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Abstract: A feedback control design is proposed for stochastic systems with finite second
moment which aims at maximising the region of attraction of the equilibrium point. Polynomial
Chaos (PC) expansions are employed to represent the stochastic closed loop system by a higher
dimensional set of deterministic equations. By using the PC expanded system representation,
the available information on the uncertainty affecting the system explicitly enters the control
design problem. Further, this allows Lyapunov methods for deterministic systems to be used to
formulate the stability criteria certifying the region of attraction. These criteria are parametrized
by the feedback gain and formulated in a polynomial optimization program which is solved using
sum-of-squares methods. This approach offers flexibility in the choice of the stochastic feedback
law and accounts for input constraints. The application is demonstrated by two numerical
examples.
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1. INTRODUCTION

The region of attraction (ROA) of a nonlinear system is
defined as the set of initial conditions from which system
trajectories converge to an attractive equilibrium point.
The size of the ROA is of interest in many application
as it measures the robustness of the system with respect
to perturbations in the initial conditions and defines the
part of the state space in which a system can be safely
operated. Therefore, it is of interest to investigate the
design of feedback controllers which are able to enlarge
the ROA of the operating point. This poses two major
challenges for the control design. Firstly, conditions on
the controller need to be formulated in a way such that
an increase of the attractive properties of the system is
obtained. And secondly, means to measure the size of
the ROA are required in order to quantify the attractive
region. For deterministic polynomial systems with affinely
appearing control inputs, such feedback controllers have
been previously proposed, e.g., in Jarvis-Wloszek et al.
(2005), Chesi (2004), Majumdar et al. (2013). Both the
feedback gains as well as the size of an inner estimate of
the ROA are thereby obtained by formulating Lyapunov
stability arguments in an optimization problem which aims
to maximize the size of the ROA estimate (or a surrogate
of it). Following an approach proposed in Parrilo (2000),
these optimization problems can be relaxed to sum-of-
squares (SOS) programs and solved with semidefinite pro-
gramming techniques.
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Employing feedback control to increase the size of the ROA
can be particularly desirable when uncertainties affect the
system and exert a detrimental effect on the ROA. The
task, in particular measuring the ROA, becomes signif-
icantly more complex in the case of uncertain systems.
While the computation of inner estimates of the ROA was
proposed for systems with uniformly distributed uncer-
tainty (Topcu and Packard (2009); Iannelli et al. (2019);
Valmorbida and Anderson (2017)), none of these methods
include a control design aiming at enlarging the ROA.
In this work we consider stochastic systems in form of sec-
ond order processes which can be affected by uncertainties
coming from any probability distribution with bounded
second moment. This class of systems represents most pro-
cesses of the real world (Xiu and Karniadakis (2003)). For
these systems we propose a control design which explicitly
takes into account the statistical information available on
the uncertainty and efficiently maximizes the ROA while
also enforcing input constraints.
The proposed approach leverages the framework of Poly-
nomial Chaos (PC) which is made possible by limiting the
scope to second order processes. The framework enables
the representation of a stochastic system affected by un-
certain parameters of known second order distributions by
a higher dimensional set of deterministic equations (see,
e.g., Sullivan (2015)). The solution to these deterministic
equations contains the information on the statistical mo-
ments of the evolution of the stochastic system.
We use the PC expansion of the stochastic open loop sys-
tem to compute the feedback gains of a stochastic control
law which maximizes the ROA of the closed loop stochastic



system. The option of imposing input constraints on the
feedback law is derived for the PC expanded represen-
tation and explicitly included in the approach. As the
PC expanded system is deterministic, Lyapunov stability
methods for deterministic systems can be employed to
formulate the conditions on the ROA. The approach builds
on results presented in Ahbe et al. (2019). Therein, the
connection between the notions of moment stability of a
stochastic system and the asymptotic stability of the asso-
ciated PC expansion were derived. Further, it was shown
how an estimate of the ROA of the stochastic system can
be recovered from an estimate of the ROA of the PC
expanded system. In order to compute the feedback gains
and the corresponding inner estimate of the ROA from the
Lyapunov stability conditions on the PC expanded system,
the conditions and constraints are set into an optimization
program. This optimization program is built on results
from real algebra (Stengle (1974)) and sum-of-squares
programming techniques that were previously employed
for ROA computations of deterministic systems. An algo-
rithmic outline of the implementation of the optimization
program is provided and demonstrated by the application
to two numerical examples. To benchmark the presented
control design we compare the results to a linear control
design proposed in Fisher and Bhattacharya (2008).

