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Abstract: In this paper, the hierarchical Bayesian method for regularized system identification
is introduced. To this end, a hyperprior distribution is considered for the regularization matrix
and then, the impulse response and the regularization matrix are jointly estimated based
on a maximum a posteriori (MAP) approach. Toward introducing a suitable hyperprior, we
decompose the regularization matrix using Cholesky decomposition and reduce the estimation
problem to the cone of upper triangular matrices with positive diagonal entries. Following this,
the hyperprior is introduced on a designed sub-cone of this set. The method differs from the
current trend in regularized system identification from various aspect, e.g., the estimation is
performed by solving a single stage problem. The MAP estimation problem reduces to a multi-
convex optimization problem and a sequential convex programming algorithm is introduced for
solving this problem. Consequently, the proposed method is a computationally efficient strategy
specially when the regularization matrix has a large size. The method is numerically verified on
benchmark examples. Owing to the employed full Bayesian approach, the estimation method
shows a satisfactory bias-variance trade-off.
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1. INTRODUCTION

System identification address the problem of estimating
appropriate mathematical models of dynamical systems
using a set of measured data and methods of statistics
(Ljung, 1999). The importance of models for prediction
and control of physical systems is well recognized, for
example thermal energy system in the buildings, network
of agents, robotics, biological systems among many others.

Including regularization in the identification problem has
received an extensive attention. The underlying idea is to
integrate the prior knowledge, which is available in addi-
tion to the measurement data, into in the model estimation
problem. For the purpose of obtaining a system featuring
low complexity in McMillan sense, various types of reg-
ularization such as the Hankel matrix rank, the nuclear
norm and the atomic norm of system are introduced in
the literature (Fazel et al., 2013; Mohan and Fazel, 2010;
Smith, 2014; Shah et al., 2012). Additionally, starting from
the seminal work of Pillonetto and De Nicolao (2010),
the problem of studying Tikhonov-type regularizations for
imposing constraints on the latent system, like the smooth-
ness and stability of the impulse response, has received
significant attention (Pillonetto et al., 2014). In this frame-
work, the system identification problem is formulated as
a regularized regression with a regularization term com-
ing from the norm of a reproducing kernel Hilbert space
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(RKHS) (Aronszajn, 1950) which penalizes the feasible
solutions not agreeing with the prior knowledge. The main
ingredient of these Hilbert spaces is the kernel function.
Subsequently, designing a suitable regularization boils
down to characterizing appropriate kernels. In the context
of regularized system identification, the most common ker-
nels are tuned/correlated (TC), diagonal/correlated (DC)
and stable spline (SS) (Pillonetto et al., 2014). Moreover,
many other kernels and also regularization matrices have
been proposed following various approaches, e.g., inspired
by machine learning and system theory (Chen, 2018; Khos-
ravi et al., 2020), using the harmonic analysis of stochastic
processes (Zorzi and Chiuso, 2018), based on filter design
methods (Marconato et al., 2016). One can use various
operation on given kernels or regularization matrices and
introduce new ones (Hong et al., 2018; Chen et al., 2014,
2018). Once the type of kernel or regularization matrices
is fixed, the characterizing hyperparameters are estimated
using the given measurement data D. In this regard, a
number of approaches are introduced for hyperparameter
estimation, e.g., empirical Bayes (EB) (Pillonetto et al.,
2014), Stein unbiased risk estimator (SURE) (Hong et al.,
2018) and cross-validation (CV) (Mu et al., 2018a,b). In
summary, in the current trend of regularized system iden-
tification, first a prior or a regularization for the impulse
response is considered and subsequently, the parameters
of prior are tuned, and finally, the impulse response is
estimated.

In this paper, the hierarchical Bayesian method for regu-
larized system identification is investigated where a joint
estimation for the impulse response and the regularization



matrix is proposed based on a maximum a posteriori
(MAP) approach. To this end, appropriate hyperprior
which suitably determines the structure of regularization
matrix is introduced, and subsequently the form of impulse
response. Moreover, the hyperprior is designed so that the
estimation method is numerical tractable. The regulariza-
tion matrix is indeed decomposed using Cholesky decom-
position and the estimation problem is reduced to a sub-
cone of the space of upper triangular matrices with positive
diagonal entries. The final MAP estimation problem has
a multi-convex programming form which can be efficiently
solved using an introduced sequential convex programming
algorithm. The method is finally numerically verified on
benchmark examples.

