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Abstract— The paper proposes an alternative methodology
to build Linear Fractional Transformation (LFT) models of
uncertain aeroelastic systems described by Fluid-Structure
Interaction (FSI) solvers with the aim of studying flutter with
the µ analysis technique from robust control. Two main issues
can be identified for the fulfillment of this task. On the one
hand, there is the difficult reconciliation between sources of
physical uncertainty (well distinguishable in the original high-
order system) and the abstracted uncertainties (defined in the
reduced-order size representation used for the robust analyses).
On the other hand, the large size of the resulting LFT model
can prevent the application of robust analysis techniques. The
solution proposed here consists of a symbolic LFT algorithm
applied at FSI solver level, which guarantees the connection
between the physical uncertainties and the parameters captured
by the LFT. It also alleviates the final size of the LFT by
exploiting the modal-oriented approach taken in introducing
the uncertainties. Application of the framework using an
unconventional aircraft layout as case study is finally discussed.

I. INTRODUCTION

Aeroelasticity studies the interaction between elastic and
aerodynamic forces on a flexible structure. Among the phe-
nomena arising due to this coupling, particulary relevant is
flutter, a self-excited dynamic instability which can have
serious consequences on the safe operation of the system
and thus might impact the whole system design [1]. The
common practice in the field is to characterize the onset
and mechanisms underlying flutter by means of dedicated
fluid-structure interaction (FSI) solvers. They can provide
different levels of fidelity in the description of the flutter
problem, but are less efficient in coping with the analysis
of systems subject to uncertainties. In fact, while they have
the advantage of capturing directly the physical uncertainty,
the analyses can only be applied to a defined parameter
combination, and due to their computational cost, it is
typically only possible to consider a few selected cases.

This is an important aspect, since one of the main issues
in flutter analysis originates from the sensitivity of this
instability to modeling assumptions and to variations in the
nominal values of the parameters [2]. For this reason the
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community has looked into possible strategies to systemati-
cally take into account the effect of uncertainties [3]. Among
the proposed approaches there is the so-called robust flutter
analysis, which aims to quantify the gap between nominal
predictions and the worst-case scenario when uncertainties
are considered. It builds on techniques from the robust
control community, namely Linear Fractional Transforma-
tion (LFT) representations and µ analysis [4]. Foundational
contributions are those from [5] and [6], which provided an
end-to-end process, from robust modeling to analysis, and
demonstrated the validity of the approach. Complementing
these works, reference [7] considered in more detail the
LFT model development path for flutter problems, and
investigated the effect of different modeling options, with
particular focus on aerodynamics, on the results.

This article takes the cue from [7] and addresses some
of the issues arising when the LFT-µ framework is applied
to aeroelastic models of generic complexity. The main aim
is to propose a modeling approach which allows to obtain
LFT models where the uncertainties have a direct connection
with the physical parameters defined in the high-fidelity FSI
solver. It is noted that the reconciliation between physical
sources of uncertainty in the FSI model and the uncertain
parameters in the LFT model is a paramount aspect for
an efficient application of µ analysis, and yet this has not
received full consideration by the aeronautic community. For
example, in [5], [6] the uncertainties in the structural opera-
tors consisted of modal quantities (e.g. natural frequencies),
whereas [8], [9] considered physical sources of uncertainties
but the examples were restricted to a small number, and
specific types, of parameters.

The layout of the paper is as follows. Sec. II provides the
essential theoretical background, while Sec. III presents the
main contribution of the work. This consists of a symbolic
LFT approach aimed at tackling the aforementioned issues
by performing the required LFT modeling steps embedded
in the FSI solver. The effectiveness of the approach is
demonstrated in Sec. IV on a joined-wing aircraft of the
Prandtlplane type [10], [11], which is known to exhibit
a complex aeroelastic behaviour and hence would highly
benefit from tools which allow a better understanding of the
aeroelastic properties.

II. BACKGROUND

This section presents a cursory overview of the main tools
used in the work. The interested reader is referred to [4] for
the robust control and [1] for the fluid-structure interaction
parts.



