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Abstract
We investigate the role played by the identification of a model of unknown systems in data-driven control. Specifically, we apply policy iteration to the linear quadratic regulator
(LQR) problem. We consider two iterative procedures to compute the optimal controller. In indirect policy iteration (IPI), data collected from the system are leveraged to update
model estimates via recursive least squares (RLS). The estimates are subsequently employed for the model-based policy iteration. In direct policy iteration (DPI), on-policy data are
employed to directly approximate the value function and the associated controller. The goal is to analytically study the implications of an indirect and a direct scheme on the sample
complexity and convergence rate of the two algorithms. Introducing the identification of a model offers advantages in sample complexity and robustness over a purely direct
(model-free) approach. Finally, we show further insights into these two methods through numerical simulations.

Problem Setting and Policy Iteration

We consider linear time-invariant (LTI) systems:

xt+1 = Axt +But, (1)

where A ∈ Rnx×nx, B ∈ Rnx×nu are unknown and (A,B) is stabilizable. The objective is
to design a state-feedback controller ut = Kxt that minimizes the infinite horizon cost:

J(x0, K) =

+∞∑
k=0

r(xk, uk) =

+∞∑
k=0

xTkQxk + uTkRuk, Q ⪰ 0, R ≻ 0 (2)

If (A,B) is known and a stabilizing gain K1 is given, a method based on dynamic pro-
gramming to compute the optimal gain K⋆ is policy iteration:

• Policy evaluation (PE): Ki→ Pi

Pi = Q +KT
i RKi + (A +BKi)

TPi(A +BKi). (3)

• Policy improvement (PI): Pi→ Ki+1

Ki+1 = −(R +BTPiB)−1BTPiA. (4)

In this setting, policy iteration is guaranteed to converge: lim
i→∞

Pi = P ∗ and lim
i→∞

Ki = K∗.

Indirect Policy Iteration (IPI): Data→ Models→ Controllers

System Dynamics
𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡

Controller
𝑢𝑡 = ෡𝐾𝑖𝑥𝑡 + 𝜂𝑡

Policy Iteration
(5a), (5d)

𝑥𝑡+1

𝑢𝑡

Recursive Least Squares

(5b), (5c)

𝜃𝑖: = [ መ𝐴𝑖 , ෠𝐵𝑖]

෡𝐾𝑖

Online data collection: Each episode, de-
noted by index i, comprises τIPI data points
{dt := [xTt , u

T
t ]

T , xt+1}τIPIt=1 obtained with ut =
K̂ixt+ηt, where ηt ∼ N (0,Σ). d(i) := {dt}t≥1
is the sequence of dt within the i-th episode.
Concurrent learning and design:

P̂i← PE based on θi−1 = [Âi−1, B̂i−1], (5a)

Hi = Hi−1 +

(
τIPI∑
t=1

dtd
T
t

)
, (5b)

θi =

(
θi−1Hi−1 +

τIPI∑
t=1

xt+1d
T
t

)
H−1i , (5c)

K̂i← PI based on [Âi, B̂i]. (5d)
Convergence analysis:
Define θ := [A,B], estimation error ∆θi := θi − θ, estimation error upper bound
∥∆θi∥F ≤ ∥∆θ0H0∥F∥H−1i ∥F =: ∆θUpperi and the sequence ∆θUpper := {∆θUpperi }i≥0.

Assumption 1. The estimated pairs (Âi, B̂i), i ∈ Z+ obtained from recursive least
squares (5b) and (5c), are all stabilizable.

Theorem 1. If Assumption 1 holds, for any τIPI ∈ Z+ system (5) is input-to-state
stable (ISS) with respect to ∆θUpper, i.e.,

∥P̂i − P ∗∥F ≤ β(∥P̂0 − P ∗∥, i) + γ(∥∆θUpper∥∞), (6)

where β(∥P̂0 − P ∗∥F , i) = ci1∥P̂0 − P ∗∥F is a KL function and γ(∥∆θUpper∥∞) =
c2

1−c1∥∆θUpper∥∞ is a K function with c1 ∈ (0, 1) and c2 > 0.

Corollary 1. If the sequence {d(i)}i≥1 is persistent, then lim
i→∞

P̂i = P ∗, lim
i→∞

K̂i = K∗.

Direct Policy Iteration (DPI): Data→ Controllers

Online data collection: Each episode, denoted by index i, comprises τDPI data points

{xt, ut, xt+1}τDPIt=1 obtained with ut = K̂ixt+ηt, where ηt =

{
ϵj, t = 2j − 1
−ϵj, t = 2j

, j ∈ Z+,

ϵj ∼ N (0,Σ).

PE: Use data pairs {x̄j := x2j−1 + x2j, K̂ix̄j, x̄
+
j := x2j + x2j+1}

τDPI
2

j=1 to estimate P̂i:

A model-free version of PE (3) can be expressed in terms of data pairs as:

(3)⇔ x̄T
j P̂ix̄j = r(x̄j, K̂ix̄j) + (x̄+

j )
TP̂ix̄

+
j . (7)

PI: Use data points {xt, ut, xt+1}τDPIt=1 and P̂i from PE to estimate B̂TPiB and B̂TPiA:

(3)⇔ xTt P̂ixt = r(xt, K̂ixt) + (xt+1 −Bηt)
TP̂i(xt+1 −Bηt),[

2xt ⊗ ηt
vecv(ut)− vecv(K̂ixt)

]T [
vec(B̂TPiA)

vecs(B̂TPiB)

]
= r(xt, K̂ixt)− xTt P̂ixt + xTt+1P̂ixt+1.

(8)

Then update K̂i+1 with (4).
Convergence analysis:
When the minimum sample complexity in each episode is met (see below) and the data
is persistently exciting, then both linear equations (7) and (8) can be solved and the esti-
mations of P̂i, B̂TPiB and B̂TPiA are exact. Convergence follows from the case where
system is known.

Comparison IPI vs DPI

• Sample complexity of each episode:

∗ IPI: The theoretical minimum sample
complexity is τIPI = 1. PE and PI up-
dates can be performed multiple times
within a single episode.
∗DPI: All data points are leveraged for

PE and also PI simultaneously. Solv-
ing (7) and (8) exactly requires at least
τDPI = max[nx(nx + 1), nu(nu+1)

2 + nunx]
data points.
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• Convergence rate:

∗ IPI:

∥P̂iIPI−P ∗∥F ≤ ciIPI1 ∥P̂0 − P ∗∥F
+γ(∥∆θUpper∥∞).

(9)

∗DPI:

∥P̂iDPI−P ∗∥F ≤ ciDPI1 ∥P̂0−P ∗∥F . (10)

Note: Because τDPI≫ τIPI, the total num-
ber of episodes iIPI is larger than iDPI for a
fixed time budget.

• Selection of excitation ut:

∗ IPI: More flexible, only need to ensure the persistency requirement on {d(i)}i≥1.
∗DPI: Must be given in the form of ut = K̂ixt + ηt (on-policy excitation).

Takeaways

• New quantitative convergence guarantees for indirect policy iteration

• Advantages of identifying the model in data-driven policy iteration

• A system theoretic approach to analyse concurrent learning and control methods

Future Works

• Study of the effect of process and measurement noise

• Dual control-inspired selection of ut in indirect policy iteration

• Use of discount factors in the cost to relax Assumption 1
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