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Abstract

This paper develops a method for data-driven stabilization of continuous-time linear time-invariant systems with theoretical guar-
antees and no need for signal derivatives. The framework is based on linear matrix inequalities (LMIs) and illustrated in the
state-feedback and single-input single-output output-feedback scenarios. Similar to discrete-time approaches, we rely solely on
input and state/output measurements. In particular, we avoid differentiation by employing low-pass filters of the measured signals
that, rather than approximating the derivatives, reconstruct a non-minimal realization of the plant. With access to the filter states
and their derivatives, we can solve LMIs derived from sample batches of the available signals to compute a dynamic controller that
stabilizes the plant. The effectiveness of the approach is showcased via numerical examples.
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1. Introduction

Over the past decades, the paradigm of data-driven learn-
ing has gained increasing attention in the control community.
This interest can be traced back to areas such as system identi-
fication (Ljung, 1999) and adaptive control (Ioannou and Sun,
2012), while the recent trends mainly focus on reinforcement
learning (Sutton and Barto, 2018). A common theme across
these approaches is the shift from relying on precise models
to leveraging the information contained in the collected data.
Recently, the dominant paradigm in data-driven control has be-
come to compute controllers directly from data using linear ma-
trix inequalities (LMIs) or other optimization problems, with-
out even requiring an intermediate identification step (De Per-
sis and Tesi, 2020). In this paper, we focus on LMI-based
methods for the stabilization of continuous-time linear time-
invariant systems.

Fundamental contributions to data-driven control of discrete-
time systems include (De Persis and Tesi, 2020) and
(Van Waarde et al., 2020a), which introduced two distinct data-
based LMI formulations for state-feedback stabilization. These
methodologies have also been used to address the stabilization
of bilinear systems (Bisoffi et al., 2020), linear time-varying
systems (Nortmann and Mylvaganam, 2020), and the linear
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quadratic regulator problem (De Persis and Tesi, 2020), also
accounting for the effects of noise (De Persis and Tesi, 2021;
Dörfler et al., 2023). Furthermore, (De Persis and Tesi, 2020)
addressed also the case of output-feedback control. The inte-
gration of partial model knowledge into these approaches was
explored in (Berberich et al., 2022). In this context, necessary
and sufficient conditions for data informativity have been thor-
oughly investigated (Van Waarde et al., 2020b).

In the continuous-time scenario, the discrete-time state-
feedback stabilization paradigm can be recovered via suitable
sampling techniques. However, this comes at the cost of re-
quiring samples of the state derivatives (De Persis and Tesi,
2020), causing robustness issues in the presence of noise. In
(Berberich et al., 2021), LMIs inspired by (Van Waarde et al.,
2020a) were derived for the design of a stabilizing gain with
non-periodic sampling and noisy state-derivative estimates.
Similarly, derivative estimates were employed in (Miller and
Sznaier, 2022), which proposed quadratic matrix inequalities
for stabilizing linear parameter-varying systems in both discrete
and continuous time. Recent contributions in continuous time
include the study of how sampling impacts data informativity
(Eising and Cortés, 2025) and the stabilization of switched and
constrained systems (Bianchi et al., 2025).

To avoid differentiation in the state-feedback case, (De Persis
et al., 2023) employed integrals of the available signals, (Rapis-
arda et al., 2023) adopted orthogonal polynomial bases, while
(Ohta and Rapisarda, 2024) proposed sampling with more gen-
eral linear functionals. To the best of the authors’ knowledge,
no other strategy in the continuous-time literature fully removes
the need for state derivatives. On the other hand, no output-
feedback approach has been developed so far in this setting,
where the sensitivity to noise is even more pronounced due to
the need for multiple differentiations.



This paper proposes a data-driven stabilization framework
for continuous-time systems that eliminates the need for sig-
nal derivatives. The approach is first presented in the state-
feedback scenario and then extended with minor modifications
to the single-input single-output (SISO) output-feedback case.
Instead of using derivative approximations or the methods pro-
posed in (De Persis et al., 2023; Rapisarda et al., 2023; Ohta
and Rapisarda, 2024), we define a non-minimal realization of
the plant, inspired by adaptive identification (Anderson, 1974)
and adaptive observer design (Narendra and Annaswamy, 1989,
Ch. 4), and present it here in a state-space setting. Specifically,
we process the input and state/output signals with low-pass fil-
ters that are shown to converge exponentially to an augmented
system representation. Thus, rather than being used as a signal
processing technique, the filters represent an observer of the
non-minimal realization. Since both the state and the derivative
of the filters are accessible, we employ LMIs similar to those in
(De Persis and Tesi, 2020) to compute the gains of a dynamic,
filter-based, stabilizing controller. Feasibility of the LMIs is
ensured under suitable excitation conditions, and closed-loop
stability is guaranteed regardless of the initial filter transient.
Numerical examples validate the effectiveness of the approach.

The paper is organized as follows. In Section 2, we state the
design problem and introduce LMI-based data-driven control.
In Sections 3 and 4, we provide the algorithms for the state-
feedback and the SISO scenarios. In Section 5, we show the
numerical results. Finally, Section 6 concludes the paper.

Notation: We use N, R, and C to denote the sets of natural,
real, and complex numbers. The identity of dimension j ∈ N is
denoted with I j. Given a symmetric matrix M = M⊤, M ≻ 0
(resp. M ⪰ 0) denotes that it is positive definite (resp. positive
semidefinite). Similarly, ≺ 0 and ⪯ 0 are used for negative
definite and semidefinite matrices.

2. Problem Statement and Preliminaries

Although the next sections will deal with both state and out-
put feedback, for convenience, we illustrate the problem in the
state-feedback scenario. Consider a linear time-invariant sys-
tem of the form

ẋ = Ax + Bu, (1)

where x ∈ Rn is the state, u ∈ Rm is the control input, and A and
B are unknown matrices of appropriate dimensions. For a given
initial condition x(0) and some input sequence u(t), suppose
that the resulting input-state trajectory of (1) has been collected
over an interval [0,T ], with T > 0. More specifically, suppose
that the continuous-time dataset

(u(t), x(t)), ∀t ∈ [0,T ], (2)

is available. We are interested in finding an algorithm that uses
(2) to compute a stabilizing controller for (1), without any prior
knowledge of A and B.