A. Robust control techniques: LFT and µ

The LFT paradigm provides a framework for analysis
of uncertain systems by representing them as a feedback
interconnection between a known (linear) and an unknown
(uncertain) part. Let M be a complex matrix partitioned as
M = [M11 M12; M21 M22] and ∆ a generic uncertainty
set. A particular instance, relevant to the work presented
here, is the structured uncertainty set gathering parametric
and dynamic uncertainties:

∆ = diag(δiIdi , δjIdj ,∆Dk
)

i = 1, ..., nR; j = 1, ..., nC ; k = 1, ..., nD;
(1)

where the uncertainties associated to nR real scalars, nC
complex scalars, and nD full complex blocks are listed in
diagonal format (and where I denotes the identity matrix
of dimension equal to the number of repetitions of the
corresponding parameter).

The upper LFT with respect to ∆ can be defined as:

Fu(M,∆) = M22 +M21∆(I −M11∆)−1M12 (2)

A crucial feature apparent in (2) is that the LFT is well posed
if and only if the inverse of (I −M11∆) exists. Otherwise,
Fu(M,∆) is said to be singular. Typically ∆ is normalized
by scaling of M such that Fu(M, 0) coincides with the
nominal system (i.e. uncertain parameters at their nominal
values) and the bound σ̄(∆) ≤ 1 holds for uncertainties
taking values in the allowed interval. The process of building
up LFT models can be efficiently performed by means of
available toolboxes (as the LFR toolbox [12] employed here)
which directly provide the partitioned matrix M for a given
set ∆.

Given the LFT representation of an uncertain linear sys-
tem, the µ analysis technique allows to quantify robustness
in the face of structured uncertainties. The definition follows:

µ∆(M) =
1

min
∆
{κ : det(I − κM∆) = 0; σ̄(∆) ≤ 1}

(3)

and µ∆(M) = 0 if the minimization problem has no
solution. The result of the robust stability (RS) test can then
be interpreted as follows: if µ∆(M) ≤ 1 then there is no
perturbation matrix inside the allowable set ∆ such that the
determinant condition is satisfied, that is, Fu(M,∆) is well
posed and thus the associated plant is robust stable within
the range of uncertainties considered. On the contrary, if
µ∆(M) ≥ 1 a candidate (i.e. belonging to the allowed set)
perturbation matrix exists that violates the well-posedness of
the LFT, i.e. the underlying uncertain system is not robust
stable.

It is known that µ∆(M) is in general an NP-hard problem,
thus all µ algorithms work by searching for upper µUB
and lower µLB bounds, with the latter also providing the
associated matrix ∆cr satisfying the determinant condition.
All the results presented in this work use the algorithms
as implemented in the Robust Control Toolbox (RCT) in
MATLAB R2015b [13].

B. FSI solver

A general expression for the equation governing the inter-
action between elastic and aerodynamic forces can be written
in frequency-domain as:[

−ω2M̄s + iωC̄s + K̄s − q∞Qhh(iω)
]
η = 0 (4)

where q∞ = 1
2ρ∞V

2 is the dynamic pressure, ρ∞ is the
air density, V is the speed, ω the frequency, M̄s, C̄s, K̄s

∈ Rns×ns represent respectively the generalized structural
mass, damping and stiffness matrices, Qhh is the generalized
aerodynamic force (GAF) coefficient matrix, and η the gener-
alized coordinates vector. The system exhibits self-sustained
oscillations when Eq. (4) has a solution for non-trivial η,
and generally the main objective in flutter analysis is the
determination of the smallest speed such that this occurs,
i.e. the flutter speed Vf .

