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Abstract: For a material efficient construction process of lightweight concrete shells, tensioned cable
nets can be used as a supporting formwork. In order to guarantee the mechanical stability of the shells,
tight tolerances in their form need to be met. To this end, methods have recently been proposed to readjust
the form of the cable net on the construction site. This paper proposes a novel view on the cable net
model as a dynamical system and derives robust control approaches based on H∞ and µ synthesis. Both
approaches can account for input uncertainties and external disturbances. The µ controller additionally
is robust against the uncertain model parameters, which makes their precise identification unnecessary.
The µ synthesis also provides a priori bounds on the allowable fabrication tolerances of the cable net in
order to guarantee robust performance of the closed-loop system. The resulting LTI controllers can be
applied to the system without expert knowledge about the system model or the underlying optimization.
The effectiveness of the controllers is demonstrated in numerical experiments.
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1. INTRODUCTION

Doubly curved thin concrete shells are efficient building struc-
tures to span large areas (Torsing et al., 2012), as e.g. in roof
applications. These shells can have a high structural stiffness
while requiring less material, and therefore less energy than
traditional building structures (Lydon et al., 2017). In the con-
struction process of thin concrete shells, a supporting form-
work, defining the form of the shell, is required. It is removed
after the curing of the concrete. Traditional formwork, con-
sisting of a huge number of customized parts, is time-, labor-
and cost-intensive and produces a lot of waste. An alternative
flexible formwork (Stürz et al., 2019) can be used instead.
Its main component is a steel cable net which is prestressed
inside a rigid frame. On top of the cable net, a fabric is placed,
which builds the surface to support the concrete. This flexible
formwork can reduce the amount of material used and waste
produced compared to traditional formwork.

While fabrication tolerances for construction applications are
not very tight in general, they are for the cable net geometry.
The reason is that desired structural properties of the shell,
such as mechanical stability and buckling behavior, can be
guaranteed only within small variations from its desired target
form. Achieving these allowable tolerances was shown to be
impossible with traditional construction methods (Veenendaal
et al., 2014). Therefore, feedback-based control methods have
been introduced in order to adjust the cable net form and thus
to minimize the deviations from the designed form during the
construction process (Stürz et al., 2016a, 2019; Stürz, 2019). As

⋆ This project has received funding from the European Union’s Horizon 2020

research and innovation programme under the Marie Sklodowska-Curie grant

agreement No. 846421. This work was also partially supported by the Swiss

National Science Foundation under grant no. 200021 178890.

measurements and actuation steps on the construction site are
time-consuming and expensive, the number of their iterations
should be minimized. To this end, model knowledge about the
system is exploited in the control methods. The system model
represents the static equilibria of the system. It involves a set
of parameters which are subject to high fabrication variations
and to which the cable net form is very sensitive. Therefore,
the work in (Stürz et al., 2016b, 2020) has proposed methods
for the identification of these uncertain system parameters. In
(Stürz et al., 2019), the identification step is then combined
with a control input computation (Stürz et al., 2016a) in an
iterative algorithm to achieve a high precision control of the
cable net form while minimizing the required measurement
and actuation iterations. In (Stürz et al., 2019; Liew et al.,
2018), these model- and optimization-based control methods
are validated on a quarter-scale prototype of a roof shell. While
a high precision is achieved, the control algorithm requires a lot
of expert knowledge and its performance relies on the precision
of the identified system parameters.

This paper addresses these recognized issues by exploiting
techniques from robust control (Zhou et al., 1996). To this
end, a novel modeling approach for the cable net is proposed
by formulating it as a discrete-time linear time-invariant (LTI)
dynamical system where at each time step a control input is
applied. Exogenous disturbances (e.g. input uncertainties) and
modeling uncertainties (e.g. fabrication variations) are then
directly taken into account in the control design. Regulation and
disturbance rejection problems are formulated within the H∞

framework, whereas robustness of the closed loop to changes
in the model parameters is achieved by µ synthesis, which also
provides a bound on the allowed fabrication tolerances.

The paper is structured as follows. Section 2 provides a back-
ground to the robust control concepts employed in this work.



In Section 3, a physical description of the cable net system and
the mathematical definition of its static equilibrium is reviewed,
before the problem formulation is stated. Section 4 derives a
dynamical model, and Section 5 discusses the design of robust
controllers via H∞ and µ synthesis. Section 6 compares the
performance of the controllers on a numerical example.

