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Abstract: The landing of a civil transport aircraft is one of the most challenging phases.
The reason mainly lies in the need to satisfy different concurrent requirements in the face of
a wide range of system variations and environmental perturbations. Automatic control laws
have been developed in the past to address this complex scenario, using an involved iterative
process of design, tuning and validation. Due to the uncertainties and perturbations present
in this phase, robust synthesis techniques (e.g standard and structured H∞ design) provide
an effective framework to accomplish these tasks. This compels on the other hand to rely on
procedures to generate the proper mathematical description of the plant and the availability
of analysis tools to obtain time efficient robust predictions and insight into the system being
analyzed. This work presents the application of Linear Fractional Transformation modeling and
µ analysis to the Aircraft Landing Benchmark proposed by ONERA and Airbus.
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1. INTRODUCTION

The final approach and flare of a civil transport aircraft
are critical phases due to the high number of variables
to be controlled simultaneously and the high safety stan-
dards demanded. Automatic landing control laws have
been proposed and put in practice in order to overcome
potentially critical landing conditions. However, it is ac-
knowledged (Sadat-Hoseini et al. (2013)) that the pro-
cess leading to the definition of feedback control laws to
successfully accomplish these phases is far from being a
consolidated and reliable methodology.
On the one side, due to the concurrent objectives to
be achieved, a multi-objective optimization process is re-
quired which makes the tuning phase arduous despite the
availability of complete design frameworks (Looye and
Joos (2006)). On the other side, the automatic landing
control has to be proven robust to a wide range of uncer-
tainties belonging to the system (e.g. mass, CG position)
and environment (e.g. wind speed, temperature).

Addressing these shortcomings, ONERA and Airbus pro-
posed an Aircraft Landing Challenge (Biannic and Boada-
Bauxell (2016)), whose goal is to design an autoland con-
trol system to perform approach and landing satisfying
a set of certification requirements defined at touch-down.
The validation campaign to certify the proposed design is
performed in a Monte Carlo (MC) framework employing
the provided nonlinear simulator to quantify mean and
risk dispersion in the face of the assigned variability in the
flight conditions.

This paper focuses on the application of robust modeling
and analysis techniques and show that they are instru-

mental tools that provide invaluable insight for the control
design stage in this complex scenario. The LFT models and
robust µ analyses performed complemented and guided
the designs for the benchmark developed by the TASC
group (see for example Navarro-Tapia et al. (2017) for
the flare component design). The proposed strategy is
essential in providing the mathematical models required
by the synthesis algorithms in order to achieve the defined
robust objectives. In the analysis part of this paper, it is
illustrated how the tools provide reliable indications on
the performance of the systems within a time frame and
manner compatible with the design stage.

The techniques employed in this work are Linear Frac-
tional Transformation (LFT) modeling and structured
singular value-µ analysis (Zhou et al. (1996); Packard
and Doyle (1993)). These tools are well-established in the
research community and have been adopted in the last
decades to cope with diverse problems in the control field.
Since the system under investigation is defined by means
of a realistic nonlinear model aircraft landing, the first
step consists in recasting the plant into the LFT frame-
work through a three-step procedure detailed in Sec. 2.
Different LFTs are presented therein, along with possible
motivations for these choices. In Sec. 3 the capability of µ
in evaluating robust performance properties of the systems
is detailed, with particular attention to the comparison
between the baseline controllers provided with the bench-
mark and the TASC design proposed for the challenge.
In Sec. 4 it is discussed how the capabilities of µ can be
further exploited in order to examine more in depth the
system and understand possible effects of control design
choices. Sec. 5 presents the main conclusions of the work.



2. LFT MODELING OF THE AIRCRAFT LANDING

This Section describes the procedure adopted in order to
build LFT models of the aircraft landing system, starting
from the provided nonlinear model. A cursory description
of the LFT framework follows. Refer to Zhou et al. (1996)
for a comprehensive discussion on the topic.