The generalized structural matrices are obtained with
modal truncation from their physical counterparts Ms, Cs,
Ks ∈ RNs×Ns , with Ns indicating the number of structural
degrees of freedom, as:

M̄s = ΦTMsΦ

C̄s = ΦTCsΦ

K̄s = ΦTKsΦ

(5)

where Φ ∈ RNs×ns is the matrix of ns normal modes. This
matrix is obtained from the solution of the classic eigenvalue-
eigenvector free vibration problem and, thus, depends on Ms

and Ks. For flutter analysis purposes, it typically holds ns �
Ns [1]. The FSI solver adopted in this work, named CSHELL
and developed by the authors of references [14], [15], provide
the operators in (4)-(5). Specifically, the computational solid
dynamics module relies on the Finite Element (FE) approach,
while for the aerodynamic one the Doublet Lattice Method
(DLM) [16] is used. A brief overview of the main features
is provided next.

The FE solver is based on beam elements modelled
according to Euler-Bernoulli theory [17]. The mass and
stiffness matrices are first constructed at element’s level,
where the various contributors are added (e.g. bending and
axial terms for the stiffness matrix). Note that at this stage
the operators are a function of physical quantities (e.g.
moments of inertia, masses, thicknesses). Then, the (global)
FE operators are built up through the well-known procedure
of matrix assembly [17]. Damping is typically modelled
directly in terms of the generalized matrix C̄s, which can
be easily obtained for example from the damping ratios
associated with each structural mode and the corresponding
natural frequencies.

As for the aerodynamic operator, the DLM solver pro-
vides, at a fixed reduced frequency k = ωLr

V (with Lr
reference length), the transfer matrix Qhh from generalized
displacements to generalized aerodynamic forces. The fun-
dament for its derivation is the singular integral equation
derived from lifting surface theory for harmonic motion
[14]. The numerical solution provides the generic coefficient
of the GAF matrix Qhh,ij , representing the aerodynamic



force generated by the structural mode j and projected
onto mode i. It is important to remark that, since the GAF
represents a transfer matrix between generalized quantities,
its computation depends on the structural modes Φ (which
are provided as input to the DLM code).

LFT models of uncertain aeroelastic systems can be de-
rived starting from the description provided in the frequency-
domain (4) or in state-space, as detailed in [7] where features
of both approaches were studied. The latter one was adopted
in this work (without loss of generality as commented later)
for consistency with the CSHELL flutter solver. To set up
a linear state-space formulation of Eq. (4), an analytical
dependency on k of Qhh is needed. This is generally
achieved employing Rational Function Approximation (RFA)
strategies. In this work Roger method [18] is used, and the
interested reader is referred to [7] for further discussions
about different aerodynamic approximations and their impact
on robust flutter analysis.

The resulting state-space equation has the following short-
hand expression:[

ẋs
ẋa

]
=

[
χss χsa
χas χaa

] [
xs
xa

]
(6)

where the vector of aerodynamic states xa (due to the RFA)
and structural states xs = [η; η̇] have been introduced, and
the state-matrix has been partitioned as:

χss =

[
0 I

−M−1K −M−1C

]
; χas =

[
0 I

]
;

χsa =

[
0 ... 0

q∞M
−1A3 ... q∞M

−1ANQ

]
;

χaa =

 −
V
Lr
γ1Ins

0 0

0
. . . 0

0 0 − V
Lr
γNl−2Ins

 ;

(7)
with M = M̄s − 1

2ρ∞L
2
rA2, C = C̄s − 1

2ρ∞LrV A1, and
K = K̄s− 1

2ρ∞V
2A0 are respectively the aeroelastic inertial,

damping, and stiffness matrices, and the matrices Ai with
i = 0, ..., NQ derive from the RFA and are found by applying
a linear least-square fitting to Qhh on a selected range of
reduced frequencies [18], [7].

III. LFT MODELING EMBEDDED IN THE FSI SOLVER

A. State of practice and current limitations

The LFT modeling of high-order systems is commonly
accomplished via numerical approaches. They consist of
evaluating the high-fidelity model at scattered values of the
parameters in the uncertainty set (and possibly linearizing it,
if nonlinear), followed by a model-order reduction to obtain
lower-size representations. The family of systems is then
interpolated [19] so that a polynomial description is obtained.
Finally, algorithms which allow polynomial expressions to be
recast into LFTs [12] are applied.

