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Abstract
This work proposes a novel robust model predictive control (MPC) algorithm
for linear systems affected by dynamic model uncertainty and exogenous dis-
turbances. The uncertainty is modeled using a linear fractional perturbation
structure with a time-varying perturbation matrix, enabling the algorithm to
be applied to a large model class. The MPC controller constructs a state tube
as a sequence of parameterized ellipsoidal sets to bound the state trajecto-
ries of the system. The proposed approach results in a semidefinite program
to be solved online, whose size scales linearly with the order of the system.
The design of the state tube is formulated as an offline optimization problem,
which offers flexibility to impose desirable features such as robust invariance
on the terminal set. This contrasts with most existing tube MPC strategies
using polytopic sets in the state tube, which are difficult to design and whose
complexity grows combinatorially with the system order. The algorithm guar-
antees constraint satisfaction, recursive feasibility, and stability of the closed
loop. The advantages of the algorithm are demonstrated using two simulation
studies.
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1 INTRODUCTION

Model predictive control (MPC) is one of the most popular modern control strategies because it offers, through its receding
horizon implementation, a useful trade-off between optimality and computational complexity.1 The flexibility offered
by the control design process and the systematic handling of system constraints has resulted in wide adoption of MPC
in diverse fields such as robotics, process control and automotive control.2-4 MPC controllers use a model of the system
dynamics to optimize over control performance while ensuring constraint satisfaction and stability of the closed loop. The
models that are used in practice however do not perfectly describe the underlying dynamics. This is a well-known issue in
MPC literature,5 which has been studied under the fields of robust and stochastic MPC.6 Because these techniques provide
closed loop guarantees even with inexact models of systems, they are also used in recent advanced MPC algorithms such
as safe learning-based MPC7,8 and robust adaptive MPC.9-11

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. International Journal of Robust and Nonlinear Control published by John Wiley & Sons Ltd.

Int J Robust Nonlinear Control. 2022;1–22. wileyonlinelibrary.com/journal/rnc 1

 10991239, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.6485 by A

ndrea Iannelli - U
niversitatsbibliothek Stuttgart , W

iley O
nline L

ibrary on [22/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-1806-8332
https://orcid.org/0000-0002-1865-6978
https://orcid.org/0000-0002-8139-4683
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/RNC
http://crossmark.crossref.org/dialog/?doi=10.1002%2Frnc.6485&domain=pdf&date_stamp=2022-11-21


2 PARSI et al.

The main goal of robust MPC is to design a controller with desired properties such as constraint satisfaction, closed
loop stability and good performance when the model is subject to dynamic uncertainties, exogenous disturbances or
both. Early strategies included the tightening of state and input constraints to account for the effects of disturbances on
the system.12,13 In addition, approaches such as multi-scenario MPC have been proposed to handle model uncertainties,
wherein a scenario tree is built to compute control inputs for each possible realization of model uncertainty.14,15 In this
work, we focus on another popular class of robust MPC methods known as tube MPC.

In tube MPC, the effects of model uncertainty and disturbances on the state trajectories are captured using a sequence
of sets, called the state tube. Using set-theoretic concepts, the state tube is constructed as a function of online optimization
variables such that it contains all possible future trajectories of the system.16 The state tubes, by construction, are required
to satisfy the constraints, thereby ensuring robust constraint satisfaction. Although this method is an effective way to
handle imperfect models, the sets defining the state tube must be parameterized in order to have a computationally
tractable optimization problem.

Similar to constraint tightening approaches, most of the early tube MPC techniques considered linear systems affected
by either additive disturbances17-19 or multiplicative model uncertainty.20 The main difference between the various
approaches is in the parameterization used to construct the state tube. The simplest of these approaches, called rigid
tube MPC, uses translations of a set of a fixed size in the state space to construct the state tube.17 Homothetic tube MPC
approaches use translations and scalings of a predefined set, which gives a larger region of attraction compared to rigid
tube MPC controllers.18 A class of methods, known as elastic tube MPC, uses a fixed number of hyperplanes along pre-
defined directions to construct polytopic sets, allowing the state tube to take arbitrary shapes.20,21 More recently, the
homothetic9,22 and elastic tube MPC23 strategies have been extended to systems affected by both model uncertainty and
disturbances, in the context of robust adaptive MPC.

All aforementioned tube MPC approaches have in common that the state tube is parameterized as a sequence of poly-
topic sets. Such a parameterization of the state tube allows the formulation of the set dynamics as linear constraints,
and results in convex quadratic programs to be solved online. Despite the apparent simplicity of online computation,
using a polytopic parameterization has two main disadvantages. First, the number of hyperplanes and vertices required
to describe a polytope can grow combinatorially with the state dimension, affecting the scalability of the algorithm due
to the large number of constraints and variables in the online optimization. Moreover, to guarantee closed loop stability,
the chosen polytope parameterizations are often assumed to be robustly invariant9 or contractive.23 This further compli-
cates the control design, because the computation of polytopic invariant sets is a difficult problem. Iterative algorithms
have been proposed to construct invariant polytopes for systems affected by additive disturbances,24 multiplicative uncer-
tainty25 or both.26 Although the methods in24,25 are guaranteed to result in polytopes with finite number of constraints,
this number can be arbitrarily large. Moreover, such guarantees have not been proven for systems affected by additive
and dynamic uncertainties.26

An alternative way to parameterize the state tube is to use ellipsoidal sets. Whereas the number of hyperplanes or
vertices defining a polytope grows combinatorially with the number of dimensions, an ellipsoid can be defined by a single
conic constraint. In addition, the design of ellipsoidal sets can be formulated as a single convex optimization problem,
instead of iterative procedures used for polytope design. These advantages are well known in the control community,
and have resulted in ellipsoid based robust MPC approaches. Early methods have proposed to use a single ellipsoidal set
to approximate the region of attraction of MPC controllers.27,28 An improved design has been proposed in Reference 29,
where a sequence of ellipsoidal sets is used to propagate the state dynamics instead of a single set. This technique is
similar to the polytopic rigid tube MPC in Reference 17 and could be applied to a wider model class. An ellipsoidal
tube MPC approach has also been proposed for output feedback with imperfect state measurements in Reference 30.
However, the proposed method does not consider state constraints, and assumes perfect knowledge of the model at the
current time step. Moreover, the online optimization problems in References 29 and 30 are semidefinite programs which
grow quadratically with the system order, potentially leading to large computational demands. Recently, ellipsoidal sets
have also been used to perform tube MPC for systems affected by multiplicative uncertainties using integral quadratic
constraints.31 The advantage of this new approach is that a broad uncertainty class, including also dynamic uncertainty
and several nonlinearities, can be captured in a less conservative way than existing schemes. However, the resulting
online optimization problem is nonconvex, and the offline design is cumbersome and a systematic procedure for the
computation of MPC components is not yet available. Ellipsoidal tubes have also been used for nonlinear control under
assumptions of known models,32 and in the context of learning-based MPC with nonlinear models and unstructured
uncertainty.33
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PARSI et al. 3

In this work, we propose a novel ellipsoidal tube MPC algorithm which uses a homothetic tube to propagate the
set-dynamics. The algorithm can be applied to linear systems affected by time-varying model uncertainty and exoge-
nous disturbances, where the uncertainty is described in the form of a linear fractional transformation.34 The proposed
algorithm has offline and online phases, each of which requires the solution of convex optimization problems. The offline
optimization problem solves a semidefinite program combined with a line search over a scalar parameter. The size of the
offline optimization problem grows quadratically with the system order. The online optimization problem is a convex
semidefinite program. The algorithm guarantees constraint satisfaction, recursive feasibility, and stability of the closed
loop.

