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(e-mail: {myin,iannelli,khosravm,aparsi,rsmith}@control.ee.ethz.ch).

Abstract: This paper proposes a new methodology in linear time-periodic (LTP) system identification.
In contrast to previous methods that totally separate dynamics at different tag times for identification,
the method focuses on imposing appropriate structural constraints on the linear time-invariant (LTI)
reformulation of LTP systems. This method adopts a periodically-switched truncated infinite impulse
response model for LTP systems, where the structural constraints are interpreted as the requirement to
place the poles of the non-truncated models at the same locations for all sub-models. This constraint is
imposed by combining the atomic norm regularization framework for LTI systems with the group lasso
technique in regression. As a result, the estimated system is both uniform and low-order, which is hard
to achieve with other existing estimators. Monte Carlo simulation shows that the grouped atomic norm
method does not only show better results compared to other regularized methods, but also outperforms
the subspace identification method under high noise levels in terms of model fitting.
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1. INTRODUCTION

Linear time-periodic (LTP) systems are an important type of
system that sees a wide range of applications in modelling
periodicity in dynamics, scheduling parameters, and operating
trajectories. This paper focuses on the identification of LTP
systems. This topic has received considerable attention due to
its close connections with identification of linear time-varying
systems (Liu (1997)), linear parameter-varying systems (Felici
et al. (2007)), and nonlinear systems along limit cycles (Allen
and Sracic (2009)).

In general, any identification scheme for linear time-invariant
(LTI) systems is applicable to LTP systems by application of
the lifting technique by Bittanti and Colaneri (2000). How-
ever, such methods often fail to encode characteristics of lifted
systems, such as the causality constraint that prevents future
inputs in a period affect previous outputs. Thus, the identified
lifted system is not guaranteed to be realizable as its LTP
form. Specific extensions to LTP systems are also available. An
extension of the subspace identification method by Verhaegen
and Yu (1995) is widely applied (e.g. Wood (2018); Liu (1997);
Felici et al. (2007)). Its frequency-domain counterpart has been
recently proposed by Uyanik et al. (2019). This method suffers
from the model order selection problem at high noise level, es-
pecially for LTP systems that require the selected system order
to be consistent at all tag times, as discussed in Wood (2018).
Harmonic transfer function (HTF) coefficients are identified
in Louarroudi et al. (2012) and Yin and Mehr (2009) using
least-square methods. This approach leads to high-order non-
parametric models. Non-convex optimization methods are used
to directly identify state-space models in Goos and Pintelon
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(2016), with the drawback that globally optimal estimates are
not guaranteed to be achieved.

As in the above methods, it is desired to decompose or lift
LTP systems to structured LTI models and extend existing
LTI system identification frameworks to them. However, as
pointed out in Bittanti and Colaneri (2000), the key issue in this
process is that the parameters in these structured models have
strong correlations since they come from the same dynamic
system. This correlation is not investigated in existing LTI-
based identification frameworks.

On another note, regularized optimization has reported positive
results in linear system identification recently (see e.g. Chen
et al. (2012); Pillonetto et al. (2016); Smith (2014); Shah et al.
(2012)) after its success in statistics and machine learning.
The underlying idea of regularization techniques is to separate
the objectives of maximizing data adherence and incorporating
prior knowledge on system structure by employing distinct
terms. This makes it possible to use simple models to depict
complex system structures. Typical LTI system structures in-
vestigated include stability, continuity, and low complexity. In
particular to LTP systems, this framework enables us to treat
the previously discussed correlation issue with parameter regu-
larization.

This paper focuses on identifying a low-McMillan-degree
single-input and single-output (SISO) model. This low-order
assumption is both practical for common physical systems
and useful for various control design problems. To circumvent
the hard model complexity selection problem, the regularized
method is used with a general high-order model and a com-
plexity penalization term. The most widely-used complexity
penalization is the rank of the Hankel operator and its convex
surrogate, the Hankel nuclear norm proposed by Fazel et al.
(2001). To improve stability with finite data lengths and compu-



tational scalability, the atomic norm was proposed in Shah et al.
(2012) which uses l1-regularization to select a finite number of
order-revealing atomic dynamics.