This approach has been applied to aeroelastic systems in
the last two decades [20], [8], [9], but some drawbacks can
be observed in relation to: accuracy of the LFT; uncertainty

descriptions allowed; and computational efficiency. Since it
relies on a polynomial interpolation, the accuracy of the
numerical LFT depends on the uncertainty set considered.
This feature can be exemplified considering Fig. 1, where
the subdivision in N stations of a notional wing is depicted.
The stations can be interpreted as the areas of the wing where
perturbations in the values of the parameters are expected,
and thus a better understanding of their influence on flutter is
valued. In view of this, it is natural to aim at considering a
description characterized by large N (i.e. refined stations’
grid) and localized parameters (e.g. a small concentrated
mass δMi

in a wing station).

Fig. 1. Schematic uncertainty description of a wing.

An uncertainty description akin to that in Fig. 1 might be
challenging when the numerical LFT approach is pursued.
The selection of a large number of uncertain parameters as
well as of very localized uncertainties (e.g. small nominal
values and/or uncertainty ranges) might indeed hamper the
effectiveness of the LFT modeling, but also of the µ analysis,
algorithms. The ensuing interpolation can indeed: be inaccu-
rate (e.g. small variations in localized uncertainties might not
be well captured; or a large number of uncertainties might
force to consider a coarse parametric grid); lead to intractable
LFTs (due to the ∆-block size); or be computationally inten-
sive (due to the large number of samples to be computed with
the FSI solver). This is indirectly confirmed by examples
from the literature [9], [20], [8], where a maximum of three
parameters were considered, all representing large quantities
(e.g. extreme filling levels of the fuel tanks).

Another possible issue was discussed in [20], where it was
shown that the simple but widespread (especially for flutter
analysis) modal truncation (5) could not be employed as
reduction technique because of modal consistency problems
among the reduced models. Consistency is highly desirable
for the accuracy of the resulting interpolation, thus more
sophisticated model reduction strategies were proposed in
[8]. As for the computational aspects, note that the numerical
LFT approach must be performed anew for any change in
the model, and this could be costly depending on the density
of the parametric grid.

The aforementioned aspects prompted the research for
alternative LFT modeling strategies. In [5] (a foundational
contribution to the µ-flutter topic) the uncertainty description
is done by introducing a posteriori parametric uncertainties
in the generalized structural matrices (5) and in the aerody-
namic RFA matrices. This is practical, but the reconciliation
between physical source of uncertainties and LFT parameters



is more difficult. A similar approach was taken in [6] for
the structural operators, whereas a physical description of
the aerodynamic uncertainties directly applied to the GAF
matrix was proposed (but limited to frequency-domain (as it
is Eq. 4) descriptions).

It is thus considered of interest the development of an
alternative LFT formulation which aims at addressing the re-
strictions and limitations noted above, with particular empha-
sis on structural parametric uncertainties. For aerodynamic
uncertainties alone, the unifying solution from [7] retains
already some of the desired features discussed here. Briefly,
it allows uncertainties in the original GAF matrix Qhh to
be introduced even when a state-space formulation (as it is
Eq. 6) is employed for the nominal system by exploiting a
particular application of the concept of unmodelled dynam-
ics [4].

B. A symbolic LFT modeling algorithm

The main idea behind the proposed approach is to perform
the LFT modeling task at FSI solver level. By this, it is
meant that the uncertain parameters are introduced in the
structural solver when the physical operators are assembled.
The main steps entailed by this symbolic modeling algorithm
are presented in the flow chart of Fig. 2.

Structural 
solver

Symbolic uncertain 
parameters

SYMBOLIC PHYSICAL 
MATRICES

SYMBOLIC MODAL 
MATRICES

MODAL LFTs

Example: LOCAL MASS MATRIX ( BEAM j )

𝑳𝒋, 𝒎𝒋, 𝑰𝒛𝒋, 𝑰𝒚𝒋 are potential physical uncertainties

AEROELASTIC LFT

Step-S1

Step-S2 Step-S3 Step-S4

Step-S5

STRUCTURAL 
MODES Aero solver

Fig. 2. Symbolic LFT-FSI modeling algorithm’s chart.