The proposed method has three distinct advantages compared to most existing works. The first one is the scalabil-
ity of the online optimization problems compared to both polytopic9,23 and ellipsoidal tube MPC29,30 approaches in the
literature. In the proposed approach, the online optimization is a semi-definite program whose size grows linearly with
the order of the system. The second advantage is that the design of the state tube shape is flexible, and can be performed
by solving an optimization problem offline. Various desirable properties, such as robust invariance or 𝜆-contractivity,
can be imposed on the ellipsoidal sets using simple reformulations of the optimization problem. Finally, the uncertainty
class considered here is general and can be combined with both grey-box identification techniques35 and black-box iden-
tification techniques such as least squares estimation.36 Such a flexibility in representing uncertainty results in tighter
propagation of state evolution, and thereby, improved region of attraction compared to most of the existing polytopic
tube MPC methods.9,18,23 Two simulation examples are used to highlight the advantages of the controller. First, by
applying the proposed algorithm on mass-spring-damper systems of increasing size, the scalability of the algorithm is
demonstrated. In the second simulation example, a controller is designed using the proposed algorithm for a quadrotor
with uncertain mass and affected by a wind disturbance, and the performance is compared with a polytopic tube MPC
algorithm.37

1.1 Notation and background lemmas

The sets of real numbers, non-negative real numbers and positive real numbers are denoted by R, R≥0 and R>0 respec-
tively. The sequence of integers from n1 to n2 is represented by N

n2
n1

. For a vector b and a matrix A, ‖b‖k represents the
k−norm for k ∈ {2,∞}, and ‖b‖2

A represents b⊤Ab. The ith row of a matrix A is denoted by [A]i, and A ≼ 0 denotes that A
is a negative semidefinite matrix. For two square matrices A,B the notation diag{A,B} denotes the block diagonal matrix
formed by A and B. The Minkowski sum of two sets and is denoted by⊕ , and 1 denotes a column vector of appro-
priate length whose elements are equal to 1. The notation al|k denotes the value of a at time step k + l computed at the time
step k. The identity matrix of size n × n is denoted by In. In a symmetric matrix, a⋆ in a lower-triangular element denotes
that the value is the transpose of the corresponding upper-triangular element. A continuous function 𝛼 ∶ R≥0 → R≥0 is a
𝒦 function if 𝛼(0) = 0, 𝛼(s) > 0 for all s > 0 and it is strictly increasing. A continuous function 𝛽 ∶ R≥0 ×N

∞
0 → R≥0 is a

𝒦ℒ function if 𝛽(s, t) is a𝒦 function in s for every t ≥ 0, it is strictly decreasing in t for every s > 0 and 𝛽(s, t) → 0 when
t → ∞.

Lemma 1 (38). The quadratic constraint in the variable x ∈ Rn defined as x⊤Xx + 2y⊤x + z ≤ 0 is satisfied for all x, if and

only if the matrix
[

X y
⋆ z

]

is negative semidefinite.

Lemma 2 (S-procedure39). Consider m + 1 quadratic functions in a variable x ∈ Rn denoted as Fi(x) for i ∈ N
m
0 . If there

exist m scalars 𝜏i ∈ R≥0 for i ∈ N
m
1 such that

∀x, F0(x) −
m∑

i=1
𝜏iFi(x) ≤ 0,

then F0(x) ≤ 0 for all x such that Fi(x) ≤ 0, i = 1, … ,m. If m = 1 and there exists x̂ such that F1(x̂) < 0, then this condition
is necessary and sufficient.

Lemma 3 (Schur complement40). Consider the symmetric matrices Q,R. If Q ≺ 0, then
[

Q S
⋆ R

]

≼ 0 is satisfied if and only

if R − S⊤Q−1S ≼ 0.
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4 PARSI et al.

2 PROBLEM FORMULATION

We consider uncertain, linear, time-invariant systems of the form:

xk+1 = Axk + Buk + Bppk + Bwwk, (1a)

qk = Cqxk + Duuk + Dwwk, (1b)

pk = Δkqk, (1c)

where xk ∈ Rnx represents the state of the system, uk ∈ Rnu represents the control inputs and wk ∈ Rnw represents an
exogenous disturbance acting on the system’s states. In addition, the uncertainty in the model is captured using a linear
fractional transformation (LFT),34 described by the perturbation vectors pk, qk ∈ RnΔ and the matrix Δk ∈ RnΔ×nΔ with
the block diagonal structure

Δk = diag
{
Δ1

k,Δ
2
k, … ,Δ𝛿k

}
, (2)

where Δj
k ∈ R

nΔj ,∀j ∈ N
𝛿

1, and the structure (2) induces a similar partition on pk and qk. The perturbation vectors pk, qk
and the matrix Δk cannot be measured, but Δk is known to lie inside the set

 ∶= {Δ|Δ⊤PΔΔ ≼ InΔ}, (3)

for all k, where PΔ ∈ RnΔ×nΔ is a positive definite matrix. By defining the projection matrices Πj which select
the components of pk, qk corresponding to Δj

k for j ∈ N
𝛿

1, the bound on Δk can also be represented by the set of
inequalities

p⊤kΠ
⊤

j PΔΠjpk ≤ q⊤kΠ
⊤

j Πjqk, ∀j ∈ N
𝛿

1. (4)

The exogenous disturbance wk lies within the set

 ∶=
{

w|w⊤Pww ≼ Inw

}
, (5)

where Pw ∈ Rnw×nw is a positive definite matrix. The states and inputs of the system must lie in a compact polytopic set
containing the origin, defined as

 ∶= {(x,u)|Fx + Gu ≤ 1}, (6)

where F ∈ Rnc×nx ,G ∈ Rnc×nu . The control task is regulation subject to a quadratic cost, that is, given that the system is at
a state x̂0 at the timestep k = 0, control inputs {uk}∞k=0 must be computed such that the following cost is minimized

∞∑

k=0
x̂⊤k Qxx̂k + u⊤k Quuk, (7)

where Qx ∈ Rnx×nx ,Qu ∈ Rnu×nu are positive definite matrices and {x̂k}∞k=0 represents the true state trajectory of the system.
However, the cost defined in (7) cannot be optimized over, since the true state trajectory depends on the realizations of the
uncertainty and disturbances to be observed in the future. Moreover, using the infinite horizon state and input trajectories
in the optimization problem results in an infinite number of variables.

In light of these difficulties, model predictive control (MPC) is used to find suboptimal input sequences.1 In this
approach, a receding horizon strategy is used where the control inputs over the next N timesteps (called the prediction
horizon) are optimized while ensuring that the state after N timesteps reaches a predefined terminal set T . The set T
is designed such that it is robust positively invariant under a predefined stabilizing terminal controller. Moreover, to deal
with the uncertainty in the prediction of the future states, tube MPC6 is used. In this approach, a sequence of sets {l|k}N

l=0
called the state tube is constructed, which encompasses all trajectories of the system that can be generated by the input
sequence {ul|k}N−1

l=0 for any Δl|k ∈ ,wl|k ∈ , l ∈ N
N−1
0 . Thus, an optimization problem of the following form is solved
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PARSI et al. 5

at each time step k using the available state measurement x̂k

min
{ul|k}N−1

l=0 ,{l|k}N
l=0

N−1∑

l=0

(
J(l|k,ul|k)

)
+ JT(N|k), (8a)

s.t. x̂k ∈ 0|k, (8b)

ql|k = Cqxl|k + Duul|k + Dwwl|k, (8c)

pl|k = Δl|kql|k, (8d)

l+1|k ⊇ Al|k ⊕ Bul|k ⊕ Bppl|k ⊕ Bw , ∀Δl|k ∈ ,∀wl|k ∈ , (8e)

Fxl|k + Gul|k ≤ 1, ∀xl|k ∈ l|k, l ∈ N
N−1
0 , (8f)

N|k ⊆ T , (8g)

where J(⋅, ⋅) and JT(⋅) represent the stage and terminal cost functions which are defined based on the state tube. The
optimization problem (8) has been extensively studied in robust MPC literature with various parameterizations of the
state tube. That is, instead of arbitrarily optimizing over the shapes {l|k}N

l=0, they are parameterized using predefined sets.
Some examples include translation of a polytope,17 translation of an ellipsoid,29 translation and scaling of a polytope18

and using polytopes with hyperplanes along predefined directions.20 In this work, a novel way to parameterize the state
tube is proposed, wherein ellipsoids of fixed shape are translated and scaled using online optimization variables.

3 MPC COMPONENT DESIGN

The robust MPC optimization problem (8) depends on the sets {l|k}N
l=0 and the control inputs {ul|k}N−1

l=0 . This optimization
problem must be solved online at each time step, and hence a computationally tractable approximation of (8) is desired.
To this aim, the control inputs will be parameterized using an affine control law, and the state tube will be parameterized
using a predefined ellipsoidal set. In addition, the terminal set and cost function will be designed to ensure that the closed
loop is stable and (8) is recursively feasible.

3.1 Parameterization of control inputs and state tube

The sets {l|k}N
l=0 are parameterized using the predefined ellipsoid

 ∶= {x|x⊤Px ≤ 1} = {x| ‖Lx‖2 ≤ 1}, (9)

where P ∈ Rn×n is a symmetric positive definite matrix that defines the shape of the ellipsoid and L is obtained using the
Cholesky factorization of P = L⊤L. Using the translation variables zl|k ∈ Rn and scaling variables 𝛼l|k ∈ R>0, the state tube
is parameterized as

l|k ∶= (zl|k, 𝛼l|k) ∶= zl|k ⊕ 𝛼l|k

=
{

x|(x − zl|k)⊤P(x − zl|k) ≤ 𝛼2
l|k

}

=
{

x |
|
‖
‖L(x − zl|k)‖‖2 ≤ 𝛼l|k

}
, ∀l ∈ N

N
0 . (10)

For notational convenience, introduce el|k = xl|k − zl|k for l ∈ N
N
0 . The parameterization (10) allows the state tube to grow

in size along the prediction horizon in order to capture all the reachable states of the system for any realization of the
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6 PARSI et al.

model uncertainty and disturbance. Although fixing the ellipsoid shape using P could result in faster growth of the state
tube size, it simplifies the online optimization problem.