For LTP systems, there is an additional constraint in the low-
order estimation: the identified model should have a consistent
system order throughout the period. This requirement is very
practical yet hard to achieve with existing methods. For the rest
of the paper, this requirement is referred as uniformity.

The contribution of this paper is to propose a methodology
to identify uniform low-order models for LTP systems. The
proposed method extends atomic norm identification for LTI
systems and applies group lasso regularization to impose the
additional constraints needed for periodic models. Group lasso
was proposed in Yuan and Lin (2006) to solve the grouped fac-
tor selection problem in regression and then used in numerous
optimization problems including applications in identification
of switched systems (Ohlsson and Ljung (2013)), dynamic net-
works (Chiuso and Pillonetto (2012)), and non-linear systems
with heterogeneous data (Pan et al. (2018)). In our method,
parameters are grouped based on the fact that the LTI sub-
models should always select the same atomic dynamics with
the same poles. A case study and Monte-Carlo simulation show
that our proposed method is not only effective in estimating
uniform low-order LTP models, but also superior to existing
methods in terms of model fitting under high noise levels.

2. PROBLEM STATEMENT

Consider a discrete-time SISO LTP system that follows the
minimal state-space realization{

x(t +1) = A(t)x(t)+B(t)u(t)
y(t) = C(t)x(t)

, (1)

where x(t) ∈ Rnx , u(t) ∈ R, and y(t) ∈ R are the states, in-
put, and output respectively. The time-varying matrices A(t) =
A(t + P),B(t) = B(t + P),C(t) = C(t + P) are periodic state-
space matrices of appropriate dimensions, and P is the period.
The stability of LTP systems can be assessed by the spec-
tral radius of the monodromy matrix ΨA,τ = A(τ − 1)A(τ −
2) · · ·A(τ −P). Bittanti (1986) proved that the eigenvalues of
ΨA,τ are independent of τ and that the system is stable iff the
spectral radius ρ(ΨA,τ)< 1.

In the remainder of the paper, the following system identifica-
tion problem is considered:

Given: sequences of the true input u(t) and the noise contam-
inated output of the system (1): z(t) = y(t)+w(t), where
w(t) is the unknown noise, for t = 1,2, · · · ,nP, where n is
the number of periods observed.

Assumptions: 1) the period length P is known; 2) the system is
stable, i.e., ρ(ΨA,τ)< 1; 3) the system is of low McMillan
degree, i.e., nx� n; 4) the noise is Gaussian with w(t) ∼
N(0,σ2);

Objective: estimate a uniform low-order model of the system
(1).

3. LTI REFORMULATION OF LTP SYSTEMS

In this section, methods to reformulate LTP systems as struc-
tured LTI models are reviewed. Based on the reformulation, a
least squares problem is formulated to identify switched finite
impulse response (FIR) models of LTP systems without struc-
tural constraints.

3.1 Lifting and Switching

Lifting and switching are two main reformulations of LTP
systems to apply LTI methods. The lifting method converts the
LTP system to an ordinary LTI system of P-times larger input
and output dimensions and P-times slower. The state dimension
remains the same. Due to its natural connection to the subspace
identification formulation, the method is usually used to extend
the subspace identification method.

In the switching method, the LTP system is reformulated as a
switched LTI system with P switches. In detail, the system (1)
is expressed with the following input-output model

y(t) =
∞

∑
i=1

gt
iu(t− i), (2)

where
gt

i =C(t)A(t−1)A(t−2) · · ·A(t− i+1)B(t− i), (3)
where the superscript t denotes the current tag time, and the
subscript i denotes the time difference between the input and the
output. Since the dynamics are periodic, gt

i is also P-periodic
with respect to t. For a fixed t, {gt

i} formulates a valid infinite
impulse response (IIR) model of a LTI system as

Gτ(q) =
∞

∑
i=1

gτ
i q−i =C(τ)(qPInx −ΨA,τ)