2. NOTATIONS

The set of natural numbers, non-negative integers, in-
tegers, real numbers and non-negative real numbers are
denoted here by N, Z+, Z, R and R+, respectively. Let F
be either R or R+. Then, for any n ∈ N, the space of n-
dimensional vectors with entries in F is denoted by Fn and
h ∈ Fn is indicated by h = (hk)nk=1 to show explicitly in
terms of its entries, i.e., hk is the kth entry of h. The set of
n-by-m matrices with entries in F is denoted by Fn×m. The
set of n-by-n real symmetric positive-definite matrices, n-
by-n real symmetric semi-positive-definite matrices, n-by-
n upper triangular matrices with non-negative diagonal
entries and n-by-n upper triangular matrices with positive
diagonal entries are denoted by Sn++, Sn+, Un+ and Un++,
respectively. The zero vector, the zero matrix, and the
identity matrix are indicated with 0, 0, and I, respectively.
For any vector x, the Euclidean norm of x is shown by
‖ · ‖. The interior and closure of set S is denoted by intS
and clS, respectively. The convex cone of set X is denoted
by convconeX . Given set X , 1X is a function which is
one on X and zero elsewhere. The space of real-valued
signals defined over Z is denoted by RZ. The forward shift
operator, denoted by q, is an operator on the space of
signals, q : RZ → RZ, defined by (qu)t = ut+1, for any
t ∈ Z and any u ∈ RZ. By X ∼ N (µ,Σ), we mean that X
is a Gaussian random vector with mean µ and covariance
Σ. The probability density functions are denoted by p. The
support of distribution µ on the measurable space (X ,A)
is defined as supp(µ) = {x ∈X | µ(x) 6= 0}.

3. SYSTEM IDENTIFICATION

We consider a single-input-single-output causal and stable
linear time-invariant (LTI) system described by transfer
function G(q). Let the input signal u ∈ RZ be applied to
the system and the output signal of system, denoted by
y ∈ RZ, be measured. We assume that the measurement
of the output is subject to additive white measurement
noise. Accordingly, given that u = (ut)t∈Z and y = (yt)t∈Z,
at any measurement time instant t, we have

yt = G(q)ut + wt, (1)

where w := (wt)t∈Z ∈ RZ is the measurement noise,
a zero mean white Gaussian signal with variance σ2

w.
More precisely, w is a sequence of independent and identi-
cally distributed (i.i.d.) random variables with distribution
N (0, σ2

w). Given a finite set of measurement data, it is
desired to estimate the LTI system.

3.1 Maximum Likelihood and Prediction Error Method

In the classical system identification (Ljung, 1999), be-
sides nonparametric approaches such as empirical transfer
function estimation (ETFE), the system is represented in
a parametric form and then, the parameters of the sys-
tem are estimated using available measurement data. This
procedure is done principally using a maximum likelihood
(ML) approach. The system is assumed stable, one possible
parametric representation of the system is in form of a
finite impulse response (FIR). More precisely, the transfer
function of the system G(q) is approximated by

G(q) =
∑ng−1
k=0 gkq−k, (2)

where g := (gk)
ng−1
k=0 ∈ Rng is the corresponding FIR of

the system. Now, let D be a set of measurement data

D = {(ut, yt) | t = 0, 1, . . . , nD − 1}. (3)

Define vector ϕt as

ϕt =
[
ut ut−1 . . . ut−ng+1

]T
, (4)

for t = 0, . . . , nD − 1. Also, define vector y, vector w and
matrix Φ respectively as

y =

 y0
...

ynD−1

 , w =

 w0

...
wnD−1

 , Φ =

 ϕT
0
...

