable
(ii) achieves finite regret

RT (u
RLS) ≤ cwbLc∥θ̃0∥

(
Ts

1− ρ
+

cr
(
ρT + 1

)
(1− ρ)2(1− λ)

)
.

Unlike RPL, the RLSFF controller requires the stronger
PE condition, but does not restrict the features as in Lemma
2. A sufficient condition for Theorem 2 to hold is that of PE
of Bkϕ

⊤
k . Given that these are time-varying, PE can hold also

in the limit, as the state converges to the origin. This happens,
notably, in the case of tracking of time-varying references. A
numerical example showcasing this is presented in the next
section. The proof for Theorem 2 be found in [24].

A. Analysis of the Bounds

Both the RPL and the RLSFF adaptive controllers achieve
a finite regret containing three separate terms of potential
interest. A constant term, an exponentially decaying one with
rate ρ, and a linear term in the PE time Ts. The latter is of
most interest, which arises from the non-expansive properties
of both estimators and signifies that no improvement in the
worst-case can be expected until the time Ts when the PE
condition is met. Comparing the regret bounds directly, when
γ < λ and cr > 1, i.e. ε > δ, then the upper bound of the
RLSFF regret is strictly larger than that of the RPL controller.

V. NUMERICAL SIMULATION

In this section, we show that the MRAC problem can be
cast into the considered setting and provide a numerical ex-
ample to showcase the performance of the discussed adaptive
controllers. Consider the uncertainty-matched system

xk+1 = Axk +B(uk − ψ⊤(xk)θ
⋆),

where A ∈ Rn×n, B ∈ Rn×m, ψ : Rn → Rp×m is a
feature matrix, and θ⋆ ∈ Rp is unknown. The MRAC goal
is to track the reference dynamics x̄k+1 = Arx̄k + Brrk,
where x̄k ∈ Rn, is the ideal reference vector to be tracked,
rk ∈ Rm, is the bounded input command, Br ∈ Rn×m

and Ar ∈ Rn×n is Schur stable. As in [18], we assume
(A,B) to be controllable and B to be full column rank, and
consider the input uk = −K1xk +K2rk + ψ⊤(xk)θk with
matrices K1,K2 ∈ Rm×n chosen such that A−BK1 = Ar

and BK2 = Br hold and θk being the parameter estimate.
Denoting ek = xk − x̄k, the error dynamics are represented
in the form of (1)

ek+1 = Arek +Bϕ⊤k (ek)θ̃k, (20)
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Fig. 1. Comparison of adaptive controllers for the MRAC example in terms
of asymptotic tracking (on the top) and regret (on the bottom).

where we define ϕ⊤k (ek) := ψ⊤(ek+x̄k). Since Ar is stable,
the E-δ-ISS condition is satisfied. We take the cost to be
c(e) := ∥e∥2, which is locally Lipschitz since the closed-
loop states are bounded. Note that, with this formulation,
the SE/PE condition can hold even when the error dynamics
are asymptotically stable, given that the reference rk is such
that the feature matrices ϕk(ek) are SE/PE.

We consider the following example system [18]

A =

[
1.0314 0.2526
0.2526 1.0314

]
, B =

[
0.0314
0.2526

]
,

with the reference model dynamics

Ar =

[
−0.9929 0.2253
−0.0569 0.8117

]
, Br =

[
0.0314
0.2526

]
.

The true parameter is θ⋆ =
[
−0.75 −0.50

]⊤
and ψ(xk) =

xk, with the corresponding ϕk(ek) = ek + x̄k. Figure 1
shows the tracking of the first component of state xk for the
above example under the RPL, RLSFF controllers and the
command governor-based MRAC controller proposed in [18]
without regret guarantees. For all we initialize the estimate by
θ0=

[
5.00 −1.00

]⊤
, take ε = 1 and start the simulation at

x0 =
[
0.2 0.2

]⊤
. For RLSFF, we take λ2 = 0.99, as lower

values led to conditioning problems. For the controller of
[18] we used the same parameters as in [18, Example 1] and
a tuned saturation value of 1.5 for the command governor
update for best results. The superior performance of RPL is
evident from Fig. 1, despite a less stringent PE condition. The
top figure shows the tracking performance of the controllers,
and the bottom, the regret for the quadratic costs, which
in this case is RT (u) :=

∑T−1
k=0 ∥ek∥2, since by definition

x̄0 = x0 and therefore e⋆k = 0 for all k ∈ N.

VI. CONCLUSION

Two recursive learning algorithms are considered for the
nonlinear adaptive control problem with matched uncertainty
in the context of regret minimization. We show that both the
recursive least squares with forgetting factor and the novel
recursive proximal learning algorithm are asymptotically sta-
ble and achieve finite regret scaling with the time required to
achieve persistence of excitation. Possible extensions include
the consideration of inexact basis matrices, bounded, non-
stochastic noise, and goal-oriented controllers that instead of
the estimation cost optimize over the objective cost directly.
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