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Abstract. A computational approach to simultaneously learn the vector field

of a dynamical system with a locally asymptotically stable equilibrium and its

region of attraction from the system’s trajectories is proposed. The nonlinear
identification leverages the local stability information as a prior on the system,

effectively endowing the estimate with this important structural property. In

addition, the knowledge of the region of attraction can be used to design exper-
iments by informing the selection of initial conditions from which trajectories

are generated and by enabling the use of a Lyapunov function of the system

as a regularization term. Simulation results show that the proposed method
allows efficient sampling and provides an accurate estimate of the dynamics in

an inner approximation of its region of attraction.

1. Introduction. Learning ordinary differential equations (ODE) of a dynamical
system given observed trajectories is the main goal of system identification [18] and
the branches of machine learning that are concerned with dynamical systems [7]. To
achieve a satisfactory accuracy, the importance of exploiting prior knowledge of the
system, especially in a nonlinear context, is recognized [30]. A distinctive property
of nonlinear systems is that stability is no more a feature associated with the whole
system but with each of its attractors [15]. Moreover, stability is in the general case
a local concept, which might only hold in regions surrounding the attractor. This is
the case, for example, for the region of attraction (RoA) of equilibria [6] and region
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of contraction of limit cycles [10]. We consider the former in this work. Given its
importance in describing the qualitative properties of a system, local stability is a
key structural constraint to encode in a nonlinear system identification algorithm.

In the realm of machine learning, learning ODEs is closely related to training
recurrent models. Hence, a stable vector field is potentially a more desirable recur-
rent learning machine that is robust against vanishing or exploding learning signals.
Incorporating global stability information has been proposed to obtain more stable
training dynamics. The notion of contracting stability is used in [26] to avoid vanish-
ing and exploding gradients in Recurrent Neural Networks (RNNs). The stability
is enforced by projecting the model parameters onto a contracting stable model
via solving a convex optimization problem. A less conservative parameter set is
proposed in [27] by taking into account the structural information of RNNs that
are formed by linear functions followed by nonlinear activations. An alternative
approach is to restrict the search space for the target ODE to a set of stable sys-
tems [33]. However, this approach is limited to vector fields that only have a single
globally stable attractor, which is generally not the case.

Our work focuses on jointly learning the system dynamics and its region of at-
traction. Broadly speaking, the proposed methodology is articulated around two
phases that take place in parallel and are entirely data-driven. In one phase, given
trajectories of the system, the stability information is distilled into a Lyapunov
function that is estimated by a neural network. The other phase uses the best
estimate of the Lyapunov function together with a possibly different set of system
trajectories to learn the dynamics.1.

Related works: Learning ODEs, Lyapunov functions, and region of attractions
have been studied separately in the literature. Learning ODEs in Reproducing Ker-
nel Hilbert Space (RKHS), initially developed in the machine learning community,
has been later widely adopted in other fields, e.g. system identification [23] and
transfer operators learning [19].

Even though the stability information can be enforced in linear systems by learn-
ing the impulse response in an L1 RKHS induced by an integrable kernel [3], it is
not straightforward for nonlinear systems to impose the Lyapunov notion of stabil-
ity by the choice of a kernel. In addition to RKHS methods, neural networks have
also been employed as function approximators to learn ODEs [29]. Recently, a new
class of neural networks has been proposed where the time steps are modeled as the
layers of the network. Hence, continuous dynamics correspond to a network with
infinitely many layers. The trained neural network then corresponds to the learned
ODE [5].

Computing a Lyapunov function for an asymptotically stable equilibrium is tra-
ditionally carried out using knowledge of the vector field f . For example, [9] uses
Radial Basis Functions to estimate the Lyapunov function. In [13] a compositional
approach based on deep neural networks has been proposed and we refer the reader
to the comprehensive review [11] for model-based approaches to the computation
of Lyapunov functions. Closer to our work is [12], where system trajectories are
first used to approximate the ODE and then to estimate the Lyapunov function.
The main drawback of this approach is that any inaccuracy in estimating the ODE
propagates to the estimation of the Lyapunov function. As discussed later, our
coupled ODE&RoA learning method does not suffer from this one-directional flow

1Supporting information and code: https://sites.google.com/view/learnstableode

https://sites.google.com/view/learnstableode


LEARNING DYNAMICAL SYSTEMS USING PRIORS 3

of information that may cause accumulation of error in the computation of a Lya-
punov function of the system. While most approaches in the RoA literature are
model-based [6, 35, 14], recent works have also considered purely data-driven meth-
ods. A sampling strategy is proposed in [20] to estimate the RoA in real-time. A
probabilistic method is used in [1] to safely sample and learn the RoA for systems
with uncertainty. The RoA estimation module of our algorithm is inspired by [28]
where a neural model was proposed to learn the Lyapunov function and gradually
change it such that its level sets become closer to the region of attraction of the
system.

Contribution: We propose an iterative learning strategy whereby the ODE and
RoA of a dynamical system are learned from observed trajectories. We use multi-
layer perceptrons (MLP) as universal function approximators to learn a sequence of
Lyapunov functions whose level sets get closer to the true RoA throughout learn-
ing. The ODE is learned using general function approximators, namely RKHS and
Neural Nets. Learning the RoA and the ODE are interlaced and inform each other
through an iterative algorithm that is shown to be more efficient than learning
them separately. The advantage of the Lyapunov function for learning the ODE is
twofold. First, it can be used to frugally sample initial conditions for the (numer-
ical or real) experiments. Second, it can be used to regularize the ODE learning
process towards the vector fields for which the level sets of the current Lyapunov
function are inner estimates of the true RoA. The approach proposed here differs
from prior works in the literature as follows. First, the estimation of the Lyapunov
function is purely data-driven, hence a potential error in the ODE estimation is not
propagated to the estimated Lyapunov function. Second, the direction of informa-
tion is from the Lyapunov function to the ODE unlike [12] and other model-based
approaches where an initially learned ODE is used to estimate the Lyapunov func-
tion. Third, the iterative nature of the method actively guides experimentation and
determines from where new trajectories should be initiated, rather than relying on
a set of passively collected trajectories. In this sense, the proposed method can be
considered as an example of active learning. The newly developed framework is
finally supported by extensive simulations carried out on the Van der Pol oscillator
benchmark. A pictorial representation of the outcome of the algorithm is presented
in Figure 1.

2. Co-learning RoA and ODE.

2.1. Problem statement. Consider an autonomous nonlinear system of the form:

ẋ = f(x), x(0) = x0, (1)

where f : Rn → Rn is the vector field. The vector x̄ ∈ Rn is an equilibrium
point of (1) if f(x̄) = 0. We consider the case where x̄ is an asymptotically stable
equilibrium. Let φ(t, x0) denote the flow associated with (1)W, i.e. the solution
of (1) at time t with initial condition x0. The region of attraction (RoA) associated
with x̄ is defined as [15]

Rx̄ :=
{
x0 ∈ Rn : lim

t→∞
φ(t, x0) = x̄

}
. (2)

That is, Rx̄ is the set of all initial states that eventually converge to x̄.
We aim to build a data-driven algorithm that jointly estimates two objects: 1)

The vector field restricted to the RoA denoted by fx̄ := f |Rx̄
. 2) A Lyapunov

function V whose level sets approximate Rx̄.
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(a) Multi-step RoA estimation
(b) Restricted vector field to the RoA

Figure 1. (a) One step of the iterative RoA estimation algorithm. The
boundary of the RoA is learned as a boundary function of a classifier.
The blue area is the current estimate of the RoA. The green area contains
initial states that converge to the estimated RoA and eventually the
equilibrium. The red area contains the initial states that diverge. Each
step of the algorithm learns the boundary between stable and unstable
regions. (b) For the vector field f , f |Rx̄ denotes its restriction to the
RoA, which is the objective of the ODE learning phase.