1.1 Notation

Let (Ω,F , µ) be a probability space, where Ω is a sample
space, F is a σ-algebra of the subsets in Ω and µ is a non-
negative probability measure on (Ω,F). A random variable
with finite second moment is denoted by ξ : Ω → K ⊆ R,
ξ ∈ L2(Ω, µ) where Ll, 1 ≤ l ≤ ∞, refers to the
Lebesgue space (see, e.g. Sullivan (2015) for definitions).
A probability distribution λ with mean ν and variance σ2

is denoted by λ(ν, σ2). The symbol ∼ denotes an element
with distribution λ. Let Pn denote the ring of all n-variate
polynomials with real coefficients and let Pn

≤r denote those
polynomials of total degree at most r ∈ N0. A polynomial
g(x) :Rn→R, g(x)∈Pn

≤r, is called a sum-of-squares (SOS)

if it can be written as g(x) =
∑

i qi(x)2, qi(x) ∈ Pn
≤r/2.

Moreover, g is SOS if and only if there is a matrix Q � 0
such that g(x) = v(x)TQv(x), where v(x) is a vector of
monomials, and Q called the Gram matrix. The set of all
SOS polynomials in x is indicated by Σ[x]. The degree of
g is denoted by ∂(g).

2. PROBLEM STATEMENT AND BACKGROUND

This work focuses on a feedback control design for stochas-
tic systems with the objective of maximizing the ROA
of the closed loop system. We consider continuous time
second order random processes with affine input,

ẋ(t, ξ) = f(x(t, ξ), a(ξ)) + g(x(t, ξ), a(ξ))u(t, ξ), (1)

where x ∈ Rn is the random state variable, u ∈ Rm

is a random input variable, a ∈ L2(Ω, µ;Rl) is a ran-
dom variable representing the parametric uncertainty, and
f : Rn × Rl → Rn, g : Rn × Rl → Rn×m are polynomial
functions in x and a. We assume ξ to have finite support.
This is the case in most practical applications. Infinite-
support distributions, such as Gaussian distributions, can
be limited to a finite support with negligible approxima-
tion error (Hover and Triantafyllou (2006)). The initial

state of (1) is considered random with x(t = 0) = xini(ξ).
The control law is based on the state feedback policy,

u(t, ξ) = Kh(x(t, ξ)), (2)

where h(x(t, ξ)) : Rn → Rk is a vector with entries
consisting of polynomials of the components of x(t, ξ), and
K ∈ Rm×k is the feedback gain matrix. The objective of
the feedback control is to stabilize the system around an
equilibrium point xEP, whose location is, for conciseness
of demonstration 1 , assumed to be independent of the
uncertainty affecting the system, i.e. f(xEP, a) = 0. We
further assume, without loss of generality, the equilibrium
point to be the zero point, xEP = 0. Let the closed loop
system be denoted by

ẋcl =fcl≡f(x(t, ξ), a(ξ))+g(x(t, ξ), a(ξ))Kh(x(t, ξ)), (3)

and let ψcl(t, ξ, xini(ξ)) denote the solution of (3) at time t
with initial condition xini(ξ). We then define the region of
attraction of the closed loop system (3) as the set of initial
conditions, R∗, for which holds

R∗={xini∈ Rn|P [ lim
t→∞

d(ψcl(t, ξ,xini), xEP)=0]=1}, (4)

where d indicates the distance measured in, e.g., the
Euclidean norm.