ϕT
nD−1

 . (5)

From (1) and (2), one has

y = Φg + w. (6)

Since, for any t, we have wt ∼ N (0, σ2
w), it holds y −

Φg ∼ N (0, σ2
wI). Therefore, it follows that

p(y|Φ, g) = (2πσ2
w)−

n
2 exp(− 1

2σ2
w

‖y − Φg‖2), (7)

and the ML estimation of g is defined as

gML = argmaxg∈Rng p(y|Φ, g). (8)

Since, we have

− ln p(y|Φ, g) =
n

2
ln(2πσ2

w) +
1

2σ2
w

‖y − Φg‖2, (9)

it is easily deduced that

gML = argming∈Rng ‖y − Φg‖2. (10)

From (10), one can see that the ML estimation, gML, is
obtained by solving a least square (LS) problem which is
the minimization of the prediction error and the solution
of prediction error method (PEM). Hence, one can also
denote the ML estimation by gLS. One should note that
when Φ is full column rank, then gML or gLS equals to
(ΦTΦ)−1ΦTy.

Though the ML or the LS estimation is an unbiased
method, it has a number of drawbacks. The main disad-
vantage of this approach is the requirement of having a
large set of high quality data for obtaining an improved
decent estimation gML by solving problem (10). More pre-
cisely, the condition number of ΦTΦ should not be large.
Otherwise, the estimation can be non-unique or subject to
high variance, specifically for large ng. Moreover, choosing
a suitable model order, here the length of impulse response
g, is a critical and difficult procedure. This is commonly
performed by cross validation, model validation techniques
or model complexity criteria such as Akaike information
criterion (AIC) or Bayesian information criterion (BIC)
(Ljung, 1999). These classical strategies are not desirably
reliable (Pillonetto et al., 2014; Chen, 2018).



3.2 Maximum A Posterior and Regularized Methods

In order to estimate the impulse response, one may use
a maximum a posteriori (MAP) approach by introducing
a prior for the impulse response. More precisely, we set a
Gaussian prior for the impulse response as

g ∼ N (0,R−1), (11)

where R−1 is a positive definite matrix. The covariance
R−1 can encode available prior knowledge and desired fea-
tures for the latent impulse response, such as smoothness
and stability. Once the prior is set, using Bayes rule, one
has

p(g|Φ, y) =
p(y|Φ, g)p(g)

p(Φ, y)
, (12)

and the MAP estimation of g is derived by

gMAP = argmax
g∈Rng

p(g|Φ, y) = argmax
g∈Rng

p(y|Φ, g)p(g). (13)

Since y − Φg ∼ N (0, σ2
wI) and given prior, equations (7)

and

p(g) = (2π)−
n
2 det(R)

1
2 exp(−1

2
gTRg), (14)

hold. Subsequently, it is concluded that

gMAP = argmax
g∈Rng

exp(− 1

2σ2
w

‖y − Φg‖2 − 1

2
gTRg). (15)

Due to the monotonicity of logarithmic function, it follows
that

gMAP = argmin
g∈Rng

1

2σ2
w

‖y − Φg‖2 +
1

2
gTRg,

= (ΦTΦ + σ2
wR)ΦTy.

(16)

From (16), one can see that gMAP is the solution of a
regularized least square (RLS) problem. The method is
therefore called regularized system identification and one
may alternatively denote this estimation by gRLS. For
this reason, the covariance matrix R is also called the
regularization matrix.

The main role of regularization is to include the addi-
tionally available prior information in the estimation. In
addition, it can also alleviate the issue of possible high
variance. As a result, choosing a suitable regularization
matrix R has a significant impact on the estimation. This
is commonly done in two steps. In the first step, a family of
regularization matrices, denoted by R, is chosen. Usually,
each element of Rη is a regularization matrix parame-
terized with a vector of scalars called hyperparameters,
denoted by η, which belongs to a given set E ⊂ Rnη . In
other words, we have R = {Rη | η ∈ E } ⊆ Snη+ . In the
literature (Pillonetto et al., 2014), the set of regularization
matrices are generally defined based on the notion of the
kernels,