In a continuous-time setting, ODE estimation can be seen as a regression problem
from xt to yt = ẋt. We assume the sensors only measure the states, but not their
time derivative. Hence, ẋt must be estimated from state measurements. We also
consider the realistic scenario where the sensors corrupt the state measurement with
independent Gaussian noise, i.e. the algorithm has access to x̃t = xt + εt,

where εt is identically and independently sampled from a normal distribution
N (0, σ2).

Let x̃t̄ denote a set of state measurements obtained by sampling the flow func-
tion φ(t, x0) at times t̄ = (t1 < t2 < . . . < tr) indexed by r̄ := (1, 2, . . . , r). Hence
x̃t̄ = (x̃t1 , x̃t2 , . . . , x̃tr ) where x̃tk = φ(tk;x0) + εtk . Let S be the sampling operator
defined as St̄φ(·;x0) := (φ(t1, x0), φ(t2, x0), . . . , φ(tr, x0)). The noisy state measure-
ments x̃t̄ starting from different initial conditions are the main source of information
at disposal to learn the ODE. Letting the system evolve from a specified initial con-
dition is the experiment with which this information is extracted. In the adopted
notation a parenthesized superscript refers to a trajectory and an unparenthesized

superscript refers to a particular state dimension. Therefore, x
(j)
t̄ ∈ Rn×r is the jth

trajectory starting from x
(j)
0 ∈ Rn and x

(j),s
t̄ ∈ R1×r is the trajectory of its sth state

dimension.
The total number of available trajectories is limited by a defined budget, which

has to do with e.g. the cost of experiments. In addition to the quantity, the locations
of the initial conditions might also be constrained by physical limitations as the
system has to be safely operated. Because the system is nonlinear, trajectories of
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equal length are not equally informative about the dynamics, hence the choice of
initial states plays the role of experiment design. This is indeed a key enabler in
our work, and it has not been fully exploited in the literature. See [16] where the
rich spectrum of nonlinear responses associated with different initial conditions is
leveraged for identifying the Koopman operator.

Given an equilibrium x̄, we recall that the objective is to learn fx̄ instead of f ,
which can be a much more challenging task and, in many engineering applications,
not necessary, as the system will be operated around one of its stable attractors.
Hence, the region of attraction Rx̄ is a privileged subset of the state space to sample
the trajectories from. Specifically, two reasons are emphasized: 1) Frugality (i.e.,
estimating fx̄ using the least number of trajectories). This is encouraged by the fact
that trajectories inside Rx̄ will never leave it and are most informative about fx̄.
2) Safety (i.e., generated trajectories will not diverge). This property is guaranteed
by the definition of the RoA of an equilibrium.

When Rx̄ is not given (that is the case in most practical situations, especially
when f is not known), it also needs to be estimated from the trajectories of the

system. Standard approaches to compute inner (i.e. guaranteed) estimates R̂x̄ of
the true RoA Rx̄ are model-based, i.e. they require the knowledge of f . While this
is not the case here, a well-known fact from the literature often used in model-based
approach will be leveraged here.

Lemma 1. [15] Let D be an open subset of Rn and x̄ ∈ D. Suppose there exists a
1-time continuously differentiable function V : Rn → R such that:

V (x̄) = 0 and V (x) > 0, ∀x ∈ D\x̄,
〈∇V (x), f(x)〉 < 0, ∀x ∈ D\x̄,
ΩV,γ := {x ∈ Rn : V (x) ≤ γ}, ΩV,γ ⊆ D,

(3)

and ΩV,γ is bounded. Then, R̂x̄:=ΩV,γ ⊆ Rx̄.

Notice that 〈∇V (x), f(x)〉 represents the Lie derivative of V , that is the derivative
of V along the trajectories of f . When f is known, a common approach to compute
R̂x̄ is via Sums of Squares (SOS) optimization [21, 6], whereby one finds polynomial
functions that satisfy set containment conditions (3)). Depending on the chosen
degree of the polynomial Lyapunov function, the estimates in SOS-based approaches
might be quite conservative, i.e., the true RoA Rx̄ is much larger than the estimated
one R̂x̄.

To overcome this issue, in Section 2.2 we propose to leverage the universal approx-
imation property of deep neural networks to compute Lyapunov functions whose
largest contractive level set ΩV,γ? approximates the shape of Rx̄.

Section 2.3 details the twofold role of the estimated RoA: guiding experimentation
to produce most suitable trajectories to learn fx̄ and also encoding an appropriate
local stability prior that facilitates learning fx̄. Finally, in Section 2.4 the coupled
algorithm to jointly learn Rx̄ and fx̄ is presented. As the estimated RoA gets closer
to the true one, more informative trajectories are sampled which yield a better
estimate of the vector field. Moreover, training is also regularized by the estimated
Lyapunov function.

2.2. Estimating RoA from trajectories. Let V (·; θ) : Rn → R+ be a candidate
Lyapunov function for system (1) parameterized by θ. As required by the definition
of the Lyapunov function, V (·; θ) has to be positive definite in some neighbourhood
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Algorithm 1: The coupled algorithm to learn RoA and ODE concurrently

input :

• f : The oracle that generates trajectories from the system
• Vinit: Initial inner estimate of the RoA
• T : length of the trajectories

output:

• V (·; θ), c: The Lyapunov function V and its level value c that estimates the
true ROA

• f(·;ψ): The estimate of the dynamics function

1 init V (·; θ) to the initial inner estimate of ROA

2 init ψ by a zero-mean Gaussian distribution with standard deviation of 0.1

3 set the interpolant kernel function k(·, ·)
4 set the growth coefficient α

5 set the growth threshold Tg
6 set Interpolants← [ ]

7 Set G ← Sαc\Sc
8 while vol(G) > Tg do
9 {x(j)}Jj=1 ← Sample J initial points from G

10 {x(j)
[T ]}Jj=1 ← Trajectories starting from {x(j)}Jj=1

11 Φ← compute interpolants from {x(j)
[T ]}Jj=1 and kernel k by Algorithm 2

12 Interpolants← Interpolants ∪ {x̂(j)(·; Φ(j))}Jj=1

13 ψ ← Update ODE using the interpolants and V (·; θ) by
solving Equation (13)

14 θ, c← Grow RoA using the gap G and the current V (·; θ) by the method
explained in Section 2.2

15 G ← Sαc(V (·; θ))\Sc(V (·; θ))
16 end

around the equilibrium point. The function V : U ⊆ Rn → R is said to be positive
definite in the neighbourhood U if (1) V (0) = 0 and (2) V (x) > 0 for all x ∈ U
such that x 6= 0

To ensure V (·; θ) is positive definite, instead of parameterizing it directly, it is
modelled as the inner product of a feature extractor v(·; θ) with itself, i.e., V (·; θ) =
vT(·; θ)v(·; θ) where v(·; θ) : Rn → Rn is a multilayer perceptron. We will denote
by Sc(V ) := {x ∈ Rn : V (x; θ) < c} the sublevel set (interior of a level set) of
V with level value c. The goal is to find θ and c such that Sc(V (·; θ)) is a good
approximation of the true RoA Rx̄. The parameter θ characterizes the shape of
a level set while c determines its size. Recalling the definition of the RoA in (2)
and the result of Lemma 1, the following multi-step supervised learning approach
is considered.