2.1 Polynomial Chaos Expansion

Stochastic processes with finite second moment can be
approximated through Polynomial Chaos (PC) expansion.
This results in the benefit of a deterministic representation
of the system at the cost of a higher state dimension. For
an overview see, e.g., Sullivan (2015).
PC expansions use an orthogonal polynomial basis Q =
{Φi|i ∈ N} ⊆ P to approximate the random variables or
processes. The orthogonal basis satisfies the property

〈Φi(ξ),Φj(ξ)〉 =

∫
Ω

Φi(ξ)Φj(ξ)dµ(ξ) = γiδij , (5)

where γi := 〈Φi(ξ),Φi(ξ)〉 is the normalization factor
and 〈·, ·〉 denotes the inner product in L2, representing
integration (i.e. expectation) with respect to µ. For op-
timal convergence of the approximation, the orthogonal
polynomial basis is chosen such that the orthogonality
weighting function corresponds to the type of probability
distribution of the random variable.
The PC expansion of a square-integrable real vector-valued
random variable y(ξ) ∈ L2(Ω, µ) is then

y(ξ) =

∞∑
i=0

ȳiΦi(ξ), (6)

with vector valued PC coefficients ȳi = [ȳ1i
, ..., ȳni

]T which
can, for example, be obtained from a Galerkin projection,

ȳi = γ−1
i 〈y(ξ),Φi(ξ)〉, (7)

The expansion series in (6) is infinite and needs to be trun-
cated for practical purposes. Due to the L2-convergence of
the series the approximation error is in general sufficiently
small for low orders of the truncation order p (Xiu and
Karniadakis (2002)). For the remainder of the paper it is

1 The proposed approach can be extended to uncertainty dependent
equilibrium points which requires the consideration of boundedness
as a stability notion. While the extension can be directly derived
from results presented in Ahbe et al. (2019), the details go beyond
the scope of this paper.



assumed that the truncated series represents the proper-
ties under consideration (i.e., stability) of the real system
accurately.
In the PC framework the moments of a random variable
can be retrieved from the PC coefficients. Consider the
vector-valued random variable y(ξ) ∈ L2(Ω, µ). With the
notation in (6), the first moment, i.e. the mean of y(ξ), is
found as

E[y(ξ)] = 〈y(ξ),Φ0〉 = ȳ0. (8)

The second central moment (variance) of x(t, ξ) follows as

σ2 := E[|y(ξ)− E[y(ξ)]|2] =

p∑
j=1

ȳ2
jγj , (9)

where the sum is to be taken separately over all PC
expansion coefficients of each component of y.
The notation for the PC coefficients of a random variable
y ∈ Rn, is

ȳ0 := [ȳ10
, . . . , ȳn0

]T ∈ Rn, (10)

ȳJ := [ȳ11
, . . . , ȳn1

, . . . , ȳ1p
, . . . , ȳnp

]T ∈ Rn·p, (11)

where we call ȳ0 the mean modes, and ȳJ the variance
modes. Together, they present the stochastic modes, de-
noted by

ȳ :=

[
ȳ0

ȳJ

]
. (12)

The PC expansion represents a n-dimensional stochastic
system as a n · (p+ 1)-dimensional deterministic system.
The deterministic equations are obtained by projecting the
truncated series onto each of the (p+1) basis functions.
For a demonstration of the expansion see, e.g. Ahbe et al.
(2019). The expansion of (1) is denoted by

˙̄x := f̄(x̄) + ḡ(x̄)ū, (13)

where x̄ ∈ Rn(p+1), ū ∈ Rm(p+1) are the vector of PC
expansion coefficients of state x and input u, and f̄ :
Rn(p+1) → Rn(p+1), ḡ : Rn(p+1) → Rn(p+1)×m(p+1) the
PC coefficient dynamics. The overbar notation indicates
variables in the PC expanded representation.

2.2 Stability connection between PC and stochastic system

As shown in Ahbe et al. (2019) an estimate of the ROA
of the equilibrium point xEP of a stochastic system can be
obtained from an estimate of the ROA of the equilibrium
point x̄EP of the PC expanded system. The objective of the
control design is to obtain a control law maximizing the
ROA of the stochastic system and thus will be achieved
by aiming at maximizing the ROA of the PC expanded
system. In the following we briefly summarize results from
Ahbe et al. (2019) on the connection of the ROAs of the
two system representations and the criteria for certifying
a ROA estimate. First, we note that for an uncertainty-
independent equilibrium point, xEP = 0 ⇒ x̄EP = 0. An
estimate of the ROA is then obtained by the following
result.

Theorem 1. Let D̄ ⊂ Rn·(p+1) be a compact domain
containing x̄EP. If there exists a continuously differentiable
function V (x̄) : D̄ → R such that

V (x̄) > 0 ∀x̄ ∈ D̄\{x̄EP}, V (x̄EP) = 0, (14)

V̇ (x̄) =
∂V (x̄)

∂x̄
f̄cl(x̄) < 0 ∀x̄ ∈ D̄\{x̄EP}, (15)

then x̄EP is asymptotically stable and V (x̄) is a Lyapunov
function of the system (13).