−1Bτ(q), (4)

where

Bτ(q) =
P−1

∑
i=0

A(τ−1)A(τ−2) · · ·A(τ + i−P+1)B(τ + i) ·qi,

(5)
q is the forward time-shift operator, τ = 1,2, · · · ,P. The models
Gτ(q) will be called sub-models in the following. Thus, we
define a periodically switched LTI model of the LTP system
as y(t) = yτ(t), t = kP + τ, where yτ(t) = Gτ(q)u(t). See
Fig. 1 for a diagrammatic illustration. Note that the dynamics
of each switch Gτ(q) have exactly the same poles, which are
the solutions to fΨ(qP) = 0, where fΨ(x) is the characteristic
polynomial of ΨA,τ . The solutions are independent of τ because
they are the P-th roots of the eigenvalues of the monodromy
matrix, which are independent of τ . Therefore, for a uniform
LTP system (1), the poles in each sub-model are exactly the
same. The system order of the switched system is then P · nx.
This reformulation has been used to estimate HTFs in Yin and
Mehr (2009).

Fig. 1. Illustration of switching reformulation of LTP systems.

Unlike lifting, switching decomposes the system into P sub-
systems of the same input-output dimension at the expense of
augmented system orders. This characteristic avoids the scala-
bility and causality issues in lifting. The problem of augmented
system orders can be alleviated by using regularization tech-
niques, where the computation does not scale with the system
order, as a sufficiently high-order model is needed to start with
anyway.



3.2 The Least Squares Problem for the Switched model

With the switched model, a least squares problem can be
formulated to estimate the impulse response coefficients that
minimizes the following quadratic objective function.

VLS(g|u(t),z(t)) =
P

∑
τ=1

n−1

∑
k=0

[
z(kP+ τ)−

N

∑
i=1

gτ
i u(kP+ τ− i)

]2

,

(6)
where g ∈ RN×P,(g)i j = g j

i gathers the parameters in all sub-
models. Note that here the IIR models are truncated to N terms
and hence become FIR models.

However, this unregularized problem does not enforce the re-
quirement that the identified system should be uniform and low
order. In addition, the impulse responses need to be stable.
Attempts to formulate these requirements in a regularization
term are discussed in the following section.

4. LOW-ORDER REGULARIZATION OF LTP SYSTEMS

In its general form, regularization techniques investigate the
following optimization problem.

minimize
g

V (g)+ γ · J(g), (7)

where V (g) is the loss function that evaluates data adherence,
such as VLS(g). The term J(g) is the regularizer that encodes
prior knowledge of the model, and γ ≥ 0 is a scalar weighting
factor that balances two objectives.

To the best of our knowledge, regularized techniques have
yet to be applied to LTP systems. This section investigates
the extension of low-order regularizers to LTP systems. It is
shown that a grouped version of the atomic norm can effectively
regularize the estimator to be stable, uniform and low-order.

4.1 Rank regularization

The most common low-order regularization is based on the fact
that the rank of the extended observability and controllabil-
ity matrices gives the McMillan degree of the system. In the
switched IIR model (2), the Hankel operator on the impulse re-
sponses H(gt) is commonly used as the rank-revealing matrix,
where gt = [gt

1 gt
2 · · · gt

N ]
T is the t-th column of g. Since the

rank function is highly non-convex, its best convex surrogate,
the nuclear norm, is applied in optimization for tractability as
in Smith (2014). Thus, we have the following nuclear norm
regularizer

JN(g) =
P

∑
τ=1

βτ ‖H(gτ)‖∗ , (8)

where ‖·‖∗ denotes the nuclear norm, which is the sum of the
singular values, and β is the weighting vector of sub-model
complexity.

However, in addition to its general issue of stability (Pillonetto
et al. (2016)) and scalability (Shah et al. (2012)), the Hankel
nuclear norm regularizer fails to provide an explicit expression
for the system order. This makes it hard to tune different sub-
models to the same order, not to mention the requirement of
the same pole locations. In fact, as demonstrated in Section 5.1,
this regularizer often cannot regularize the sub-systems to any
given order despite fine tuning of the weighting vector β .