As an example, let us consider the structural mass matrix
MBj of the beam j:

MBj =

[
Mtt Mtr

Mtr Mrr

] Mtt = F1(Lj ,mj , Izj , Iyj )

Mtr = F2(Lj ,mj , Izj , Iyj )

Mrr = F3(Lj ,mj , Izj , Iyj )
(8)

where the subscripts t and r refer to translational and
rotational DOFs. The structural parameters Lj , mj , Izj , and
Iyj are respectively the beam length, mass and moments of
inertia, while F1, F2, and F3 are polynomial matrix functions
of these properties. When some of these parameters are
considered uncertain and thus the functions are not evaluated
at the corresponding nominal values, the local physical
operator MBj

is a matrix function of the uncertainties. If
the parameters are defined as symbolic objects (Step-S1),
then MBj (∆(δj−•)) (where • =L,m, Iz, Iy) is a symbolic
operator that will contribute to the structural mass matrix Ms

(Step-S2). This step is general and can be applied to other
contributions to the mass operator (e.g. concentrated masses)
and to other operators (e.g. stiffness). Crucially, this setting
does not pose in principle any restriction on the number and
type of parameters δj−• that can be captured (in the example
discussed they were generically represented by the structural
parameters in (8)).

Once the symbolic physical matrices are obtained, a modal
truncation is performed (Step-S3):

M̄s(∆) = ΦTMs(∆)Φ

C̄s(∆) = ΦTCs(∆)Φ

K̄s(∆) = ΦTKs(∆)Φ

(9)

where ∆ indicates the uncertainty set gathering the symbolic
parameters and the selection of the modal matrix Φ will be
discussed in the next subsection. Given the symbolic modal
matrices M̄s, C̄s, and K̄s, it is possible to apply standard
LFT algorithms [12] which allow polynomial matrices to
be recast into the formalism of Eq. (2). In this way, the
modal LFTs Fu(M̄s,∆), Fu(C̄s,∆), Fu(K̄s,∆) are ob-
tained (Step-S4). The final step consists in building up the
aeroelastic LFT (Step-S5). This can be done by substituting
the modal LFTs in the corresponding terms of the state-space
model (7), possibly in addition to aerodynamic uncertainties
if these are considered (details on Step-S5 can be found in
[7], which focused on this task). The size of the aeroelastic
LFT can be further reduced in this final stage if simplifica-
tions in the occurrence of the uncertainties are made (e.g. by
means of the 1-d order reduction technique [12]).

An important feature of the modeling algorithm is that the
LFT transformation is applied to the modal operators (Step
S3) by exploiting the structure of the aeroelastic equation.
This aspect is referred here as modal-oriented LFT modeling,
to stress the distinction with common numerical approaches
where the transformation to LFT is applied directly to the
state-matrix [20], [8]. Thanks to this it is possible to build
up LFTs where only nδ structural modes (with nδ ≤ ns)
feature uncertainties. This can be regarded as an extension
of what is typically done in nominal flutter analysis, where
only the modes with lowest frequencies are retained in the
final model. By identifying the minimum number of modes
in which uncertainties have to be introduced for an accurate
robust flutter analysis, it would then be possible to obtain
lower size aeroelastic LFTs for more efficient application of
µ. Moreover, the possibility to generate different LFTs, each
having a different nδ , might help to gain understanding in
the mechanisms prompting the instability.

A delicate aspect of this formulation is the handling of the
modal matrix Φ. First, it should be noted that many of the
existing approaches assume for the robust analyses a fixed
modal base (typically Φ0 corresponding to the nominal sys-
tem) [5], [6], [9]. This is an approximation and potentially a
source of error [21] in the predictions since Φ is altered when
there are structural uncertainties in ∆, with consequences on
both the structural and aerodynamic operators.