Notation: The identity matrix of dimension n and the matrices
of all zeros and all ones of dimension m × n are denoted by
In, 0m,n, and 1m,n, respectively. The Moore-Penrose pseudoin-
verse is denoted by †, and the kronecker product by ⊗. We will
use M [q : p, r : s] to denote the block of the matrix M ranging
over the rows q to p and over the columns r to s. The operator
⌈〉⊣}(v) maps the vector v to a matrix of all zeros zeros except
the entries of v on its diagonal. For a function f(x) : Rn 7→ R,

we denote the gradient by ∇xf = [ ∂f
∂x1

· · · ∂f
∂xn

]⊤. For a

function h(r, u) : Rn+p 7→ Rm, the Jacobian is denoted by
∇(r,u)h = [∇rh ∇uh], where ∇(r,u) denotes the partial deri-
vatives with respect to r and u, and ∇rh and ∇uh are referred
to as partial Jacobians. We use ∇(r,u)h(r

k, uk) to denote the

Jacobian evaluated at the point (rk, uk). The weightedL2-norm

with Q being a weighting matrix is denoted as ‖x‖2Q = x⊤Qx.

Given a transfer matrix G(s), its H∞ norm is defined by
‖G‖∞ = supω σ̄(G(jω)), where σ̄(·) denotes the maximum
singular value of a matrix and ω denotes the frequency.

2. ROBUST CONTROL BACKGROUND

The Linear Fractional Transformation (LFT) is a fundamental
tool in robust control to create models of uncertain systems
suitable for analysis and synthesis (Zhou et al., 1996). Let

M ∈ C(p1+p2)×(q1+q2) be a complex matrix partitioned as

M =

[

M11 M12

M21 M22

]

, (1)

and ∆u ∈ C
q1×p1 . The upper LFT of M w. r. t. ∆u is given by

Fu(M,∆u) = M22 +M21∆u(I −M11∆u)
−1M12. (2)

An interpretation of (2) can be obtained by considering a
nominal linear time invariant (LTI) system with transfer matrix
M22 having input v ∈ R

q2 and output y ∈ R
p2 and subject to

uncertainty modelled by an operator ∆u. The transfer matrices
M11, M12 and M21 describe the effect of ∆u on M22, and
Fu(M,∆u) is the map between input and output of the plant
in the presence of uncertainty, as shown in Fig. 1.

Fig. 1. Feedback representation of an LFT.

A crucial feature apparent in (2) is that the LFT is well posed,
and thus the loop equations have a unique solution, if and only
if the inverse of (I − M11∆u) exists. Equivalently, the lower
LFT of M w.r.t. Pl ∈ Cq2×p2 is given by

Fl(M,Pl) = M11 +M12Pl(I −M22Pl)
−1M21. (3)

One of the most celebrated design techniques from robust
control is the H∞ framework (Doyle and Stein, 1981), where
performance is formulated in terms of the H∞ norm of a certain
transfer matrix. The search for such a controller K∞ can be
defined as the following optimization problem

min
K∞

‖Fl(M,K∞)‖∞, (4)

where Fl(M,K∞) is now the transfer matrix associated with
the chosen performance objective. While H∞ control makes
the plant robust against exogenous disturbances, it does not
address robustness against endogenous disturbances, such as
for example parametric uncertainties in the model.

The µ analysis technique addresses robust stability and per-
formance of LTI systems in the presence of structured uncer-
tainty sets (Packard and Doyle, 1993). The uncertainty can be
generically defined as ∆u = diag(δiIdi

, δjIdj
,∆Dk

), where
the uncertainties associated with nR real scalars, δi, nC com-
plex scalars, δj , and nD unstructured (or full) complex blocks,
∆Dk

, are listed in diagonal form. The structured singular value
(s.s.v.), denoted by µ∆u

(M), is defined as

µ∆u
(M)=

[

min
∆u

(

κ : det(I−κM∆u)=0; σ̄(∆u) ≤ 1
)

]−1

,

(5)
where κ is a real positive scalar, and µ∆u

(M) = 0 if the
minimization problem has no solution. If µ∆u

(M) ≤ 1 then
the result guarantees that Fu(M,∆u) is not ill-posed for uncer-
tainties in the allowed set, hence the system is robustly stable.
Conversely, if µ∆(M) > 1 the system can become unstable for
particular combinations of the uncertainties, thus providing a
worst-case robust stability (RS) test.