1. The Lyapunov function is initialized to a quadratic function with the loss
function

θ∗0 = argmin
θ

EBr0
[‖V (x; θ)− xTQx‖2] (4)

where EBr0
represents the empirical expectation on samples that are uni-

formly drawn from the unit ball Br0(x̄) centered at x̄ with radius r0. Matrix
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Q characterizes the target quadratic function that is set to I in the absence
of further information. The reason behind this choice for the initial Lyapunov
function is the fact that when the equilibirum point is asymptotically stable as
assumed here, one can always choose Q as the positive definite matrix which
is the unique solution of the Lyapunov equation ATQ + QA = −I, where A
represents the Jacobian of the nonlinear vector field linearized at the equilib-
rium.. After pre-training the Lyapunov network V (·; θ) to approximate I, a
line search over c while checking the Lyapunov decrease condition of Lemma 1
is performed to find the largest level value such that Sc(V (·; θ∗0)) remains in-
side Rx̄. The decrease condition is checked on the vertices of a rectangular
grid that sample the state space with regular spacing. (See Appendix A.1 for
further details about the grid).

2. The sublevel set Sc(V ) is expanded by multiplying c with α > 1 to obtain
the gap region Gα(V, c) := Sαc(V )\Sc(V ) (for the sake of a lighter notation,
V (·; θ) will be written as V throughout the text when possible).

3. The system is experimented by drawing J initial states inside Gα(V, c) that
run for a specified number of time steps. Each initial state is given the label
+1 (stable) if its trajectory enters Sc(V ). Otherwise, it is given the label −1
(unstable). Let O : G → {+1,−1} be the oracle function that simulates the
system from an initial condition chosen from the gap region G and assigns
the label as mentioned. Ultimately, the experiments will produce a dataset

consisting of J pairs {(x̃(j)
t̄ ,O(x

(j)
0 ))}(J)

j=1.

4. The parameters θ of the Lyapunov function V (·; θ) are learned such that the
initial states x0 ∈ Gα(V, c) that correspond to l(x0) = +1 (l(x0) = −1) falls
inside (outside) Sc(V ). As both θ and c affect the shape of the sublevel set
Sc(V (·; θ)), we keep c fixed to 1.0 and only train θ. Minimizing the following
loss function serves this purpose as a supervised learning task,

Lθ =
∑
x0∈G

`(V (x0; θ), l(x0)) + λRoA1
[O(x

(j)
0 )=+1]

× (5)

J∑
j=1

r∑
k=1

[
V
(
x

(j)
tk+1

; θ
)
− V

(
x

(j)
tk

; θ
)]

with ` : R× {+1,−1} → R defined as

`(V (x; θ),O(x)) = O(x)(V (x; θ)− c). (6)

With the loss function (5), training the Lyapunov function can be seen as
training an energy-based model where, in Figure 1, the energy of the points
located in the red (unstable) area increases while the energy of the points
located in the green area (stable) decreases. Iterations of Stochastic Gradi-
ent Descent (SGD) are run on (5) until a pre-defined tolerance on the loss
decrease is met. The solution will be the updated Lyapunov function and
consequently its level sets. Here, we provide the intuition behind each term
of the loss function of Equation (5). The first term `(V (x0; θ), l(x0)) is the
classifier loss that differentiates between the stable and unstable states (inside
and outside the RoA) to push the Lyapunov function in the direction where
its level set gives a better estimate of the RoA. The second term is non-zero
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only for the states that are inside the current estimate of the RoA. Minimiz-

ing V (x
(j)
tk+1

; θ) − V (x
(j)
tk

) over the observed trajectories makes the Lyapunov
function decrease over the system’s trajectory. This provides an extra learning
signal for training the Lyapunov function so that it meets the second condition
of lemma 1.

5. Ideally, the value of c must remain fixed and the change of θ must be sufficient
to update the Lyapunov function. However, due to practical reasons such as
the limited capacity of the neural network and the local minima in optimiza-
tion, we check the value of c after each iteration to make sure Sc(V ) remains
fully within Rx̄. To this end, we update the value of c by a line search so
that every x ∈ Sc(V (·; θ)) satisfies 〈∇xV (x; θ), f(x)〉 < 0 in accordance with
the second condition of Lemma 1. In practice, we don’t have access to f .
Hence, the empirical version of the decrease condition is tested for the states
along the observed trajectories, i.e., V (xtk+1

)− V (xtk) < 0. Hence, c is set to
a value such that the decrease condition is satisfied for all pairs (xtk , xtk+1

)
chosen from the observed trajectories for which xtk , xtk+1

∈ Sc(V (·; θ))
6. Go back to step 2 until every point from the produced gap Gα(V, c) is unstable.

Instability is verified when the trajectories do not enter Sc(V ) after a specified
number of time steps.

2.3. Learning ODE from trajectories. In this section, we explain our method
to learn the vector field from the observed noisy trajectories. This section is pre-
sented as a stand-alone module. The way the ODE learning module is incorporated
in the overall coupled algorithm with the RoA estimation module is explained
in Section 2.4. We employ a 2-stage approach to learn the ODE. The first step
(Section 2.3.1) consists of an RKHS-based interpolation to smooth out the noisy
observed trajectories. The second step (Section 2.3.2) learns the ODE function as
a regression problem from states to their time derivatives, which are now computed
using interpolated smooth trajectories.

It is well known that learning a complex nonlinear function from scarce data is
prone to overfitting. If prior information on the functional form of the unknown
function is available, a wise practice is to restrict the hypothesis space to the set of
functions that is more likely to contain the target function.

2.3.1. Learning interpolants. Sensor measurements typically give the noisy states x̃t
at discrete times. This causes two important issues. First, the states might be only
available on irregular (non-equidistant) and possibly sparse time intervals. Second,

the noise in the state measurements will be magnified when the time derivative ˙̃xt
is computed by methods such as finite-difference. To overcome both problems, we
propose to learn an interpolating function for every trajectory as a function of time.

We describe the interpolation for one trajectory, but the method is the same for
every other trajectory. Let t̄ = (t1 < t2 < . . . < tr)

be a sequence of r irregular sampling times. Let φ(t, x0) be the flow function
(trajectory) starting from x0. Assume St̄ : (R+ → Rn) → Rn × Rr is a sampling
operator that samples the input function at times t̄.