4.2 Atomic norm regularization

The atomic norm regularization was proposed in order to over-
come the stability and scalability issues of the Hankel nuclear
norm. The underlying idea is to replace the search for a rank-
revealing system matrix with the search for an order-revealing
decomposition of the system. As proposed in Shah et al. (2012),
consider a set of stable first-order systems

A =

{
aw(q) =

1−|w|2

q−w

∣∣∣∣ w ∈ D
}
, (9)

where D is the open unit disk in the complex plane. The ele-
ments in the set are dubbed “atoms” and are normalized to have
a Hankel nuclear norm of 1. This selection of atoms guarantees
the stability of the estimated system. As such, assuming the
sub-models have no repeated poles, i.e., the monodromy matrix
ΨA,τ is diagonalizable, the sub-models can be decomposed as
linear combinations of atoms by performing partial fraction
expansions of the transfer functions,

Gτ(q) = ∑
w∈D

cτ
w ·aw(q)≈

np

∑
k=1

cτ
k ·awk(q) := cT

τ a(q), (10)

where the infinite atom set is approximated by fine gridding
{wk} with an atom vector a(q) = [aw1(q) aw2(q) · · · awnp(q)]

T .
The vector cτ = [cτ

1 cτ
2 · · · cτ

np ]
T denotes the corresponding

coefficients, and np is the number of atoms in the grid. Note
that the coefficients cτ

k are complex. When repeated poles exist,
atoms of higher order can be included.

In this case, the McMillan order of the system is equal to the
cardinality of cτ . It is well-known that the best convex surrogate
for the cardinality function is the l1-norm. The technique to use
l1-norm to promote sparsity is often known as lasso. The atomic
norm of the system Gτ(q) is defined as ‖Gτ(q)‖A = ‖cτ‖1. It
was shown in Shah et al. (2012) that the atomic norm is a good
approximation to the Hankel nuclear norm.

As we are dealing with real-valued systems, the partial fraction
expansion (10) includes either real poles or conjugate pairs of
poles. The coefficients corresponding to the conjugate pairs
are also required to be conjugate to one another. This imposes
additional constraints on cτ as

cτ
k = conj(cτ

l ),∀wk = conj(wl),τ = 1,2, · · · ,P. (11)

To apply the atomic norm regularization to the switched model,
the partial fraction expansion (10) is rewritten in terms of
impulse responses as

g = gac, (12)
where ga = [ga

1 ga
2 · · · ga

np ] ∈ RN×np , ga
k is the N-truncated im-

pulse response of awk(q), and c = [c1 c2 · · · cP] ∈ Cnp×P. Note
that ga is a constant matrix that can be pre-computed. Thus,
we have the following atomic-norm regularized optimization
problem.

minimize
c

VLS(gac)+ γ · JA(c),
subject to (11)

(13)

where

JA(c) =
P

∑
τ=1

βτ ‖cτ‖1 . (14)

Since the first-order atoms are smooth and stable, the estimated
system satisfies the smoothness and stability constraints. In ad-
dition, problem (13) is a quadratic programming (QP) problem,
which has much better scalability compared to the semidefinite



programming (SDP) problem induced by the nuclear norm reg-
ularization. However, since each sub-model is still separately
regularized, the uniformity requirements are still not guaran-
teed. Crucially, in contrast to the nuclear norm regularizer, we
now have the pole location information from the estimated
parameters c. In the next subsection, this information will be
used to propose a uniform regularizer that guarantees the same
pole locations for each sub-model.

4.3 Grouped Atomic Norm Regularization

The basic idea to modify the previous LTI-based atomic norm
regularizer (14) to satisfy LTP requirements is to connect the
same atom at different tag time. In general terms, the same atom
needs to be either included in all or excluded from all of the sub-
model dynamics. To do this, we first examine the structure of
the parameter matrix c. If the (i, j)-th element in c is non-zero,
it means the the sub-model j has a pole at wi and vice versa.
Therefore, in addition to the sparsity requirement induced by
the low-order assumption, each row of c also needs to be either
all zero or all non-zero. This requirement coincides with the
concept of grouping in group lasso.