The s.s.v. can also be used for robust performance (RP) by
considering the LFT Fu(M,∆), where ∆ = diag(∆u,∆c)
and the full-complex perturbation matrix ∆c closes the loop
between the input v and output y in Fig. 1. Building on the H∞

synthesis and the µ analysis framework, the goal of µ synthesis
is to find a controller Kµ which minimizes the maximum
singular value of a certain closed loop transfer function in the
face of the uncertainty ∆u, that is

min
Kµ

max
∆u

‖Fu(Fl(M,Kµ),∆u)‖∞,

or equivalently min
Kµ

µ∆(Fl(M,Kµ)).
(6)

The µ synthesis framework thus provides a controller which
is robust to exogenous disturbances, because the objective is
the minimization of the H∞ norm, and uncertainties, since the
H∞ norm is taken over all the possible uncertainty realizations.
A well established way to numerically solve (6) is the so-
called D-K iteration (Packard et al., 1993), where one iterates
between a µ calculation (D step) and an H∞ design (K step).
In this work the routine dksyn (Balas et al., 1998) currently
available in the Robust Control Toolbox (RCT) will be used
in MATLAB R2019b.

3. CABLE NET DESCRIPTION AND PROBLEM
FORMULATION

In this section, we review the model of the cable net system and
state the problem formulation.

3.1 Description of the Cable Net System

We consider the graph G = (N , E) to encode the topology of
the cable net. The node set N comprises the indices of the n
nodes of the cable net, which are equipped with x-, y- and
z-position coordinates. For each node, i ∈ N , its position
coordinates are stacked in the vector ri ∈ R3. The edge set
E represents the indices of the m cable segments of the net.



We refer to the nodes in the interior of the net as interior
nodes and to the ones at the boundary on the rigid frame as
boundary nodes. Similarly, the edges in the interior and at the
boundary of the net are called interior and boundary edges,
respectively. We will use the indices I and B to denote interior
and boundary variables. The node and edge sets can be split
into the two disjoint subsets of interior and boundary nodes
or edges, respectively, i.e., N = NI ∪ NB , NI ∩ NB = ∅,
E = EI ∪ EB , EI ∩ EB = ∅. In the following, we assume
that the frame is rigid and does not bend or flex. Therefore,
the positions of the boundary nodes, ri, i ∈ NB , are assumed
to be constant. The position coordinates of the interior nodes,
ri, i ∈ NI , define the form of the cable net. In the prestressed
state, all cable net edges are in tension. In this state the edge
lengths are the Euclidean distances between adjacent nodes. For
the edge between nodes s and t, the edge length is given by

l(s,t) := ‖rs − rt‖2. (7)

We refer to unstressed lengths of the cable net edges as the
lengths of the edges if no tension forces are acting on them.
The vector of all unstressed edge lengths is denoted by

l0 := [l0,1 ... l0,m]
⊤
∈ R

m. (8)

These unstressed cable net edge lengths are fixed parameters
for all mI interior edges. They are collected in the vector l0,I ∈
RmI . In contrast, the mB boundary edges of the cable net are
attached to the rigid frame via turnbuckles. Through actuation
of the turnbuckles, the unstressed lengths of the boundary
edges can be adjusted to change the form of the cable net.
The parameters of unstressed lengths of the boundary edges
are collected in the vector l0,B ∈ R

mB . We define the input
vector u ∈ Rnu , with nu = mB , as the vector collecting the
adjustments to the unstressed boundary edge lengths, given by

u := [u1 , ... , u(s,t) , ... , umB
]⊤ ∈ R

mB , ∀(s, t) ∈ EB, (9)

where u(s,t) is the change in unstressed length l0,(s,t) for the

boundary edge (s, t). We further define the unstressed length of
edge (s, t) after actuation by the input u(s,t) as

l0,(s,t) = l0,(s,t) − u(s,t) , ∀(s, t) ∈ EB. (10)

Analogously, the notation l0,(s,t) = l0,(s,t) , ∀(s, t) ∈ EI is also

used in the case where (s, t) is a non-adjustable interior edge.
Figure 2 shows a top view on the cable net system.

3.2 Force Balance Equations

We denote the mapping from the inputs u to the position
coordinates r as R(u), i.e.,

r = R(u). (11)

This mapping is not explicitly known. Instead, the following
mathematical characterization of the form of the cable net under
the input u can be given. The static equilibrium of the cable
net is characterized by a force balance of all the tension forces
belonging to adjacent edges of the interior nodes. The set of
adjacent edges of node s which are in tension is denoted by Ēs.

The nodal position coordinates r in static equilibrium are the-
refore the solution to the following equations

hs =
∑

(s,t)∈Ēs

EA(s,t) (rs − rt)

(

1

l̄0,(s,t)
−

1

l(s,t)

)

− p

= 0, ∀ s ∈ NI ,

(12)

where EA(s,t) denotes the elastic material parameter of edge

(s, t) and p is a vector of external forces acting on the nodes.

Rigid frame Cable net

Turnbuckle

sb

l(sb,tb)

tbsa

l(sa,ta)

ta

a)

a)

b)

b)

rI

rB

Fig. 2. Top view of the cable net system, (Stürz et al., 2019). a)
Interior edge (sa, ta) ∈ EI connecting the nodes sa ∈ NI

and ta ∈ NI . b) Boundary edge (sb, tb) ∈ EB connecting
the node s ∈ NI and the node t ∈ NB . Control inputs are
applied via the turnbuckle.