The proof follows from standard Lyapunov arguments. If
these conditions are satisfied for all x̄ in a sublevel set

R̄ = {x̄ ∈ D̄ |V (x̄) ≤ ρ}, (16)

where ρ is a positive scalar and R̄ ⊆ D̄, then R̄ is an inner
estimate of the region of attraction of x̄EP. The connection
between the moment stability of a stochastic system and
the asymptotic stability of its PC expansion is then used
to conclude that, given an R̄ estimate, the associated set
R = {xini ∈ Rn |xini(ξ) ∼ λ(x̄0, σ

2(x̄J), ..),∀x̄ ∈ R̄} is an
inner estimate of R∗, the ROA of the stochastic system.
These results enable the estimation of the ROA of a
stochastic system by using stability analysis tools for
deterministic systems. They represent the starting point
for the main technical result of the paper presented in the
next Section.

3. FEEDBACK CONTROL DESIGN

In this work, the stochastic controller (2) is considered
with the aim of obtaining a state feedback law maximizing
the ROA. The approach offers flexibility in choosing the
explicit expression of the state function h(x(t, ξ)).

3.1 Stochastic state feedback law

We use the stochastic state feedback law (2) and focus
on the design of the gain matrix K as well as the state
vector h(x(t, ξ)). A linear version of this feedback law has
been used in Fisher and Bhattacharya (2009) for the design
of a Linear Quadratic Regulator (LQR). Since in this
work we are dealing with nonlinear systems, the control
law considered here contains polynomials in the state as
feedback variables. As the control design proposed here
considers the PC expansion of the closed loop system,
the control law (2) needs to be expanded. Note that by
considering the PC expanded system in the control design
task, the stochastic information on x is directly exploited
in the computation of K. Expanding the control law (2)
in the PC framework as in equation (6) results in

ūij = γ−1
j 〈Kih(x),Φj(ξ)〉, (17)

where i = 1, . . . ,m, j = 0, . . . , p and Ki is the i-th row
vector of K. Note that the dimension of K depends only
on the dimension of the stochastic input and the stochastic
vector h(x), and is independent on the truncation order p
of the PC expansion.

Remark 3.1. There are other possibilities for feedback
laws, e.g. where the input is considered deterministic
or where K is a random variable (see, e.g. Fisher and
Bhattacharya (2009)). The approach proposed here can
be used for other feedback laws as well, however in ap-
plications these laws require knowledge of the current
probability density function of the state vector. While for
linear systems there exist well-established state estimation
techniques providing the probability density of the state,
estimates of the probability density are harder to obtain
for uncertain nonlinear systems. Thus, we limit our focus
to the stochastic state feedback law.

Remark 3.2. In this work we are assuming that xEP is a
locally asymptotically stable equilibrium point and the



control design only aims at maximizing the ROA. The
approach also remains valid in principle if xEP is unsta-
ble. This is done by first stabilizing xEP with standard
techniques (e.g. feedback linearization) and then applying
the design scheme proposed here to increase the ROA of
the stabilized system.

3.2 Input constraints

For the stochastic control law, input limits can be imposed
with the aim of obtaining a controller which maximizes
the certified ROA while respecting the system’s physical
constraints. As the analysis deals with PC expanded sys-
tems, the constraints need to be expressed in terms of PC
coefficients. Let the constraints on the stochastic input be

uL ≤ u(t, ξ) ≤ uU . (18)

Due to the stochastic nature of u, the constraints are
expressed in terms of the statistical properties of the input,
which are provided by the PC expansion. More precisely,
we consider the mean with the addition of one standard
deviation of the control input, given by equations (8) and
(9) applied to the stochastic signal u, and constrain these
to remain within specified limits. This results in

uL ≤ ū0 − σ, uU ≥ ū0 + σ, (19)

with

σi :=

 p∑
j=1

ū2
ijγj

1
2

, (20)

for each component i = 1, ..,m in of the input u. Note
that due to the square root, equation (19) does not
result in a polynomial expression. As the design method
proposed here hinges on both the constraints to be in
polynomial form and the matrix K to only appear linearly,
we introduce the following relaxation of (19). Since γj is
positive by definition, each term in the summation in (20)
is positive and thus the following holds p∑

j=1

ū2
jγj

1
2

≤
p∑

j=1

|ūj |γ
1
2
j . (21)

The right-hand side of (21) provides an upper bound on
the standard deviation of u. By considering the maximum
negative and maximum positive realizations of ūj sepa-
rately, the right-hand side of (21) can be expressed as two
polynomial constraints, which will be explained in more
detail in the following section.