We present some preliminary notions related to the existing
approaches in the literature. To recover the results of data-
driven stabilization of discrete-time systems, algorithms devel-
oped in a continuous-time setting involve collecting a finite

batch of data of u, x, and ẋ with a suitable sampling mecha-
nism (De Persis and Tesi, 2020; Berberich et al., 2021; Miller
and Sznaier, 2022). Given a fixed sampling time Ts B T/N,
with N ∈ N, N ≥ 1, the following batch is obtained:

U B
[
u(0) u(Ts) · · · u((N − 1)Ts)

]
∈ Rm×N

X B
[
x(0) x(Ts) · · · x((N − 1)Ts)

]
∈ Rn×N

Ẋ B
[
ẋ(0) ẋ(Ts) · · · ẋ((N − 1)Ts)

]
∈ Rn×N .

(3)

We introduce a key definition used in this paper.

Definition 1. A data batch of the form (3) is exciting if

rank
[
X
U

]
= n + m. (4)

In the scenario where (A, B) is stabilizable and the rank condi-
tion (4) holds, the data (3) can be used to construct a stabilizing
feedback law for system (1) of the form u = Kx. In particular,
it is possible to make the closed-loop system matrix A + BK
Hurwitz by choosing

K = UQ(XQ)−1, (5)

where Q ∈ RN×n is any solution of the following LMI:ẊQ + Q⊤Ẋ⊤ ≺ 0
XQ = Q⊤X⊤ ≻ 0.

(6)

This result follows mutatis mutandis from the discrete-time
case; see (De Persis and Tesi, 2020, Thms. 2 and 3).

We remark that, in the discrete-time scenario, only the data
X and U are needed to compute K (De Persis and Tesi, 2020).
Instead, the continuous-time framework requires Ẋ, which can-
not be reliably inferred from (2) if the data are corrupted by
noise. Also, even in a noise-free scenario, approximation via
finite differences leads to persistent errors in the dataset.

The direct data-driven control framework proposed in this
paper avoids the need to differentiate signals both in the state-
feedback setting of system (1) and in the case of output feed-
back for SISO systems. Note that, in the second scenario, a
continuous-time algorithm corresponding to one provided in
(De Persis and Tesi, 2020) would involve also higher-order
derivatives of the input and the measured output.

Remark 1. Similar to (Ohta and Rapisarda, 2024), in the fol-
lowing sections, we develop LMIs for the noise-free setting. On
the other hand, if a bound on the noise were known, alternative
LMI formulations could be employed, e.g., based on the matrix
S-lemma (Van Waarde et al., 2020a). Investigating approaches
to robustify the current algorithms is an important question for
future research.

3. Data-Driven Control from Input-State Data

In this section, we are interested in designing a stabilizing
controller for system (1) under the following assumption.
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Assumption 1. The pair (A, B) is controllable.

To avoid the challenge of having to measure ẋ, we propose a
strategy that involves designing a filter of x and u. This filter,
whose state and state derivative are accessible, is not used to
approximate ẋ. Instead, it is employed to reconstruct a non-
minimal realization of the plant (1), whose structure is intro-
duced in the next subsection.

3.1. Non-Minimal System Realization

Consider the following dynamical system, having input u and
output ξ ∈ Rn:

ζ̇ =

[
A B
0 −λIm

]
ζ +

[
0
γIm

]
u

ξ =
1
γ

[
A + λIn B

]
ζ,

(7)

where ζ ∈ Rn+m is the state and λ and γ, with γ , 0, are con-
stant scalar tuning gains. System (7) is obtained by compactly
rewriting the following system:

ζ̇ = −λζ + γ

[
ξ
u

]
ξ =

1
γ

[
A + λIn B

]
ζ,

(8)

which, for λ > 0, acts as a low-pass filter of ξ and u. The
relationship between systems (1) and (7) is provided in the next
lemma, whose proof is given in the Appendix.

Lemma 1. Under Assumption 1, for all λ and all γ , 0, the
controllable and observable subsystem of (7) obeys the same
dynamics of (1), with state ξ ∈ Rn.

In other words, Lemma 1 states that all input-state trajectories
of (1) are input-output trajectories of (7), and vice versa.

It is also useful to recognize the structural property of sys-
tem (7) given in Lemma 2. The proof is in the Appendix.

Lemma 2. Under Assumption 1, for all λ and all γ , 0, the
pair [A B

0 −λIm

]
,

[
0
γIm

] (9)

is controllable.

3.2. Controller Design

The proposed procedure, described in Algorithm 1, is based
on the following key ideas:

• Consider an input-state trajectory (10) of system (1).
Choose gains λ and γ such that, in addition to γ , 0, λ > 0.
By Lemma 1, data (10) can be seen as an input-output tra-
jectory of system (7) with ξ(t) = x(t).

• Since (7) is equivalent to (8), its behavior is simulated with
(11), which is a low-pass filter of the data due to λ > 0 and
can be interpreted as a state observer of (7).

Algorithm 1 Controller Design from Input-State Data
Initialization

Measured dataset:

(u(t), x(t)), ∀t ∈ [0,T ]. (10)

Tuning: λ > 0, γ , 0, Ts = T/N, with N ∈ N, N ≥ 1.
Data Batches Construction

Filter of the data: simulate for t ∈ [0,T ]:

˙̂ζ(t) = −λζ̂(t) + γ
[
x(t)
u(t)

]
. (11)

Initialization: ζ̂(0) = 0.
Sampled data batches:

U B
[
u(0) u(Ts) · · · u((N − 1)Ts)

]
∈ Rm×N

Z B
[
ζ̂(0) ζ̂(Ts) · · · ζ̂((N − 1)Ts)

]
∈ R(n+m)×N

Ż B
[ ˙̂ζ(0) ˙̂ζ(Ts) · · ·

˙̂ζ((N − 1)Ts)
]
∈ R(n+m)×N

E B
[
x(0) e−λTs x(0) · · · e−λ(N−1)Ts x(0)

]
∈ Rn×N .