The control inputs are parameterized as

ul|k =

{
Kel|k + vl|k, l ∈ N

N−1
0

Kxl|k, l > N
, (11)

where K ∈ Rnu×nx is a feedback gain designed offline and {vl|k}N−1
l=0 are online optimization variables. Such a parameter-

ization of the control inputs is standard in tube MPC methods.6 This is because the feedback gain K compensates for
the effect of disturbances wk and model uncertainty Δk, and the affine terms {vl|k}N−1

l=0 increase the flexibility to ensure
constraint satisfaction.

Finally, the terminal set T is chosen to be an ellipsoid described by

T ∶= {x|x⊤Px ≤ 1} =  . (12)

Note that the terminal ellipsoid is also defined by the same shape matrix P used to parameterize the state tube. This choice
simplifies the design of P to ensure that T is invariant, as discussed in Section 3.4.

3.2 Constraint reformulations

Using the parameterizations (11)–(12), the robust MPC optimization problem (8) must be reformulated in terms of the
variables zl|k, vl|k, 𝛼l|k. First, the initial condition at each time step (8b) can be written as

‖
‖L(x̂k − z0|k)‖‖2 ≤ 𝛼0|k, (13)

which is a second order conic constraint.41 The tube inclusion constraints, represented by (8c), (8d), and (8e) are
reformulated as a linear matrix inequality in the following proposition.

Proposition 1. Under the parameterization (10), the tube inclusion described by (8c), (8d), and (8e) will be satisfied if
∃𝜏1,l|k, {𝜏2,l|k,i}𝛿i=1, 𝜏3,l|k ∈ R≥0 such that for T2,l|k = diag{𝜏2,l|k,1InΔ1

, … , 𝜏2,l|k,𝛿InΔ𝛿
} and dl|k = Azl|k + Bvl|k − zl+1|k,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 𝜏1,l|kP 0 0 0 𝛼l|k(A + BK)⊤ 𝛼l|k(Cq + DuK)⊤

⋆ −T2,l|kPΔ 0 0 T2,l|kB⊤p 0
⋆ ⋆ −𝜏3,l|kPw 0 B⊤w D⊤

w

⋆ ⋆ ⋆ 𝜏1,l|k + 𝜏3,l|k − 𝛼l+1|k d⊤l|k (Cqzl|k + Duvl|k)⊤

⋆ ⋆ ⋆ ⋆ −𝛼l+1|kP−1 0
⋆ ⋆ ⋆ ⋆ ⋆ −T2,l|k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≼ 0, (14)

Proof. The dynamics of the system (1) and tube inclusion constraints (8c), (8d), and (8e) imply that

xl+1|k ∈ l+1|k, ∀xl|k ∈ l|k,Δl|k ∈ ,wl|k ∈ . (15)

Using the parameterization (10), (15) can be written as

e⊤l+1|kPel+1|k ≤ 𝛼
2
l+1|k, ∀xl|k ∈ l|k,Δl|k ∈ ,wl|k ∈ , (16)

where

el+1|k = Axl|k + Bul|k + Bppl|k + Bwwl|k − zl+1|k
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PARSI et al. 7

= Ael|k + BKel|k + Bppl|k + Bwwl|k + Azl|k + Bvl|k − zl+1|k.

= Ael|k + BKel|k + Bppl|k + Bwwl|k + dl|k, (17)

where dl|k = Azl|k + Bvl|k − zl+1|k is a term dependent on the online optimization variables. The condition xl|k ∈ l|k can
be written as e⊤l|kPel|k ≤ 𝛼

2
l|k, and wl|k ∈ can be written as w⊤

l|kPwwl|k ≤ 1. Moreover, the condition ∀Δl|k ∈  can be
replaced by its equivalent form in (4), which can then be written as, ∀j ∈ N

𝛿

1,

p⊤kΠ
⊤

j PΔΠjpk ≤ q⊤kΠ
⊤

j Πjqk,

⇔ p⊤kΠ
⊤

j PΔΠjpk ≼
(
(Cq + DuK)el|k + Dwwl|k

)⊤Π⊤j Πj
(
(Cq + DuK)el|k + Dwwl|k

)

+ 2
(

Czl|k + Duvl|k
)⊤Π⊤j Πj

(
(Cq + DuK)el|k + Dwwl|k

)
+

(
Czl|k + Duvl|k

)⊤Π⊤j Πj
(

Czl|k + Duvl|k
)
. (18)

For l ∈ N
N−1
0 and j ∈ N

n
𝛿

1 , consider the quadratic forms mx+,l,mx,l, {mΔ,l,j}𝛿j=1,mw,l in the variable
[

e⊤l|k p⊤l|k w⊤

l|k

]⊤
,

where the dependence of the quadratic functionals on the variables has been omitted. The quadratic forms are defined as
follows, where mx+,l is based on (16)–(17)

mx+,l =
[

e⊤l|k p⊤l|k w⊤

l|k

]
⎡
⎢
⎢
⎢
⎣

(A + BK)⊤

B⊤p
B⊤w

⎤
⎥
⎥
⎥
⎦

P
[

(A + BK) Bp Bw

]
⎡
⎢
⎢
⎢
⎣

el|k

pl|k

wl|k

⎤
⎥
⎥
⎥
⎦

+ 2d⊤l|kP
[

(A + BK) Bp Bw

]
⎡
⎢
⎢
⎢
⎣

el|k

pl|k

wl|k

⎤
⎥
⎥
⎥
⎦

+ d⊤l|kPdl|k − 𝛼2
l+1|k, (19)

mx,l is based on e⊤l|kPel|k ≤ 𝛼
2
l|k,

mx,l =
[

e⊤l|k p⊤l|k w⊤

l|k

]
⎡
⎢
⎢
⎢
⎣

Inx

0
0

⎤
⎥
⎥
⎥
⎦

P
[

Inx 0 0
]
⎡
⎢
⎢
⎢
⎣

el|k

pl|k

wl|k

⎤
⎥
⎥
⎥
⎦

− 𝛼2
l|k, (20)

mΔ,l,j is based on (18),

mΔ,l,j =
[

e⊤l|k p⊤l|k w⊤

l|k

]
⎛
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎣

0
InΔ

0

⎤
⎥
⎥
⎥
⎦

Π⊤j PΔΠj

[

0 InΔ 0
]

−
⎡
⎢
⎢
⎢
⎣

(Cq + DuK)⊤

0
D⊤

w

⎤
⎥
⎥
⎥
⎦

Π⊤j Πj

[

(Cq + DuK) 0 Dw

]
⎞
⎟
⎟
⎟
⎠

⎡
⎢
⎢
⎢
⎣

el|k

pl|k

wl|k

⎤
⎥
⎥
⎥
⎦

− 2
(

Cqzl|k + Duvl|k
)⊤Π⊤j Πj

(
(Cq + DuK)el|k + Dwwl|k

)
−

(
Cqzl|k + Duvl|k

)⊤Π⊤j Πj
(

Cqzl|k + Duvl|k
)
, j ∈ N

𝛿

1, (21)

and mw,l is based on w⊤

l|kPwwl|k ≤ 1,

mw,l =
[

e⊤l|k p⊤l|k w⊤

l|k

]
⎡
⎢
⎢
⎢
⎣

0
0

Inx

⎤
⎥
⎥
⎥
⎦

Pw

[

0 0 Inx

]
⎡
⎢
⎢
⎢
⎣

el|k

pl|k

wl|k

⎤
⎥
⎥
⎥
⎦

− 1. (22)

Then, the tube inclusion constraint (16) can be written as

mx+,l ≤ 0, ∀
[

e⊤l|k p⊤l|k w⊤

l|k

]⊤
∈

{[

e⊤l|k p⊤l|k w⊤

l|k

]⊤ |
|
|
mx,l ≤ 0, {mΔ,l,j ≤ 0}𝛿j=1, mw,l ≤ 0

}

. (23)

 10991239, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.6485 by A

ndrea Iannelli - U
niversitatsbibliothek Stuttgart , W

iley O
nline L

ibrary on [22/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 PARSI et al.