Note that, when the operation in Eq. (9) is performed with



a given Φ (e.g. Φ0) , the obtained symbolic modal matrices
are generally full. This is a source of error related to the
fixed modal base-assumption, because due to eigenvectors
properties, the modal mass and stiffness matrices are actually
diagonal. By exploiting the embedding of the LFT modeling
in the FSI solver and the adoption of a modal-oriented
approach, this inaccuracy can be eliminated a priori by
retaining only the diagonal terms (Step S-3 in Fig. 2):

M̄s(∆) ≡ diag(ΦTMs(∆)Φ)

C̄s(∆) ≡ diag(ΦTCs(∆)Φ)

K̄s(∆) ≡ diag(ΦTKs(∆)Φ)

(10)

While this modification of Step-S3 allows to mitigate the
error due to the modes and confine it only to the diagonal
terms of the symbolic modal matrices, the fixed modal base
assumption can still lead to wrong predictions. To this aim,
an iterative algorithm is formulated with the aim to determine
(if it exists) a worst-case perturbation ∆̂cr which makes the
system flutter at a user-provided Vµ. The key feature in order
to achieve accurate results consists in updating the modal
matrix used in Step-S3 with the one corresponding to the
perturbation matrix ∆cr computed at the previous iteration
step. A similar iterative scheme was proposed also in [21].

The algorithm, see Fig. 3, requires as input the symbolic
matrices Ms(∆), Cs(∆), and Ks(∆) from Step-S2, which
are held fixed throughout the iterations, and the initial modal
base (a standard option is the nominal modal matrix Φ0).
This initialization allows to build the aeroelastic LFT (Step-
A1) and µ analysis can thus be performed (Step-A2). The
perturbation matrix ∆cr is extracted from the highest peak of
the lower bound µLB , and based on it the associated flutter
speed Vfµ can be calculated using the FSI solver (Step-A3).
If the difference between Vfµ and the expected perturbed
flutter speed Vµ is greater than a given tolerance εV , the
modal base is updated with the matrix Φcr corresponding to
∆cr (Step-A4) and is used to re-initialize Step-A1. This will
entail executing the symbolic LFT algorithm from Step-S3
(Fig. 2) and updating the aerodynamic operator based on Φcr

(recall that perturbations on Φ have an impact on Qhh).
It is stressed the difference between ∆cr and ∆̂cr. The

former is provided by the µ-lower bound computation at a
generic iteration and, due to the modal base error, might not
correspond to a flutter speed Vfµ equal to Vµ. The latter
instead determines a flutter speed Vfµ ≈ Vµ within given
tolerance and thus is the sought worst-case perturbation.

|𝑽𝝁-𝑽𝒇𝝁| < e𝑽NO

μ analysis 
Perturbation
from

𝑽𝒇𝝁: flutter speed 

based on

YES

Step-A1

Step-A2
Step-A3

Aero solver

Structural solver

Step-S3

Step-S4

Step-A0 (Step-S2)

Step-A4

Step-S5

AEROELASTIC LFT

Fig. 3. Iterative scheme block diagram.

To interpret the proposed analysis algorithm from an LFT
perspective, let us indicate the aeroelastic LFT available at
Step-S5 of the modelling algorithm as:

Fu(M,∆) = M22(∆)+M21(∆)∆(I−M11(∆)∆)−1M12(∆)
(11)

Eq. (11) reflects the fact that it is not possible to express
the effect of the uncertainties on Φ in the standard linear
fractional fashion (2). Crucially, the ∆ block affects here
also the partitioned matrix M . The iterative scheme proceeds
then by updating M with the value of ∆ given at the last
iteration, that is Fu(M,∆) is approximated as

M22(∆cr) +M21(∆cr)∆(I −M11(∆cr)∆)−1M12(∆cr)
(12)

where in the first iteration ∆cr = 0 (corresponding to the
nominal modal matrix Φ0) is employed.