Remark 3.3. Note that if the uncertainty distribution has
finite support (as assumed here and is usually the case
in practice) then the constraints in (19) impose hard
constraints on the input. In the more general case of un-
certainty distribution with infinite support the constraint
violations cannot be excluded due to the tails of the dis-
tributions. In that case the constraints as formulated here
would have primarily the effect of penalizing the input
magnitude.

4. ALGORITHM FOR COMPUTING K

In this section we show how the stochastic control law (2)
is computed such that the ROA of the closed loop system
is maximized. Outlines of the algorithmic implementation

of the computations are provided for both unconstrained
and constrained input cases.

4.1 Maximizing ROA over K

Leveraging the stability criteria stated in Theorem 1, the
following nonlinear optimization problem can be formu-
lated for the computation of the matrix K and concurrent
maximization of the ROA estimate R̄.

max
V (x̄),K

vol(R̄(x̄)) (22a)

subject to V (x̄) > 0, V (0) = 0, (22b)

V̇cl =
∂V (x̄)

∂x̄
f̄cl(x̄,K) < 0, (22c)

uL ≤ ū(x̄,K) ≤ uU , (22d)

where we use V = v(x̄)TQv(x̄) with v(x̄) being the vector
of monomials in x̄ up to a chosen degree, and R̄ as defined
in (16). Constraint (22d) is only present if there are input
constraints.

4.2 Algorithmic implementation

If all equations in (22) are polynomial, the optimization
program can be solved using results from real algebraic
geometry, in particular the Positivstellensatz as stated
in Stengle (1974). This provides a tool to formulate the
conditions in (22) as semi-algebraic set emptiness condi-
tions. These can then be relaxed to sum-of-squares (SOS)
programs. If the SOS program can be formulated such that
the objective and constraints are convex in the decision
variables then it can be solved via semidefinite program-
ming (SDP), see, e.g., Parrilo (2000) for more details.
Thus, in order to efficiently implement the optimization
problem (22) via SOS programs, the objective function,
and therefore the measure of the volume of R̄, need to
be convex. For a positive quadratic form, the geometric
mean of the eigenvalues of the Gram matrix is a convex
expression and an inversely monotonic function of the
sublevel set volume. As higher order V have the potential
to verify larger estimates of R̄, a surrogate set is used
in order to have a convex measure and thus maximize
the sublevel set volume efficiently (see, e.g., Topcu and
Packard (2009); Ahbe et al. (2018)). The surrogate set con-
sists in a quadratic form b(x̄) := x̄TBx̄ with the sublevel
set B = {x̄| b(x̄) ≤ 1}. Imposing the constraint B ⊆ R̄,
maximizing over the geometric mean of the eigenvalues of
B then leads to a maximization of R̄.
The stochastic input constraint (19) is represented through
the upper bound in (21). For the implementation of the
absolute value in a polynomial constraint, additional steps
are required which are presented in the following. For a
computed K, let qj be the maximum absolute value of the
j-th term in the right hand side of (21) over all x̄ in the
sublevel set ρ of V . Then the input constraint (19) can be
written as

uL ≤ ū0 −
p∑

j=1

qj , uU ≥ ū0 +

p∑
j=1

qj , (23)

With the above procedure we obtain the following SOS
optimization program, where for clarity of presentation a
single input u is considered and the dependence on x̄ and
K are dropped.



max
V,K,B,si,qj

−det(B)1/n(p+1) (24a)

subject to V − l ∈ Σ[x̄], (24b)

− s1(1− b)− (1− V ) ∈ Σ[x̄], (24c)

− V̇cl − s2(1− V )− l ∈ Σ[x̄], (24d)

− s3

ū0 +

p∑
j=1

qj − uU
− s4(1− V ) ∈ Σ[x̄], (24e)