2.1 LFT background

Let M be a complex matrix termed coefficient matrix and
partitioned as [

M
]

=

[
M11 M12

M21 M22

]
(1)

Fu, namely the upper LFT, is the closed-loop transfer
matrix from input u to output y when the nominal plant,
represented by M22, is subject to a perturbation matrix
∆u (Fig. 1). M11,M12 and M21 reflect a priori knowledge
on how the perturbation affects the nominal map. Once
all varying or uncertain parameters are pulled out of the
nominal plant, the problem appears as a nominal system
subject to an artificial feedback. The algebraic expression
for Fu is given by:

Fu(M,∆u) = M22 + M21∆u(I−M11∆u)−1M12 (2)

This LFT is well posed if and only if the inverse of the
term (I−M11∆u) exists.

Fig. 1. Upper LFT

2.2 Building LFT models

The LFT modeling paradigm pivots on the algebraic ma-
nipulation of linear plants in order to recast the problem as
depicted in Fig. 1. In the present application, the system is
described by means of a Simulink nonlinear model of a civil
transport aircraft (Biannic and Boada-Bauxell (2016)).
The routine ACStrim is provided in order to perform
longitudinal trim and linearization once a particular flight
condition is specified through the input argument flightpar.
This aircraft benchmark challenge consists in designing a
controller to enable landing despite parametric variations.
This means that some of the parameters specifying the
flight condition are described by a range of values. As a
result, each possible flight condition generates a Linear
Time-Invariant (LTI) system. A three-step procedure is
developed in order to obtain a representative LFT.

Firstly, the set of parameters ρ affecting the linearization
(i.e. belonging to the flightpar argument) is selected. In
this work two sets are considered: the first holds Mass (m),
Center of Gravity longitudinal position (xCG), Runway
altitude (hrwy) and Temperature (T0), whereas the second
includes also the Longitudinal Wind speed (WX). This
choice is made in order to study the effects on design
and analyses of considering two distinct LFTs differing
in size and in the ability to capture a parameter believed

a priori to be relevant for the challenge (i.e. WX). Once
an appropriate number of samples of these variables has
been chosen, the routine ACStrim is employed to evaluate
the linearized LTI systems (Ai, Bi, Ci, Di) associated to
the ith combination of the samples.

Secondly, a linear plant (A(ρ),B(ρ),C(ρ),D(ρ)) with a
polynomial or rational dependence on the uncertain pa-
rameters is generated. This task is accomplished by means
of the APRICOT library (Roos et al. (2014)) of the SMAC
toolbox. In particular in this work the routine olsapprox is
adopted, which performs orthogonal least-square in order
to obtain a polynomial approximation for a set of samples
obtained for different values of some explanatory variables.
The main output is an object defining for each entry of
the polynomial, parameter-dependent LTI matrix the co-
efficients and exponents of the monomials employed in the
approximation. After several tests, the maximum degree
of the approximating polynomial has been fixed to 1.

The final step consists in converting the system into an
LFT. An embedded capability of the APRICOT library
enables to directly generate the LFT as output of the
olsapprox routine. However, the approximation obtained
at the previous step is further manually manipulated in
order to reduce the size of the final LFT. The parameter
dependence of some entries are removed based on physi-
cal assumptions (e.g. neglected dependence on ρ of some
coupling terms between longitudinal and lateral dynamics)
and numerical assessment. For the latter, the magnitude
of the polynomial coefficients are compared to that for
the nominal value, and those below a defined tolerance
discarded. The manually reduced symbolic object is finally
transformed into the desired LFT by means of the GSS
library (Biannic and Roos (2016)), which employs sophis-
ticated realization techniques to accomplish this task.