For fixed boundary coordinates, rB = r̄B , the function h :
R3nI×RmB 7→ R3nI represents all force equilibrium equations
at all interior nodes, i.e.,

h(rI , u) =
[

h⊤
1 . . . h⊤

nI

]⊤
. (13)

For more details about the modeling the static equilibrium of
the cable net system, we refer to (Stürz et al., 2019).

3.3 Problem Formulation

The target form of the cable net, denoted by r(des), is given as
the result of a design problem. The parameters l0 are subject to
high fabrication variations, and therefore to large uncertainties.
In the construction of the prestressed cable net, the initial
boundary edge lengths need to be set to their nominal values
which is a manual process introducing large uncertainties.

The control problem consists of using the available control
inputs in form of boundary edge lengths adjustments, u, in
order to steer the cable net form, r = R(u), as close as possible

to the given desired form, r(des). The control approach should
be robust w.r.t. the uncertainties in the model parameters, while
also considering uncertainties in the control inputs and possi-
ble other disturbances on the net. A bound on the allowable
fabrication tolerances on the unstressed cable net edge lengths
l0,I should be provided such that the synthesized controller is
guaranteed to be stable.

4. DYNAMICAL CABLE NET SYSTEM MODEL

In this section, we will first give an intuitive approach to the
form control based on the inverse linearized static mapping
R(u). Then, we derive a dynamical system model which allows
us to use robust control approaches for the controller synthesis.

4.1 Linearized Static Model and Inverse Model Control

For simplicity, let us assume that the dimensions of r and u are
equal. In Section 4.3, we will justify that this assumption can
be made w.l.o.g. Starting from the static equilibrium definition
in Section 3, an intuitive idea to control the system is to invert



the model. As the nonlinear mapping r = R(u) in (11) is not
explicitly known, we linearize it around the current point (r̄, ū).
This gives us the following linearized static model

∆r = ▽uR(ū)∆u, (14)

with ▽uR(ū) = ▽rh(r̄, ū)
−1

▽uh(r̄, ū), (15)

because of the explicit function theorem applied to h(r̄, ū) = 0
in (12). We refer to (Stürz et al., 2019) for more details about the
derivation of (15). Note that we have passed from the absolute
values of r and u to deviations ∆r and ∆u around the current
point (r̄, ū). Considering the linearized static model in (14), an
intuitive control approach is to invert this model, i.e., to apply
the control input

∆u = K0(r − r(des)), (16)

with K0 = (▽uR(ū))
−1

. (17)

In the following, we will derive different controllers and com-
pare them to K0 in (17).

4.2 Dynamical Model of the Cable Net System

In the case of model uncertainties and disturbances, the control
approach in (17) does not provide robust stability or perfor-
mance guarantees. Therefore, we derive a discrete-time LTI
dynamical system model, where the dynamics are introduced
by the discrete control input steps. Let us define the state at
time step k, denoted by xk, as the deviation of the form at time

step k from the desired form, i.e., xk := (r(des) − rk) ∈ Rnx ,

with nx = 3nI , where rk denotes the absolute nodal position,
and the subscript k denotes the time step k. The control input
to the system is denoted as uk := ∆uk ∈ Rnu , with nu = mB ,
and the performance output as ek ∈ Rne . The measured output
of the system, which is the input to the controller, is denoted
by yk ∈ Rny . With these definitions, we consider the following
dynamical system of the cable net

G =







xk+1 = Axk +Buu
k +Bww

k,

yk = Cyx
k +Dyuu

k +Dyww
k,

ek = Cex
k +Deuu

k +Deww
k,

(18)

where the matrices A,Bu, Cy, Ce will have the following fixed
values in the remainder of the paper

A = I, Bu = ▽uR(ū), Cy = I, Ce = I. (19)

The other state space matrices in (18) will depend on the control
problem considered and will be discussed in Section 5. In
the following, we will denote by Tew(K) the transfer matrix

from the exogenous input wk to the performance output ek

obtained by closing the open-loop (18) with the control loop
uk = K(yk), where K denotes a discrete-time LTI controller.

First, we notice that the control approach of inverting the static
mapping in (14) resulting in K0 in (17) is a deadbeat controller
for the system (18). The eigenvalues of the closed loop, i.e., of
the system (18) under the controller K0 in (17) are given by

eig(A−BuK0) = eig(I−▽uR(ū)(▽uR(ū))−1) = 0. (20)

The controller K0 thus moves all closed loop eigenvalues of
system (18) to 0, making the system converge to xk = 0 in one

step, which corresponds to the form rk reaching r(des).