(12)

Stabilizing Gain Computation
LMI: find Q ∈ RN×(n+m) such that:

(
Ż −
[
γIn
0

]
E
)

Q + Q⊤
(
Ż −
[
γIn
0

]
E
)⊤
≺ 0

ZQ = Q⊤Z⊤ ≻ 0.
(13)

Control gain:
K = UQ(ZQ)−1. (14)

Control Deployment
Control law:

˙̂ζc = −λζ̂c + γ

[
x
u

]
, u = Kζ̂c. (15)

Initialization: ζ̂c(0) ∈ Rn+m arbitrary.

• The simulated non-minimal state ζ̂ and its derivative ˙̂ζ can
be used for a data-driven control strategy that exploits re-
alization (7) to stabilize the original plant (1). However,
since A and B are unknown, ζ̂(0) cannot be chosen to per-
fectly match the trajectories of (8) and (11). Therefore, the
algorithm needs to account for the fact that (11) converges
only asymptotically to a non-minimal realization of (1).

We now make the previous arguments precise. Consider the
interconnection of plant (1) and filter (11), having states (x, ζ̂).
To characterize the filter transient, define the error

ϵ B x −
1
γ

[
A + λIn B

]
ζ̂, (16)

which originates from the fact that we cannot ensure x(0) =
γ−1
[
A + λIn B

]
ζ̂(0). The evolution of ϵ can be computed
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from (1) and (11) as follows:

ϵ̇ = Ax + Bu − γ−1
[
A + In B

] −λζ̂ + γ [xu
]

= −λx + λγ−1
[
A + In B

]
ζ̂ = −λϵ.

(17)

Using the change of coordinates (16), the interconnection of (1)
and (11) can be represented with states (ϵ, ζ̂) as:

ϵ̇ = −λϵ

˙̂ζ =
[
A B
0 −λIm

]
︸       ︷︷       ︸

CF

ζ̂ +

[
0
γIm

]
︸︷︷︸
CG

u +
[
γIn

0

]
︸︷︷︸
CD

ϵ, (18)

where the ζ̂-subsystem is a system with the same structure of
(7) and subject to the perturbation Dϵ, which converges to 0
exponentially.

From (16) and choosing ζ̂(0) = 0, it holds that ϵ(0) = x(0).
Thus, ϵ(t) = e−λt x(0) can be computed for every t ∈ [0,T ]. The
proposed procedure involves collecting N samples of u, ζ̂, ˙̂ζ,
and ϵ as shown in (12)1, then solving LMI (13) and computing
a control gain K from (14). The resulting controller (15) is
a dynamic feedback law that incorporates the filter dynamics.
Note that the state ζ̂c of (15) can be initialized arbitrarily. We
are ready to present the theoretical guarantees for Algorithm 1.

Theorem 1. Consider Algorithm 1 and let Assumption 1 hold.
Then:

1. LMI (13) is feasible if the batch (12) is exciting, i.e.:

rank
[
Z
U

]
= n + 2m. (19)

2. For any solution Q of (13), the gain K computed from (14)
is such that F +GK is Hurwitz. As a consequence, the ori-
gin (x, ζ̂c) = 0 of the closed-loop interconnection of plant
(1) and controller (15) is globally exponentially stable.

Proof: 1): Under Assumption 1, (F,G) is controllable by
Lemma 2. Therefore, there exist matrices P, K satisfying:(F +GK)P + P⊤(F +GK)⊤ ≺ 0

P = P⊤ ≻ 0.
(20)

Given any P, K satisfying (20), condition (19) implies that there
exists a matrix MK such that (De Persis and Tesi, 2020, Thm.
2): [

In+m

K

]
=

[
Z
U

]
MK . (21)

Notice that Ż = FZ +GU + DE from (18). Then, using (21), it
holds that:

F +GK =
[
F G

] [In+m

K

]
=
[
F G

] [Z
U

]
MK

= (Ż − DE)MK .

(22)

1By sampling ˙̂ζ, we intend that we measure the right-hand side of (11). The
same approach is used for the sampled derivatives of the next section.

Combining (20) and (22), we obtain:(Ż − DE)MK P + P⊤M⊤K (Ż − DE)⊤ ≺ 0
P = P⊤ ≻ 0.

(23)

Let Q = MK P and notice that (21) implies that P = ZMK P =
ZQ. Replacing these identities in (23), we obtain (13).

2): Suppose that there exists Q that satisfies (13). Since ZQ
is symmetric and positive definite, Z has full row rank. Also,
Z† B Q(ZQ)−1 is a right inverse of Z. Using Ż = FZ+GU+DE
and the above properties, we have that

F = (Ż − DE −GU)Z†. (24)

Using (14) and (24), we obtain:

F +GK = (Ż − DE −GU)Z† +GUZ† = (Ż − DE)Z†. (25)

Let P = ZQ. Then, the first inequality of (13) reads as:

(Ż − DE)Q(ZQ)−1P + P(ZQ)−1Q⊤(Ż − DE)⊤ ≺ 0, (26)

implying that (Ż − DE)Q(ZQ)−1 = (Ż − DE)Z† = F + GK is
Hurwitz.

To conclude the proof, we compactly rewrite the closed-loop
interconnection of (1) and (15) using (18) and u = Kζ̂c:

ϵ̇ = −λϵ

˙̂ζc = (F +GK)ζ̂c + Dϵ.
(27)

Since F + GK is Hurwitz and λ > 0, global exponential sta-
bility of (27) follows from standard results for cascaded linear
systems. □

Remark 2. Due to space limitations, we do not formally study
how to ensure (19). However, we provide some insights:

• System (7) is controllable by Lemma 2, so (ζ(t), u(t))
is persistently exciting by (Nordström and Sastry, 1987,
Thms. 1 and 2) if the input u(t) is sufficiently rich. Since
ζ̂(t) − ζ(t) → 0 exponentially, for a dataset length T > 0
sufficiently large, there exists µ > 0 such that:∫ T

0

ζ̂(τ)
u(τ)

 ζ̂(τ)
u(τ)

⊤ dτ ⪰ µIn+2m. (28)

• Under sufficient smoothness of the involved signals and
sufficiently small sampling time Ts > 0 (see, e.g., (Eising
and Cortés, 2025, Lemma IV.3)), (28) implies (19).