We use the extension of the Shannon sampling theorem to learn the interpolating
functions using regularized least squares [8]. We briefly review the preliminary
concepts here as they will also be needed when reviewing the RKHS method for
learning the vector field.
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Let k : R+×R+ → R be a continuous symmetric map andHk,t̄ := {∑t∈t̄ atk(·, t) :
t ∈ R and |{at′ : t′ ∈ R, at′ 6= 0}| ≤ ∞} where | · | is used to denote cardinality
of the set. That is, Hk,t̄ is a Hilbert space defined as a finite linear combination
of {kt : t ∈ t̄}, where only a finite number of at are nonzero. An inner product
on this space is defined as 〈k(·, t1), k(·, t2)〉 = k(t1, t2). If k is a Mercer kernel, Hk

corresponds to a reproducing kernel Hilbert space and Hk,t̄ is the closed subspace
generated by {k(·, t), t ∈ t̄}. For the function φ(·;x0) : R+ → R, φ(·;x0) ∈ Hk,t̄, the

goal is to find φ̂(·;x0) ∈ Hk,t̄ from samples St̄φ(·;x0) contaminated with noise such

that φ̂(·;x0) is a good approximation to φ(;̇x0). Let kt̄,t̄ denote a matrix defined as
(kt̄,t̄)i,j = k(ti, tj).

Assumption 2.1. kt̄,t̄ is well-defined, bounded, and positive with bounded k−1
t̄,t̄ .

This assumption is satisfied for kernels such as polynomial and Gaussian [24],
given that all sampled times are distinct in t̄ = (t1 < t2 < . . . < tr).

While φ(·;x0) is the function to be reconstructed, we only observe noisy samples
from it at times t̄ = (t1, . . . , tr) as

x̃k = φ(tk;x0) + εtk , εtk ∼ N0,σ. (7)

Every dimension of the observed trajectories is interpolated separately as a func-
tion of time. To control the contribution of each measurement to the learned in-
terpolation, we weight the observations by a scalar weighting function w : t̄→ R+.
In the absence of any prior about the weighting function, Voronoi tessellation is a
commonly adopted option [31].

Definition 2.2. Let X ⊂ Rn be compact. The Voronoi tessellation for a set of
distinct points x := {xi}mi=1 ∈ Xm is the collection of pairwise disjoint open sets
Vi(x), i = 1, . . . ,m defined by

Vi(x) = {z ∈ X|‖xi − z‖Rn < ‖xj − z‖Rn , if i 6= j} (8)

In Rn, the weights are chosen as wi = µ(Vi(x)) where µ is the strictly positive
Borel measure on Rn. In R, the measure µ will simply be the length of the intervals.
That is, for the sampling times t̄ ⊂ Rr+, the tesselation takes a simple form as

V0(t̄) = [0, t1], Vr(t̄) = [tr− tr−1], and Vi(t̄) = [ ti+1−ti
2 − ti−ti−1

2 ] for i = 2, . . . , r−1.

For every trajectory, the interpolant of the sth state represented by φ̂(j),s(·;x0) is
obtained by solving the following regularized optimization problem

φ̂(j),s = argmin
φ̂

∑
t∈t̄

wt(φ̂(t)− x̃(j),s
t )2 + γtraj‖φ̂‖k (9)

that has closed-form solution due to the following theorem.

Theorem 2.3 ([31], Theorem 2). Assume the flow function is component-wise
realizable, i.e., φs(·, x0) ∈ Hk,t̄ for s = 1, . . . , n. Fix a regularization parameter
λtraj > 0, and define the diagonal weight matrix Dw = diag(w1, w2, . . . , wr) ∈ Rr×r.
The approximation of the sth component φ̂s to φs(·, x0) of Equation (7) belongs to
Hk,t̄ and is represented by

φ̂s(·;α) =

r∑
k=1

akk(·, tk) (10)

where the coefficients α := {ai}ri=1 are obtained using the following matrix equa-
tion

(kt̄,t̄Dwkt̄,t̄ + γtrajkt̄,t̄)α = kt̄,t̄Dwx̃
s
t̄ . (11)
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Algorithm 2: Interpolation

input :

• {x̃(j)}Jj=1: J noisy state trajectories form J different initial points
• kernel function k(·, ·)

output: Φ consisting of φ̂(j),s for all s and j
1 for j = 1, . . . , J do
2 for s = 1, . . . , d do

3 initialize α in φ̂(·;α) =
∑m
i=1 αik(t, ti)

4 φ̂(j),s ← argminφ̂ the objective function of Equation (9)

5 end

6 end

Notice that x̃st̄ ∈ Rr represents the noisy state measurements of the sth state at
times t̄.

The pseudocode for learning the interpolants for the observed trajectories is
presented in Algorithm 2.

The choice of the kernel — The choice of the kernel function plays a cru-
cial role in the quality of the interpolation of trajectories. Because the kernel k
determines the members of its associated Hilbert space Hk,t̄, a reasonable kernel
is the one that ensures φs(·, x0) ∈ Hk,t̄. It is not straightforward to choose such a
kernel in the absence of further information on the shape of trajectories. However,
the kernel can be chosen from the class of the so-called universal kernels with the
property that their associated RKHS is dense in the set of continuous functions
C(Z) for every compact set Z ⊂ Rn (See Definition 4.52 of [32]).

The Gaussian RBF kernel defined as k(x, y) = exp(−γ−2‖x − y‖22), γ > 0 is
an example of universal kernel and it will be used here by choosing its bandwidth
γ with Median heuristic [4]. The chosen bandwidth by this heuristic was about
0.07. Because the input space is assumed to be compact, we make the reasonable
technical assumption that the length of every trajectory is bounded by a T̄ ∈ R+.

Putting together learned interpolants for every dimension of the state vector

gives φ̂ = [φ̂1, φ2, . . . , φ̂n], that is the interpolated trajectory with φ̂ ∈ Hnk,t̄ and

φ̂(t) ∈ Rn for t ∈ R+. A similar procedure as above is repeated for every trajectory.
Let j ∈ J be the index that iterates over all the produced trajectories. For the

initial state x
(j)
0 , the states are sampled at times t̄(j) to produce the noisy sequence

of measurements x̃
(j)

t̄(j) . Hence, the interpolation phase gives a set of J ×n functions

{φ̂s(·;x(j)
0 )} where s = 1, . . . , n is the dimension index of the state vector and

j = 1, . . . , J refers to the jth trajectory started at the initial state x
(j)
0 . Notice

that the sampling patterns t(i) and t(j) can be different for i 6= j. In addition to
addressing the problem of differentiating noisy trajectories by approximating them
in an RKHS of smooth functions, it is worth observing that even though state

trajectories are only available at discrete times, φ̂(j)(t;x
(j)
0 ) can be evaluated at any

time 0 ≤ t < T̄ and be oversampled on demand.