4.3 Controllability of the Dynamical System

So far, we made the assumption that the dimensions of the states
r and the inputs u are equal, which is however only fulfilled in
special cases. In general, the number of boundary edges, mB ,

is smaller than the number of interior nodal coordinates, 3nI ,
and therefore nu < nx in general. For the dynamical system
G in (18), it is easy to verify that it can be controllable only if
nu ≥ nx. This can be seen e.g. from Kalman’s rank criterion
on the controllability matrix, which reveals that Bu needs to
be of full row rank, which requires nu ≥ nx. Therefore, the
system G in (18) is uncontrollable if mB < 3nI . The system G
can however always be transformed into a minimal realization
for controller synthesis. Applying the synthesized controller on
the system minimizes the deviations of the controllable modes
in the system. In a systematic approach, a minimal realization
of the system G in (18) can be computed by transforming G
into its Kalman decomposition and then cutting off the uncon-
trollable modes. We will denote this system in the following
by Gmin. This approach can always be taken, without expert
knowledge of the system. It might be the case that expert know-
ledge about the system and the importance of individual nodal
coordinates to be controlled is available. If the coordinates to
be measured, i.e., Cy , can be chosen by the practitioner, then
different reduced systems that are controllable and observable
might be chosen depending on the choice of Cy (and the degree
of controllability of the states of G). In this case, it needs to be
verified that the chosen reduced system is indeed controllable
(and observable). In Section 6, we will give a numerical exam-
ple and demonstrate both of the proposed approaches. In the
following, we assume w.l.o.g. that the system in (18) represents
a minimal realization and is thus controllable.

5. ROBUST CONTROL DESIGN FOR THE NET

In this section the robust control techniques from Section 2 are
applied to control the cable net in off-nominal conditions. The
case of exogenous disturbances is addressed using H∞ control.
Then, additional model uncertainties are considered and the µ
synthesis framework is leveraged.

5.1 H∞ Control For Exogenous Disturbances

The starting point for the synthesis is the dynamical system
formulation illustrated in Section 4. While some of the state-
space matrices in (19) have fixed values given by the nature of
the problem, others depend on the control task considered. The
selection of these system matrices will define the closed-loop
transfer matrix from w to e which we will denote by Tew(K∞).
This has the same meaning as the LFT of a closed-loop transfer
matrix Fl(M,K∞) used to define the optimization problem in
(4). Two examples for Tew are discussed next.

In the first case, we consider: Dyu = Dyw = Deu = Dew = 0.
The reason is that the actuation on the cable net boundary edges
involve manual measurement and adjustment steps of the edge
lengths. Therefore, an uncertainty concerning the unstressed
lengths of the boundary edges l0,B should be accounted for
in the design. By recalling (10), this can be formulated as an
uncertainty in the input provided to the plant. This prompts the
definition of the input disturbance matrix as Bw = ǫBu, where
ǫ is a positive scalar smaller than 1 modeling the actuation
uncertainty. The performance output e, depends only on the
states r of the system, therefore defining a regulation problem.
The associated controller and closed loop transfer matrix are
denoted by K∞,1 and T r

ew(K∞,1), respectively.

In the second case, we consider Dyw 6= 0, Deu 6= 0, Dew 6= 0
(while Dyu = 0 for physical reasons, and Bw = ǫBu as be-
fore). In addition to the input uncertainty as explained before,



this approach is able to capture additional exogenous distur-
bances, Possible disturbances can arise from external forces on
the cable net in form of unmodeled forces or weights on the
structure. The performance objective is now directly affected by
both the exogenous disturbance and the controller (through the
feedthrough matrices), and measurement noise is considered.
In contrast to the previous design, the control problem now
consists of both a regulation and disturbance rejection problem.
The associated closed loop transfer matrix and controller will
be denoted by K∞,2 and T d

ew(K∞,2), respectively.

5.2 µ Synthesis for Modeling Uncertainty

While the previous controllers can handle exogenous disturban-
ces, they cannot account for modeling uncertainties. However,
it is known that the unstressed lengths of the interior edges l0,I ,
which are subject to high fabrication variations, have a large
effect on the final shape of the cable net. While in the previous
section the effect of perturbations in l0,B was modeled as input
uncertainty, perturbations in l0,I are inherently modeling uncer-
tainties. In order to tackle the effect of the latter, µ controllers
are proposed in the following.

