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Abstract— This article focuses on the numerical estimation
of the Region of Attraction of systems with polynomial vector
field. The presented approach, based on a recent theoretical
work on positively invariant sets, computes the inner Estimates
of the Region of Attraction by means of Sum of Squares
techniques. This allows the set containment conditions defining
the region to be enforced at the expense of requiring iterative
schemes since the ensuing optimization features bilinearities in
the decision variables. The main contribution consists of two
novel algorithms aimed at addressing some of the shortcomings
typically associated with the adoption of iterative schemes. The
results confirm the advantages of the proposed approaches,
particularly as the size of the system increases.

I. INTRODUCTION

The Region of Attraction (ROA) associated with an equi-
librium point x∗ of a nonlinear system is the set of all the
initial conditions from which the trajectories of the system
converge to x∗ as time goes to infinity [1]. Finding the exact
region of attraction analytically might be difficult and several
algorithms have been proposed to numerically calculate inner
Estimates of the Region of Attraction (ERA), which can be
broadly classified into two categories: Lyapunov and non-
Lyapunov methods.

The former build on the invariance and contractiveness
properties held by Lyapunov functions (LF) sublevel sets.
When the LF space is restricted to quadratic functions, an
ERA for polynomial (or even rational) systems is the largest
ellipsoid obtained by computing the Lyapunov matrix [2],
whose calculation can be posed as a line search involving
the solution of a series of Linear Matrix Inequalities. In
the general case of higher order LF, Sum of Squares (SOS)
techniques can be used to recast the problem as a set of
SemiDefinite Programs (SDPs) [3].

Non-Lyapunov methods have also been studied to re-
duce the conservatism associated with the aforementioned
approaches. In [4] it is shown that the problem can be formu-
lated as a convex infinite-dimensional linear program, which
is solved (with a hierarchy of convex finite-dimensional
Linear Matrix Inequalities with asymptotically vanishing
conservatism) by making use of the concept of occupation
measures. In recently published works [5], [6], the recipes
for calculating ERA are expressed in terms of positively
invariant sets. These approaches, prompted by an old result

*This work has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 636307,
project FLEXOP.

1 Andrea Iannelli, Andrés Marcos and Mark Lowenberg are with
the Department of Aerospace Engineering, University of Bristol, BS8
1TR, United Kingdom andrea.iannelli/andres.marcos/
m.lowenberg@bristol.ac.uk

known as LaSalle’s theorem [1], still use Lyapunov stability
concepts but prescribe weaker conditions for the function
used to define the ERA.

The work here considers the theoretical result from [5] as
starting point, and employs SOS relaxations to enforce the
set containment conditions defining the ERA. The usage of
these techniques often leads to non-convex Bilinear Matrix
Inequalities [7], and generally iteration schemes are adopted.
Their initializations and the definition of the iteration’s steps
are critical aspects for the achievement of accurate ERA in
an efficient manner. In view of this, the article proposes two
novel algorithms having the goal of improving run time and
ERA accuracy. Based on two case studies from the literature,
and featuring increasing complexity, the prowess of the
proposed approaches in addressing this task is quantified
via a comparative study. Distinct features are commented
and the role of different initializations is studied. One of the
algorithms developed in this work served as basis in [8] for
the formulation of the robust ROA via invariant sets for the
case of systems with uncertain parameters in the vector field.

The layout of the article is as follows. Section II provides
a cursory introduction to the basics of the work. Section
III presents the problem of determining estimates of the
ROA as positively invariant sets, and describes the numerical
algorithms. These are subsequently applied in Section IV,
where results are also discussed. Section V presents the
Conclusions.

II. BACKGROUND

The set of functions g(x) : Rn → R which are m-times
continuously differentiable is denoted by Cm. For x ∈ Rn,
the set of all polynomials in n variables is denoted by R[x].
For g ∈ R[x], ∂(g) denotes the degree of g. Given a scalar
c > 0 and a function g, the level set ε(g, c) := {x ∈ Rn :
g(x) ≤ c} and its boundary ∂ε(g, c) := {x ∈ Rn : g(x) = c}
can be defined.

A polynomial g(x) is said to be a Sum of Squares if there
exists a finite set of polynomials g1(x), ..., gk(x) such that
g(x) =

∑k
i=1 g

2
i (x). The set of SOS polynomials in x is

denoted by Σ[x1, ..., xn], abbreviated here with Σ[x]. The
importance of SOS polynomials is due to their connection
with convex optimization [9]. Namely, g ∈ Σ[x] if and only if
g = zTQz and Q = QT � 0 (i.e. Q is positive semidefinite),
where z is a vector gathering the monomials of g. This
problem can be recast as a semidefinite program (SDP) and
there are freely available software toolboxes to solve this in
an efficient manner [10].



