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❖ MPC: Optimization based control, ensures state 
and input constraint satisfaction

❖ Tube MPC: Incorporates model uncertainty into 
the optimization, guarantees robustness

❖ Adaptive MPC: A novel technique, to reduce the 
model uncertainty online using measurements

Augment Adaptive MPC with active exploration: 
Dual AMPC (DAMPC)

Main features
❖ Addresses the exploration-exploitation tradeoff: 

informative data vs. control performance 
❖ Enables reference tracking under uncertain 

input setpoints
❖ Preserves guarantees of constraint satisfaction 

and recursive feasibility

MPC under model uncertainty

❖ Systems with linear, time-invariant dynamics 
and parametric uncertainties in the state space 
matrices and additive disturbances

𝑥𝑘+1 = 𝐴(𝜃)𝑥𝑘 + 𝐵 𝜃 𝑢𝑘 +𝑤𝑘 ,

𝐴 𝜃 , 𝐵 𝜃 = (𝐴0, 𝐵0) + Σ𝑖(𝐴𝑖 , 𝐵𝑖)𝜃𝑖
❖ The parameters and disturbances are assumed 

to be bounded 𝑤 𝜖 𝑊, 𝜃 𝜖 Θ0
❖ Constraint satisfaction ensured using tube MPC
❖ Uncertain parameters are bounded by sets of 

non-increasing size using set-membership ID
❖ Identification is passive (PAMPC)

❖ Applicable when systems are subject to 
bounded noise, even with unknown properties

❖ Compute feasible parameters at each time step:
Δ𝑘: = 𝜃 𝑥𝑘+1 − 𝐴 𝜃 𝑥𝑘 + 𝐵 𝜃 𝑢𝑘 𝜖 𝑊}

❖ Update parameter set such that Θ𝑘 has 
predefined hyperplane directions and
Θ𝑘 ⊇ Θ𝑘−1 ∩ Δ𝑘, Θ𝑘 ≔ {𝜃|𝐻𝜃𝜃 ≤ ℎ𝜃𝑘}

❖ Can be performed by solving linear programs 

Features of Adaptive MPC

Set-membership identification

Contribution

❖ Using a parameter estimate ҧ𝜃𝑘, predict the next 
state measurement as a function of 𝑢𝑘

ො𝑥1|𝑘 = 𝐴( ҧ𝜃𝑘)𝑥𝑘 + 𝐵 ҧ𝜃𝑘 𝑢𝑘
❖ The predicted state measurement defines a 

feasible parameter set as
Δ1|𝑘: = 𝜃 ො𝑥1|𝑘 − 𝐴 𝜃 𝑥𝑘 + 𝐵 𝜃 𝑢𝑘 𝜖 𝑊}

❖ The identification at the next time step can be 
approximated as

Θ1|𝑘 ≔ Θ𝑘 ∩ Δ1|𝑘

❖ Thus, Θ1|𝑘 captures the effect of 𝒖𝒌 on 

identification to be performed in the future

Predicted parameter set

❖ Construct state tubes using homothetic sets
𝑋𝑙|𝑘 = 𝑧𝑙|𝑘 ⊕ 𝛼𝑙|𝑘𝑋0

❖ Decouple robustness and exploration: 
❖ Robust state tube: constraint satisfaction
❖ Predicted state tube: worst case 

performance as MPC cost function

Safe active exploration

❖ Monte Carlo simulation study
❖ Compare performance of PAMPC and DAMPC*

❖ We consider a 2nd order system of the form:

𝐴0 =
0.85 0.5
0.2 0.7

, 𝐵0=
1 0.4
0.2 0.6

𝐴1 =
0.1 0
0 0.2

, 𝐵1=
0 0
0 0

𝐴2 =
0 0
0 0

, 𝐵2=
0 0.2
0 0.35

❖ Parameter, disturbance and constraint sets
| 𝜃 |∞ ≤ 1, | 𝑤 |∞ ≤ 0.1,
| 𝑥 |∞ ≤ 3, | 𝑢 |∞ ≤ 2

❖ 50 random realizations of true 𝜃 𝜖 Θ0
❖ 4 random disturbance sequences 𝑤𝑘𝜖 𝑊
❖ Finite horizon reference tracking, 100 timesteps
❖ Prediction horizon: 8 steps

Numerical Example

Closed loop cost ∝ Area

Smaller parameter sets of DAMPC

Early exploration of DAMPC using 𝑢2
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*The code is available in the public repository: https://gitlab.ethz.ch/aparsi/active-exploration-ampc-cdc-2020
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