The accuracy of the LFT is a prerequisite for an effective
application of this framework. When the LFT is employed
to reproduce a nonlinear system, it is recommended to
perform both linear and nonlinear validations (Marcos
et al. (2006)). A representative set of flight conditions
inside the allowed range of variation of the parameters
is defined. For the linear validation, this set is used to
generate the corresponding LTI systems (by means of
ACStrim) which are compared in terms of Bode magnitude
and eigenvalues with those obtained through realization of
the LFT specifying the corresponding values of ∆. For the
nonlinear validation, the family of LTI systems given by
the LFT and corresponding to the selected set of samples is
time-simulated and a comparison with analogous nonlinear
simulations (in terms of response around the trim points)
is attempted, in terms of time-variation of meaningful
variables. This twofold strategy has been employed for
all the LFT models discussed in the sequel, obtaining
satisfactory results as later shown.

2.3 Different LFT options

The LFTs generated by means of the outlined procedure
serve two main purposes. On the one side, they are em-
ployed for the synthesis of feedback control laws with linear
robust techniques (Navarro-Tapia et al. (2017)). On the
other, it is an essential framework for the application of the
µ-based robust analyses. For these reasons, different LFTs



are built and employed in the study. A first distinction,
in terms of the set of parameters included in the ∆ block,
has been already mentioned in Sec.2.2. A second important
one concerns the LTI system adopted for the polynomial
interpolation in the second step discussed before. A first
obvious choice is to consider the dynamics directly derived
from the linearization routine. They consist of 16 states, 9
inputs and 19 measured outputs. After examining the in-
volved variables, the LTI for the study of the full dynamics
of the aircraft can be reduced to 13 states, 7 inputs and 9
outputs listed below (refer to Biannic and Boada-Bauxell
(2016) for the notation):

xFULL
13 = u, v, w, p, q, r, φ, θ, ψ, δT , δA, δE , δR

uFULL
7 = δTc , δAc , δEc , δRc , wx, wy, wz

yFULL
9 = ny, nz, p, q, r, φ, vc, vz, χ

(3)

where the size of the vector is recalled in the superscripts.

In order to tailor the design of the controllers to spe-
cific performance objectives, and in view of the physical
decoupling between motions, it is of interest to study
separately the reduced dynamics for the longitudinal and
lateral plane. In particular, this leads respectively to:{

xLON
6 = u,w, q, θ, δT , δE

uLON
4 = δTc , δEc , wx, wz; yLON

4 = nz, q, vc, vz{
xLAT

7 = v, p, r, φ, ψ, δA, δR
uLAT

3 = δAc , δRc , wy; yLAT
5 = ny, p, r, φ, χ

(4)

Tab.1 gives the size for the different derived LFT models:

LFT without WX with WX

Longitudinal 24 29
Lateral 19 26
Full 39 51

Table 1. LFTs size
In Fig.2 it is depicted an example of nonlinear validation
applied to the Full LFT (set without WX) with the
uncertainties fixed at their maximum values. In order to
perturb the trim a step-input in longitudinal and lateral
wind disturbances (i.e. wy and wz) is considered and the
two responses are observed in terms of load factors ny
and nz, longitudinal velocity Vc and roll angle φ. Note
that the LFT is able to capture adequately the transient,
although some features (in particular with reference to ny
and nz, e.g. different overshoots and non-minimum phase
behaviour) are missed.
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Fig. 2. Nonlinear time-domain validation of the full LFT

3. ROBUST ANALYSIS OF THE CHALLENGE

This Section describes the robust analyses performed on
the derived LFT models. The analyses presented in this
work consider two controllers: the baseline provided with
the benchmark (Biannic and Boada-Bauxell (2016)) and
the one designed by the TASC team for the challenge.

Traditionally, an autopilot landing can be split in three
phases: the final approach, flare and decrab. In the first,
considered here, the ILS vertical (glide-slope) and lateral
(localiser) errors must be minimised while keeping the
calibrated airspeed Vc constant and the sideslip angle β
close to zero. The final approach controllers KLON and
KLAT were separately designed using the structured H∞
optimisation framework (Gahinet and Apkarian (2011)).
KLON is a third-order controller with little coupling be-
tween δTc and δEc, which relies on the measurement of
yLON. In addition, KLAT is a second-order system with
pure integration of ny and φ errors, which takes yLAT as
feedback vector.