Applying S-procedure from Lemma 2, the tube inclusion (16) will be satisfied if there exist positive scalars
𝜏1,l|k,

{
𝜏
−1
2,l|k,j

}𝛿
j=1, 𝜏3,l|k such that

𝛼
−1
l+1|kmx+,l − 𝜏1,l|k𝛼

−2
l|k mx,l −

𝛿∑

j=1
𝜏
−1
2,l|k,jmΔ,l,j − 𝜏3,l|kmw,l ≤ 0,

⇔ 𝛼
−1
l+1|kmx+,l − 𝜏1,l|k𝛼

−2
l|k mx,l −mΔ,l − 𝜏3,l|kmw,l ≤ 0, (24)

where mΔ,l is defined as

mΔ,l =
𝛿∑

j=1
𝜏
−1
2,l|k,jmΔ,l,j =

[

e⊤l|k p⊤l|k w⊤

l|k

]
⎛
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎣

0
InΔ

0

⎤
⎥
⎥
⎥
⎦

T−1
2,l|kPΔ

[

0 InΔ 0
]

−
⎡
⎢
⎢
⎢
⎣

(Cq + DuK)⊤

0
D⊤

w

⎤
⎥
⎥
⎥
⎦

T−1
2,l|k

[

(Cq + DuK) 0 Dw

]
⎞
⎟
⎟
⎟
⎠

⎡
⎢
⎢
⎢
⎣

el|k

pl|k

wl|k

⎤
⎥
⎥
⎥
⎦

− 2
(

Cqzl|k + Duvl|k
)⊤T−1

2,l|k
(
(Cq + DuK)el|k + Dwwl|k

)
−

(
Cqzl|k + Duvl|k

)⊤T−1
2,l|k

(
Cqzl|k + Duvl|k

)
.

(25)

Using Lemma 1, (24) is equivalent to the matrix inequality

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

N1 𝛼
−1
l+1|k(A + BK)⊤PBp 𝛼

−1
l+1|k(A + BK)⊤PBw (Cq + DuK)⊤T−1

2,l|k(Cqzl|k + Duvl|k)
+ (Cq + DuK)⊤T−1

2,l|kDw +𝛼−1
l+1|k(A + BK)⊤Pdl|k

⋆ 𝛼
−1
l+1|kB⊤p PBp − T−1

2,l|kPΔ 𝛼
−1
l+1|kB⊤p PBw 𝛼

−1
l+1|kB⊤p Pdl|k

⋆ ⋆ 𝛼
−1
l+1|kB⊤wPBw − 𝜏3,l|kPw D⊤

wT−1
2,l|k(Cqzl|k + Duvl|k)

+D⊤

wT−1
2,l|kDw +𝛼−1

l+1|kB⊤wPdl|k

⋆ ⋆ ⋆ N2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≼ 0, (26)

where N1 = 𝛼−1
l+1|k(A + BK)⊤P(A + BK) − 𝜏1,l|k𝛼

−2
l|k P + (Cq + DuK)⊤T−1

2,l|k(Cq + DuK) and N2 = −𝛼l+1|k + 𝜏1,l|k +
(

Cqzl|k + Duvl|k
)⊤T−1

2,l|k

(
Cqzl|k + Duvl|k

)
+ 𝜏3,l|k + 𝛼−1

l+1|kd⊤l|kPdl|k. The inequality (26) can then be equivalently written as

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(A + BK)⊤ (Cq + DuK)⊤

B⊤p 0
B⊤w D⊤

w

d⊤l|k (Cqzl|k + Duvl|k)⊤

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[
𝛼
−1
l+1|kP 0

0 T−1
2,l|k

][
A + BK Bp Bw dl|k

Cq + DuK 0 Dw Cqzl|k + Duvl|k

]

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− 𝜏1,l|k𝛼
−2
l|k P 0 0 0

0 −T−1
2,l|kPΔ 0 0

0 0 −𝜏3,l|kPw 0
0 0 0 𝜏1,l|k + 𝜏3,l|k − 𝛼l+1|k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≼ 0. (27)

Using Schur’s complement from Lemma 3, the matrix inequality (27) holds if and only if the following linear matrix
inequality (LMI) is satisfied

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 𝜏1,l|k𝛼
−2
l|k P 0 0 0 (A + BK)⊤ (Cq + DuK)⊤

⋆ −T−1
2,l|kPΔ 0 0 0 B⊤p 0

⋆ ⋆ −𝜏3,l|kPw 0 B⊤w D⊤

w

⋆ ⋆ ⋆ 𝜏1,l|k + 𝜏3,l|k − 𝛼l+1|k d⊤l|k (Cqzl|k + Duvl|k)⊤

⋆ ⋆ ⋆ ⋆ −𝛼l+1|kP−1 0
⋆ ⋆ ⋆ ⋆ ⋆ −T2,l|k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≼ 0. (28)
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PARSI et al. 9

The original inequality (14) is obtained by pre- and post-multiplying (28) by the matrix diag{𝛼l|kInx ,T2,l|kInΔ , Inw , 1, Inx , InΔ}.
Note that (14) is a LMI in the variables zl|k, 𝛼l|k, 𝛼l+1|k, 𝜏1,l|k,T2,l|k, 𝜏3,l|k. ▪

Lemma 4. Under the parameterization (10), the state and input constraints (8f) will be satisfied if

Fzl|k + Gvl|k + 𝛼l|kf ≤ 1, ∀l ∈ N
N−1
0 , (29)

where
[

f
]

i
∶= maxx∈ [F + GK]i x,∀i ∈ N

nc
1 are constants computed offline.

Proposition 2. Under the parameterization (10) and (12), the terminal constraint (8g) is satisfied iff there exists a positive
scalar 𝜏1,T such that

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 𝜏1,TP 0 0 𝜏1,TInx

⋆ −1 𝛼N|k z⊤N|k

⋆ ⋆ −𝜏1,T 0

⋆ ⋆ ⋆ −P−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≼ 0. (30)

The proofs of Lemma 4 and Proposition 2 are given in the Appendix. Thus, using the above results, the state and
input constraints can be reformulated into the linear inequalities (29), and the terminal constraint (30) is an LMI in the
variables zN|k, 𝛼N|k, 𝜏1,T .

3.3 Cost function

The cost function to be used in the MPC optimization problem will be defined as a worst-case cost. Such a cost function
ensures that the performance over all realizations of uncertainty and disturbance is taken into account. The stage cost
J(l|k,ul|k) and the terminal cost JT(N|k) are thus

J(l|k,ul|k) = max
x∈l|k

x⊤Qxx + u⊤Quu, JT(N|k) = max
x∈N|k

x⊤PCx, (31)

where PC ∈ Rnx×nx is a positive definite terminal cost matrix chosen offline. A possible strategy to select PC will be
illustrated in Proposition 5. The costs defined in (31) need to be reformulated in terms of the online optimization
variables of MPC. For this, we use the following proposition. The proof is similar to that of Proposition 1, and is
omitted.

Proposition 3. If there exist

(i) scalars {𝛾l|k, 𝜏4,l|k}N−1
l=0 ∈ R≥0 such that

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 𝜏4,l|kP 0 𝜏4,l|kInx 𝜏4,l|kK⊤ 0

⋆ −𝛾l|k z⊤l|k v⊤l|k 𝛼l|k

⋆ ⋆ −Q−1
x 0 0

⋆ ⋆ ⋆ −Q−1
u 0

⋆ ⋆ ⋆ ⋆ −𝜏4,l|k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≼ 0, (32a)

then, max
x∈l|k

x⊤Qxx + u⊤Quu,≤ 𝛾l|k, ∀l ∈ N
N−1
0 . (32b)
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10 PARSI et al.

(ii) scalars 𝛾T , 𝜏2,T ∈ R≥0 such that

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− 𝜏2,TP 0 −𝜏2,TInx 0
⋆ −𝛾T z⊤N|k 𝛼N|k

⋆ ⋆ −P−1
C 0

⋆ ⋆ ⋆ −𝜏2,T

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≼ 0, (33a)

then, max
x∈N|k

x⊤PCx ≤ 𝛾T . (33b)

Using Proposition 3, (31) can be rewritten as J(l|k,ul|k) = 𝛾l|k and JT(N|k) = 𝛾T if the constraints (32a) and (33a) are
included in the online optimization with 𝛾l|k, 𝛾T as variables. This is because the cost bounds 𝛾l|k, 𝛾T will be minimized
in the MPC optimization problem, ensuring that the inequalities in (32b) and (33b) will be tight. Note that for (32b) and
(33b) to be tight, it is also assumed that the sets {l|k}N

l=0 have a non-empty interior, so that the S-procedure condition
from Lemma 2 is necessary and sufficient.

3.4 Offline design

It can be seen from the reformulation of constraints in Section 3.2 that the design of the feedback term K and the ellipsoid
shape matrix P affect the propagation of the tube. The shape of the ellipsoid  affects the rate at which the state tube
grows, and also determines the size of the terminal set. As a design objective, a large terminal set is desired to maximize the
region of attraction. In this section, an offline optimization problem will be formulated to compute P and K. In addition,
a possible design procedure to select PC will be illustrated. The offline design aims at satisfying the desired properties of
the closed loop system, that is, recursive feasibility and stability.