Rk = {Rη ∈ Sng

+ | Rη,ij = kη(i−1, j−1),

1 ≤ i, j ≤ ng, η ∈ E },
(17)

where kη : Z+ × Z+ is a positive-definite kernel and
η ∈ E is the vector of hyperparameters (Pillonetto et al.,
2014). The most common kernels are tuned/correlated
(TC), diagonal/correlated (DC) and stable spline (SS)
(Pillonetto et al., 2014). In the literature, many other
kernels and also regularization matrices are designed in
various approaches, e.g., inspired by machine learning and
system theory (Chen, 2018), using the harmonic analysis
of stochastic processes (Zorzi and Chiuso, 2018), based on

filter-design methods (Marconato et al., 2016). Given a set
of regularization matrices R, one can build a larger set of
regularization matrices by considering the convex cone of
R. Also, Minkowski sum of sets of regularization matrices
produces set of regularization matrices. Based on these
ideas and similar ones, algorithms for designing the kernel
and regularization have been developed (Hong et al., 2018;
Chen et al., 2014, 2018). Once the set of regularization
matrices is fixed, one should estimate the hyperparameters
using the given data D. In this regard, a number of
approaches are introduced for hyperparameter estimation,
e.g. empirical Bayes (EB) (Pillonetto et al., 2014), Stein
unbiased risk estimator (SURE) (Hong et al., 2018), cross-
validation (CV) and generalized cross-validation (GCV)
(Mu et al., 2018a,b).

Compared to the ML or the LS estimation method, the
regularized method have a satisfactory bias-variance trade-
off and requires less amount of data. Moreover, the issue
of model order selection is alleviated, specially when the
regularization matrix is determined only by a few number
of hyperparameters. However, when the number of hy-
perparameters is significantly large, the hyperparameters
estimation methods are prone to high-variance or become
computationally intractable. Motivated by this issue, we
introduce a new method framed in a full Bayesian setting.

4. HIERARCHICAL BAYESIAN APPROACH

In this section, we introduce the hierarchical Bayesian
method for joint estimation of the impulse response and
the regularization matrix.

Let the noise model be the same as in Section 3. Moreover,
given positive definite matrix R, take the prior distribution
of impulse response as

g ∼ N (0,R−1), (18)

Now, let pR be a given probability distribution defined
over Sng

+ , called the hyperprior, and R be the support of
pR, i.e.,

R := supp(pR) = {R ∈ Sng

+ | pR(R) > 0}. (19)

Assume that almost surely the realizations of pR are in
Sng

++. This ensures that the distribution (18) is well defined.
From the Bayes rule, one has

p(g,R|Φ, y) =
p(y|Φ, g)p(g|R)pR(R)

p(Φ, g)
. (20)

Consequently, the joint maximum a posteriori estimation
of g and R is derived as

(gHB,RHB) = argmaxg∈Rng ,R∈R p(g,R|Φ, y)

= argmaxg∈Rng ,R∈R p(y|Φ, g)p(g|R)pR(R).

From (7), (18), the prior distribution pR and the mono-
tonicity of logarithm function, it follows that

(gHB,RHB)= argmin
g∈Rng ,R∈R

1

2σ2
w

‖y − Φg‖2 − 1

2
ln det R

+
1

2
gTRg − ln pR(R).

(21)

A suitable choice of pR has two significant impacts: the
correctness of the outcome of the estimation problem and
also the numerical tractability of optimization problem
(21). Regarding the former issue, one may suggest using
a Wishart distribution with suitably chosen scale matrix



and degree of freedom (Wishart, 1928). However, the latter
issue is still a case of concern since of the large number of
tuning parameters in the definition of pR.