IV. APPLICATION EXAMPLE

The modeling and analysis framework proposed in Sec. III
is applied to the Joined-wing aircraft configuration known as
PrandtlPlane 250 (PrP250), a 250 passenger mid-long range
aircraft with a Maximum Take Off Weight of 230 tons (see
Fig. 4) studied in [10] and other references therein.

Fig. 4. PrandtlPlane 250-seat concept. See [10].

A. Nominal flutter and uncertainty description

The flutter behaviour of the PrP250 configuration without
uncertainties is investigated first. The analyses are carried
out with CSHELL, and then validated with the commercial
software NASTRAN [22], considering only the first 10
structural modes (ns=10). Results of the flutter analysis are
reported in Fig. 5, which shows the imaginary and real parts
of the poles of the first five modes as the speed is increased.
It is seen on the damping plot (right) that the first mode
becomes unstable (indicated in the figure as flutter point)
at approximately Vf = 297ms due to coupling of the first
two bending modes before flutter occurs (see coalescence of
frequencies in the left plot). It is interesting to add that further
studies have considered the effect of an elastic fuselage.
Starting from the model in [15], where only its inertial
contribution was captured, it has been shown [23] that this
additional flexibility in the system highly affects mode III,
which is responsible for the onset of flutter at a smaller speed.

Uncertainties in the stiffness and mass parameters are
then considered (structural damping was assumed null in
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Fig. 5. Nominal flutter analysis of the PrP250.

this case study). The FE model has 54 beam elements, and
27 stations are defined by pairing consecutive beams. The
stations are shown and numbered on the aircraft right wing
sketch given in Fig. 6. In each station the bending stiffness
parameter EIz is considered uncertain, thus the stiffness
uncertainty description consists of 27 uncertainties (i.e. δEIzj
with j=1,...,27), each allowed to vary within 10% of its
nominal value.

1
11

10

Front Wing:
 1< j<10

16

Vertical Joint:
11< j<16

Rear Wing:
7< j<24

17

24

25

27

Fin:
25< j<27

EIzj

a

Fig. 6. Stiffness parameters uncertainty description.

As for the mass, the 36 fuel masses mf gathered in the
model, and visualized in Fig. 7, are all assumed uncertain
(i.e. δmfk

with k=1,...,36) and allowed to vary within 10%
of their nominal values.

1

36

30

21

20 10

Mfk

Front Wing:
 1< k<20

Rear Wing:
 21< k<36

Fig. 7. Mass parameters uncertainty description.

Based on this description, consisting of a total of 63
parameters, the symbolic LFT modeling algorithm is applied.
The ∆ block of the resulting aeroelastic LFT is:

∆ = diag(δEIz1 I10, ..., δEIz27 I10, δmf1
I10, ..., δmf36

I10)
(13)

and consists of 630 real parameters. Despite the adoption of
LFT order reduction techniques [12], the size of the LFT is
such that it cannot be used for µ calculation at this stage.

The very high dimension is a result of: the large number of
real parameters captured in the LFT (63), and the presence
of uncertainties in all the ns structural modes (10).

In order to lower the size, firstly a reduced number of
parameters is selected based on their contribution to the
coefficients of the modal matrices (this can be done in Step-
S4 because the modal matrices are available as polynomials
in the uncertainties). As a result of this polynomial reduction
process, the number of parameters in the LFTs is reduced
to 20 for the stiffness and 25 for the mass. Secondly, it
is possible to take advantage of the possibility to introduce
uncertainties only in a subset of nδ structural modes. Since
the nominal analyses pointed out that flutter is prompted
by the coalescence of the first and second bending modes,
a small number of modes nδ ≤ ns might be sufficient
to capture the effect of the uncertainties on flutter. This
assumption was confirmed by carrying out analyses for
different values of nδ where a convergence of the predictions
for nδ ≥ 5 was observed. Thus, nδ = 5 is considered and a
reduced-order LFT featuring a total size of 225 (20 · 5 from
the stiffness and 25 · 5 from the mass) is obtained.