− s5

uL −
ū0 −

p∑
j=1

qj

− s6(1− V ) ∈ Σ[x̄], (24f)

for each j : s7(qj − ūjγ
1
2
j )− s8(1− V ) ∈ Σ[x̄], (24g)

s9(qj + ūjγ
1
2
j )− s10(1− V ) ∈ Σ[x̄], (24h)

si,i=1,...(6+4p) ∈ Σ[x̄], (24i)

where the multipliers si(x̄), i = 1, .., (6 + 4p) are SOS
polynomials in x̄ which result from the Positivstellensatz
and certify the solution of the program to adhere to the
constraints. Also resulting from the Positivstellensatz are
the terms l(x̄) = εx̄Tx̄, ε << 1, in (24b) and (24d) which
guarantee that x̄ = 0 is not included in the constrained
set. Constraint (24c) ensures the containment of the sur-
rogate set in the sublevel set of the Lyapunov function.
The sublevel set size ρ has thereby been fixed to 1 as
optimization over ρ is redundant with optimizing over Q.
The constraints (24e)-(24h) enforce the input constraints
on the computation of K and R̄. Note that for each
PC coefficient of u there are two additional constraints
(24g)-(24h), leading to four additional multipliers and thus
making the total amount of multipliers dependent on the
truncation order p. In the implementation, the variables qj
are ‘measures’ of the maximum absolute values of both the

positive and negative values of ūjγ
1
2
j over all x̄ in R̄ and

add, respectively subtract, them from the mean value ū0.
Constraints (24e)-(24f) then ensure (23). In the case of no
input constraints the optimization program only includes
(24a)-(24d) and (24i).
Due to bilinearly appearing decision variables in the con-
straints, the SOS program (24) can still not directly be
solved as an SDP. To circumvent the bilinearities and
obtain convex constraints, a potentially suboptimal iter-
ative scheme is proposed consisting of an iterative loop
over three steps. A pseudocode of the iterative scheme
is shown in Algorithm 1. The program returns both the
matrix K as well as the corresponding ROA estimate R̄.
The algorithm is initialized by finding a suitable Lyapunov
function, e.g. from the linearisation of the system around
x̄EP with K = 0, solving the Lyapunov matrix inequality,
and scaling the result appropriately. An initial sublevel set
size is then simply obtained by choosing an initial diagonal
B-matrix with entries sufficiently large. The initial K can
be taken as a matrix with small nonzero or with zero
entries. The iteration over the three steps is then concerned
with maximizing the surrogate set, i.e. the ROA estimate,
while searching for appropriate K values. In particular,
Step 1 consists in finding multipliers for the current Q,
B and K. In Step 2, K is optimized for and in Step 3
the surrogate set volume is maximized over Q with the
multipliers and K kept fixed. Note, that in the case of no
constraints on the input, constraints (24e)-(24i) including

the variables qj are omitted from Steps 1-3. The iteration
terminates when a predefined convergence criteria on the
size of the surrogate set (convCritB) is reached.

Algorithm 1 Find control to maximize ROA

1: Input: p, ∂(si), ∂(V ), convCritB , h(·), uL/uU
2: Output: K ,V
3: procedure maxROAestimate

4: f̄(x̄,K)
PCE←− f(x, a, u)

5: Initialization:
6: set K = 0

7: Qini ← Lyapunov inequality for ∂f̄(x̄)
∂x̄

∣∣∣
x̄EP

8: choose B small enough such that (24c) is feasible
9: Kini ← << 1 (or zero)

10: Iteration:
11: k ← 0
12: repeat
13: k ← k + 1
14: Step 1: si ← fix Q, B, K, qj , solve (24c)-(24i)
15: Step 2: K, qj ← fix Q, si, solve (24d)-(24f)
16: Step 3: Q, B ← fix si, K, qj , solve (24)
17: until det(B)k−1 − det(B)k < convCritB
18: end procedure

4.3 Recovering R from R̄

Algorithm (1) returns an estimate of R̄ that describes a set
in terms of the PC coefficients x̄. In order to obtain from
R̄ an inner estimate R of the true ROA of the stochastic
system, R∗, we use the optimization program proposed in
Ahbe et al. (2019). This program computes R from the
R̄ estimate by specifying the stochastic properties of the
initial conditions. For example, by fixing the variance of
the initial state to a desired value, the set R is obtained in
terms of the mean of the initial state. In the following ex-
amples we set the variance of the initial state to zero. This
gives the computation of R directly from the Lyapunov
sublevel set representing R̄ by setting all PC coefficients
of the variance modes in R̄ to zero.