The algorithms employed in this work involve finding
functions that satisfy set containment conditions. Known
results from real algebraic geometry can be employed to
tackle this problem when dealing with polynomial functions.
In particular, an application of the Positivstellensatz (P-satz)
Theorem allows the following property to be stated.

Lemma 1: [9] Given h, f0, ..., fr ∈ R[x], the following
set containment holds{
x : h(x) = 0, f1(x) ≥ 0, ..., fr(x) ≥ 0

}
⊆
{
x : f0(x) ≥ 0

}
(1)

if there exist multipliers p ∈ R[x], s1, ..., sr ∈ Σ[x] such that

p(x)h(x)−
r∑
i=1

si(x)fi(x) + f0(x) ∈ Σ[x] (2)

This result will be used to express set containments (1) as
SOS constraints (2).

Consider an autonomous nonlinear system of the form

ẋ = f(x), x(0) = x0 (3)

where f : Rn → Rn is the vector field. The vector x∗ ∈ Rn
is called a fixed or equilibrium point of (3) if f(x∗) = 0.
Let φ(t, x0) denote the solution of (3) at time t with initial
condition x0. The ROA associated with x∗ is defined as

R :=
{
x0 ∈ Rn : lim

t→∞
φ(t, x0) = x∗

}
(4)

Thus R is the set of all initial states that eventually converge
to x∗. While for linear systems convergence to the equilib-
rium, if it holds, is a global property, for nonlinear ones it
might hold only locally (i.e. R ⊆ Rn).

The origin will be assumed as fixed point (x∗ = 0)
henceforward without loss of generality.

III. ALGORITHMS FOR THE COMPUTATION OF ERA
WITH INVARIANT SETS

This section presents the main theoretical result from [5]
and discusses numerical algorithms to find the ERA of (3)
with the invariant sets approach. A novel algorithm is pro-
posed (Subsection III-B) that ameliorates the computational
effort and improves the level sets estimates. This is also used
to devise a hybrid algorithm (Subsection III-C) aimed to
tackle some of the pitfalls associated with SOS optimization.

A. Positively invariant sets-based estimation of ROA

A standard approach to calculate inner Estimates of ROA
consists of applying Lyapunov’s direct method.

Lemma 2: [1] Let D ⊂ Rn and let 0 be contained in D.
If there exists V : Rn → R, with V ∈ C1 such that:

V (0) = 0 and V (x) > 0 ∀x ∈ D\0
V̇ (x) = ∇V (x)f(x) < 0 ∀x ∈ D\0
ε(V, c) is bounded and
ε(V, c) ⊆ D

(5)

then ε(V, c) is an invariant set of R.
As pointed out by LeSalle’s theorem [1], this character-

ization is usually conservative due to the fact that contrac-
tiveness of the level set defining the ERA is unnecessary. In

fact, it suffices to consider compact positively invariant sets
of D, that is, a compact set Ω ⊆ D such that every trajectory
starting in Ω stays in Ω for all future time.
Prompted by these observations, the following result has
been proposed in the literature:

Theorem 1: ([5], Th. 1) If there exist R, VN : Rn → R,
with R, VN ∈ C1, and a positive scalar γ satisfying:

∇R(x)f(x) < 0 ∀x ∈ ∂ε(R, γ) (6a)
VN (0) = 0 and VN (x) > 0 ∀x ∈ ε(R, γ)\0 (6b)
∇VN (x)f(x) < 0 ∀x ∈ ε(R, γ)\0 (6c)
ε(R, γ) is compact and 0 ∈ ε(R, γ) (6d)

then x0 ∈ ε(R, γ) implies x0 ∈ R.
The proof of this result can be found in the reference.

The fundamental idea is that ε(R, γ) is a positively invariant
set, due to (6a)-(6d), and that all trajectories initiated from it
converge to a level set of some LF– which is contractive and
invariant because of (6b)-(6c), therefore guaranteeing such
set to be an ERA. Note that the function R defining the
level set only requires negativity of its gradient on the set
boundary.

Theorem (1) involves finding functions that satisfy set
containment conditions. In order to make the problem com-
putationally tractable, interest is restricted to polynomial
vector fields f , and thus, applying Lemma 1, the problem
of finding an ERA can be recast as an SOS optimization.