2.3.2. Learning the vector field. We use a method known in the literature as gradient

matching to fit f̂(·;ψ) parameterised by ψ to the time derivative of the interpolants

φ̂(·;α) fitted to the observed trajectories by (9). Since the observed trajectories
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are interpolated by functions of a smooth RKHS, computing time derivative can be

done analytically as dφ̂(s;α)/ds =
∑r
k=1 ak∂k(s, tk)/∂s. Hence, the vector field is

learned by solving the optimization problem ψ∗base = argminψ Lbase where

Lbase =

J∑
j=1

∑
t∈t̄(j)

‖dφ̂
(j)(t;α(j))

dt
− f̂(φ̂(j)(t;α(j));ψ)‖2 (12)

with respect to ψ that parameterises the model of the dynamics. Recall that
φ(j) = [φ(j),1, φ(j),2, . . . , φ(j),n] where every φ(j),s is the fitted interpolant (10) to the
sth dimension of the jth trajectory. Moreover, the parameters of the interpolants of
every state dimension are encapsulated as α(j) = [α(j),1, α(j),2, . . . , α(j),n]. Notice
that unlike Equation (9), here we use uniform weighting instead of Voronoi tessel-
lation, which is costly to compute in higher dimensions. The uniform weighting is a
valid choice here as the length of the experimented trajectories is chosen not to be
too long to ensure the trajectories won’t get too close to each other near the equil-
brium and provide redundant information about the ODE. In fact, as explained in
Item 2 of Appendix A.6, the length of the experimented trajectory is chosen roughly
as the time it takes for a trajectory initiated from the surrounding gap to enter the
previous estimate of the RoA (e.g. see Figure 4).

Observe that (12) is a typical regression problem for which the temporal order
does not matter as long as the interpolated state vector is matched to its time
derivative at each point in time. Results obtained by solving this regression problem
using both kernel methods and neural networks will be presented to emphasize that
the proposed way to incorporate the stability information in the ODE estimation
does not depend on the estimation method employed to learn the ODE.

2.4. A coupled ODE-RoA algorithm. The information of RoA is leveraged to
learn the ODE in two ways: experiment design and regularization. The algorithm
proposed in Section 2.2 is a multi-step method that gradually improves the estimate
of the RoA by learning a Lyapunov function. We interlace the steps of the ODE
learning algorithm between the steps of the RoA estimation to incorporate the sta-
bility information when solving (12). The iterative process continues until the RoA
cannot be improved further. The estimated ODE will then be an approximation
of the true dynamics within the RoA of the equilibrium. The pseudocode of the
coupled algorithm is presented in Algorithm 1. Notice that the algorithm continues
until the volume of the produced gap is less than a pre-defined threshold Tg.

In the following, two ways in which the stability information contributes to learn-
ing the ODE are illustrated.

2.4.1. Experiment design. In the experiment design phase, the RoA information is
used to choose the initial states from which the trajectories are produced. Since the
objective is to estimate fx̄ (i.e. the restriction of the vector field to the RoA of x̄)
and to make efficient use of the experimentation budget, it is not beneficial to choose
initial states whose trajectories do not contribute to the accuracy of the estimated
ODE within the RoA. Assume Sc(V (·; θ)) is the current estimate of the RoA. New
initial states are chosen randomly from the gap region G = Sαc(V )\Sc(V ). The

estimate f̂ of the ODE is then updated with the trajectories that start from newly
chosen initial states. To prevent the algorithm from forgetting the vector field in
inner areas of the RoA, a mixture of the previously collected trajectories (30%) and
new ones (70%) are used to optimize the objective function (12). While in principle
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Figure 2. Pre-training the randomly initialized neural network with
a quadratic function. The background color shows the values of the
Lyapunov function evaluated over a fine grid of points. Lighter colors
correspond to larger values. The contours show the level sets.

one could use a similar mixture of new and old trajectories to learn the Lyapunov
function (see point 4 of Section 2.2), it was found empirically that did not bring
any concrete advantage. A more in-depth analysis of this aspect is left for future
research.

2.4.2. Regularization. In the regularization phase, the Lyapunov function whose
level set is the current estimate of the RoA is employed to incentivize learning a
stable vector field. We incorporate this structural constraint in the loss function
with a Lagrange multiplier. Therefore, (12) is augmented as

Lψreg = Lψbase + λODE

∑
x∈Sc(V )

〈∇xV (x; θ), f̂(x;ψ)〉 (13)

which is minimized with respect to ψ for a fixed θ corresponding to the current
step of the Lyapunov / RoA estimation algorithm of Section 2.2. This term en-

courages the dynamics f̂ to be compatible with the negativity condition of the
current estimate of the Lyapunov function prescribed by Lemma 1 while the first
term is a simple regression loss that concerns how well the model fits to the time
deriative of the trajectories. Recall that the input to this algorithm are interpolants
that are already fitted to the observed noisy and irregularly sampled trajectories
in Section 2.3.1.

The proposed algorithm has a few hyperparameters consisting of the hyperpa-
rameters of each of its modules (i.e., RoA estimation and ODE learning) and also
the hyperparameters that are introduced when these modules interact in the coupled
algorithm. A detailed discussion on how to choose each of these hyperparameters
is given in Appendix A.6. Here we provide a brief rationale on their choices. The
hyperparameters that affect the function class of the regression tasks (e.g. the
bandwidth of the kernel in RKHS regression) are chosen by the median heuristics
and cross-validation. The hyperparameters that determine the relative weight of
the constituent terms in a loss function are generally chosen in such a way that all
terms become of the same order of magnitude. The hyperparameters that deter-
mine the number of experimented trajectories and their length are determined by
the experimentation budget.
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(a) Step 1 (b) Step 4 (c) Step 7 (d) Step 10

Figure 3. (Van der Pol Oscillator) The growth stages of the RoA es-
timation algorithm of Section 2.3. Color codes are as follows. Green:
True RoA. Blue: Estimated RoA (the largest sublevel set of the learned
Lyapunov function that satisfies the decrease condition (3)). Pink: The
gap G = Sαc(V (·; θ))\Sc(V (·; θ)) from which the inital states of the tra-
jectories are picked.

3. Experiments. In this section, the proposed framework for co-learning RoA
and ODE is demonstrated on two well-known test cases in the nonlinear systems
literature [35, 34, 6, 14], i.e., the Van der Pol oscillator and the inverted pendulum.
Further details on the numerical experiments can be found in the Appendix.

3.1. Van der Pol Oscillator. Van der Pol oscillator is a dynamical system defined
as:

ẋ = −y
ẏ = x+ γ(x2 − 1)y

(14)

where γ is the damping parameter. When γ > 0, the system has an unstable
limit cycle around the equilibrium and the true RoA of the asymptotically stable
equilibrium (at the origin) is the area encircled by the limit cycle (the green region
in Figure 3a).

We first show the performance of the RoA estimation algorithm. Recall that the
Lyapunov function is parameterized as V (·; θ) = vT(·; θ)v(·; θ), where v(·; θ) is an
MLP. Because the weights of the network are initialized at random, the initial shape
of the level sets of V (·; θ init) can be far from the shape of the true RoA, which
negatively affects the learning algorithm. We observed that the initial weights
that result in functions with level sets too far from the shape of the RoA can
eventually give a highly conservative estimate of the stability region. To improve
the stability of the learning algorithm, we first pre-train the network with the loss
function (4). Figure 2(a) shows the level sets of the randomly initialized network.
After training with the loss function (4) for Q = I and r0 = 0.1, the level sets of
the pre-trained network (Figure 2(c)) become closer to those of the target quadratic
function (Figure 2(b)).
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We consistently observed that pre-training increases significantly the stability of
the algorithm and results in a less conservative final estimate of the RoA.