Following a brief description of the theory underpinning µ
analysis (Packard and Doyle (1993)), results are presented
and discussed. Unless otherwise indicated, the LFTs with-
out wind are employed.

3.1 µ background

The structured singular value (s.s.v.) is a matrix function
denoted by µ∆(M) and defined as:

µ∆(M) =
1

min∆(σ̄(∆) : det(I −M∆) = 0)
(5)

where σ̄(∆) is the maximum singular value of ∆. This
definition can be specialized to determine whether the LFT
Fu(M,∆u) defined in Eq.2 is well posed once the generic
matrix M in the above definition is replaced by M11 and
∆ belongs to the corresponding uncertainty set ∆u. For
ease of calculation and interpretation, ∆ is typically norm-
bounded ‖∆‖∞ < 1 (without loss of generality by scaling
of M). In this manner, if µ∆(M) ≤ 1 then the result
guarantees that the analyzed system represented by the
LFT is robustly stable (RS) to the considered uncertainty
level. The s.s.v. can be used also for robust performance
(RP), which is the application mostly sought here.

Performance here consists in checking whether a closed
loop transfer matrix T (s), in terms of its ‖‖∞ norm,
satisfies a frequency domain template Ψ(ω):

σ̄(T (jω)) < Ψ(ω) (6)

In order to address this task within µ analysis, the idea
is to consider two perturbation matrices: ∆1 is taken as
the structured model perturbation ∆u early introduced
and originated by the uncertainties affecting the plant.
∆2 is instead a full-complex perturbation matrix closing
the lower loop in Fig. 1 by connecting the signals y and
u. This fictitious block, which doesn’t reflect any actual
perturbation of the plant, is introduced to take advantage
of the Main Loop Theorem (Zhou et al. (1996)). This
theorem ensures that the condition µ∆(M) < 1 is a test
for the robust performance of the plant represented by the
LFT. It’s worth noticing that M is now employed and not
M11 as for the RS test.
It is known that µ calculation is non-polynomial (NP)



hard, thus the algorithms implement upper and lower
bound calculations (Balas et al. (2005)).

3.2 Analysis of Longitudinal dynamics

The LFT employed in this section is obtained closing
the longitudinal plant defined in Eq.4 with the baseline
controller and KLON. The LFT employed is defined by the
uncertain block ∆LON :

∆24,R
LON = diag(δmI6, δxCG

I6, δhrwyI6, δT0I6) (7)

where the size of the uncertainties and their nature (R
stands for real) is recalled in the superscripts. In Fig. 3
the RS of the two controllers is investigated. The predicted
values of µ are well below 1 for the whole frequency range.
This ensures large RS for both systems, expected since
performance is the main concern in this problem. For this
reason, in the rest of the article the focus is to RP.
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Fig. 3. Longitudinal Plant RS with two controllers

In Fig. 4 robust performance is considered. For each closed
loop, the µ UB (LB is very close to it) and the maximum
singular values (MSV), which are a measure of the nominal
performance, are shown. The results show that both the
nominal and robust performance improve for the TASC
design. Note that this improvement is with respect to
the specific weights used for the TASC design, and thus
the results for the baseline design must be taken with
care. Nonetheless, this improvement was confirmed with
a nonlinear simulation campaign.
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Fig. 4. Longitudinal Plant RP with two controllers

3.3 Analysis of Lateral dynamics

Robust performance is here evaluated for the lateral
plants, closed with the lateral baseline controller and

KLAT, employing the LFT defined by the uncertain block
∆LAT :