Program 1:

max
s1,s2∈Σ[x]; s0,VN ,R∈R[x]

γ

−∇Rf − s0(γ −R) ∈ Σ[x] (7a)
VN − s1(γ −R) ∈ Σ[x] (7b)
−∇VNf − s2(γ −R) ∈ Σ[x] (7c)

Note that VN enters affinely in (7), whereas there are bilinear
terms featuring the multipliers si, γ and R. When the
objective function is one of the two terms in the bilinearity
(e.g. s0γ), it was demonstrated [11] that the problem is
quasiconvex and thus the global optimum can be computed
via cost bisection. However, the terms in si and R (e.g. s0R)
make the above program non-convex. This can be handled
with local Bilinear Matrix Inequalities solvers [12] or by
means of iterative schemes. In [5] this is handled with the
latter approach and the following algorithm is proposed:

Algorithm 1:
Output: the level set ε(R, γ).
Input: a polynomial R0 satisfying condition (7a).

Step 1 : solve for s0, s1, s2, VN , γ

γ1 = max
s1,s2∈Σ[x];s0,VN∈R[x]

γ

−∇R0f − s0(γ −R0) ∈ Σ[x]

VN − s1(γ −R0) ∈ Σ[x]

−∇VNf − s2(γ −R0) ∈ Σ[x]



Step 2 : solve for s3, R, γ

max
s3∈Σ[x];R∈R[x]

γ

−∇Rf − s̄0(γ −R) ∈ Σ[x]

V̄N − s̄1(γ −R) ∈ Σ[x]

−∇V̄Nf − s̄2(γ −R) ∈ Σ[x]

(γ −R)− s3(γ −R0) ∈ Σ[x]

γ − γ1 ≥ 0

The superscript 0 indicates that the functions hold the value
calculated at the end of the previous iteration (or their
initializations, if at the first iteration), whereas the symbol
bar is used for quantities optimised within the same iteration
(at previous steps).

This iterative scheme consists of two steps. In Step 1 the
multipliers si (i = 0, 1, 2) and VN are optimised, whereas
Step 2 computes the level set function R, which is updated
at the beginning of the new iteration (R0 ← R). Note that a
candidate R is required to initialise the algorithm. A possible
choice is any quadratic LF proving asymptotic stability of
the linearised system, named here Vlin. Another important
aspect is that the last two SOS constraints in Step 2 ensure
that ε(R0, γ) ⊆ ε(R, γ), i.e. the solution is a set that strictly
contains the previous one.

The iterations terminate when one of the steps fails, i.e.
the associated optimization is found unfeasible, and the last
optimised values for R and γ are taken to provide the
output ε(R, γ). Alternatively, a stopping criterion could be
employed to prevent slow progress in the simulations. This
is not done here in order to present an objective comparison
among the algorithms, free from arbitrariness as for example
the choice for the tolerance on the progress.

B. A 3 step iteration scheme

An alternative algorithm to solve Program 1 is here
proposed. The main goal is to distribute the computational
effort in order to ease the SDP calculations underpinning
each step and to improve in this way the estimation of the
level set ε(R, γ).

First, a modification of Algorithm 1 is discussed. The
property ε(R0, γ) ⊆ ε(R, γ) discussed before implies that
Step 2, in addition to Step 1, is also quasi-convex and thus
it entails a bisection search on γ. To overcome this, the last
two SOS constraints in Step 2 are replaced with:

(γ −R)− s3(γ1 −R0) ∈ Σ[x] (8)

This constraint keeps enforcing the level set increase at each
iteration, but does not involve any bilinearity. In the tested
cases this modification led to a reduction in simulation time
while achieving the same or better accuracy in the results.
Therefore, this is implemented in all the analyses performed
in this article when Algorithm 1 is used.

In addition, a new iteration strategy is devised which
consists of three steps:

Algorithm 2:
Output: the level set ε(R, γ).
Input: polynomials R0, V 0

N satisfying (7).