After pre-training, the RoA estimation algorithm of Section 2.2 is applied with
the growth parameter α = 3.0. Four steps of the iterative algorithm are shown
in Figure 3. The true RoA (green region) is computed by brute force simulation
of trajectories starting from the points in a grid that covers the denoted rectangle
in the state space. As can be seen, as the computation of the ROA progresses,
Sc(V (·; θ)) gets closer to Rx̄ in shape and size and is always contained within it.

The iterations of the coupled algorithm proposed in Section 2.4 consist of ex-
panding the RoA and sampling initial conditions near its boundary to generate
trajectories for learning the ODE. It can be seen in Figure 4 that as the estimated
RoA (red boundary) grows, the trajectories that are sampled near the boundary
become more informative about farther areas from the equilibrium point while are
guaranteed to remain stable because they all start from within the inner estimate
of the RoA. This gives a systematic way to do experimentation with the system to
accurately and efficiently identify it within the RoA.

All trajectories are contaminated with Gaussian measurement noise with a stan-
dard deviation 0.05 according to the noise model (7). The trajectories are collected
during the growth stages and used for learning the ODE with the loss function (12)
with more emphasis on the newer trajectories. This is done to make sure the learned
ODE becomes accurate in the newly expanded region around the current RoA while
preserving the knowledge it has acquired in the previous steps. The inclusion of
the Lyapunov and RoA information in ODE estimation is modular in our proposed
algorithm and any regression method that is used to learn ODEs by gradient match-
ing (12) can make use of the estimated Lyapunov function in the same spirit as done
here. To emphasize this modularity, we show the progressively improving estimate
of the ODE using the multi-step proposed algorithm when the ODE learning phase
is carried out by kernel methods (Figure 5) or neural networks (Figure 6). It is
apparent that the learned vector field matches the true one inside the RoA. The
area where two vector fields are in strong agreement (in the sense of Euclidean
distance) grows, while the area with the mismatch between them shrinks (better
agreement corresponds to the lighter shade.) This confirms the benefit of the pro-
posed co-learning algorithm to put emphasis on learning the unknown dynamics in
the region of the state space that is of practical interest.

As mentioned in Section 2.4, the benefits of the proposed coupling between the
Lyapunov and ODE estimation steps are twofold: guiding the experimentation
using the RoA information (see Section 2.4.1) and using the Lyapunov information
to enforce stability of the vector field (see Section 2.4.2). The first benefit was
shown in the progressive training of the vector field in Figures 4 to 6. To illustrate
the second benefit, we show that when only very few trajectories are available, the
Lyapunov information is highly useful to preserve the structural information of the
vector field (that is, the stability properties of the equilibrium of interest.) We
run the same experiment reported in Figures 4 to 6 but this time with much less
experimentation budget. Specifically, we use 30% of the trajectories and the length
of each trajectory is halved. These modifications make it harder for the learning
algorithm to preserve the stability information as can be seen in the rightmost
and middle plots of Figure 7 where the loss function (12) is used for learning the
vector field. The leftmost plot in Figure 7, however, shows that regularizing the
base gradient matching loss function with the Lyapunov regularizer is successful in
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Figure 4. Sampled trajectories from inside the estimated RoA of each
growth stage.

Figure 5. (Van der Pol Oscillator) Left: True RoA. Right: The pro-
gressively learned ODE over the steps of the coupled algorithm. The
darker background shows larger mismatch between the learned and true
vector fields.

preserving the stability of the learned vector field even for scarce and short observed
trajectories. Notice that this experiment concerns the effect of the reduction of
the experimentation budget on learning the ODE in the presence and absence of
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Figure 6. (Van der Pol Oscillator) The progressively learned ODE
using neural networks.

Figure 7. (Van der Pol Oscillator) Learned ODEs with and without
the Lyapunov regularization term in the loss function.

the Lyapunov regularizer. In order to isolate this effect on learning the ODE from
learning the Lyapunov function, we used the learned Lyapunov function of Figure 6.

To compare quantitatively, we fix the total number of trajectories to 100 collected
over 10 growth steps of the algorithm. In the first scenario (called blind sampling)
the samples are taken uniformly from a rectangle around the equilibrium. The
second scenario uses the RoA estimation to guide sampling at each growth step
similar to Figure 4 and optimizes (12) to learn the ODE. The third scenario is the
same as the second one except that the estimated Lyapunov function is used to
regularize the ODE learning as (13). We compute the MSE error between the true
and learned vector fields restricted to the true RoA. The MSE for each scenario
normalized by the largest error (first scenario) becomes 1±0.37, 0.67±0.21, 0.33±
0.09 for the first, second and third scenario respectively. As expected, because the
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accuracy of the vector field only within the RoA is of practical interest, RoA-guided
sampling is a more efficient way of using the available experimentation budget.
Moreover, the ODE is learned with higher accuracy if the estimated Lyapunov
function is used as a regularizer.

3.2. Inverted Pendulum. The proposed algorithm is here applied on the inverted
pendulum. It is a 2-dimensional dynamical system defined as

ẋ = y

ẏ =
g

l sin(x)
+

u

(ml2)

(15)

where l is the length of the pendulum, m is the pendulum mass and g is the gravity
constant. We use l = 0.5, m = 0.25, and g = 9.81 in this experiment. The control
signal u is the force applied to the pendulum, which is typically defined by a con-
troller designed in order to keep the pendulum upright. Here, we control system
(15) [2, 28] with a state-feedback LQR controller which is saturated by limiting the
absolute value of the control input signal with a threshold of 0.7 [17]. Because of
the saturation, the system will have a smaller RoA compared to the unsaturated
closed-loop scenario, and thus the algorithm developed in this paper can be used to
estimate the safe set of initial conditions converging to the equilibrium. The level
sets of the Lyapunov function of every growth stage are used to sample the initial
state for experimentation as can be seen in Figure 8. Notice that the trajectories
are sampled from around the RoA. Hence, as the estimated RoA grows, they be-
come more informative about the ODE at greater distances from the equilibrium.
Moreover, the trajectories are stable as they start from within the RoA. The exper-
imental condition is similar to the one described in Section 3.1. The experimented
trajectories of each growth stage are used to train an ODE model implemented as
a neural network with the same architecture as the one used to estimate the ODE
of Section 3.1 with the same training hyperparameters (See Appendix A.4). The
results of this multi-stage learning algorithm are presented in Figure 9. On the left,
the RoA of the system is overlayed on the stream plot of the system dynamics. On
the right, the numbered figures show the order of the progressive ODE learning
algorithm. The network has a better estimate of the underlying dynamics in the
regions shown with lighter colors. As can be seen, the lighter regions get closer
to the equilibrium as the training progresses and more trajectories from inside the
estimated RoA become available for training.