In order to ensure recursive feasibility, the terminal sets of MPC controllers are designed to be invariant under a
terminal controller. That is, the terminal set T satisfies

x+ = Ax + Bu + Bpp + Bww ∈ T , ∀x ∈ T ,Δ ∈ ,w ∈ . (34)

In tube MPC methods, the desired property ofT is that the set-dynamics of the state tube are invariant under the terminal
controller u = Kx. In the ellipsoidal tube framework, this can be written as

∀(z, 𝛼) s.t. {x|(x − z)⊤P(x − z) ≤ 𝛼2} ⊆ T ,

∃(z+, 𝛼+) s.t. x+ ∈ {x|(x − z+)⊤P(x − z+) ≤ (𝛼+)2} ⊆ T , (35)

where x+ = Ax + Bu + Bpp + Bww follows the dynamics (1)-(5) with u = Kx, and Δ ∈ ,w ∈ . Note that (35) is a
stronger condition compared to (34). This is because the homothetic tube outer-approximates the true system evolution
in (14), and the invariance of the system dynamics does not automatically guarantee existence of (z+, 𝛼+) satisfying (35).
However, (35) is difficult to use as a design condition for the terminal set, because the existence of a new ellipsoid (defined
by z+, 𝛼+) inside the terminal set must be guaranteed for any given ellipsoid (defined by z, 𝛼) within the terminal set. In the
following proposition, a sufficient condition is derived such that (34) is satisfied, which also guarantees that (35) holds.

Proposition 4. If there exist constants 𝜏1,O, {𝜏2,O,j}𝛿j=1, 𝜏3,O ∈ R>0 such that

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 𝜏1,OP−1 0 0 P−1A⊤ + Y⊤B⊤ P−1C⊤

q + Y⊤D⊤
u

⋆ −T2,OPΔ 0 T2,OB⊤p 0
⋆ ⋆ −𝜏3,OPw B⊤w D⊤

w

⋆ ⋆ ⋆ −P−1 0
⋆ ⋆ ⋆ ⋆ −T2,O

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≼ 0, (36a)

𝜏1,O + 𝜏3,O ≤ 1, (36b)

where Y = KP−1
,T2,O = diag

{
𝜏2,O,1InΔ1

, … , 𝜏2,O,𝛿InΔ𝛿

}
, then the terminal set T satisfies (35).
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PARSI et al. 11

Proof. The proposition will be proven by first showing that (36) can be obtained from (34). Then, it will be shown that
the (36) is a sufficient condition to satisfy (35).

Under the chosen parameterization (9)–(12), it can be seen that the condition (34) is a special case of (8e) with
zl|k = vl|k = zl+1|k = 0 and 𝛼l|k = 𝛼l+1|k = 1. Then, using Proposition 1, (34) is satisfied if there exist positive scalars
𝜏1,O, {𝜏2,O,j}𝛿j=1, 𝜏3,O ∈ R>0 such that

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 𝜏1,OP 0 0 0 (A + BK)⊤ (Cq + DuK)⊤

⋆ −T2,OPΔ 0 0 T2,OB⊤p 0
⋆ ⋆ −𝜏3,OPw 0 B⊤w D⊤

w

⋆ ⋆ ⋆ 𝜏1,O + 𝜏3,O − 1 0 0
⋆ ⋆ ⋆ ⋆ −P−1 0
⋆ ⋆ ⋆ ⋆ ⋆ −T2,O

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≼ 0. (37)

Pre and postmultiplying (37) by diag{P−1
, InΔ , Inw , 1, Inx , I} gives

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 𝜏1,OP−1 0 0 0 P−1A⊤ + Y⊤B⊤ P−1C⊤

q + Y⊤D⊤
u

⋆ −T2,OPΔ 0 0 T2,OB⊤p 0
⋆ ⋆ −𝜏3,OPw 0 B⊤w D⊤

w

⋆ ⋆ ⋆ 𝜏1,O + 𝜏3,O − 1 0 0
⋆ ⋆ ⋆ ⋆ −P−1 0
⋆ ⋆ ⋆ ⋆ ⋆ −T2,O

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≼ 0, (38)

which can be decomposed into (36a) and (36b).
It is now shown that (36) implies (35) is satisfied with z+ = 0, 𝛼+ = 1. That is,

∀(z, 𝛼) s.t.
{

x|(x − z)⊤P(x − z) ≤ 𝛼2}
⊆ T , x+ ∈ T . (39)

Using the quadratic forms in (25), define

mx+,O = mx+,l, mx,O = mx,l, mΔ,O,j = mΔ,l,j, mw,O = mw,l, (40)

by substituting zl|k = vl|k = zl+1|k = 0, 𝛼l|k = 𝛼l+1|k = 1 and replacing the vector
[

e⊤l|k p⊤l|k w⊤

l|k

]⊤
with

[
e⊤ p⊤ w⊤

]⊤.
Then, using Lemmas 1 and 3, the condition (36) is equivalent to

mx+,O − 𝜏1,Omx,O −
𝛿∑

j=1
𝜏
−1
2,O,jmΔ,O,j − 𝜏3,Omw,O ≤ 0. (41)

For any (z, 𝛼) such that
{

x|(x − z)⊤P(x − z) ≤ 𝛼2}
⊆ T , let m̃x,O = (x − z)⊤P(x − z) − 𝛼2. Applying S-procedure from

Lemma 2, there exists a constant 𝜏x ≥ 0 such that mx,O − 𝜏xm̃x,O <= 0. Then, (41) can be written as

mx+,O − 𝜏1,O𝜏xm̃x,O −
𝛿∑

j=1
𝜏
−1
2,O,jmΔ,O,j − 𝜏3,Omw,O ≤ 0, (42)

which is a sufficient condition for satisfying (39) using Lemma 2. ▪

Note that in the offline design phase P and K are unknown, and are to be computed as the solution of an optimization
problem. In this offline optimization problem, P−1 and Y are decision variables. The term−𝜏1,OP−1 in the inequality (36a)
is thus bilinear. When optimizing to compute P−1, a line search can be used for different values of 𝜏1,O ∈ (0, 1) in the
constraint (36a) so that it is an LMI. An additional requirement from the terminal set to ensure recursive feasibility is that
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12 PARSI et al.

it lies inside the state and input constraints under the terminal control law. That is,

F + GKx ≤ 1, ∀x ∶ x⊤Px ≤ 1 ⇔

[
− 1

[
FP−1 + GY

]

i

⋆ −P−1

]

≼ 0, ∀i ∈ N
nc
1 . (43)

To obtain the above reformulation, the result maxx∈{x|x⊤Px≤1} f ⊤x =
√

f ⊤P−1f was used along with the Schur complement
Lemma.

In addition to recursive feasibility of the optimization, a desired property is the closed loop robust stability of the
system. The condition on P and K required to ensure robust stability is that under the terminal control law, there exists
𝜆c ∈ (0, 1) such that

‖
‖(A + BK)x + Bpp‖‖P ≤ 𝜆c ‖x‖P , ∀(x, p) ∶ p⊤Π⊤j PΔΠjp ≤ x⊤(C + DK)⊤Π⊤j Πj(C + DK)x, j ∈ N

𝛿

1. (44)

Using Lemmas (1), (2), and (3), it can be easily shown that (36) is a sufficient condition to satisfy (44) for any 𝜆c ≥
√
𝜏1,O.

Having formulated all the design requirements on the ellipse shape P and the feedback gain K to ensure stability and
recursive feasibility, an offline optimization problem can now be solved to compute P and K. To maximize the region of
attraction of the controller, the objective is to maximize the size of the terminal set, which can be achieved by minimizing
the determinant of P. Thus, the offline optimization problem is given by

min
P−1 ,Y ,

𝜏1,O ,T2,O ,𝜏3,O

− log det(P−1)

s.t. P−1
≻ 0, T2,O ≻ 0,

𝜏1,O > 0, 𝜏3,O > 0,
(36a), (36b),(43). (45)

The values of P, K = YP can be computed from the solution of (45). As already mentioned, a line search can be performed
to choose 𝜏1,O ∈ (0, 1) in order to remove the bilinearity in (36a). The line search ensures that (45) can be replaced by
a finite number of convex semidefinite programs to compute multiple feasible designs of P and K such that they guar-
antee recursive feasibility and stability. Among these designs, the P with the smallest determinant is chosen for MPC.
Because the optimization (45) is performed offline and only once before starting the MPC problem, the grid search can
be performed for any desired coarseness of the grid.

Remark 1. The offline optimization problem (45) offers a flexible way to impose additional properties on the terminal
set and the feedback gain. For example, a decentralized terminal set and feedback gain can be obtained by imposing a
block diagonal structure on the variable P−1, which enables the design of distributed tube MPC controllers.11 In addi-
tion, the shape of the terminal set can be altered by modifying the cost function in (45) using a weighted determinant,
thereby increasing the size of the terminal set in desired directions. This flexibility is not available in polytopic tube MPC
methods, where the terminal set and state tube shape are constructed by iterative intersections of polytopic sets with
hyperplanes.24,26

After computing the terminal controller and the shape of the state tube, the final offline design step is to choose a
terminal cost matrix PC. Because MPC can be seen as an approximation of the infinite horizon optimization problem,
ideally, the terminal cost captures the cost-to-go until infinite time. However, in the presence of disturbances wk, such a
cost is not well-posed. An alternative strategy is to consider the cost-to-go when the disturbances are zero, as shown in
the following proposition.