We will denote the vector of nominal unstressed lengths of

the interior edges by l̂0,I in (8). The corresponding vector of
uncertainties, normalized such that they can vary between -
1 and +1, is denoted by ∆l0,I . The vector of true unstressed
lengths of the interior edges are expressed as

l0,I = l̂0,I(1 + λI∆l0,I) (21)

where λI is a scaling vector used to normalize the uncertainty.
When an edge in the interior is considered uncertainty-free,
then the corresponding entry in λI is set to zero.

First, an LFT model of the uncertain system is built. Given
the multiplicative uncertainty in (21), this can be done by
substituting (21) inside the analytic expression of ▽uR in
(15). By further substituting the uncertain operator▽uR(∆l0,I)
in the system representation in (18), the LFT Fu(M,∆l),
where ∆l is the structured uncertainty associated with the real
uncertainties ∆l0,I , is obtained. This operation is performed
with the RCT, followed by an LFT order reduction performed
with the GSS toolbox (Biannic and Roos, 2016) to reduce the
number of repetitions in ∆l.

The final result is the uncertain closed loop transfer function
Fu(Fl(M,Kµ),∆l) (or equivalentlyFu(Tew(Kµ),∆l)), which
can be used in the µ synthesis problem in (6). The discussion
on the different performance objectives for K∞ in Section 5.1
carry over to Kµ.

While providing a thorough discussion on the design choices
for an effective µ synthesis goes beyond the scope of the paper,
a few important remarks are made here. While a standard H∞

design will provide a controller K∞ with the same number
of states of the open-loop plant, the D-K iteration can lead
to a controller Kµ of higher dimension due to the additional
states coming from the so-called D and G scalings. These can
be thought of as frequency-domain filters related to the shape
of the µ plot obtained in the D step (Packard et al., 1993). In
addition to the usual practice of fixing the order of the fit (which
may lead to poor results because robustness of the plant is not
well captured), a strategy to limit the order of Kµ is to narrow
down the set of frequencies used in the D step based on an a
priori knowledge of the frequency range where robustness is
lacking (e.g. obtained by applying µ analysis to Fu(M,∆l)).
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Fig. 3. Desired form, r(des) of the example cable net system
(black) and initial form rk at k = 0 (red).

Another strategy to reduce the order of the controllers is to
apply model order reduction to Kµ. Due to the non-convexity
of the D-K iteration, the initialization used for Kµ is also
important. A possible choice of initialization is the controller
K∞ designed for the corresponding transfer matrix Tew.

6. NUMERICAL EXPERIMENTS

In this section, we illustrate the modeling and control concepts
with numerical experiments.

6.1 Example Cable Net System

We present a notional cable net system for illustrative pur-
poses of the proposed methods and to demonstrate the ef-
fectiveness of the developed control design approaches. We
consider the cable net system depicted in Fig. 3, which re-
presents a doubly curved surface. The net consists of n =
12 nodes, whereof nI = 4 interior nodes and nB = 8 boun-
dary nodes. The states of the overall system are given by

x = [x1 , ... , x4 , y1 , ... , y4 , z1 , ... , z4]
⊤

with dimen-
sion nx = 3nI = 12. The dimension of inputs u is nu =
mB = 8, and the cable net system is not controllable. In
applications involving larger scale models, model order re-
duction methods can be employed to reduce the number of
states. However, since the controller synthesis is done offline,
the computation time, and thus the dimension of the system
might not be critical. In order to compute the desired form of

the cable net, r(des), the boundary locations, and a uniform
force density distribution for the cable net edges, are chosen.
W.l.o.g. the external loads p in (13) are set to p = 0, i.e., we
consider the cable net without the concrete, and we neglect
self-weight. The material parameters EA are, w.l.o.g., assumed
to be EA = 1 for all edges. Furthermore, p and EA are
assumed to be constant. In applications where this does not
hold, additional uncertainties can be introduced into the pro-
blem, analogously to the uncertainties∆l0,I . In an initial design
problem, the parameters of the cable net in static equilibrium
are computed. The unstressed and actual edge lengths are given
by l0 = [11,4 ⊗ 1.4472m, 11,8 ⊗ 1.3373m]⊤ and l = [11,4 ⊗
1.4577m, 11,8 ⊗ 1.3463m]⊤. The initial and desired coordi-

nates are x0 = [1.5, 2.25,1.5, 0.75, 1, 2, 3, 3, 2, 1, 0, 0]
⊤

, y0 =

[0.75,1.5, 2.25, 1.5, 0, 0, 1, 2, 3, 3, 2, 1]
⊤

, z0 = [2, 1, 2, 1, 3, 3,
0, 0, 3, 3, 0, 0]⊤, and xdes = [1.5, 2.444, 1.5, 0.556, 1, 2, 3,
3, 2, 1, 0, 0]⊤, ydes=[0.556, 1.5, 2.444, 1.5, 0, 0, 1, 2, 3, 3,