5. ILLUSTRATIVE EXAMPLES

We demonstrate the proposed control design on two exam-
ples. Both stochastic systems are open loop stable and a
feedback control will be used to enlarge the ROA. In order
to benchmark our approach, we compare it, firstly, with
the ROA estimate computed for the open loop system.
The open loop ROA estimate is thereby obtained from
applying the ROA computations outlined in Ahbe et al.
(2019). Secondly, we compare our approach with one of the
few available PC expansion based control algorithms. This
control algorithm consists in LQR control design proposed
in Fisher and Bhattacharya (2009) for PC expanded linear
stochastic systems. The example dynamics presented here
are therefore linearized around their equilibrium point and
the feedback law “stochastic state feedback with constant
deterministic gain” in Fisher and Bhattacharya (2009),
Sec. 5.2.2, is applied. The control design proposed therein
results in bilinear matrix inequalities (BMI). This is solved
here using PENLAB (Fiala et al. (2013)) which returns



the LQR values for the gain matrix. In order to obtain the
ROA of the LQR controlled system, the open loop ROA
computations are applied to the LQR controlled closed
loop system.

5.1 2D stochastic dynamics

The first example considers system dynamics from Chesi
(2004), p. 146, with modifications to introduce uncertainty,

ẋ1 = −x1 + x2 − c(ξ)(x2
1 + x3

2) + x1u,

ẋ2 = −2x2 − c(ξ)x2
1 + u, (25)

where c(ξ) is a random variable coming from a uniform
distribution, c(ξ) ∼ Unif(0.8, 1.2) with ξ ∼ Unif(−1, 1).
The Legendre polynomials, associated with uniform dis-
tributions, are used in the PC expansion. The closed loop
system is analysed and compared for two choices of h
which differ in the degree of the polynomial entries, h1 =
[x1, x2]T with K1 ∈ R2, and h2 = [x1, x2, x

2
1, x1x2, x

2
2]T

with K2 ∈ R5. In this example the input is unconstrained.
In order to decide on a truncation order of the PC ex-
pansion we simulate the evolution of the stochastic modes
of the system for a large p starting from various initial
conditions in the region of interest and then set p such
that it captures the significant modes. Here, p = 2, i.e.
there are three significant modes for each state dimension,
which results in a six-dimensional deterministic system.
Figure 1 shows the ROA estimates R for both open loop
and closed loop dynamics obtained using quadratic and
quartic Lyapunov functions. Additionally, the R estimate
for the LQR-controlled system is shown. The results show
how the proposed feedback design increases the estimated
R of the stochastic system. In particular, the results show
how higher order polynomials in h(x) can lead to larger
increases of R and how higher degree Lyapunov functions
can certify larger estimates. It is stressed that the im-
provements on the ROA are mainly due to the fact that
a nonlinear control design formulation is employed, rather
than due to the adoption of a polynomial basis for h. This
is shown by the case of h1 which is a linear controller and
significantly outperforms the LQR. TheR estimate for the
LQR controlled system found for this example shows an
improvement over theR estimate for the open loop system.
It is, however, small compared to the nonlinear controllers.
Note that since the BMI has, in general, local optima and
the obtained solution depends on the initialization, the
LQR-R results shown here are not unique results.

5.2 Short period aircraft dynamics

The second example consists of the 2-D aircraft short
period dynamics from Chakraborty et al. (2011). While
in this reference the dynamics are nominal, two uncertain
parameters affecting the nonlinear part of the system are
considered here. With x1 representing the angle of attack
(in radians) and x2 the pitch rate (in radians/seconds),
the dynamics are given by