Group lasso, also known as sum-of-norms, is an extension of
lasso or l1-norm regularization to enforce sparsity on groups of
parameters rather than isolated parameters. Consider a set of
grouped parameters {θi},θi ∈ Rmi , i = 1,2, · · · ,M. The group
lasso regularizer is

JG({θi}) =
M

∑
i=1
‖θi‖2 . (15)

Here, l2-norms are used to relax the sparsity constraint inside
each group, and the sparsity-promoting function reduces to
summation since the l2-norms are always non-negative. In this
way, sparsity is enforced on the group l2-norms: when the l2
norm is regularized to zero, all parameters in the group are zero;
when the l2 norm is non-zero, all the parameters are usually
non-zero. So consistent sparsity is promoted inside each group.
In particular, for the parameter matrix c, each row is collected
as a group. So the following grouped atomic norm regularizer
is proposed

JGA(c) =
np

∑
k=1

∥∥∥c(k)
∥∥∥

2
, (16)

where c(k) denotes the k-th row of c. Note that the grouped
atomic norm regularizer remains as a QP problem, which has
better scalability than the nuclear norm. Another advantage is
that there is only one hyperparameter γ in this optimization
problem. In this paper, hyperparameters are selected by cross
validation with validation data uv(t),zv(t) ∈ RnvP.

Remark. A similar grouping concept can be extended to multi-
input and multi-output systems, where sub-models are defined
as SISO FIR models for each input-output channel at each tag
time. Similarly, the same atom in all these sub-models should
have consistent sparsity and thus be grouped together.

5. NUMERICAL RESULTS

In this section, the grouped atomic norm method is compared
with other LTP system identification schemes. First, a simple
physical system consisting of a variable-length pendulum is
examined to show the effectiveness of the grouped atomic norm
method in generating uniform low-order system models, in

contrast to other low-order methods. This clearly points out
the unique advantages of our proposed method. Furthermore,
we demonstrate by Monte Carlo simulation that the proposed
method, with additional sparsity constraints imposed, gives a
better fitting to the system compared to other regularized meth-
ods. It also outperforms the subspace identification method
under high noise levels.

The following five identification schemes for LTP systems are
compared. The first four methods use the switched FIR model
of order N = 100. The least squares method (LS) directly
solves the minimization problem of function (6) with respect
to g. The Hankel nuclear norm method (Hank ) solves the least
squares problem with the regularizer (8). The Hankel matrices
are constructed with m = 20. The atomic norm method (Atom),
which was proposed in Section 4.2, solves problem (13). Our
proposed method, the grouped atomic norm method (GAtom)
modifies the problem (13) with the grouped regularizer (16).
The atom set used in Atom and GAtom is defined by the poles
wk = r · e jφ , where r = [0.02 : 0.02 : 0.98,0.99,0.999],φ = [0 :
π/50 : π] as suggested in Pillonetto et al. (2016). This gives a
total of np = 2601 poles.

In addition to the methods formulated in previous sections, we
also compare our method to the widely-used subspace identifi-
cation method (Sub). The method proposed in Verhaegen and
Yu (1995) is applied, except that in singular value truncation,
the empirical and manual step to determine the system order
is replaced with cross validation over a uniform order grid
between 2 to 10.

5.1 Case Study

Consider a pendulum of variable length shown in Fig. 2 with
a periodic length profile L(t) = L0 + l cosωt. The non-linear
dynamics of the system are given by

ψ̈ =− g
L(t)

sinψ +
2ωl sinωt

L(t)
ψ̇ +

1
mL(t)

F cosψ, (17)

where g is the gravitational acceleration. The parameters used
are listed as follows.

L0 = 10 m, l = 5 m,m = 5 kg,g = 9.8 m/s2,ω = 4π rad/s
We model this system as a discrete-time SISO LTP system at
small ψ , with F as the input and ψ as the output. The period
length P is selected as 4 with a sampling time of Ts = 2π/(Pω).
A data set of length nP = 500 is simulated with a unit Gaussian
input u(t)∼ N(0,1) and output noise of σ2 = (0.1π/180)2 for
identification.

����

�

�

��

Fig. 2. Illustration of the variable-length pendulum system.

First, we try to obtain a uniform low-order model by fine tuning
of sub-model complexity coefficients β . In this example, β is



selected from a 100-point log-space grid between 10−1 and 101,
and γ is fixed to 1. The relations between the β values and the
estimated model orders are shown in Fig. 3. It can be seen that
the sub-models cannot be regularized to any given order for
both Hank and Atom. This makes it hard to tune the sub-model
orders to be uniform, especially as P increases. In contrast,
GAtom always gives a uniform estimation for any choice of the
scalar hyperparameter γ with the same grid, as shown in Fig. 4.
These uniform models can then be selected by cross validation.
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Fig. 3. Estimated sub-model orders with sub-model complexity
tuning.
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Fig. 4. Estimated sub-model orders with GAtom.