2, 1]⊤, zdes=[2.1887, 0.8113, 2.1887, 0.8113, 3, 3, 0, 0, 3,
3, 0, 0]⊤. The state space matrices are then given according to
(19). Bu can be computed with (15), where

▽uh =
(

I3 ⊗−M⊤
I

)

[

diag(Mx0)

diag(My0)

diag(Mz0)

](

Im ⊗
EA

2

)

diag(l0)
−1MB,

▽rh =
(

I3 ⊗−M⊤
I

)

[

diag(Mx0)

diag(My0)

diag(Mz0)

](

Im ⊗
EA

2

)

diag(l−3)×

[diag(Mx0) diag(My0) diag(Mz0)] (I3 ⊗MI)×

+
(

I3 ⊗−M⊤
I

)

(

I3 ⊗

(

Im ⊗
EA

2

))

×

(

I3 ⊗ diag
(

l−1
0 − l−1

))

(I3 ⊗MI) ,
(22)

with the incidence matrix of G given by M = [MI , MB], with

MI =

[[

−1 0 0 1

1 −1 0 0

0 1 −1 0

0 0 1 −1

]

, I4 ⊗ [1, 1]

]⊤

and MB = [08,4, −I8]
⊤

.

For a fixed input vector u, the equilibrium equations in (13) can
be reformulated into an energy minimization problem which
can be solved by convex programming. We refer to (Stürz et al.,
2016a) for details.

6.2 Minimal Realization of the Cable Net System

In a first step, we focus on the nominal system without dis-
turbances and illustrate the two methods to obtain a minimal
realization of the system model, as proposed in Section 4.3. In
both cases, the system has q = 8 controllable and nx − q = 4
uncontrollable modes. Following the systematic approach of
computing a Kalman decomposition and truncation, we obtain
a minimal realization of the system, denoted by Gmin in the
following. For the second approach, we assume that the preci-
sion of the x- and y-coordinates of the interior nodes is more
important than the one of the z-coordinates. We thus choose
Cy = [I2nI

0nI
] and truncate the z coordinates from the system

state. The resulting system, denoted by Gxy, is controllable. If
we assume that we can only measure x and y coordinates, i.e.,
Cy = [I2nI

0nI
] to compute Gmin, then Gmin and Gxy are

equivalent, i.e., can be transformed into each other by a regular
transformation. If instead of reducing the system to x- and y-
coordinates, one reduced it to y- and z-, or similarly to x- and
z- coordinates, (with according choices of Cy), then uncontrol-
lable modes would still be present in the reduced system.

6.3 Robust Control Performance

In this section the controller synthesis approaches discussed in
Section 5 are applied to the proposed example cable net system
where only the x- and y-coordinates are considered, i.e., the
minimal realization Gxy .

H∞ Control. The first result is that K∞,1 is identical to K0.
While an H∞ controller has a dynamic part with a number of
controller states nxK

equal to the number of open-loop states,
the controller matrices AK∞,1, BK∞,1, and CK∞,1 are zero
while DK∞,1 = K0. Recalling that T r

ew defines a regulation
problem, it is expected that K∞, 1 behaves like the dead-beat
controller K0.

The second H∞ controller is designed considering the transfer
matrix T d

ew (with Dyw = 0.1I8, Deu = 0.5I8, Dew = 0.5I8,
ǫ = 0.2). These values can be thought of as constant weights for
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Fig. 4. Comparison of the singular values of the closed loop
plants with K0 (black-dashed) and K∞,2 (blue-solid).

the generally frequency-dependent weights used in H∞ cont-
rol (Balas et al., 1998). They are chosen w.l.o.g. In this case,
K∞,2 is a dynamic LTI controller achieving the performance

‖T d
ew(K∞,2)‖∞ = 0.5, while ‖T d

ew(K0)‖∞ = 1.2. Fig. 4 pro-
vides a more general comparison between K∞,1 and K∞,2 by

showing the singular values of T d
ew(K0) (black-dashed lines)

and T d
ew(K∞,2) (blue-solid lines) over the frequency ω.

The peaks of the two families of lines are respectively 1.2
and 0.5, but the greater robustness of T d

ew(K∞,2) compared to

T d
ew(K0) can be inferred as disturbances are better rejected at

all frequencies. In particular, Fig. 4 shows a lack of robustness
in the K0 closed-loop in the high frequency range (just before
the Nyquist frequency π).

