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1 Signal matrix model (SMM)

Why?

Conventional system identification paradigms rely on
compact parametric models.

Challenges: systems are increasingly complex;
how to use big data

Solution: moving from compact parametric models to implicit
non-parametric trajectory models

Novelty: a statistically optimal approach to deal with noisy data

What?

Construct trajectory z = col(u, y) by combining direct knowledge
and linear combination of noise-corrupted signal matrix.

Signal matrix: Hankel matrix of zd LA . ,d
X 0 1 M-1
trajectory data 7= : S :
Preconditioning: compress by SVD ZLd—1 Ziio 21%—1
svd ~
Z—WwSsvT, 7 2WS(,1:Ln,)

Noise-free case: Willems’ fundamental lemma (Willems, 2005)
known part = Z; = Z1g, unknown part = Z, = Z,9"(z1,Z1)

Noisy case: Z as trajectory measurements; g as hyper-
parameters defining prior distribution of z by Z

w,~N(0,%,), z~N(Zg,2,4(9))

For unknown parts in z, corresponding elements in X, — oo.

Z=z7+w,,

Empirical Bayes step: solve for g
g- = argmaxp(z|g)
: A -1,
= argn}qm logdet (Zzg(g) +2,)+@E- Zg)T(ZZg(g) +2,) (Z-2Zg)

MAP estimation step: solve for z given g*
z* = argmaxp(Z|z) - p(z)
z
* * -1, * -1 *
= zg(g )(Zzg(g )+ Sz) zZ+ ZZ(ZZg(g )+ Zz) Zg

2 Applications

Simulation

Estimate outputs from known inputs and initial conditions.

Condition: u is known exactly, first outputs (y,)l . Lare
measured as initial condition

Prior knowledge of (y;) % Lo can be added as Gaussian process.
e.g., stable spline kernels in impulse response simulation

Example: impulse response simulation Benchmark: least-squares estimation
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Signal denoising
Denoise trajectory based on history trajectory data.
Condition: all the trajectories are measured with noise
Online data can be added to the signal matrix:

Zeoy = lvZ, y: forgetting factor

(Zi)fzt—L+1]'

Example: online signal denoising, Gaussian input
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Control design
Optimal reference tracking by

minil}]’lize ly — Yref”é‘Hlu - uref”%?

Condition: (u;, y,) o 1 are measured past trajectory as initial
condition; (#@;, y;) £ L are set to reference trajectory,
corresponding elements in X, are proportional to Q71 & R71.

Example: receding horizon, sinusoidal reference, no I/O constraints
Benchmark: ideal MPC & DeePC (Coulson, 2019)

[ I DecPC

0 20 40 60 80 100 120 0 20 40 60 80 100 120

Closed-loop trajectory comparison with ideal MPC & DeePC
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Online data adaptation for system with slow parameter drifts
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