Step 1 : solve for s0, s1, s2, γ

max
s1,s2∈Σ[x];s0∈R[x]

γ

−∇R0f − s0(γ −R0) ∈ Σ[x]

V 0
N − s1(γ −R0) ∈ Σ[x]

−∇V 0
Nf − s2(γ −R0) ∈ Σ[x]

Step 2 : solve for VN , γ
γ2 = max

VN∈R[x]
γ

−∇R0f − s̄0(γ −R0) ∈ Σ[x]

VN − s̄1(γ −R0) ∈ Σ[x]

−∇VNf − s̄2(γ −R0) ∈ Σ[x]

Step 3 : solve for s3, R, γ

max
s3∈Σ[x];R∈R[x]

γ

−∇Rf − s̄0(γ −R) ∈ Σ[x]

V̄N − s̄1(γ −R) ∈ Σ[x]

−∇V̄Nf − s̄2(γ −R) ∈ Σ[x]

(γ −R)− s3(γ2 −R0) ∈ Σ[x]

The scheme consists of one quasi-convex step (Step 1) and
two convex steps (Steps 2-3). Each step has a specific task:
Step 1 provides the multipliers for the next two steps; Step 2
calculates the function VN ; and Step 3 evaluates the sought
level set ε(R, γ) based on the iterates from the previous
steps. The size of the ERA γ is maximised throughout the
iteration, although Steps 2-3 can also be solved as simple
feasibility problems. In this regard, note that the optimality
of the solution is already prevented by the non-convexity of
(7), and that the algorithm ensures in any case that the ERA is
non-decreasing. Therefore, resorting to just feasibility when
maximization fails is a viable solution.

Algorithm 2 requires initializations for R and VN . A
first option is to choose for both Vlin, which automatically
satisfies (7). Alternatively, the calculation can start with
Algorithm 1 which in turn can provide the initializations
R0 and V 0

N to Algorithm 2. Despite the impossibility to give
a conclusive statement in terms of which one is a better
option, this paper will investigate the effect of different ini-
tializations. This is deemed an important aspect of the search
for ERAs since the obtained local optimum is very sensitive
to the initial guess. When not specified, the algorithms are
initialised with Vlin.

C. Hybrid scheme

The issues with the algorithms illustrated in the previous
sections are twofold: on the one hand, the non-convexity due
to the bilinear terms forces coordinate-wise search algorithms
to be adopted, leading to local optima; on the other, the



SDP associated with each iteration can be computationally
challenging. While the algorithm proposed in Sec. III-B
aims at tackling the aforementioned aspects by providing an
alternative less computationally intensive strategy to solve
the optimization problem, it is nonetheless affected by the
same local optima pitfall.

Note that the issue of dealing with non-convex searches
is well-known in the optimization field and one of the
proposed solutions is represented by so-called hybrid strate-
gies [13]. The essence of this approach is to cross global
optimizers with problem-specific local search algorithms. In
the currently investigated ERA programs, the non-convexity
is inherent to the adoption of SOS relaxations for the
enforcement of set containments. Thus, the adoption of a
hybrid scheme meant in the conventional sense does not
look viable. However, in this work the availability of two
distinct schemes, namely Algorithms 1 and 2, is exploited
to implement a unified one which makes the search of ERA
more robust to numerical issues.
Taking the cue from this discussion, the following hybrid
algorithm is proposed.

Algorithm 3:
Output: the level set ε(R, γ).
Input: a switching criterion swcr; polynomials R0, V 0

N

satisfying (7).

Stage 1 :

Execute Algorithm 1

if Stage 1 converged then set R0 ← R and V 0
N ← VN

if swcr is true then go to Stage 2
else restart Stage 1

else set R0 ← R0 and V 0
N ← V 0

N , and go to Stage 2

Stage 2 :

Execute Algorithm 2

if Stage 2 converged then set R0 ← R

if swcr is true then go to Stage 1
else restart Stage 2

else set R0 ← R0 and go to Stage 1
The iterative scheme builds on the advantageous capability of
switching from one algorithm to the other in case of failed
solution or slow progress. The latter can be employed to
devise the selection of the switching criterion swcr, and an
example is commented next. γ is by definition the size of
the level set and a possible metric to quantify the expansion
rate of the ERA for a certain algorithm is obtained comparing
values of γ referred to the same shape function R. This is the
case, for example, of Step 1 (of both the algorithms) which
is performed with the R obtained at the previous iteration
(with an associated size γ0). Thus, swcr can be defined as
a tolerance on the ratio γ1

γ0
, where γ1 is the size of the

ERA after Step 1. Note that when Algorithm 2 is employed,
γ2
γ1

(with γ2 the size of the ERA after Step 2) can also be
considered, because the shape R is held fixed over this step,
too. The idea behind the choice of these ratios is that they

provide a measure of the increase in the size of the estimated
ROA achieved with a particular algorithm. Other metrics able
to quantify the progress in enlarging the provable ERA could
be also adopted as switching criteria. Since this is likely to
lead to different results, testing different swcr represents a
further strategy to improve the estimation of the ROA.