ẋ1 = c1(ξ)(−1.492x3
1 + 4.239x2

1 + 0.003x1x2 + 0.006x2
2)−

− 3.236x1 + 0.923x2 + (−0.317 + 0.240x1)u,

ẋ2 = c2(ξ)(−7.228x3
1 + 18.36x2

1 + 1.103x3
2)−

− 45.34x1 − 4.372x2 + (−59.99 + 41.5x1)u, (26)

where c1(ξ) ∼ Unif(0, 2) and c2(ξ) ∼ Unif(0.5, 1.5), with
ξ∼Unif(−1, 1), are random variables from a uniform dis-
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Fig. 1. Resulting ROA estimates for the open loop (OL-
R), closed loop (CL-R), and LQR-controlled (LQR-
R) stochastic system (25) using, for comparison,
quadratic and quartic Lyapunov functions and two
different state feedback vectors h(x)1 and h(x)2.

tribution. The input u represents the elevator deflection (in
radians). A truncation order of p = 2 is found to capture
the significant modes. Further, the vector h = [x1, x2]T

is chosen for the control law (2). The dynamics (26) in
their nominal form with c1 = 1, c2 = 1, are open loop sta-
ble. To investigate the effects of uncertainty and feedback
control on the stability of the system, first the ROA for
both the nominal open loop dynamics, OLn-R, and the
stochastic open loop dynamics, OLs-R, were computed.
Then, Algorithm 1 was used to compute the ROA, CL-R,
and the corresponding control law for the stochastic closed
loop system without input constraints. Figure 2 shows the
ROA estimates for each case, and additionally a ROA
estimate for the LQR-controlled system. Compared to the
set OLn-R, the estimate OLs-R is found to be significantly
smaller. The results for CL-R reveal that the controller is
able to stabilize the stochastic closed loop system such
that the feedback not only counteracts the uncertainty
but further enlarges the ROA. In this example this is
also found for the ROA estimate of the LQR-controlled
system, LQR-R. For illustration, sample trajectories for
various realizations of the uncertain parameters over the
distribution range are shown for both the open and closed
loop system starting from an initial state which is inside
of CL-R but outside of OLs-R. In accordance with the
ROAs, the open loop trajectories diverge while the closed
loop trajectories converge to the equilibrium point.
In the left plot of Figure 3, the evolution of the closed
loop system states and input for an initial condition inside
CL-R and evaluated for different uncertainties covering
the whole distribution range is shown. The plot reveals
input magnitudes exceeding by far the physical limits of
±0.5 rad for the elevator deflection. We thus impose the
constraints −0.5 rad ≤ u(ξ) ≤ 0.5 rad as explained in
Section 3.2, and recalculate the R estimate and resulting
feedback gains from Algorithm 1. The input constrained
CL-R, shown with the purple line in Figure 2, shows
how the ROA shrinks for the constrained case relative to
the unconstrained. The right plot in Figure 3 shows how
the constrained input for the same initial condition and
range of uncertainties as for the unconstrained input now



remains within the prescribed bounds for all realizations
of the uncertainty over the given range.
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Fig. 2. Resulting R estimates for the nominal open loop,
stochastic open loop and stochastic closed loop system
for both without and with input constraints, using
quadratic Lyapunov functions in Algorithm 1. For the
deterministic initial condition xini = [−0.3; 6] and for
various realizations over the full range of c1 and c2,
sample trajectories of the stochastic open loop system,
found to be all diverging, and for the closed loop
system, found to be all converging, are shown.
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Fig. 3. Left plot: Closed loop system trajectories of the
states and unconstrained input starting from the de-
terministic initial condition xini = [0.4;−0.45] and for
10 different uncertainty realizations of each uncertain
parameter c1, c2 covering the whole range of both
distributions (resulting in each 100 trajectories).
Right plot: Same simulation configuration as in left
plot, but here the input was computed under the
constraints uL = −0.5 rad, uU = 0.5 rad.

6. CONCLUSION

We propose a method to obtain feedback gains which
maximize an inner estimate of the ROA of a stochastic
closed loop system. To this end, the Polynomial Chaos ex-
pansion framework is employed to represent the stochastic
equations by higher dimensional deterministic ones. The
control design is based on Lyapunov stability for determin-
istic systems where the resulting stability conditions are
verified via sum-of-squares programs. We demonstrate by
two examples the various features of the control design and
the corresponding ROAs which result from the proposed
method. While the computational implementation of the
control design is still limited for larger systems by current
SOS programming capabilities, the proposed approach

offers flexibility in choosing the stochastic feedback law
and imposing input constraints. Future work could aim
at reducing the conservatism of the constraint satisfaction
and including controller performance measures.
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