Proposition 5. Let the offline optimization problem (45) have a feasible solution for K. If there exist constants {𝜏4,O,j}𝛿j=1
and a matrix PC ∈ Rnx×nx such that

⎡
⎢
⎢
⎢
⎣

(A + BK)⊤PC(A + BK) − PC + Qx (A + BK)⊤PCBp

+ K⊤QuK + (Cq + DuK)⊤T4,O(Cq + DuK)
⋆ −T4,OPΔ + B⊤p PCBp

⎤
⎥
⎥
⎥
⎦

≼ 0, (46a)

PC ≽ 0, T4,O ≽ 0, (46b)
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PARSI et al. 13

where T4,O = diag{𝜏4,O,1InΔ1
, … , 𝜏4,O,𝛿InΔ𝛿

}, then the system (1) under the controller uk = Kxk with wk = 0 for all k > 0
satisfies the cost bound

∞∑

l=k
x⊤l Qxxl + u⊤l Quul ≤ x⊤k Pcxk. (47)

The proof of the above proposition is given in Appendix A.3. Thus, after the terminal controller K and the state tube
shape P are chosen, the cost matrix PC is computed such that its trace is minimized and (46) is satisfied.

4 ELLIPSOIDAL TUBE MPC

In this section, the ellipsoidal tube MPC (ETMPC) algorithm is described and its properties are discussed. Specifically, it
is shown that the proposed method ensures constraint satisfaction, is recursively feasible and input-to-state practically
stable. First, the online optimization problem to be solved is described. The optimization variables are given by

Rk =
{{

zl|k, 𝛼l|k
}N

l=0,
{

vl|k, {𝜏j,l|k}j=1,3,4,T2,l|k, 𝛾l|k
}N−1

l=0 , 𝜏1,T , 𝜏2,T , 𝛾T

}

. (48)

The online optimization problem to be solved at each time step can be then written as

min
Rk

N−1∑

l=0

(
𝛾l|k

)
+ 𝛾T

s.t. 𝜏1,T > 0, 𝜏2,T > 0, 𝛾T > 0,
𝜏1,l|k > 0, T2,l|k ≻ 0, 𝜏3,l|k, 𝜏4,l|k, 𝛼l|k > 0, 𝛾l|k > 0, ∀l ∈ N

N−1
0 ,

(13), (29), (30), (33a),
(14), (32a), ∀l ∈ N

N−1
0 . (49)

The total number of optimization variables is ((nx + 1)(N + 1) + (nu + n𝛿 + 4)N + 3), which only increases linearly with
the order of the system (nx), number of inputs (nu), prediction horizon (N) and the number of independent sources of
uncertainty (n𝛿). The scalability of the algorithm will also be demonstrated in Section 5 using simulation examples. The
ETMPC algorithm is described in Algorithm 1.

4.1 Recursive feasibility and Stability

In order to prove the stability of the closed loop, the notion of regional input-to-state practical stability (ISpS) is now
introduced.

Algorithm 1. Ellipsoidal tube MPC
Offline:

1: Grid 𝜏1,O ∈ (0, 1)
2: Compute P,K by solving (45) for each 𝜏1,O
3: Choose P,K minimizing det(P)
4: Compute PC satisfying (46) and minimizing trace(PC)

Online:
5: k ← 1
6: repeat
7: Obtain the measurement xk
8: Solve optimization problem (49)
9: Apply the control input uk = K(xk − z0|k) + v0|k

10: k ← k + 1
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14 PARSI et al.

Definition 1. (Regional ISpS in X42) Given a system whose dynamics can be described by (1)-(5), and a compact set
X ∈ Rnx including the origin as an interior point, the system is said to be ISpS (input-to-state practically stable) in X with
respect to wk if X is a robust positively invariant set and if there exist a 𝒦ℒ function 𝛽(⋅, ⋅), a 𝒦 function 𝛿(.) and a
constant c ≥ 0 such that, for all x̂0 ∈ X and t > 0

‖x̂t‖ ≤ 𝛽 (‖x̂0‖ , t) + 𝛿1 (‖w‖∞) + c, (50)

where w = {w1,w2, … wt−1}.

Regional ISpS provides a useful way to analyze the stability of systems when a worst-case metric is used in the MPC
controller design. If a system satisfies (50) with c = 0, then the closed loop is said to be input-to-state stable (ISS) in X

with respect to wk. That is, for systems satisfying ISS, the state of the system can be bounded by 𝒦 functions of ‖w‖∞
alone. The definition for ISpS adds an extra term based on the size of the set . The additional constant c is required to
extend the notion of stability to the closed loop when a worst-case cost is used in MPC controllers, because the controller
acts on the basis of the worst-case disturbance that can affect the system.43 Let XN(T) represent the feasible region of the
initial conditions x̂k for problem (49). The following theorem establishes the robust positive invariance of the set XN(T),
thereby ensuring recursive feasibility and stability of the closed loop.

Theorem 1. Let the offline optimization problem (45) have a feasible solution. Then, for any initial condition x̂0 ∈ XN(T),
the state trajectories of the closed loop formed by any system satisfying the dynamics (1)-(5) and the ETMPC controller defined
in Algorithm 1 remain in the set XN(T). Moreover, the optimization problem (49) is feasible for all k > 0 and the closed loop
system is regionally input-to-state practically stable in the set XN(T) with respect to wk.

Proof. Based on the definition of the set XN(T), the optimization problem (49) is feasible at time k = 0 because
x̂0 ∈ XN(T). Then, it can be shown that if (49) is feasible at any time k, a feasible solution exists at the time step
k + 1. The proof follows the standard argument to prove recursive feasibility, where the optimal solution at time k
is used to compute a feasible solution at time k + 1. Let the optimal solution at time k be denoted using a (∗) in
the superscript of the variables. As a consequence of Proposition 4, a candidate solution of (49) at time k + 1 can be
written as

zl|k+1 = z∗l+1|k, 𝛼l|k+1 = 𝛼∗l+1|k, l ∈ N
N−1
0 ,

vj|k+1 = v∗j+1|k, j ∈ N
N−2
0 ,

zN|k+1 = (A + BK)z∗N|k, 𝛼N|k+1 = 𝛼∗N|k, vN−1|k+1 = Kz∗N|k, (51)

with an equivalent shift in the corresponding S-procedure variables and cost bounds in Rk. This is because the candidate
setsl|k+1 ∶= ∗l+1|k give a feasible state tube for l ∈ N

N−1
0 . The candidate solution for vN−1|k+1 is feasible because zN|k ∈ T

and the terminal set T satisfies (43). In addition, Proposition 4 can then be used to state that N|k+1((A + BK)z∗N|k, 𝛼
∗
N|k)

satisfies the set dynamics and lies inside T . Thus, by induction, the optimization problem (49) is feasible and the state
trajectory remains in the set XN(T) for all k > 0.

The practical stability of the closed loop system is a direct consequence of the compactness of the constraint set 
defined in (6) and the robust positive invariance of the set XN(T). This is because, the constant c > 0 in (50) can be
chosen as maxx∈XN (T )} ‖x‖. ▪

The bound on the state trajectory obtained in Theorem 1 was found to be quite conservative in simulation
studies, and future research should focus on finding a tighter bound. Under additional assumptions, the trajec-
tory can be shown to converge to the origin as shown in the following proposition, whose proof is given in
Appendix A.4.

Proposition 6. Let the offline optimization problem (45) have a feasible solution. For any system satisfying the dynam-
ics (1)-(5) and for any initial condition x̂0 ∈ XN(T), let the ETMPC controller defined in Algorithm 1 be applied for time
steps k ∈ N

t1
0 , t1 > 0 in a receding horizon manner. If the control inputs for the time steps k > t1 are computed accord-

ing to the parameterization (11) such that uk = u∗k−t1|t1
, the state trajectory converges to the terminal set T. Moreover,

if the disturbance affecting the system satisfies wk = 0 for all k > t2 > t1, the state trajectory exponentially converges to
the origin.
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PARSI et al. 15

5 SIMULATION EXAMPLES

In this section, the ETMPC Algorithm 1 will be applied on two different examples. The first example highlights the scal-
ability of the approach using mass-spring-damper systems by increasing the number of masses, springs and dampers. In
the second example, an ETMPC controller is designed for a quadrotor whose mass is uncertain. The code to simulate both
the examples is openly available in an online repository.44

5.1 Mass-spring-damper example

As a first example, we consider a system consisting of nm masses, which are connected along a line with springs and
dampers. That is, each mass is connected to the previous and the next mass by a spring and a damper, except for the
masses at the ends which are connected to only one other mass. For this example, individual simulations are performed
for nm ∈ {3, 5, 10, 15, 20, 25}. In each simulation, the system is modeled using the displacement of the masses from their
equilibrium and the velocity of each mass as states of the system. The control inputs for the system are forces acting on
each mass. All the masses have the same known value of 1kg, whereas the spring constants and damping coefficients
have an uncertainty of ±10% around known nominal values. The values of the nominal spring constants are in the range
[0.7, 0.9] Nm−1 and the nominal damping coefficients in the range [0.3, 0.7] Nsm−1 for all the systems. The true values
of these parameters, which are unknown to the controller, are chosen for simulation purposes in the interval specified
by ±10% of the nominal value. In addition, an exogenous disturbance is acting on the velocity state of each mass, and
is bounded by wb = 0.05. The exogenous disturbance is also generated using a uniform distribution within the specified
bounds. Thus, the system is modeled with nx = 2nm states, nu = nm inputs, nΔ = 2nm uncertain parameters and nw =
nm exogenous disturbances. The dynamics of the system can be modeled using the chosen model structure (1)-(5) by
discretizing the continuous-time dynamics for a mass-spring-damper system using Euler discretization and a sampling
time Ts = 0.3s. The following matrices describe the system dynamics for nm = 3. The matrices for other values of nm can
be similarly described, and are not reproduced here.