4. Data-Driven Control from Input-Output Data

To highlight the parallelism with the state-feedback scenario,
we slightly abuse the notation of Section 3 by adopting here
similar symbols. Consider a single-input single-output system
of the form

ẋ = Ax + bu

y = c⊤x,
(29)

where x ∈ Rn is the unmeasured state, of which we only know
the dimension n, u ∈ R is the control input, y ∈ R is the mea-
sured output, and A ∈ Rn×n, b ∈ Rn, and c ∈ Rn are matrices
with unknown entries that satisfy the following assumption.
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Assumption 2. The pair (A, b) is controllable and the pair
(c⊤, A) is observable.

Compared to Section 3, the additional challenge of this scenario
is that only the output y is available instead of the state x. How-
ever, once again, it is possible to introduce a filter of the data
that reconstructs a non-minimal realization of the plant, thus en-
abling the application of data-driven control without measuring
derivatives.

4.1. Non-Minimal System Realization
Define the following dynamical system, having input u and

output η ∈ R:

ζ̇ =

[
Λ + ℓθ⊤1 ℓθ⊤2

0 Λ

]
ζ +

[
0
ℓ

]
u

η =
[
θ⊤1 θ⊤2

]
ζ,

(30)

where ζ ∈ R2n is the state , Λ ∈ Rn×n and ℓ ∈ Rn are constant
tuning gains, and θ1, θ2 ∈ Rn are constant vectors whose val-
ues, unknown for design, will be derived from A, b, c, Λ, and
ℓ to match the input-output behavior of systems (29) and (30).
System (30) is obtained from the following representation, also
used in the literature of adaptive observers (Narendra and An-
naswamy, 1989, Ch. 4):

ζ̇ =

[
Λ 0
0 Λ

]
ζ +

[
ℓ 0
0 ℓ

] [
η
u

]
η =
[
θ⊤1 θ⊤2

]
ζ

(31)

which can be interpreted as a filter of η and u.
In order to extend the properties found in Section 3.1 to the

input-output scenario, vectors θ1 and θ2 can be chosen accord-
ing to the following fundamental result, whose proof is given in
the Appendix.

Lemma 3. Under Assumption 2, for all controllable pairs
(Λ, ℓ) such that Λ has distinct eigenvalues, there exist a full
rank matrix Π ∈ Rn×2n and vectors θ1, θ2 ∈ Rn such that:

Π

[
Λ + ℓθ⊤1 ℓθ⊤2

0 Λ

]
= AΠ, Π

[
0
ℓ

]
= b[

θ⊤1 θ⊤2

]
= c⊤Π.

(32)

In particular, A − Π1ℓc⊤ and Λ are similar, where Π1 is the
matrix given by the first n columns of Π.

The next results are equivalent to Lemmas 1 and 2. The
proofs are given in the Appendix.

Lemma 4. Given the assumptions and matrices Π, θ1, θ2 of
Lemma 3, the controllable and observable subsystem of (30)
obeys the same dynamics of (29), with stateΠζ ∈ Rn and output
η ∈ R.

Lemma 5. Given the assumptions and matrices Π, θ1, θ2 of
Lemma 3, the pair [Λ + ℓθ⊤1 ℓθ⊤2

0 Λ

]
,

[
0
ℓ

] (33)

is controllable.

4.2. Controller Design

The procedure presented in Algorithm 2 follows similar ideas
to those illustrated in the state-feedback scenario.

Given an input-output trajectory (34) of (29), define system
(35), replicating dynamics (31) with η(t) = y(t). In (35), we
choose Λ diagonal with distinct negative diagonal entries and
ℓ with all non-zero entries. As a consequence, Λ is Hurwitz
and thus (35) is a low-pass filter of the input-output data (34).
Also, Λ has distinct eigenvalues and it can be verified with the

Algorithm 2 Controller Design from Input-Output Data
Initialization

Measured dataset:

(u(t), y(t)), ∀t ∈ [0,T ]. (34)

Tuning: Λ = diag(−λ1, . . . ,−λn), with 0 < λ1 < . . . < λn,
ℓ = col(γ1, . . . , γn), with γ1 , 0, . . . , γn , 0, Ts = T/N, with
N ∈ N, N ≥ 1.

Data Batches Construction
Filter of the data: simulate for t ∈ [0,T ]:

˙̂ζ(t) =
[
Λ 0
0 Λ

]
ζ̂(t) +

[
ℓ 0
0 ℓ

] [
y(t)
u(t)

]
. (35)

Initialization: ζ̂(0) = 0.
Auxiliary dynamics: simulate for t ∈ [0,T ]:

χ̇(t) = Λχ(t). (36)

Initialization: χ(0) = [1 · · · 1]⊤.
Sampled data batches:

U B
[
u(0) u(Ts) · · · u((N − 1)Ts)

]
∈ R1×N

Za B

χ(0) χ(Ts) · · · χ((N − 1)Ts)
ζ̂(0) ζ̂(Ts) · · · ζ̂((N − 1)Ts)

 ∈ R3n×N

Ża B

χ̇(0) χ̇(Ts) · · · χ̇((N − 1)Ts)
˙̂ζ(0) ˙̂ζ(Ts) · · ·

˙̂ζ((N − 1)Ts)

 ∈ R3n×N .

