



# Signal Matrix Model in Simulation, Signal Denoising and Control Design

Mingzhou Yin, Andrea Iannelli, Roy S. Smith Automatic Control Laboratory, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland

\* This work was supported by the Swiss National Science Foundation under Grant 200021\_178890.

### 1 Signal matrix model (SMM)

### Why?

Conventional **system identification paradigms** rely on compact parametric models.

**Challenges:** systems are increasingly complex; how to use big data

**Solution:** moving from compact parametric models to implicit non-parametric trajectory models

Novelty: a statistically optimal approach to deal with noisy data

#### What?

Construct trajectory  $\mathbf{z} = \operatorname{col}(\mathbf{u}, \mathbf{y})$  by combining **direct knowledge** and linear combination of **noise-corrupted signal matrix**.

**Signal matrix:** Hankel matrix of trajectory data

$$Z = \begin{bmatrix} z_0^d & z_1^d & \cdots & z_{M-1}^d \\ \vdots & \vdots & \ddots & \vdots \\ z_{L-1}^d & z_{L_0}^d & \cdots & z_{N-1}^d \end{bmatrix}$$

Preconditioning: compress by SVD

$$Z \xrightarrow{\text{svd}} WSV^{\text{T}}, \qquad \tilde{Z} \triangleq WS(:, 1:Ln_{\text{z}})$$

Noise-free case: Willems' fundamental lemma (Willems, 2005)

known part 
$$\rightarrow$$
  $\mathbf{z}_1 = Z_1 g$ , unknown part  $\rightarrow$   $\mathbf{z}_2 = Z_2 g^*(\mathbf{z}_1, Z_1)$ 

**Noisy case:**  $\hat{\mathbf{z}}$  as trajectory measurements; g as hyperparameters defining prior distribution of  $\mathbf{z}$  by Z

$$\hat{\mathbf{z}} = \mathbf{z} + \mathbf{w}_{\mathbf{z}}, \quad \mathbf{w}_{\mathbf{z}} \sim \mathcal{N}(0, \Sigma_{\mathbf{z}}), \quad \mathbf{z} \sim \mathcal{N}(Zg, \Sigma_{\mathbf{z}g}(g))$$

For unknown parts in  $\hat{\mathbf{z}}$ , corresponding elements in  $\Sigma_z \to \infty$ .

Empirical Bayes step: solve for g

$$\begin{split} g^{\star} &= \arg\max_{g} p(\hat{\mathbf{z}}|g) \\ &= \arg\min_{g} \log \det \left( \Sigma_{\mathrm{zg}}(g) + \Sigma_{\mathrm{z}} \right) + (\hat{\mathbf{z}} - Zg)^{\mathrm{T}} \left( \Sigma_{\mathrm{zg}}(g) + \Sigma_{\mathrm{z}} \right)^{-1} (\hat{\mathbf{z}} - Zg) \end{split}$$

*MAP estimation step:* solve for **z** given  $g^*$ 

$$\mathbf{z}^{\star} = \arg \max_{\mathbf{z}} p(\mathbf{\hat{z}}|\mathbf{z}) \cdot p(\mathbf{z})$$
$$= \Sigma_{zg}(g^{\star}) (\Sigma_{zg}(g^{\star}) + \Sigma_{z})^{-1} \mathbf{\hat{z}} + \Sigma_{z} (\Sigma_{zg}(g^{\star}) + \Sigma_{z})^{-1} Z g^{\star}$$

## 2 Applications

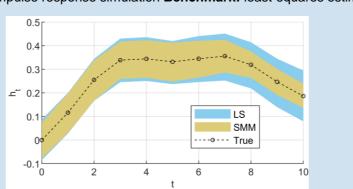
### **Simulation**

Estimate outputs from known inputs and initial conditions.

**Condition:**  $\mathbf{u}$  is known exactly, first outputs  $(\mathbf{y}_i)_{i=0}^{L_0-1}$  are measured as initial condition

Prior knowledge of  $(y_i)_{i=L_0}^{L-1}$  can be added as Gaussian process. e.g., stable spline kernels in impulse response simulation

**Example:** impulse response simulation **Benchmark:** least-squares estimation



### Signal denoising

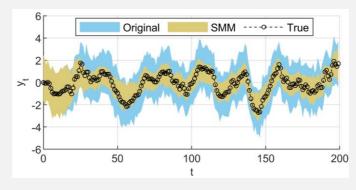
Denoise trajectory based on history trajectory data.

Condition: all the trajectories are measured with noise

Online data can be added to the signal matrix:

$$Z_{t+1} = [\gamma Z_t \quad (z_i)_{i=t-L+1}^t], \quad \gamma$$
: forgetting factor

Example: online signal denoising, Gaussian input



### Control design

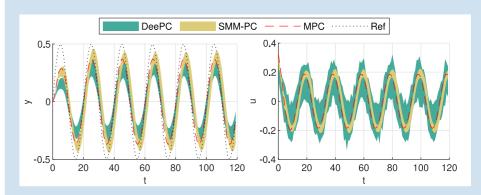
Optimal reference tracking by

$$\underset{\mathbf{u},\mathbf{y}}{\text{minimize}} \ \|\mathbf{y} - \mathbf{y}_{\text{ref}}\|_Q^2 + \|\mathbf{u} - \mathbf{u}_{\text{ref}}\|_R^2$$

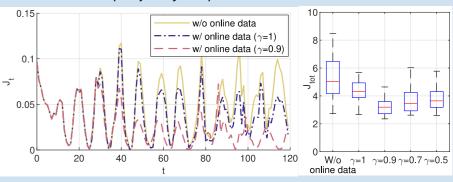
**Condition:**  $(u_i, y_i)_{i=0}^{L_0-1}$  are measured past trajectory as initial condition;  $(\widehat{u}_i, \widehat{y}_i)_{i=L_0}^{L-1}$  are set to reference trajectory, corresponding elements in  $\Sigma_z$  are proportional to  $Q^{-1}$  &  $R^{-1}$ .

Example: receding horizon, sinusoidal reference, no I/O constraints

Benchmark: ideal MPC & DeePC (Coulson, 2019)



Closed-loop trajectory comparison with ideal MPC & DeePC



Online data adaptation for system with slow parameter drifts

#### References

Mingzhou Yin, Andrea lannelli, and Roy S. Smith. Maximum likelihood estimation in data-driven modeling and control. arXiv:2011.00925, 2020.

Mingzhou Yin, Andrea Iannelli, and Roy S. Smith. Maximum likelihood signal matrix model for data-driven predictive control. Proceedings of the 3rd Conference on Learning for Dynamics and Control, PMLR 144:1004-1014. arXiv:2012.04678. 2021.