To verify the effect of Lyapunov regularization, we repeat the scenarios used at
the end of Section 3.1 for quantitative comparison. The total number of trajectories
is fixed to 100 collected over 10 growth steps of the algorithm. In the first scenario
(blind sampling), the samples are taken uniformly from a rectangle around the
equilibrium. In the second scenario the RoA estimation is used to guide sampling
at each growth step similar to Figure 8 and optimizes (12) to learn the ODE. The
third scenario uses the Lyapunov estimation both for guiding the experimentation
and also for regularizing the estimation of the underlying ODE as (13). We compute
the MSE error between the true and learned vector fields restricted to the true
RoA. The MSE for each scenario normalized by the largest error (first scenario)
becomes 1 ± 0.53, 0.72 ± 0.42, 0.59 ± 0.16 for the first, second and third scenario
respectively. This verifies again that RoA-guided sampling makes more efficient
use of the experimental budget. Furthermore, the information on the Lyapunov
function is a useful prior that provides a better estimate of the underlying ODE.
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Figure 8. (Inverted Pendulum) Sampled trajectories from inside the
estimated RoA of each growth stage.

Figure 9. (Inverted Pendulum) The progressively learned ODE using
neural networks.

4. Conclusion and Future Work. The paper proposes a method to co-learn
the region of attraction and vector field of a dynamical system from the observed
trajectories. The steps of the algorithm are designed such that knowledge of the
estimated Lyapunov function can be used to better sample the experimental tra-
jectories and to regularize the ODE learning. It is shown that by making efficient
use of the distilled knowledge in the Lyapunov function, the ODE can be estimated
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more accurately and with the less experimental cost within the RoA of the system.
The proposed algorithm can be seen as a collaborative game between two agents one
of which learns the dynamics and the other one assesses the stability of the learned
dynamics. Theoretical understanding of the asymptotic and transient conditions of
this game is a question to pursue in future works.

An interesting future direction of this work is to make the interaction between

the Lyapunov estimator V̂ and ODE estimator f̂ bi-directional. In this work, the
learned Lyapunov function is used to regularize the loss function for learning the
ODE, but one can think of using the learned ODE to contribute to learning the
Lyapunov function as well, and this could provide better generalization properties
to the learned function V̂ .

Appendix A. . The appendix presents implementation details and parameter
choices for the numerical experiments.

A.1. Grid simulation. To be able to handle a continuous state space, we discretize
the state space and construct a grid in a rectangular neighborhood around the
equilibrium. The limits of the rectangle are chosen by guessing the maximum and
minimum values of each state inside the region of attraction. In applications, one
can specify this based on the subset of the state-space of interest. Each axis of the
rectangle is then divided into a specified number of intervals (100 intervals in our
experiments). More divisions give a closer approximation to the continuous regime
at the price of a significant increase in the computational cost. By building this
grid, the continuous state space is replaced by a set of finitely many points on the
grid. These finite sets of points are then used for calculations and visualizations.
For example, to compute the true RoA of the equilibrium of a 2-dimensional system,
the trajectories that start from every point of the grid are simulated for a specified
number of time steps. If their distance to the equilibrium falls below a specified
threshold, they are considered stable and the initial points of the stable trajectories
belong to the true RoA. Similarly, to find a level value c that ensures Sc(V ) lives
within the true RoA, the points of the grid that fall inside Sc(V ) are checked to
satisfy Lyapunov decrease condition (3).

A.2. RoA Learning.
The radius r0: The radius of the ball in which the Lyapunov function is initialized
to match the quadratic function. The value of this radius is not critical because
the level value c is always chosen, after every update in θ, such that Sc(V (·; θ∗0))
lives within the RoA, by checking the Lyapunov decrease condition for its interior
points. After normalizing the state values by their assumed maximum value (so
that the state values remain in [0, 1]) we set the radius of this initial set to 0.1.
Discretization time interval ∆t: To simulate the evolution of trajectories in time,
we used xnext = f(xcurrent) ∗∆t+ xcurrent with ∆t = 0.01.
Length of the trajectory to verify instability: If a trajectory starting from the gap
Gα(V, c) := Sαc(V )\Sc(V ) does not enter Sc(V ) after 50 steps (that is equivalent to
50×∆t = 0.5 time units for ∆t = 0.01), the trajectory is labelled as unstable.
Growth parameter α: The growth parameter determines the size of the gap Gα(V, c) :=
Sαc(V )\Sc(V ) (V (·; θ) produced at every step from which the initial states are cho-
sen to produce experiments. We set it to 3.0 in our experiments.
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Lyapunov multilayer perceptron: The Lyapunov function is parameterised as V (·; θ) =
v(·; θ)v(·; θ). We implement v(·; θ) : R2 → R as a 3−layer MLP (dense layers) with
dimensions [16, 32, 64] and nonlinearities [tanh, tanhh, Linear].
Relative weight λRoA: According to Equation (5) in Section 2.2, this hyperparame-
ter determines the relative weight between updating the Lyapunov function so that
its level sets gets closer to the RoA and also making sure the decrease condition
of Equation (3) will not be violated inside the estimated RoA. As a convention and
inspired by the common terminology of the machine learning community, by “hy-
perparameter”, we refer to high-level or structural parameters such as the relative
weights of constituent terms in a loss function, the kernel bandwidth in a kernel-
based regression algorithm or the number of hidden layers in a neural network.
On the other hand, by “parameters”, we refer to lower-level parameters such as
the wights {ark=1} in an RKHS expansion or the weights and bias parameters in a
neural network.
Training details: We used 10 growth stages for the RoA learning algorithm presented
in Section 2.2. We used Stochastic Gradient Descent (SGD) optimization method
with learning rate 0.001 for 100 step for the optimization problem Equation (5).
As mentioned in the main text, there are two sets of parameters that affect the
chosen level set of V (·; θ) as the approximation to Rx̄ (because Sc(V (·; θ)) ≈ Rx̄).
One set is the weights of the employed neural network (θ) and the other parameter
is the level value c. We keep the level value fixed (c = 1) so that the level set is
determined only by the weights of the neural network. After each growth stage,
we check if the decrease condition is satisfied for every point within Sc(V (·; θ)) and
decreases c if necessary. This extra caution is needed to make sure the chosen level
set never crosses the boundary of the true RoA.

A.3. Trajectory interpolation.
The choice of the kernel for trajectory interpolants: We used a gaussian kernel
k(x, y) = exp(−γ−2‖x− y‖22), γ > 0 for trajectory interpolation and chose its band-
width γ using median heuristics.
Weighting function: We used the Voronoi tessellation (Theorem 2.2) to weight the
observed samples from the trajectories.
Measurement noise: Observed trajectories are contaminated with additional noise
as x̃t = φ(t;x0)t + εt with εt ∼ N (0, σ2). We set σ = 0.05.
γtraj: The regularization weight controls the smoothness of the interpolation func-
tions. It should be chosen in response to the level of the measurement noise. This
weight together with the bandwidth of the kernel controls the fit of the interpolant
to observed data versus its smoothness. We chose γtraj = 0.2 in our experiments
for the Gaussian measurement noise with standard deviation σ = 0.05.