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 Ts 0 0 0 0
− k12Ts −c12Ts + 1 k12Ts c12Ts 0 0

0 0 1 Ts 0 0
k12Ts c12Ts (−k12 − k23)Ts (−c12 − c23)Ts + 1 0 0

0 0 0 0 1 Ts

0 0 k23Ts c23Ts −k23Ts −c23Ts + 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
Ts 0 0
0 0 0
0 Ts 0
0 0 0
0 0 Ts

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Bp =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
k12kuTs c12cuTs

0 0 0 0
− k12kuTs −c12cuTs k23kuTs c23cuTs

0 0 0 0
0 0 −k23kuTs −c23cuTs

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Cq =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− 1 0 1 0 0 0
0 −1 0 1 0 0
0 0 −1 0 1 1
0 0 0 −1 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, Bw =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
wb 0 0
0 0 0
0 wb 0
0 0 0
0 0 wb

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (52)

where kij and cij represent the nominal spring constant and damping coefficient for the respective components connecting
masses i and j. Additionally, ku = cu = 0.1 model the ±10% uncertainty in the spring constants and damping coefficients.
The matrices PΔ and Pw are identity matrices of the appropriate size, and Du = Dw = 0. The magnitudes of the states and
inputs are bounded by 2.

The system is initialized with each mass having its position at 1.7 m and velocity as 0.5 ms−1. The cost matrices are
chosen using diagonal cost matrices Qx,Qu with a cost of 1 for the position states and the control inputs, and 0.1 for the
velocity states. Using the aforementioned matrices, Algorithm 1 is applied to the system. The offline optimization problem
is solved by gridding the variable 𝜏1,O between (0, 1) with a grid spacing of 0.1. The terminal sets obtained with different
choices for 𝜏1,O are shown in Figure 1 as a projection on the plane representing the position and velocity states of the

 10991239, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.6485 by A

ndrea Iannelli - U
niversitatsbibliothek Stuttgart , W

iley O
nline L

ibrary on [22/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



16 PARSI et al.

F I G U R E 1 Projection of terminal sets on the Position-Velocity plane of mass 1 for nm = 10 and different values of 𝜏1,O (indicated in the
legend). The state constraints are shown in pink.

first mass. It is observed that by varying 𝜏1,O, many different terminal sets can be obtained. The size of the terminal sets
increases with 𝜏1,O. This can be motivated by the effect of reducing 𝜏1,O on (36a). At low values of 𝜏1,O, the feedback gain
K must be large to ensure that (36a) holds. In such cases, for example for 𝜏1,O = 0.5 in Figure 1, the input constraints limit
the size of the terminal set. As the value of 𝜏1,O increases, the terminal set is limited by the state constraint size. However,
when the value of 𝜏1,O is close to 1, the term 𝜏3,O has smaller bound due to (36b), and could result in infeasibility of the
offline optimization problem. According to program (45), the terminal set design with the largest volume is selected for
the ETMPC algorithm. The semidefinite programs in the offline and online optimization problems (45) and (49) were
implemented using YALMIP45 and solved using MOSEK46 on a laptop equipped with an Intel i7-8550 1.8 GHz processor.

The prediction horizon for the online optimization problem was chosen as N = 8 timesteps. The ETMPC controller
was applied to the system for 20 timesteps in a receding horizon manner. The closed loop trajectories for the simulation
with nm = 15 masses are plotted in Figure 2. It can be seen that all the states are regulated close to the origin with-
out constraint violations. Note that the position of the system does not reach the origin due to the model mismatch.
In order to clearly illustrate the state tube evolution, a second simulation was performed where mass 1 is initialized at
[−1.5 m,−1.4 ms−1], mass 2 initialized at [1.2 m, 1 ms−1] and all the other masses initialized at the origin. The closed loop
trajectory of the system is projected onto the plane with positions and velocities of masses 1 and 2 and shown in Figure 3.
In addition, the projection of the state tube computed at time k = 0 and the centers of the ellipsoidal sets are also shown.
It can be seen that all the ellipsoidal sets lie within the constraint set, thereby ensuring robust constraint satisfaction.

Finally, the average offline and online computation times are reported in Table 1 as a function of the number of states.
The offline computation time is the average time taken to solve (45) for each value of 𝜏1,O in the chosen grid. The time
taken to solve (49) at each time step is averaged over the time horizon and reported as the online computation time in
Table 1. For the systems with 20 states and higher, the online computation time is higher than the sampling time, and thus
requires a faster processor to implement the ETMPC algorithm. However, the increase of offline and online computation
times with the number of states is lower than observed in polytopic tube MPC approaches, where the size of the online
optimization problem grows combinatorially with the state dimension. Moreover, the offline design is also flexible and
scalable, in contrast to iterative procedures proposed in literature24 which require higher computation times and result
in a large number of constraints defining the state tube when the state dimension is large.

5.2 Quadrotor example

In the second example, the ETMPC algorithm is used to design a controller for a quadrotor. The quadrotor considered for
simulations is a miniature Crazyflie whose mass is 27 g and size is 92 mm × 92 mm × 29 mm. This example is motivated
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PARSI et al. 17

F I G U R E 2 Closed loop trajectories of mass-spring-damper system with ETMPC controller for nm = 15

F I G U R E 3 Projection of state tube computed at k = 0 and closed loop trajectories on the Position-Velocity plane for masses 1 and 2 of
the mass-spring-damper system

T A B L E 1 Average offline and online computation times for the mass-spring-damper system

Number of states 6 10 20 30 40 50

Computation time offline [s] 0.05 0.21 1.87 12.78 33.98 109.60

Computation time online [s] 0.09 0.23 0.82 2.78 5.25 8.18

by a previous work26 which considered the design of a polytopic tube MPC controller for a quadrotor with uncertain mass.
The main interest in analyzing this system here is that in Reference 26, it was observed that for this system, the design
of polytopic terminal sets which are 𝜆−contractive is difficult due to the relatively large state dimension. In contrast, the
proposed ETMPC algorithm provides a systematic, optimization-based design procedure to compute invariant sets.

The dynamics of a quadrotor are nonlinear and can be modeled by 12 states and 4 inputs. The states of the system can
be partitioned as [𝚫s,𝚫ṡ, 𝜓, �̇�], where𝜓 ∈ R3 denotes the roll, pitch and yaw angles of the quadrotor (in ◦) with respect to
an inertial frame of reference. In addition, 𝚫s ∈ R3 denotes the displacement of the quadrotor (in m) from a target equi-
librium position ŝ. The 4 control inputs are the thrusts produced by each rotor. For the purpose of this simulation study,
the linearized discrete-time dynamics of a quadrotor around an equilibrium point are considered with a sampling time
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18 PARSI et al.

(A) (B)

F I G U R E 4 Tracking performance of ellipsoidal and polytopic tube MPC algorithms applied to the quadrotor system for different
values of ŝxy. The polytopic tube MPC algorithm was infeasible for ŝxy = 0.68.