∆19,R
LAT = diag(δmI6, δxCG

I5, δhrwy
I4, δT0I4) (8)

Fig. 5 shows the lateral RP comparison. It is worth noting
that the TASC design ensures a value of µ UB equal or
smaller than 1 in all the frequency range and a substantial
improvement in the high frequency range.
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Fig. 5. Lateral Plant RP with two different controllers

An interpretation of the result in Fig. 5 is that the base-
line closed-loop (featuring a peak µBM ' 1.25) can only
guarantee a degradation of RP of a factor 1.25 for an
uncertainty range of 80%(' 1

1.25 ) the current analyzed
one. The TASC design on the other hand guarantees the
fulfillment of the requirements within the defined range of
uncertainties (as it is µTM < 1). In order to confirm these
considerations, a robust performance assessment via non-
linear simulations evaluated at scattered flight conditions
(i.e. using 100 random runs) is performed. Three cases
are considered: baseline and TASC closed-loops with the
full uncertainty range (respectively KBase and KLAT ), and
baseline with the above 80% range (KBase−µ). Fig. 6 shows
the Gaussian fits of the distributions at touch-down for
4 parameters: lateral deviation from runway YLG, lateral
load factor ny, roll rate p and yaw rate r. The dispersion
in the values with respect to the nominal value (null for all
of them) is a measure of loss in performance of the system.
The plot hence confirms the predictions of Fig. 5: KLAT

features always a better behaviour than KBase; KBase−µ
has comparable performance to KLAT . In that respect, it
is worth remarking that the employed parameters are not
directly connected to the frequency-domain performance
requirements analysed by µ and thus they are here pro-
posed only as indicators of loss of robustness. See (Marcos
et al. (2015)) for a thorough discussion on this approach
taken to reconcile µ predictions with nonlinear simulation.

3.4 Analysis of the Full system

For control design purposes, the system has been consid-
ered decoupled and thus longitudinal and lateral dynamics
treated separately. This section addresses the analysis of
the full plant (Eq.3) closed with the full TASC autoland
control design. The aim is to provide a general assessment
on the performance behavior of the full closed-loop system
in the face of the considered uncertainties, as well as to
check the validity of the aforementioned decoupled design
approach. The defined uncertain block ∆FULL is given by:

∆39,R
FULL = diag(δmI11, δxCG

I10, δhrwyI9, δT0I9) (9)
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Fig. 6. Result of MC runs for lateral variables

Fig. 7 shows the RP upper µ bound comparison for the
longitudinal, lateral and full closed-loops, with the TASC
controllers. It is apparent that the full µ envelops the
corresponding values obtained for the decoupled plants.
The relatively negligible importance of the coupling terms
could have been inferred looking at the Bode plot of the
full nominal plant. However, the information shown here
is more general since it ensures that these terms do not
play a decisive role even when uncertainties are involved,
which is more difficult to state a priori.
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3.5 Effect of Longitudinal Wind as uncertainty

Next, the effect of the longitudinal wind (captured as
an uncertain parameter) is investigated. In Fig. 8 it is
shown, for each reduced dynamics, the degradation in
terms of RP when WX is included. The longitudinal plant
seems barely affected by the addition of this uncertainty,
whereas the lateral plant is sensitive in the low frequency
range, showing for the rest an unchanged trend. This
aspect can be connected with the violation of one limit
risk requirement for the TASC design in extreme wind
conditions.