5.2 Monte Carlo Study

To compare the fitting performance of the proposed method
with other methods, a Monte Carlo test campaign is set up as
follows.

System bank A bank of 100 low-order discrete-time SISO
LTP systems of period length P= 2 is generated. The system or-
ders are randomly selected between 2 and 10. Dynamics at each
tag time {A(τ),B(τ),C(τ)} are generated by the MATLAB
function rss. These continuous-time systems are sampled at
3 times their bandwidths and discretized by zero-order hold

equivalence. They are also normalized to have a DC gain of
1. The resulting LTP systems are verified to be stable.

Data set The systems are excited by Gaussian inputs with
a unit variance, u(t) ∼ N(0,1). The outputs are perturbed at
two different output noise levels, σ2 = 0.1 and 0.01. The initial
states of the systems are set to 0. Two data sets of length nP =
500 are generated for identification and validation respectively.

Performance metric The performance of the estimators is
assessed by comparing to the true model with the following
fitting metric

W = 100 ·

1−

[
∑

P
τ=1 ∑

100
i=1(g

τ
i − ĝτ

i )
2

∑
P
τ=1 ∑

100
i=1(g

τ
i − ḡ)2

]1/2
 , (18)

where gτ
i are the true impulse response coefficients in model

(2), ĝτ
i are the estimated coefficients, ḡ is the mean of true

coefficients. This metric extends that used for the compare
function in the System Identification Toolbox to LTP systems.
The state-space model obtained by Sub is transformed to im-
pulse response coefficients by (3) for performance comparison.

The hyperparameter γ in the regularized methods is cross-
validated over a 10-point log-space grid between 10−1 and
101. The sub-model complexity is not tuned (βτ = 1) for Hank
and Atom, as this tuning is hard to be automated and often
impractical to unify the orders of sub-models as can be seen
from Section 5.1.

The results of Monte Carlo simulation are demonstrated by
statistics in Table 1 and box plots in Fig. 5, under the low
(σ2 = 0.01) and the high (σ2 = 0.1) noise levels respectively. It
is shown that under both noise levels, the LS method cannot
give satisfactory estimates. Under the high noise level, the
LS estimation even fails to provide any information about the
system with a negative average fitting. Comparing the three
regularized methods, our proposed GAtom method achieves the
best model fitting by incorporating the requirement on pole
locations. Atom performs better than Hank due to its guaranteed
stability.

Sub has an advantage over GAtom under the low noise level
with a higher mean fitting and a lower standard deviation.
This is due to the fact that the subspace identification without
regularization is a consistent estimator that converges to the true
value in the noise-free case, whereas regularized methods are
in general inconsistent. However, the advantage of GAtom in
model fitting is demonstrated under the high noise level, which
is of more interest under realistic testing conditions.

6. CONCLUSIONS

In this paper, we have proposed a new LTP system identification
method with grouped atomic norm regularization. This method
uses decomposed LTI sub-models to reformulate LTP systems
for identification. A key requirement for the identification to
be successful is that the sub-models should have the same
pole locations. Therefore, the regularizer extends the atomic
norm regularizer for LTI system to LTP systems with the
group lasso technique to impose this additional structure. This
method obtains uniform low-order models of LTP systems and
simulations show it to have a better model fit compared to
existing methods under high noise levels.



Table 1. Statistics of Fitting Performance.

σ2 = 0.01 σ2 = 0.1
LS Hank Atom Sub GAtom LS Hank Atom Sub GAtom

Mean 21.4 68.6 70.6 78.8 71.7 -106.1 47.8 52.6 48.7 55.6
Median 42.7 80.4 83.5 84.5 84.5 -79.5 53.3 59.5 56.8 64.2

Std 86.2 37.8 38.5 22.6 39.9 203.5 36.5 36.2 48.3 34.1
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Fig. 5. Comparison of fitting performance under different noise
levels.

The main message of this work is that the LTP system identi-
fication problem cannot be fully tackled by LTI system theory.
The key to enhancing the performance of LTP system identi-
fication is to incorporate specific structural constraints arising
from periodicity with appropriate frameworks.
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