(37)

Stabilizing Gain Computation
LMI: find Q ∈ RN×3n such that:ŻaQ + Q⊤Ż⊤a ≺ 0

ZaQ = Q⊤Z⊤a ≻ 0.
(38)

Control gain:

K = UQ(ZaQ)−1
[

0
I2n

]
. (39)

Control Deployment
Control law:

˙̂ζc =

[
Λ 0
0 Λ

]
ζ̂c +

[
ℓ 0
0 ℓ

] [
y
u

]
, u = Kζ̂c. (40)

Initialization: ζ̂c(0) ∈ R2n arbitrary.
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PBH test that pair (Λ, ℓ) is controllable. Thus, Lemmas 3, 4,
and 5 hold. The proposed design can be derived for more gen-
eral choices of Λ and ℓ, although at the expense of increased
notational burden.

Consider Π, θ1, θ2 from Lemma 3, then define:

ϵ B x − Πζ̂, (41)

and note that ϵ(0) = x(0) since we choose ζ̂(0) = 0. The dy-
namics of ϵ are computed from (29), (32), (35), and (41) as
follows:

ϵ̇ = Ax + bu − Π
[
Λ 0
0 Λ

]
ζ̂ − Π

[
ℓ 0
0 ℓ

] [
c⊤x
u

]
= (A − Π1ℓc⊤)ϵ +

AΠ − Π [Λ + ℓθ⊤1 ℓθ⊤2
0 Λ

] ζ̂
= HΛH−1ϵ,

(42)

where H is a non-singular matrix that exists due to Λ and
A − Π1ℓc⊤ being similar by Lemma 3. We can write the in-
terconnection of plant (29) and filters (35) using the change of
coordinates (41) and (32), leading to

ϵ̇ = HΛH−1ϵ

˙̂ζ =
[
Λ + ℓθ⊤1 ℓθ⊤2

0 Λ

]
︸              ︷︷              ︸

CF

ζ̂ +

[
0
ℓ

]
︸︷︷︸
Cg

u +
[
ℓc⊤

0

]
︸︷︷︸
CD

ϵ, (43)

which has the same structure of (18).
Contrary to Section 3, Dϵ is not available in the output-

feedback scenario. Since ϵ → 0 exponentially, a simple ap-
proach would be to sample u, ζ̂, and ˙̂ζ after a sufficiently long
time to make the perturbation Dϵ small enough. This method,
however, would cause an inefficient use of data and would not
be rigorous as ϵ can be arbitrarily large due to A, b, c, and
x(0) being unknown. In the following, instead, we propose an
approach that compensates Dϵ exactly without any need for a
waiting time.

From (43) and ϵ(0) = x(0), ϵ(t) can be computed as

ϵ(t) = eHΛH−1tϵ(0) = HeΛtH−1x(0) = Lχ(t), (44)

where L ∈ Rn×n is an unknown matrix depending on H and
x(0)2, while χ(t) B [e−λ1t · · · e−λnt]⊤ ∈ Rn. Note that χ(t)
obeys dynamics (36), with χ(0) = [1 · · · 1]⊤. Thus, the
sequence (u(t), ζ̂(t)) obtained from (34), (35) satisfies for all
t ∈ [0,T ] the following differential equation:χ̇˙̂ζ

 = [ Λ 0
DL F

] χζ̂
 + [0g

]
u, (45)

with initial conditions χ(0) = [1 · · · 1]⊤, ζ̂(0) = 0.
Note that the state and state derivative of (45) are available.

We can then sample u, (χ, ζ̂), and (χ̇, ˙̂ζ) to obtain the batches

2L B ((H−1 x(0))⊤ ⊗ H) diag(e1, . . . , en), where ⊗ denotes the Kronecker
product and (e1, . . . , en) is the orthonormal basis of Rn.

(37), which are used to design a feedback law for the plant (29).
In particular, solving the LMI in (38) and computing the con-
trol gain K via (39) yields the observer-based controller summa-
rized in (40). The next result provides the theoretical guarantees
for Algorithm 2.

Theorem 2. Consider Algorithm 2 and let Assumption 2 hold.
Then:

1. LMI (38) is feasible if the batch (37) is exciting, i.e.:

rank
[
Za
U

]
= 3n + 1. (46)

2. For any solution Q of (38), the gain K computed from (39)
is such that F + gK is Hurwitz. As a consequence, the ori-
gin (x, ζ̂c) = 0 of the closed-loop interconnection of plant
(29) and controller (40) is globally exponentially stable.

Proof: Since we follow similar arguments to those in Theorem
1, we only provide a sketch.

1): Consider system (45). Since (F, g) is controllable by
Lemma 5 and Λ is Hurwitz, the pair

Fa B

[
Λ 0

DL F

]
, ga B

[
0
g

]
(47)

is stabilizable. As a consequence, we ensure the existence of
a matrix Q satisfying (38) by following the same steps of the
proof of Theorem 1, part 1, where we replace Z, F, G with Za,
Fa, ga and exploit the new rank condition (46) and relationship
Ża = FaZa + gaU in place of (19) and Ż = FZ +GU + DE.

2): Following the same steps of the proof of Theorem 1, part
2, with the same modifications as before, we exploit (38) to
ensure that Ka B [Kχ K] = UQ(ZaQ)−1 is such that

Fa + gaKa =

[
Λ 0

DL + gKχ F + gK

]
(48)

is Hurwitz. We conclude the proof by noticing from (48) that K
in (39) ensures that F + gK is Hurwitz, thus we can follow the
arguments of Theorem 1, now applied to (43), to prove global
exponential stability of the interconnection of (29) and (40). □

Remark 3. V B [χ(0) · · · χ((N − 1)Ts)] is a Vandermonde
matrix with roots e−λ1Ts , . . . , e−λnTs , so it has full row rank when
N ≥ n. Define Z B [ζ̂(0) · · · ζ̂((N − 1)Ts)]. Then, (46) holds
if [Z⊤ U⊤]⊤ has full row rank and is linearly independent from
V. For the full rank of [Z⊤ U⊤]⊤, we refer to Remark 2. To
give an intuition on the second requirement, let ζ̂(t) and u(t) be
the sum of p sinusoids at distinct frequencies. From sin(ωt) =
(eiωt − e−iωt)/(2i), cos(ωt) = (eiωt + e−iωt)/2:

[
Z
U

]
= ΨW = Ψ



1 eiω1Ts · · · eiω1(N−1)Ts

1 e−iω1Ts · · · e−iω1(N−1)Ts

...
...