4. SENSITIVITY ANALYSIS AND INSIGHTS

Sec.3 has shown how µ analysis can be employed in order
to predict degradation of nominal performance of a closed
loop plant in the face of uncertainties defined by a LFT.
Another application of this tool consists in performing a
sensitivity analysis of either RS or RP with respect to the
set of uncertainties. Once a condition is defined (determi-
nant condition in Eq.5 for RS, violation of the frequency
template in Eq.6 for RP), µ highlights the relevance of the
generic term in ∆ in determining it.
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Although more advanced µ sensitivity analyses can be
employed using the skew-µ concept (Ferreres and Biannic
(2003); Marcos et al. (2005)), in here the sensitivity esti-
mate implemented in the Robust Control Toolbox (Balas
et al. (2005)) is used. It employs a finite difference calcula-
tion where the uncertainty range of the considered uncer-
tainty is enlarged (default value 25%) and the percentage
loss in robust margin is evaluated.
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The results for the plants controlled with the TASC design
are shown in Fig. 9. Different trends can be detected:
the longitudinal plant is mostly affected by xCG and m,
whereas the lateral shows similar sensitivity to all the
parameters except CG which is the less critical. This last
information is in accordance with physical understanding.
Sensitivity analysis can also be applied to the input chan-
nels u of the LFT. This option is not directly available
within the Toolbox, but the analysis can be approached
as follows. As known, a scaling of the submatrices Mi

(defining M in Eq.1) is equivalent to shrink/enlarge the
size of the associated blocks in ∆. Once the LFT modeling
step is performed, and thus the coefficient matrix M is
available, the sub-partition related to the considered input
into the plant can be identified and weighted.
This procedure is applied here to study the effect on RP
of two inputs: reference signals and wind disturbance (i.e.
wx, wy and wz). These analyses can provide further insight
on the RP behaviour of the closed loop and thus prompts
a rationale to improve the controller design. In Fig. 10 a
comparison between the sensitivity of the lateral baseline
and TASC designs is provided. The corresponding plot for
the longitudinal plant shows similar features.



Two expected trends are detectable in the plots. The
sensitivity to reference input is greater at low frequencies
and drops as this is increased, whereas the opposite hap-
pens for the wind. An interesting feature emerges when
the sensitivity to wind disturbances is compared between
baseline and TASC designs. These have a similar trend
until approximately 10 rad

s , after which the wind sensitiv-
ity is considerably reduced for the second (see the range
highlighted by the arrow). It is worth noticing that in
the same frequency range Fig. 5 showcased a considerable
improvement in robustness. In this range of frequencies it
can also be observed a greater sensitivity to reference for
the TASC design, but this takes place in a region where
this input is not believed to be determinant in terms of
performance degradation.
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These aspects reflect one of the rationale that guided the
design of the robust control laws for both the plants.
Preliminary analyses performed by means of MC-based
nonlinear simulations seemed to suggest that wind dis-
turbances at the input of the system played prominent
role in degrading the requirements of the challenge. The
design was then oriented towards a mitigation of this
effect. The analysis in Fig. 10 proves this attempt and
its achievement within a linear robust framework (such
as the one represented by LFT and µ). The complement
of these analyses showing the behavior of the designed
controllers in terms of the benchmark requirements will
be further discussed in future works, and is also partly
presented in (Navarro-Tapia et al. (2017)).

5. CONCLUSION

This paper illustrates the application of Linear Fractional
Transformation modeling and µ analysis to the Aircraft
Landing Benchmark. The overall task of the challenge is
to design an autoland control system to satisfy a set of
requirements at touch-down in the face of system varia-
tions and environment perturbations. This work focuses
on the development of LFT models for the synthesis of
robust control laws and analysing the closed loop plants
so-obtained in terms of robust performance.
The predictions that can be obtained with µ are something
more than a simple binomial-type of output (either the
system is robust or not within the prescribed uncertainty
set). It was shown for example that the sensitivity of the
degradation in performance of the system to a single pa-
rameter was efficiently captured by µ analysis. Moreover,

this can be applied also to a set of inputs of the plant
to detect which ones are more critical in degrading the
performance of the plant.
This work shows the potentiality of the framework LFT-
µ to cope with this practical challenge. The controllers
designed employing the plant models detailed in this work
decisively improved the robustness of the system. This
accomplishment was certified by means of a Monte-Carlo
statistical analysis based on nonlinear simulations.
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