Tractability of problem (21) depends on the structure
of − ln pR and therefore, it is desired to introduce a
suitable structure for this distribution. The elements of R
are positive semi-definite matrices. Therefore, they have
a Cholesky decomposition (Horn and Johnson, 2012).
Motivated by this fact, we propose parameterization of the
matrix factors in Cholesky decomposition. More precisely,
let nη ∈ N and U1, . . . ,Unη ∈ Ung

++ be linearly independent
matrices. Define set U as the convex cone of these matrices,
i.e., we have

U =

{ nη∑
i=1

ηiUi | ηi ≥ 0, ∀i = 1, . . . , nη

}
. (22)

Denote by η as the vector defined by [η1, . . . , ηnη ]T in (22).
Since U1, . . . ,Unη are linearly independent, it can be seen
from (22) that each element of U uniquely determines a
vector η in Rnη+ and each η ∈ Rnη+ uniquely identify an ele-

ment of U . Moreover, we know that {UTU| U ∈ U}\{0} ⊆
Sng

++. Let assume pη be a probability distribution on Rnη+ ,

i.e., supp(pη) ⊆ Rnη+ . Consequently, one can introduce a

corresponding distribution pR on R := {UTU| U ∈ U} as

pR(R) = pR(UTU) = pη(η), (23)

where R = UTU and U =
∑nη
i=1 ηiUi. Note that these

decompositions are well-defined and unique due to prop-
erties of Cholesky decomposition and linear independency
of U1, . . . ,Unη . From the Bayes rule, we can derive a MAP
estimation as

(gHB, ηHB)=argmaxg∈Rng ,η∈Rnη
+

p(g, η|Φ, y),

=argmaxg∈Rng ,η∈Rnη
+

p(y|Φ, g)p(g|U)pη(η).

Define function J̃ : Rng × Rnη+ → R as

J̃(g, η) = J(g,

nη∑
i=1

ηiUi). (24)

Since, U1, . . . ,Unη are upper triangular, one can see that

ln det

nη∑
i=1

ηiUi = ln

ng∏
j=1

nη∑
i=1

ηiUi,jj =

ng∑
j=1

ln

nη∑
i=1

ηiUi,jj ,

where Ui,jj is the j-th element on the diagonal of Ui, for
i = 1, . . . , nη and j = 1, . . . , ng. Therefore, we have

J̃(g, η) = 1
2σ2
w
‖y − Φg‖2 −

∑ng

j=1 ln
∑nη
i=1 ηiUi,jj

+ 1
2‖
∑nη
i=1 ηiUig‖2 − ln pη(η).

(25)

Subsequently, one can see that

(gHB, ηHB) = argming∈Rng ,η∈Rnη
+

J̃(g, η). (26)

Potential candidates for pη are distributions from family
of exponential distributions like

pη(η)=A(λ1, λ2) exp(−λ1
nη∑
i=1

ηi−λ2
nη∑
i=1

η2i )1Rnη
+

(η), (27)

where λ2 ≥ 0 and A(λ1, λ2) is the normalizing coefficient.
Therefore, for η ∈ Rnη+ , it follows that

− ln pη(η) = − lnA(λ1, λ2)− λ1
nη∑
i=1

ηi − λ2
nη∑
i=1

η2i . (28)

Algorithm 1 Sequential Convex Programming for (29)

1: Input: y, Φ, U1, . . . ,Unη , λ1, λ2 and initial η(0).
2: k ← 0.
3: while stopping condition is not met do

4: U(k) ←
∑nη
i=1 η

(k)
i Ui.

5: Compute

g(k) = (ΦTΦ + σ2
wU(k)TU(k))−1ΦTy.

6: Solve the following convex program:

η(k+1) = argmin
η∈Rnη

+

1

2
‖
nη∑
i=1

ηiUig
(k+1)‖2

−
ng∑
j=1

ln

nη∑
i=1

ηiUi,jj + λ1

nη∑
i=1

ηi + λ2

nη∑
i=1

η2i .

7: k ← k + 1.
8: end
9: Output: (gHB, ηHB,UHB,RHB).

It is worth mentioning that for this choice of pη, we have
a lasso penalty function if λ1 > 0 and λ2 = 0, a ridge
penalty function if λ1 = 0 and λ2 > 0, and an elastic-net
penalty function if λ1 > 0 and λ2 > 0. Also, for particular
choices of λ1 and λ2, one has a maximum entropy prior
on η (Dowson and Wragg, 1973). Moreover, since the
distribution pη is integrable, one should have λ2 ≥ 0, and
therefore, the loss function is convex. When λ2 > 0, the
loss function is strongly convex.