...
1 eiωpTs · · · eiωp(N−1)Ts

1 e−iωpTs · · · e−iωp(N−1)Ts


, (49)

where Ψ ∈ C(2n+1)×2p and W is a Vandermonde matrix. As
a consequence, N ≥ n + 2p ensures that W and V are linearly
independent, implying that each non-zero row ofΨW is linearly
independent from V.
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5. Numerical Examples

Algorithms 1 and 2 have been implemented in MATLAB
using YALMIP (Löfberg, 2004) and MOSEK (ApS, 2024) to
solve the LMIs. The developed code is available on Zenodo
(Bosso and Borghesi, 2025).

It is worth mentioning that, in Algorithm 1, the LMI (13)
has been implemented in the following equivalent form, which
reformulates the constraints ZQ = Q⊤Z⊤ ≻ 0:

(
Ż −
[
γIn
0

]
E
)

Q + Q⊤
(
Ż −
[
γIn
0

]
E
)⊤
≺ 0

P = P⊤ ≻ 0
ZQ = P,

(50)

with decision variables Q ∈ RN×(n+m) and P ∈ R(n+m)×(n+m).
Similarly, in Algorithm 2, LMI (38) has been implemented as

ŻaQ + Q⊤Ż⊤a ≺ 0
P = P⊤ ≻ 0
ZaQ = P,

(51)

with decision variables Q ∈ RN×3n and P ∈ R3n×3n.

5.1. Design with Input-State Data

We consider the continuous-time linearized model of an un-
stable batch reactor given in (Walsh and Ye, 2001), also used in
(De Persis and Tesi, 2020) after time discretization. The system
matrices are

A =


1.38 −0.2077 6.715 −5.676

−0.5814 −4.29 0 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104


B =


0 0

5.679 0
1.136 −3.146
1.136 0

 ,
(52)

where (A, B) is controllable and the eigenvalues of A are
{−8.67,−5.06, 0.0635, 1.99}. We consider an exploration inter-
val of length T = 1.5 s, where we apply a sum of 4 sinusoids
to both entries of u and select 8 distinct frequencies to ensure
informative data. We choose filter gains λ = γ = 1 and collect
the data with sampling time Ts = 0.1 s.

Algorithm 1 has been extensively tested for random initial
conditions x(0), with each entry extracted from the uniform dis-
tribution U(−1, 1), returning each time a stabilizing controller.
For x(0) = [0.1233 −0.7076 0.4464 −0.8085]⊤, we obtain
the gain

K =
[
10.71 −16.82 7.792 −7.581 2.823 −7.857
17.45 −4.386 45.95 −33.59 8.814 −3.416

]
,

(53)
which places the eigenvalues of the closed-loop matrix F +GK
in {−2.831,−2.725 ± 7.749i,−2.63 ± 14.28i,−0.72}.

5.2. Design with Input-Output Data

We consider a non-minimum phase SISO system having
input-output behavior specified by the transfer function

c⊤(sI − A)−1b =
s − 1

s(s2 + 4)
, (54)

for which we choose a minimal realization in controller canon-
ical form. We perform an exploration of T = 2 s with an input
u given by the sum of 4 sinusoids at distinct frequencies. We
choose filter parameters Λ = diag(−1,−2,−3), ℓ = col(1, 2, 3)
and sampling time Ts = 0.1 s.

Similar to the previous case, Algorithm 2 has been exten-
sively tested with random initial conditions so that each entry
of x(0) is extracted from the uniform distribution U(−5, 5). In
each test, the procedure returned a stabilizing controller. For
x(0) = [−2.1002 4.5808 2.2305]⊤, we obtain the gain

K =
[
−0.3 2.882 −2.23 −0.095 −0.56 1.081

]
, (55)

which places the eigenvalues of F + gK in {−1.978,−0.73 ±
0.7i,−0.237,−0.148 ± 2.095i}.

6. Conclusion

We addressed the problem of data-driven stabilization of
unknown continuous-time linear time-invariant systems by
proposing a framework that combines signal filtering with
LMIs. Specifically, we employed low-pass filters that recon-
struct a non-minimal realization of the plant. Then, LMIs in-
spired by those of (De Persis and Tesi, 2020) and based on the
non-minimal realization have been used to compute the gains
of a dynamic, filter-based controller. This approach circum-
vents the need for signal derivatives without resorting to nu-
merical techniques like finite differences. We remark that the
proposed LMIs have been developed for the noise-free setting.
Therefore, future work will address the case of noisy data, ex-
ploiting techniques such as (Van Waarde et al., 2020a). Other
research directions include extending the method to multi-input
multi-output and nonlinear systems, as well as exploring the
conditions to ensure exciting data.

7. Appendix

7.1. Proof of Lemma 1

We prove the result by constructing the Kalman observability
decomposition of (7).

Define Π B γ−1[A + λIn B], so that ξ = Πζ in (7). Since
(A, B) is controllable by Assumption 1, rankΠ = n from a direct
application of the PBH test. Additionally, note that

ξ̇ = Π

[
A B
0 −λIm

]
ζ + Π

[
0
γIm

]
u = Aξ + Bu. (56)

Let Ξ ∈ Rm×(n+m) be composed of m row vectors linearly inde-
pendent of those of Π. Then, define the change of coordinates
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ζ 7→ col(ξ, ξō), where ξō B Ξζ. In the new coordinates, the
plant reads as: [

ξ̇
ξ̇ō

]
=

[
A 0

A∆ Aō

] [
ξ
ξō

]
+

[
B
Bō

]
u

ξ =
[
In 0

] [ ξ
ξō

]
,

(57)

for some matrices Aō, A∆, Bō. Therefore, the observable states
ξ of (57) obey (1), which is controllable by Assumption 1. □