A.4. Coupled algorithm. To show that the incorporation of the Lyapunov sta-
bility information in ODE learning is independent of the algorithm used to learn the
ODE, both RKHS and neural networks are tested for the regression problem Equa-
tion (12). Here are the hyperparameters for each.
The RKHS method to learn the ODE by Lyapunov regularization: The theory be-
hind the ODE learning using RKHS is the same as what is described in Section 2.3.1
for learning the interpolants with the following exception. The closed-form so-
lution Equation (11) is no longer possible in the presence of the regularization
term Equation (13), especially because V is implemented as a neural network.
However, we can still solve Equation (13) thanks to automatic differentiation and
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stochastic solvers. Hence, we treat both RKHS and neural network methods simi-
larly when solving Equation (13) by using SGD optimization on the weights ψ = w
of the neural network or the coefficients ψ = α of the RKHS method.
The choice of the kernel for the RKHS method: We used a Gaussian kernel k(x, y) =
exp(−γ−2‖x − y‖22), γ > 0 for ODE learning and chose its bandwidth by median
heuristic. The threshold Tg in Algorithm 1 that determines the minimum volume
of the produced gap at each growth stage is set to 10 percent of the volume of the
initial sublevel set that is obtained after pre-training the Lyapunov network. That
is, if the produced gap G = Sαc(V (·; θ))\Sc(V (·; θ)) is smaller than a portion of the
initial estimate of RoA by pretraining, it is taken as a sign that the estimate of the
RoA is fairly accurate and there is no much room for improvement. Notice that the
volume of a set is approximated by the number of grid vertices that fall within that
set.
Network architecture for the neural network method: We implement the vector field

function f̂(·;ψ) : Rn → Rn as a 3−layer MLP (dense layers) with dimensions
[8, 8, 16] and nonlinearities [tanh, tanhh, Linear].
Relative weight λODE: The relative weight of the Lyapunov regularization term in
the loss function Equation (13) is set to λODE = 0.1
Training details: When optimizing the regularized loss function Equation (13), both
RKHS and neural network models are treated by SGD optimizer of PyTorch.
After some manual hyperparameter tuning we set learning rate = 0.001 with
batch size = 8.
Computational power: We ran the experiments on a desktop computer with CPU
configuration: 3,2 GHz Quad-Core Intel Core i5.
Average runtime of the experiments: The multi-step coupled algorithm took less
than 30 minutes (wall-clock-time) on the machine with the above-mentioned con-
figuration.

A.5. Implementation technologies. The algorithm is implemented as a pack-
age in Python. We used Scikit-learn[22] for kernel-based estimation method and
PyTorch [25] for neural-network modules.

A.6. How to choose the hyperparameters. The chosen values of the hyper-
parameters for the presented experiments are provided in Appendices A.1 to A.4.
In this section we discuss the intuition behind each of these hyperparameters ex-
tensively that guide the way to choose them. The hyperparameters can be divided
into three sets. We discuss each of these sets of hyperparameters separately in the
following:

1. The hyperparameters that affect the trajectory interpolations: The interpola-
tion is the technique used to turn the time-sampled trajectories into a contin-
uous function. This can be seen as a regression task whose hyperparameters
are chosen by K-fold cross-validation (K=5 in this paper). We can also employ
prior knowledge (if exists) about the system dynamics and sampling frequency
to choose the prior weight in the loss function. If the system dynamics is not
too fluctuating or the sampling frequency is high, the data can speak for itself
and we can reduce the weight of the prior γtraj .

2. The hyperparameters that affect the ODE learning. This hyper-parameter
trades off the information provided by the trajectories and the information
provided by the Lyapunov function for learning the ODE. It is important to
notice that the Lyapunov function is also trained in our work. Hence, the value
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of λODE reflects how much we trust the learned Lyapunov function at any
stage of training. As a general rule of thumb in machine learning algorithms,
we choose λODE such that both terms in eq (13) are of the same order of
magnitude. However, we observed that changes by one order of magnitude
(multiplied by 10 and divided by 10) do not cause a significant change in
the results. The other effective hyper-parameter here is the length of the
trajectory when we can choose it ourselves. It is possible to think about a real-
world scenario where the length of the trajectories is constrained by the system
under study due to safety or energy regulations. In case we are free to choose
the length of the experimented trajectories, we can make sure the trajectories
do not exist in the inner estimate of the RoA provided by the current estimate
of the Lyapunov function. This is unlikely because we only sample from
inside the RoA, but because the Lyapunov function itself is learnable, the
RoA estimate might be inaccurate and the initial states chosen too close to
the RoA boundary may happen to fall outside of the true RoA of the system.
With this safety measure in mind, the length of the trajectory is a proxy of the
information it provides about the underlying ODE. However, this information
does not increase linearly with the length of the trajectories especially when
they are stable. The reason is that the trajectories starting within the RoA get
closer to each other near the equilibrium. Hence the information to provide
becomes more redundant as they get closer to the equilibrium. Therefore as
a rule of thumb, the experimentation trajectory length is set to a length that
is about the time needed for that trajectory to enter the previous estimate
of the RoA. Because the objective function of the ODE learning part only
includes two adjacent time steps, smaller trajectories that cover the whole
RoA altogether will be as informative as longer trajectories. To explain more
clearly, consider three-level sets associated with level values C > B > A. The
above argument states that having a long trajectory from level set C to level
set A does not provide more information than having a trajectory from level
set C to B and another trajectory from level set B to C.

3. The hyperparameters that affect the Lyapunov learning. The growth param-
eters α: This hyper-parameter determines the size of the gap around the
current RoA from which the trajectories are initiated to later be used to im-
prove the estimate of the RoA and the Lyapunov function. The gap should
not be too thin or too small. If it is too thin, not many vertices of the grid
(the grid we used to discretize the space) will fall within it and it’s less likely
we can get a fair balance of stable and unstable trajectories to train the clas-
sifier that determines the boundary of the RoA. The same issue occurs when
the samples from the gap are highly biased towards unstable samples which
again leads to a skewed dataset to train the RoA boundary classifier. There-
fore, a rule of thumb is to choose α in a way that the resultant dataset for
binary classification is not too biased towards positive (stable) or negative
(unstable) trajectories. This can be done by starting from a small α in the
initial phases and checking the positive to negative ratio of the labels. Then,
it increases until the resultant dataset is almost balanced. The Lyapunov
function regularization parameter λRoA: This hyperparameter determines the
relative weight of the satisfaction of the Lyapunov decrease condition within
the RoA and the accuracy of its level set in separation unstable and unstable
trajectories. The second term in Equation (5) has to be fulfilled for every
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point within the RoA. This may imply over-emphasizing it in the objective
function by increasing λRoA. However, this may lead to overshadowing the
first term (boundary classification term) by the second term. We observed
a highly large value of λRoA results in a more conservative estimate of the
RoA. To avoid this problem, we use a common approach in machine learning
algorithms, namely in the presence of multiple terms in the objective function
the relative weights are tuned in such a way that all terms have the same
order of magnitude.
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