In the following analyses, swcr is defined such that the
algorithm crosses the Stages sequentially (i.e. the inner if
condition is always true). In fact, it should not be under-
estimated the utility of a scheme whose goal is simply to
carry on the optimization in case of failed solution of one
algorithm, as it is often the case that unfeasibility of one
of the steps is not caused by the fact that the ERA is close
to the actual ROA, but by numerical issues of the SDPs
(exacerbated when the size of the program increases).
The selection of the switching criterion is deemed a problem-
specific feature and thus the study of the benefits in adopting
the aforementioned criteria can be undertaken in future works
focused on the study of ROA for specific case studies.

IV. RESULTS

The different algorithms discussed in Section III are
applied here to two case studies (labelled VdP and SP).
All the analyses are performed on a 3.6 GHz desktop PC
with 16 GB RAM, with the library SOSOPT [10] used
in conjunction with the SDP solver Sedumi [14]. Before
presenting the case studies and detailed results, Tab. I
summarises the computational statistics. Recall that each
algorithm is iterative and each iteration features two or three
steps. Therefore, for each algorithm only the number of
decision variables Nvar and size of the Gram matrix NSDP
for the most demanding step are reported. In addition, the
averaged processing time per iteration Titer and the overall
time Ttot required to determine the ERA are given. Even
though these latter metrics could vary depending on the
adopted SOS-SDP solvers, it is believed that the differences
in their values among the algorithms would remain similar.
The same reasoning applies to the size of the ERA discussed
in the remainder of the section.

TABLE I
COMPUTATIONAL STATISTICS

Case study Algorithm Nvar NSDP Titer [s] Ttot [s]
VdP Alg. 1 27 362 4.8 88
VdP Alg. 2 15 362 4.4 114
VdP Alg. 3 15 362 4.6 123
SP Alg. 1 246 12322 78 1872
SP Alg. 2 126 12322 70 1260
SP Alg. 3 246 12322 72 2742

A. Van der Pol oscillator

The Van der Pol (VdP) oscillator [15] is a nonlinear system
with 2 states given by:

ẋ1 = −x2

ẋ2 = x1 + (x2
1 − 1)x2

(9)

The VdP steady-state solutions are characterized by an un-
stable limit cycle and a stable equilibrium at the origin. The



latter is only locally stable, its ROA being the region enclosed
by the limit cycle, which thus can be easily obtained from
time-marching simulations. Fig. 1 shows different estimates
of the ROA for this system (the actual ROA is also reported
for reference): Alg. 1 (Algorithm 1); Alg. 2 (Algorithm
2); and Alg. 3 (Algorithm 3). The degree of the optimized
polynomials VN and R is 4.
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Fig. 1. ERA of VdP (∂(VN , R) = 4).

As a preamble, it should be noted that all the algorithms
provide a good approximation of the ROA of the system.
In fact, VdP is often used as a benchmark study for newly
developed algorithms and in the same spirit was also adopted
in this work. The small differences are better seen in the
insets of Fig. 1, which help to highlight the effect of adopting
a hybrid strategy. The curve Alg. 3 is shown to envelope the
curves obtained with the two iteration schemes, providing in
this way the largest estimation of ROA among the considered
approaches.

As for the computational statistics reported in Tab. I,
Algorithm 2 features a smaller Titer than Algorithm 1
(bearing in mind the similarity of the results commented
before). Even though the former features 3 steps (as opposed
to Algorithm 1 which has only 2), this performance is a
result of the redistribution of the computational effort which
is the main idea behind the proposal of Algorithm 2 (which
also benefits Algorithm 3). However, when looking at the
overall time Ttot the trend is opposite, despite the fact that
the two achieved estimations of the ROA are very close.
This is due to the fact that the algorithms are carried out
until an optimization step is unfeasible, and there is no
condition preventing slow progress. Algorithm 2 performs
more iterations before reaching unfeasibility, but with no
tangible improvement on the estimation for this case study,
and this results in a greater Ttot. This could be overcome
by using a stopping condition based for example on one of
the options discussed in Sec. III-C for the switching criterion
swcr. Tests carried out with this rationale lead to an overall
smaller time Ttot for Algorithm 2, too.

B. Controlled short-period aircraft dynamics

This case study consists of a closed-loop nonlinear short-
period (SP) model of the longitudinal dynamics of an air-
craft [16]. It features 3 open-loop states (pitch rate z1, angle
of attack z2, pitch angle z3) and 2 controller states η1, η2.