It is noteworthy that (26) reduces to

(gHB, ηHB)= argmin
g∈Rng ,η∈Rnη

+

1

2σ2
w

‖y − Φg‖2 −
ng∑
j=1

ln

nη∑
i=1

ηiUi,jj

+
1

2
‖
nη∑
i=1

ηiUig‖2 + λ1

nη∑
i=1

ηi + λ2

nη∑
i=1

η2i .

(29)

Theorem 4.1. i) Let η(0) be a non-zero vector in Rnη+ .

Then, J̃(·,U0) : Rng → R is a strongly convex quadratic
function and

argmin
g∈Rng

J(g, η(0)) = (ΦTΦ + σ2
wUT

0 U0)−1ΦTy, (30)

where U0 =
∑nη
i=1 η

(0)
i Ui.

ii) Let pU be given as in (27). Then, for any g0 ∈ Rng ,

the function J̃(g0, ·) : Rnη+ → R is a proper strictly convex
function and the optimization problem

minη∈Rnη
+
J̃(g0, η) (31)

is a convex optimization problem with a unique solution.
Moreover, if λ2 > 0, it is a strongly convex function.

Corollary 4.2. The optimization problem (29) is a bi-
convex (multi-convex) programming.

Remark 4.3. Due to the Theorem 4.1, we can introduce a
sequential convex programming approach for solving (29).
The details of this procedure presented in Algorithm 1.

Remark 4.4. The stopping condition in Algorithm 1 can
be a combination of maximum number of iterations, a
cross-validation error and reaching to a preset minimum
step length or reaching a predetermined minimum im-
provement of objective function.



5. NUMERICAL EXPERIMENT

In this section, the approach is numerically assessed, with
main focus on Algorithm 1. To this end, it is required to
introduce the settings of optimization, the test data-bank
and the numerical setup.

5.1 Generics of Optimization Settings

As the first step, it is required to choose U1, . . . ,Unη . In
this regard, we consider TC-kernels, denoted by k(TC) :
Z+ × Z+ → R+ and defined as

k(DC)

α (t1, t2) := αmax(t1,t2), ∀ t1, t2 ∈ Z+, (32)

where α is a real scalar in (0, 1). Accordingly, one can
define a regularization matrix Rα ∈ Sng

++ such that the
entry of R−1α at location (t1, t2) is k(DC)

α (t1 − 1, t2 − 1), for
any t1, t2 = 1, . . . , ng. Since R−1α is positive definite, it has
a unique Cholesky decomposition (Marconato et al., 2016)
as R−1α = UT

αUα where Uα is defined entry-wise by

Uα,st =


α

1−s
2 (1− α)−

1
2 , if s = t, s < ng,

α
1−s
2 , if s = t = ng,

−α 1−s
2 (1− α)−

1
2 , if s = t− 1,

0, otherwise.

(33)

Given α1, . . . , αnη , we can set Ui as Uαi , for i = 1, . . . , nη.
Regarding λ1 and λ2, we consider two scenarios:

• λ1 = 0, i.e., `2 or ridge penalty function, and,
• λ2 = 0, i.e., `1 or lasso penalty function.

In each of these scenarios, the non-zero parameter can be
tuned based on a cross-validation procedure. The initial
η, i.e. η(0), can be chosen either randomly or by solving
(31), where g(0) is taken as the estimated impulse response
obtained with another regularized identification method
like TC-kernel regularization. The latter approach is used
here. The final step for utilizing Algorithm 1 is specifying
Φ and y which are discussed in the following section.