Ts = 0.1 s. The complete description of the nonlinear and linearized dynamics of the quadrotor used for the simulation
can be found in Reference 47. The mass of the quadrotor is uncertain and is known to lie within the bounds [27 g, 37 g],
similar to the package delivery scenario considered in Reference 26. This uncertainty can be modeled using a scalar per-
turbation Δ. In addition, a wind force is modeled as the exogenous disturbance acting on the system. The bound on this
force is calculated based on the assumption that the maximum relative velocity the quadrotor will face is 2 ms−1 in x and
y directions. The thrust that can be produced by each rotor is upper bounded by 0.157 N and lower bounded by 0. The
position of the quadrotor is constrained to lie inside a hypercube. The center of this hypercube is centered at the origin
of inertial the coordinate system used to define ŝ. The origin is located 0.7 m above the ground. Thus, the constraints on
the state variables are given as

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− 0.7I3 − ŝ
− 10I3

− 90I3

− 90I3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝚫s
𝚫ṡ
𝜓

�̇�

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.7I3 − ŝ
10I3

90I3

90I3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (53)

The control goal is to track a target position setpoint which is an equilibrium point for the quadrotor while ensuring
constraint satisfaction. The targets considered in this simulation are ŝ1 = [ŝxy, ŝxy, 0.4]⊤m and ŝ2 = [0, 0, 0]⊤, where ŝxy is the
target for x and y positions chosen as specified later. The simulation is performed for 10 seconds, and the target switches
from ŝ1 to ŝ2 at t = 5s. The controller is unaware of the change in reference setpoints in advance, and thus must regulate
the system to the current setpoint (either ŝ1 or ŝ2).

Two controllers are designed to perform the above control task. First, Algorithm 1 is used to design an ellipsoidal tube
MPC controller (ETMPC). In addition, a polytopic tube MPC (PTMPC) controller is also designed to compare flexibility
of design, computation times and control performance. Among existing polytopic tube MPC techniques, the method
which is closely related to the proposed approach is the homothetic tube MPC algorithm presented in Reference 22.
However, this method requires the knowledge of the vertices of a robust positively invariant polytope, whose computation
is difficult due to the combinatorial growth in the number of vertices with respect to the number of states of a system.
Instead, a vertex-independent PTMPC algorithm is used here, which was originally proposed in Reference 37 and then
applied to quadrotors in Reference 26. Although this method does not require the computation of vertices, it can result in
additional conservatism, as will be shown later. Note that Reference 26 proposes the application of robust adaptive MPC
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to quadrotors. In order to compare the performance to the proposed ETMPC algorithm, adaptation is not performed here.
Moreover, because the PTMPC algorithm in Reference 26 uses a nominal cost, the ETMPC algorithm is also simulated
with a nominal cost function for this example.

The terminal set is designed separately for each setpoint, and the controller uses the terminal set based on the setpoint
it is tracking. The cost function used is described by the matrix Qx = diag{3, 2, 3, 1, 1, 1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1} and Qu =
I4. The prediction horizon is set as N = 15 time steps.

The closed loop trajectories of the system under both the PTMPC and ETMPC controllers are shown in Figure 4a
when ŝxy is chosen as 0.55 m. It can be seen that the both the controllers track the given reference without any constraint
violations, and have similar trajectories. The closed loop costs achieved by the PTMPC and ETMPC algorithms are 121.4
and 109.3 respectively. The difference in the costs is mainly due to the difference in trajectory of the velocity states. The
average online computation time of the ETMPC problem is 0.16 s, and that of the PTMPC controller is 0.04 s. The reason
for the higher computational cost for ETMPC is that solving semidefinite programs is more computationally demanding
compared to quadratic programs. However, it was observed that the PTMPC algorithm can be quite conservative in the
propagation of state tubes. The largest value of ŝxy for which the PTMPC algorithm is feasible is 0.55 m, while that for the
ETMPC algorithm is 0.68 m. The closed loop trajectories of the system when ŝxy = 0.68 m are shown in Figure 4b. It can
be seen that the ETMPC algorithm tracks the reference trajectory without violating any constraints, and thus is able to
track larger references compared to the PTMPC controller.

6 CONCLUSION AND OUTLOOK

In this article, a novel tube-based robust MPC approach was proposed for systems affected by uncertainty described by
a linear fractional transformation and exogenous disturbances. By leveraging mathematical properties of ellipsoids, a
homothetic parameterization of the state tube was used to enable a scalable optimization problem online, and a flexible
offline design procedure. Convex formulations were derived for desired properties such as set-invariance under tube MPC
and contractivity. The number of the online optimization variables scales linearly with respect to the number of states,
inputs, uncertainties and prediction horizon of the controller. In addition, the optimization problem is recursively feasible,
guarantees robust constraint satisfaction and ensures closed loop stability. Simulation studies demonstrate the scalability
of the controller and the ease of offline design, compared to state-of-the-art polytopic tube MPC methods.

Two interesting research directions to improve the proposed algorithm are discussed next. The computational com-
plexity of the proposed algorithm can be reduced by simplifying the linear matrix inequalities using outer approximations
of the tube inclusions, as suggested for polytopic tube MPC in Reference 37. The approximations need to be designed such
that the resulting conservatism is minimal compared to the computational performance improvement. The proposed
algorithm also shows potential to be used in recent learning-based MPC techniques, by combining the ETMPC controller
with online parameter estimation,9,10 reinforcement learning8 or distributed identification.11 In particular, the flexible
offline design in the proposed method combined with learning the model uncertainty could enable online updates of the
control gain and terminal sets, which is not done in most existing schemes due to their complex offline design phase.
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APPENDIX . PROOFS

A.1 Proof of Lemma 4
The reformulation of the state and input constraints uses a similar approach proposed in Reference 9. Substituting the
parameterization of the control input and the state tube into (8f), it can be written as

Fxl|k + G(Kel|k + vl|k) ≤ 1, ∀el|k ∈
{

e|e⊤Pe ≤ 𝛼2
l|k

}
, (A1a)

⇔ Fzl|k + Gvl|k + 𝛼l|k(F + GK)e ≤ 1, ∀e ∈  , (A1b)

⇐= Fzl|k + Gvl|k + 𝛼l|kf ≤ 1. (A1c)

A.2 Proof of Proposition 2
Using the ellipsoidal terminal set (12), the terminal constraint (8g) can be written as

N|k ⊆ T (A2a)

⇔ (zN|k + e)⊤P(zN|k + e) − 1 ≤ 0, ∀e ∶ e⊤Pe − 𝛼2
N|k ≤ 0 (A2b)

⇔ ∃𝜏−1
1,T ≥ 0 s.t. (zN|k + e)⊤P(zN|k + e) − 1 − 𝜏−1

1,T

(

e⊤Pe − 𝛼2
N|k

)

≤ 0 (A2c)

⇔

[
P − 𝜏−1

1,TP PzN|k

⋆ 𝜏
−1
1,T𝛼

2
N|k − 1 + z⊤N|kPzN|k

]

≼ 0 (A2d)

⇔

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− 𝜏−1
1,TP 0 0 Inx

⋆ −1 𝛼N|k z⊤N|k

⋆ ⋆ −𝜏1,T 0
⋆ ⋆ ⋆ −P−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≼ 0. (A2e)
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In the above reformulation, S-procedure is first used to rewrite the terminal constraint as (A2c) using the constant
𝜏
−1
1,T . Note that (A2c) is necessary for the satisfaction of (A2b) only if the set N|k is nonempty, which is satisfied by

design. Lemma 1 is then used to convert the quadratic form in e into the matrix inequality (A2d). The Schur complement
lemma is then used to obtain (A2e) from (A2d), and (30) is obtained by pre- and postmultiplying (A2e) by the matrix
diag{𝜏1,TInx , 1, 1, Inx}.

A.3 Proof of Proposition 5
In order to show the cost bound (47) holds when disturbance is absent (i.e., wl = 0 for all l > k), the following inequality
is used

x⊤l+1PCxl+1 + x⊤l (Qx + K⊤QuK)xl − x⊤l PCxl ≤ 0. (A3)

First, it can be seen that by summing (A3) from l = k to infinity,

x⊤∞PCx∞ − x⊤k PCxk +
∞∑

l=k
x⊤l (Qx + K⊤QuK)xl ≤ 0 (A4)

⇔
∞∑

l=k
x⊤l (Qx + K⊤QuK)xl ≤ x⊤k PCxk. (A5)

The above condition holds because in the absence of disturbance, the dynamics are 𝜆 contractive in the terminal set, and
the state exponentially reaches the origin. Then, by using Lemmas 1 and 2, and introducing positive constants {𝜏4,O,j}𝛿j=1,
(46) is a sufficient condition for (A3).

A.4 Proof of Proposition 6

Proof. The first result is guaranteed by Propositions 1 and 4. This is because the tube inclusions (14) ensure that the
terminal set is reached within N timesteps for all possible disturbances and perturbations when the input parameteriza-
tion (11) is used. In addition, Proposition 4 ensures that the terminal set is robust positively invariant under the terminal
control law, thereby ensuring that the state trajectory remains in the terminal set.

Secondly, if the disturbance affecting the system satisfies wk = 0 for all k > t2 > t1, let t3 = max{t1 + N, t2}. Consider
the state evolution for any time step satisfying k > t3, for which

‖xk+1‖P = ‖
‖(A + BK)xk + Bppk‖‖P ≤ 𝜆c ‖xk‖P ≤ 𝜆

k−t3+1
c

‖
‖xt3

‖
‖P , (A6)

where the inequality is obtained using (44). Because 𝜆c ∈ (0, 1) is satisfied by design, the state of the system exponentially
converges to the origin. ▪
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