B. Robust flutter analysis

The analysis algorithm in Fig. 3 is finally applied. This
will detect a worst-case perturbation ∆̂cr that makes the
aeroelastic system flutter at the selected subcritical speed Vµ.
For the present case, Vµ = 285ms is chosen considering that
from the nominal analysis it holds Vf = 297ms . Fig. 8 shows
in the main plot only the upper (µUB-UB) and lower (µLB-
LB) bounds corresponding to the first iteration (ITER1) of
the algorithm, while in the inset the different iterations for
the low frequency peak are given. Note that two peaks are
clearly observed, a lower frequency one, taking place at
approximately ω1=7.2 rads and associated to the coalesced
modes I-II (responsible for the flutter observed in nominal
conditions), and a higher frequency one (at ω2=13.2 rads ). As
prescribed by the algorithm, the perturbation matrix extracted
from the highest peak of the lower bound is used, and
hence the instability related to the 1st-2nd modes flutter will
be studied here. This choice is without loss of generality
because the same procedure could be applied to another point
of the frequency grid by simply carrying out the iterations
with respect to the perturbation matrix associated with it.
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Fig. 8. µ-bounds at different iterations.



In the inset of Fig. 8 the upper bounds at all the other
analysis algorithm’s iterations (ITER#) are reported. For
clarity, the lower bounds are not plotted since the relative
gap between bounds for each iteration is similar to the one
at ITER1. Tab. I reports the flutter speed Vfµ (calculated
by CSHELL) at each iteration and the norm of the critical
perturbation matrix. The algorithm achieves in 4 iterations
a value of Vfµ=285.2ms which is within 0.15% of the
selected Vµ=285ms . At each iteration #, the magnitude of
∆cr
ITER# increases (this was already noticeable from Fig. 8

since smaller µUB indicates larger norm of the perturbation
matrix). Since σ̄(∆̂cr) = σ̄(∆cr

ITER4) = 1.47 > 1, it can be
concluded that the joined-wing is guaranteed to be robustly
stable at V =285ms in the face of the allowed modeling
uncertainties.

TABLE I
FLUTTER SPEED AND CORRESPONDING PERTURBATION MATRIX’S NORM

AT EACH ITERATION.

ITER Vfµ
m
s

σ̄(∆cr)

1 288.4 0.98
2 287.4 1.23
3 285.9 1.41
4 285.24 1.47

It is also important to consider the frequency content of
the information provided by µ, which in this case showed the
presence of two distinct peaks. To interpret this, recall that
the nominal flutter analyses only detected the presence of
the 1st-2nd modes flutter, while it was necessary to augment
the model with an elastic fuselage [23] (recall the previous
discussion on this point) to find that the higher-frequency
mode III would also become critical for flutter. As seen in
Fig. 8, robust analysis anticipates this for the present model
(which does not include an elastic fuselage) when variations
of particular stiffness and mass parameters are allowed in the
system. Indeed, the higher frequency peak in the plot occurs
at a frequency very close to that of mode III in Fig. 5.

V. CONCLUSIONS

The main contribution of the paper is an integrated LFT
modeling and µ analysis strategy to perform robust flutter
analysis of high-order uncertainty aeroelastic systems. The
main advantages of this formulation are: the uncertainties
are defined in the FSI solver and thus have a clear physical
meaning; a greater flexibility in the parameters’ selection
compared to interpolation-based LFTs.

The key idea to achieve this is to perform the LFT
modeling step embedded in the FSI solver, leading to an
LFT-FSI symbolic approach. A possible issue is that the
dependence of the modal matrix on the uncertainties is not
captured explicitly, and thus an iterative analysis algorithm,
which updates the matrix based on the perturbation matrix
predicted by µ, is proposed. Given a nominally stable speed,
this framework provides a worst-case perturbation matrix
provoking the loss of stability in the perturbed system, and
thus allows robustness of the system in the operational

range of the aircraft to be established. Application to an
unconventional aircraft configuration showcases the potential
of the framework and points out its capability to predict
instability mechanisms not detected with nominal analyses.
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