ż =

 −3 −1.35 −0.56
−0.91 −0.64 −0.02

1 0 0

 z +

1.35− 0.04z2

0.4
1

u
+

0.08z1z2 + 0.44z2
2 + 0.01z2z3 + 0.22z3

2

−0.05z2
2 + 0.11z2z3 − 0.05z2

3

0


η̇ =

[
−0.6 0.09

0 0

]
η +

[
−0.06 −0.02
−0.75 −0.28

]
y

y = [z1 z3]T ; u = η1 + 2.2η2;
(10)

Since the system has more than 2 states, projections of the
ERA onto particular planes are employed to visualize the
results. In general, the analyst will focus on the states which
are supposed to experience larger perturbations during the
operation of the system. In this work, the z1-z2 phase-plane
(Fig. 2) will be displayed since the studied nonlinearities
arise primarily from their dynamics. Further, to provide as
much information relative to the analyses as possible, Fig.
3 shows the projections onto the z1-η1 plane. The degree of
the optimized polynomials VN and R is 4.
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Fig. 2. Projection of the ERA of SP onto z1-z2 plane.

The effect of the adopted iteration scheme is, as expected,
more significant here. Note indeed from Nvar and NSDP in
Tab. I that this case study has a greater level of computational
complexity when compared to the VdP dynamics.
Although no conclusive remarks can be stated based only
on these results, it is worth discussing some trends observed
also in other analyses which considered different definitions
for the multipliers and for the level set functions degrees.
The algorithms are sensitive to the initialization, especially
Algorithm 2 which requires a guess for both VN and R. A
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Fig. 3. Projection of the ERA of SP onto z1-η1 plane.

promising strategy in this regard consists of initializing it
with the first iterate from Algorithm 1. The analyses also
revealed that the estimates computed with Algorithm 3 were
typically the largest (this is noticeable for example in Figs.
2-3).
Other valuable information provided by the comparison
of different ERA is an enhanced insight into the actual
boundaries of the ROA, which is not known for the SP case.
For example, from a closer inspection of Figs. 2-3, a dense
presence of curves in some regions, marked with circles in
the plot, can be identified. It can then be speculated that these
correspond to boundaries of the actual region of attraction of
the system. These insights can be of great help in the analysis
of nonlinear systems since they can inform extensive refined
time-marching simulations to check safety regions for the
operation of the plant. In addition to this, they can inform
the initializations for further analyses which, in view of their
importance associated with the local search nature of the
algorithms, can drastically improve the estimation.
The conservatism associated with the estimates provided by
the algorithms can be investigated by simulating the nonlin-
ear systems using as initial conditions random points on the
boundary ∂ε(R, γ) and enlarging γ until trajectories steering
away from the equilibrium point are detected (providing in
this way an upper bound γf on the size of the ERA for the
shape associated with R). These analyses revealed that the
hybrid scheme led to the most accurate estimate, featuring
a gap between γf and γ within 6%. Moreover, the initial
conditions associated with escaping trajectories lie in the
regions marked with circles in Figs. 2-3, confirming the
inferences discussed before.

Finally, it can be appreciated from Tab. I that the reduction
in Titer from Algorithm 1 to Algorithm 2 is even greater
for this case study. This was expected since it features a
larger size in both number of states n and polynomial degree
∂(f), thus the effect of lowering the SDPs dimension (which
drove the design of Algorithm 2) is magnified. Algorithm

2 also features the smallest Ttot. Note that the high value
observed for Algorithm 3 can be motivated observing that
the associated ERA is markedly larger than the others and
thus more iterations will be involved in its computation. This
is an important aspect to keep in mind when using the metric
Ttot to compare different algorithms.

V. CONCLUSION

This article considers the problem of estimating the region
of attraction of systems described by polynomial vector
fields. A recent formulation based on invariant level sets
is adopted as the theoretical foundation to propose compu-
tationally more efficient algorithms. Well-known numerical
issues associated with Sum Of Squares relaxations are also
commented on, and possible strategies to ameliorate them
are discussed. An iteration scheme to tackle the bilinearities
arising in the corresponding programs is proposed, and the
advantages of jointly using different iterative algorithms
in order to overcome unfeasibility or slow progress is
demonstrated via two example systems. These confirm the
advantages, both in run time and size of the estimated ROA,
in adopting the iterative schemes proposed in this article,
especially as the size of the analysed system increases.
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