7.2. Proof of Lemma 2

We use the PBH test, which requires that

rank
[
sIn − A −B 0

0 (s + λ)Im γIm

]
= n + m (58)

for all s ∈ σ(A) ∪ {−λ}. From Assumption 1, the first n rows
are linearly independent for all s ∈ σ(A) ∪ {−λ}. Therefore, the
result follows by noticing that the remaining m rows are linearly
independent from the previous ones. □

7.3. Proof of Lemma 3

Define Π B [Π1 Π2], with Π1, Π2 ∈ Rn×n. Then, (32) can be
written as

Π1Λ = (A − Π1ℓc⊤)Π1

θ⊤1 = c⊤Π1
(59)

and

Π2Λ = (A − Π1ℓc⊤)Π2

Π2ℓ = b, θ⊤2 = c⊤Π2,
(60)

where we notice that A−Π1ℓc⊤ appears in both equations. Since
pair (c⊤, A) is observable, we can define ψ as the unique vector
such that the spectra of A−ψc⊤ andΛ coincide. Since all eigen-
values of Λ are distinct, A − ψc⊤ and Λ are similar, so there ex-
ists an invertible matrix H such that HΛH−1 = A−ψc⊤. Define
the following equations:

Π1Λ = (A − ψc⊤)Π1

Π1ℓ = ψ, θ⊤1 = c⊤Π1,
(61)

Π2Λ = (A − ψc⊤)Π2

Π2ℓ = b, θ⊤2 = c⊤Π2.
(62)

Any solution of (61), (62) is also a solution of (59), (60). Also,
θ1 and θ2 can be computed after Π1 and Π2 have been found.
By introducing the similarity transformation H in (61), (62),
we obtain the following two equations:

XiΛ = ΛXi, Xiℓ = hi, i ∈ {1, 2} (63)

where h1 = H−1ψ, h2 = H−1b, and Πi = HXi. To solve (63),
we use the same arguments of (Serrani et al., 2000, Prop. 4.1).
Since Λ has distinct eigenvalues, by (Gantmakher, 1960, Pag.

222), any matrix Xi that commutes with Λ, i.e., that satisfies
equation XiΛ = ΛXi of (63), can be expressed as

Xi =

n−1∑
j=0

µi jΛ
j, (64)

with free parameters (µi0, . . . , µi(n−1)). By replacing (64) in the
second equation of (63), it holds that

n−1∑
j=0

µi jΛ
jℓ = Rµi = hi, (65)

where R B [ℓ Λℓ · · · Λn−1ℓ] and µi B col(µi0, . . . , µi(n−1)).
Since (Λ, ℓ) is controllable, R is invertible, therefore µi = R−1hi

and, thus, Xi is uniquely defined. The previous steps prove that
a solution Π, θ1, θ2 exists for equations (32) and that A−Π1ℓc⊤

and Λ are similar.
To show that Π has full row rank, pre-multiply by A the sec-

ond equation of (32):

AΠ
[
0
ℓ

]
= Π

[
Λ + ℓθ⊤1 ℓθ⊤2

0 Λ

] [
0
ℓ

]
= Ab. (66)

Repeat this process and stack the resulting vectors to obtain:

ΠM =
[
b Ab · · · An−1b

]
, (67)

where

M B

[0ℓ
]
· · ·

[
Λ + ℓθ⊤1 ℓθ⊤2

0 Λ

]n−1 [0
ℓ

] . (68)

Since (A, b) is controllable, from (67), rank(ΠM) = n. From
n = rank(ΠM) ≤ min{rank(Π), rank(M)} ≤ n, we conclude that
rank(Π) = n. □

7.4. Proof of Lemma 4

Given Π, θ1, θ2 from Lemma 3, define ξ B Πζ. Then:

ξ̇ = Π

[Λ + ℓθ⊤1 ℓθ⊤2
0 Λ

]
ζ +

[
0
ℓ

]
u
 = AΠζ + bu

= Aξ + bu

η =
[
θ⊤1 θ⊤2

]
ζ = c⊤Πζ = c⊤ξ.

(69)

The result follows from the same arguments in the proof of
Lemma 1. □

7.5. Proof of Lemma 5

In (33), let

F B
[
Λ + ℓθ⊤1 ℓθ⊤2

0 Λ

]
, g B

[
0
ℓ

]
. (70)

By (Antsaklis and Michel, 2006, Ch. 3, Thm. 2.17), (F, g) is
controllable if and only if the 2n rows of

H(s) B (sI − F)−1g (71)
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are linearly independent over the field of complex numbers, i.e.,
if and only if there exists no vector w ∈ C2n, w , 0, such that

w⊤H(s) = 0, for all s. (72)

By Lemma 4, H(s) can be equivalently seen as the transfer
function of filters (31) combined with that of plant (29):

H(s) =
[
(sI − Λ)−1ℓc⊤(sI − A)−1b

(sI − Λ)−1ℓ

]
. (73)

We now follow similar steps to (Sastry and Bodson, 1990, Thm.
2.7.3). Assume that there exists a vector w , 0 such that
w⊤H(s) = 0 for all s. Split w = col(w1,w2), with w1, w2 ∈ Cn.
Then, it holds that

N1(s)
DΛ(s)

N(s)
D(s)

+
N2(s)
DΛ(s)

= 0, for all s, (74)

whereN(s),D(s),N1(s),N2(s), andDΛ(s) are polynomials of
s such that N(s)

D(s) = c⊤(sI − A)−1b, N1(s)
DΛ(s) = w⊤1 (sI − Λ)−1ℓ, and

N2(s)
DΛ(s) = w⊤2 (sI − Λ)−1ℓ. For the rational function in (74) to be
identically zero, it must hold that

N2(s) = −N1(s)
N(s)
D(s)

, for all s. (75)

Note that N1(s) and N2(s) are at most of degree n − 1, while
D(s) has degree n. As a consequence, to ensure that the left-
and the right-hand sides are equal, there must be n pole-zero
cancellations inN1(s)N(s)

D(s) . From these considerations, it neces-
sarily follows that there is at least one pole-zero cancellation in
N(s)
D(s) . However, this property cannot be satisfied because N(s)
and D(s) are coprime by Assumption 2, hence we have a con-
tradiction. □

References

Anderson, B., 1974. Adaptive identification of multiple-input
multiple-output plants, in: 1974 IEEE Conference on Deci-
sion and Control including the 13th Symposium on Adaptive
Processes, IEEE. pp. 273–281.