5.2 Test Data-Bank

Define transfer functions G(z) as

G(z) =
z3 + 0.5z2

z4 − 2.2z3 + 2.42z2 − 1.87z + 0.7225
. (34)

which are initially introduced in (Wahlberg and Ljung,
1986, Example 5.1) and also utilized in (Pillonetto and
De Nicolao, 2010) as benchmark systems. To have a
fair comparison, the systems are normalized by their H2

norm. The input signal consists of a pseudo-random binary
signal (PRBS) of length nD = 63 for time instants t =
0, . . . , nD − 1. Moreover, it is assumed that the systems
are initially at rest. At the output of each system, a
white additive Gaussian noise with distribution N (0, σ2

w)
is added. Three values of σ2

w are considered, namely 0.001,
0.01, 0.1. For each of them 100 realizations of noise are
generated and subsequently, 100 data set (3) are obtained
by simulation.

5.3 Numerical Experiment Setup

In the numerical experiment, three impulse response esti-
mation methods are tested:

1) regularized impulse response estimation using TC
kernel,

2) hierarchical Bayes with `1 penalty function, and
3) hierarchical Bayes with `2 penalty function.

For the cases 2) and 3), we take 51 upper triangular
matrices, {Ui | i = 1, . . . , 51}, defined according to (33).
Here, α1, . . . , α51 are taken equidistantly from interval
[0.8, 0.995]. The hyperparameters λ1 and λ2 are chosen
based on a 85%-15% cross-validation scheme. The Algo-
rithm 1 stops when either the number of iterations reaches
50 or when ‖(g(k), η(k))− (g(k−1), η(k−1))‖ ≤ 10−4.

The measure of fit is defined (Ljung, 2012) as

Fit = 100×
(

1− ‖g − ĝ‖
‖g − ḡ‖

)
, (35)

where g and ĝ are respectively the true and the estimated
impulse responses, and ḡ is a vector of the same length

as g and with entries identically equal to n−1g

∑ng−1
k=0 gk.

The results of the estimation is shown in Figure 1 and the
statistics are shown in Table 1.

5.4 Discussion

From the numerical results, one can see that the algorithm
shows an improved performance, especially when the vari-
ance of noise is not significantly high. Additionally, one
should note that in all of the cases, the hierarchical Bayes
method has smaller mean square error. The performance
of `1 penalty is slightly better comparing to `2 penalty,
however, more numerical analysis is required for providing
a more solid argument.

It is worth noting that the optimization problem (29) is
a non-convex program and thus can be hampered by the
known issue of local minima. This revealed itself in the
numerical results in form of outliers (Figure 1, red crosses).
However, its effect can be alleviated by performing suitable
cross-validation and invalidating the local minima. In fact,
when the variance of noise is high, the cross validation
does not have enough fidelity and the local minima issue
becomes more sever in this case. One possible solution can
be utilizing global optimization heuristics.

6. CONCLUSION

A new hierarchical Bayesian method is proposed in this
paper. This essentially consists of a maximum a posteriori
(MAP) approach for joint estimation of impulse response
and regularization matrix. The crucial step is choosing
an appropriate hyperprior. To this end, the Cholesky de-
composition is used for decomposing the regularization
matrix and then the prior is introduced on a suitable
sub-cone of the cone of upper triangular matrices with
positive diagonal entries. By doing so, one can specify
the prior simply on the positive orthant of the space
of hyperparameters. Utilizing suitable distributions from
the exponential family, the estimation is reduced to a
tractable optimization problem with multi-convex struc-
ture. Efficient sequential convex programming algorithms
are proposed to find optimal solutions. Due to the non-
convexity, reaching global optimal solution cannot be guar-
anteed. The approach is verified numerically on benchmark
examples and compared, as an example, with the results



 
  
 
  
 
  

TC `1-Pen `2-Pen
40

60

80

100

F
i t
[%

]

TC `1-Pen `2-Pen
40

60

80

100

F
i t
[%

]

TC `1-Pen `2-Pen
40

60

80

100

F
i t
[%

]

 
  
 
    
Figure 1. Comparison of fitting performance under different noise levels of σ2

w = 0.001 (left), σ2
w = 0.01 (middle) and

σ2
w = 0.1 (right), for system G(z) given in (34).

of TC-kernel. The numerical results show the significant
performance of the proposed method.
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