This first set of results shows on the one hand that the dynamical
system formulation of the problem is a promising strategy to
frame the robust control design of the cable net, since an H∞

controller with only regulation requirements, which builds on
this modeling formulation, retrieves the same intuitive control-
ler K0 designed in (17). On the other hand, when the perfor-
mance objectives are different and, e.g., include disturbance
rejection, H∞ provides a more flexible framework to formulate
the requirements and allows for greater robustness than K0.

µ Synthesis. In the following, all interior edges are subject to
an uncertainty of ± 10 % from their nominal values. Due to
space constraints, and in order to provide an easy interpretation
of the outcome, only the regulation problem (where T r

ew is now
subject to uncertainties in ∆l) is examined. The robust control-
ler Kµ was designed without enforcing any restriction on the
order of D and G. In the D step, the frequency grid consisted
of the points [10−6, 10−4, 10−2, 0.5, π]rad/s. The order of the
controller is 72, a multiple of the plant’s order 8 because of
the states of the scalings. Balanced truncation (Moore, 1981) is
applied in order to obtain nxK

= 8 states, and the associated
controller is denoted by Kµ,r. Fig. 5 shows a comparison of the
RP test for the controllers by showing the upper bound of µ∆.
It is confirmed that the dead-beat controller K0 shows a poor
performance in the high frequency range and it has a µ peak of
10.8, while the peak for Kµ,r is 9.1. That is, a guaranteed 20 %
increase of robust performance is achieved. Generally, µ analy-
sis carries important frequency information which can be used
to speculate on the causes for the lack of robustness (Iannelli
et al., 2018). E.g., inspection of the worst-case combination
of the uncertain parameters can point out modeling aspects
which deserve particular care in order to increase robustness. In
addition, the peak frequency of a µ stability plot is associated
with the eigenvalue responsible for the neutral stability of the
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Fig. 5. Comparison of µ (upper bound) for different closed loop
plants.

system. In the case of discrete time systems, the frequency of
the peak thus corresponds to the phase of the pole(s) lying on
the unit disk when subject to the worst-case perturbation.
Both µ controllers are able to decrease the maximum peak of
the plot and thus the plant’s robustness to the uncertainty. Mo-
reover, robust performance is not substantially affected when
the reduced order controller is tested. A comparison of the
RS test revealed very similar plots to those in Fig. 5. This is
not surprising since for the regulator problem the worst-case
combination of the uncertainties for performance is the same as
for stability. I.e., the loss of robustness in performance is due to
the plant becoming unstable due to the uncertainty. That is, the
cable net does not converge to the desired shape and the discrete
application of control inputs leads to a diverging response.

By definition, if the peak of µ is larger than 1, the system
does not achieve robust performance. Hence, Fig. 5 shows
that for variations of unstressed lengths within ± 10 %, none
of the controllers guarantee RP. This is not surprising since
this is a large range for real applications. To better quantify
the improvements by the robust control solutions, 4 different
uncertainty ranges were considered, namely 1 %, 2 %, 3 %, 5 %
and 10 %. For each range, 1000 realizations of the uncertainty
were uniformly sampled and system (18) was simulated under
K0 andKµ,r. This test was performed 10 times, and the average
number of failures in convergence of the control iteration in
(18) is reported in Table 1.

Table 1. Percentage of failures (over 1000 tests).

Uncertainty range 1 % 2 % 3 % 5 % 10 %

K0 0
∗ 23.2 42.8 53.4 66.4

Kµ,r 0 7.7 10.1 10.7 17.4

While according to the worst-case RP test in Fig. 5 the increase
of robustness achieved by Kµ,r is of the order of 10.8

9.1
∼= 1.2,

simulations show that for randomly generated perturbations the
increase of robustness with the µ controller is much higher.
It goes from 23.2

7.7
∼= 3 for the case of 2 % to 53.4

10.7
∼= 5 for

the case of 5 %. The reason for the ∗ for K0 in the case of
1 % range is that since the peak of curve K0 in Fig. 5 is
greater than 10, there exists a worst-case perturbation which
makes the iteration diverge. This perturbation was extracted
from the lower bound calculation of µ and its effect confirmed
in simulation. It was however not found in the Monte Carlo
campaign, and shows the power of robust control techniques
in detecting analytically worst-case perturbations for uncertain
systems. On the other hand, the peak of the curve Kµ,r is below
10 and thus the associated system is guaranteed to be stable for
any perturbation in that range.

7. CONCLUSION

A novel modeling approach of prestressed cable net systems as
discrete-time LTI systems was presented together with the synt-
hesis of robust controllers. H∞ control was used to take into
account input uncertainties and external disturbances, while µ
synthesis was adopted to take into account additional parame-
tric uncertainties. A numerical case study illustrated that both
control designs outperform analytically (maximum singular va-
lue and µ analysis plots) and in simulation a deadbeat controller
designed by inverting the model.
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