Antsaklis, P.J., Michel, A.N., 2006. Linear Systems.
Birkhäuser, Boston, MA.

ApS, M., 2024. The MOSEK optimization toolbox for MAT-
LAB manual. Version 10.2. URL: https://docs.
mosek.com/latest/toolbox/index.html.

Berberich, J., Scherer, C.W., Allgöwer, F., 2022. Combining
prior knowledge and data for robust controller design. IEEE
Transactions on Automatic Control 68, 4618–4633.

Berberich, J., Wildhagen, S., Hertneck, M., Allgöwer, F., 2021.
Data-driven analysis and control of continuous-time systems
under aperiodic sampling. IFAC-PapersOnLine 54, 210–215.

Bianchi, M., Grammatico, S., Cortés, J., 2025. Data-driven
stabilization of switched and constrained linear systems. Au-
tomatica 171, 111974.

Bisoffi, A., De Persis, C., Tesi, P., 2020. Data-based stabiliza-
tion of unknown bilinear systems with guaranteed basin of
attraction. Systems & Control Letters 145, 104788.

Bosso, A., Borghesi, M., 2025. IMPACT4Mech/continuous-
time_data-driven_control: ECC2025. URL: https:
//doi.org/10.5281/zenodo.15186633, doi:10.
5281/zenodo.15186633.

De Persis, C., Postoyan, R., Tesi, P., 2023. Event-triggered
control from data. IEEE Transactions on Automatic Control
69, 3780–3795.

De Persis, C., Tesi, P., 2020. Formulas for data-driven control:
Stabilization, optimality, and robustness. IEEE Transactions
on Automatic Control 65, 909–924.

De Persis, C., Tesi, P., 2021. Low-complexity learning of lin-
ear quadratic regulators from noisy data. Automatica 128,
109548.

Dörfler, F., Tesi, P., De Persis, C., 2023. On the certainty-
equivalence approach to direct data-driven LQR design.
IEEE Transactions on Automatic Control 68, 7989–7996.

Eising, J., Cortés, J., 2025. When sampling works in data-
driven control: Informativity for stabilization in continuous
time. IEEE Transactions on Automatic Control 70, 565–572.

Gantmakher, F.R., 1960. The Theory of Matrices. volume 1.
Chelsea Publishing Company, New York, NY.

Ioannou, P.A., Sun, J., 2012. Robust Adaptive Control. Dover,
New York, NY.

Ljung, L., 1999. System Identification: Theory for the User.
Prentice-Hall, Upper Saddle River, NJ.

Löfberg, J., 2004. YALMIP : A toolbox for modeling and op-
timization in MATLAB, in: In Proceedings of the CACSD
Conference, Taipei, Taiwan. pp. 284–289.

Miller, J., Sznaier, M., 2022. Data-driven gain scheduling con-
trol of linear parameter-varying systems using quadratic ma-
trix inequalities. IEEE Control Systems Letters 7, 835–840.

Narendra, K.S., Annaswamy, A.M., 1989. Stable Adaptive Sys-
tems. Prentice-Hall, Englewood Cliffs, NJ.

Nordström, N., Sastry, S.S., 1987. Persistency of excitation
in possibly unstable continuous time systems and parame-
ter convergence in adaptive identification. IFAC Proceedings
Volumes 20, 347–352.

Nortmann, B., Mylvaganam, T., 2020. Data-driven control of
linear time-varying systems, in: 2020 59th IEEE Conference
on Decision and Control, pp. 3939–3944.

Ohta, Y., Rapisarda, P., 2024. A sampling linear func-
tional framework for data-driven analysis and control of
continuous-time systems, in: 2024 IEEE 63rd Conference
on Decision and Control, pp. 357–362.

9

https://docs.mosek.com/latest/toolbox/index.html
https://docs.mosek.com/latest/toolbox/index.html
https://doi.org/10.5281/zenodo.15186633
https://doi.org/10.5281/zenodo.15186633
http://dx.doi.org/10.5281/zenodo.15186633
http://dx.doi.org/10.5281/zenodo.15186633


Rapisarda, P., van Waarde, H.J., Çamlibel, M., 2023. Orthogo-
nal polynomial bases for data-driven analysis and control of
continuous-time systems. IEEE Transactions on Automatic
Control 69, 4307–4319.

Sastry, S., Bodson, M., 1990. Adaptive control: stability, con-
vergence, and robustness.

Serrani, A., Isidori, A., Marconi, L., 2000. Semiglobal robust
output regulation of minimum-phase nonlinear systems. In-
ternational Journal of Robust and Nonlinear Control 10, 379–
396.

Sutton, R.S., Barto, A.G., 2018. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA.

Van Waarde, H.J., Camlibel, M.K., Mesbahi, M., 2020a. From
noisy data to feedback controllers: Nonconservative design
via a matrix S-lemma. IEEE Transactions on Automatic Con-
trol 67, 162–175.

Van Waarde, H.J., Eising, J., Trentelman, H.L., Camlibel, M.K.,
2020b. Data informativity: A new perspective on data-driven
analysis and control. IEEE Transactions on Automatic Con-
trol 65, 4753–4768.

Walsh, G.C., Ye, H., 2001. Scheduling of networked control
systems. IEEE Control Systems Magazine 21, 57–65.

10


	Introduction
	Problem Statement and Preliminaries
	Data-Driven Control from Input-State Data
	Non-Minimal System Realization
	Controller Design

	Data-Driven Control from Input-Output Data
	Non-Minimal System Realization
	Controller Design

	Numerical Examples
	Design with Input-State Data
	Design with Input-Output Data

	Conclusion
	Appendix
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5


