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Abstract. The paper proposes a Lyapunov theory-based method to compute

inner estimates of the region of attraction (ROA) of stable limit cycles. The

approach is based on a transformation of the system to transverse coordi-
nates, defined on a moving orthonormal coordinate system (MOC) for which

a novel construction is presented. The proposed center point MOC (cp-MOC)
is associated with a user-defined center point and provides flexibility to the

construction of the transverse coordinates. In particular, compared to the

standard approach based on hyperplanes orthogonal to the flow, the new con-
struction allows the analyst to obtain larger regions of the state space where the

well-definedness property of the transformation is satisfied. This has impor-

tant benefits when using transverse coordinates to compute inner estimates of
the ROA. To demonstrate these improvements, a sum-of-squares optimization-

based formulation is proposed for computing inner estimates of the ROA of

limit cycles for polynomial dynamics described in transverse coordinates. Dif-
ferent algorithmic options are explored, taking into account computational and

accuracy aspects. Results are shown for three different systems exhibiting in-

creasing complexity. The presented algorithms are extensively compared, and
the newly cp-MOC is shown to markedly outperform existing approaches.

1. Introduction. Nonlinear dynamical systems which exhibit periodic steady-state
trajectories, or limit cycles, are often encountered in engineering applications, for
example robotics [31, 41], power systems [38], aerospace [19], and airborne wind
energy [6]. In order to successfully operate these systems, it is paramount to an-
alyze stability of the periodic orbits, and to provide an estimate of the region of
the state space from which the system is guaranteed to converge to them. There-
fore, computing inner estimates of the region of attraction of the limit cycles is of
fundamental importance for the safety of these systems.

Problem setting and past works.
The stability analysis of periodic orbits has a long history, with Poincaré maps
presenting the most well-known and established analysis tool. Their appeal is mo-
tivated by the fact that the problem of orbital stability of a periodic orbit [17] is
reduced to the stability of a fixed point of the map [48]. Thus, asymptotic stability
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conditions based on well-established Lyapunov arguments can be used to verify or-
bital stability. In [17], the concept of Poincaré maps was extended by considering
a moving orthonormal coordinate system (MOC) along the trajectory, which can
be thought of as moving Poincaré maps. Based on earlier results presented in [46],
the moving orthonomal system was proposed in [17] to decompose n-dimensional
dynamics into two parts: a transversal part, confined to an (n−1)-dimensional sub-
space representing a hyperplane transversal to the flow of the system at any given
time; and a scalar part, normal to the hyperplane. The coordinates obtained by
this transformation are referred to as transverse coordinates. The most common
choice of hyperplanes for the transformation are those perpendicular to the system
flow. This approach is here referred to as classical MOC (class-MOC), and has
found extensive application. To name a few examples, this was used: in [18] for
constructing periodic quadratic Lyapunov functions for exponentially stable orbits;
in [16] for the analysis of the ROA of periodic orbits based on Borg’s criterion; and
in [25] for formulating generalized criteria for orbital stability. Moreover, applica-
tion of class-MOC to control various types of nonlinear systems, including hybrid
and underactuated systems, can be found in [31, 14, 12].

Motivation.
One of the recognized limitations of the MOC, and as a consequence class-MOC, is
that the transformation must fulfil a well-definedness condition which often restricts
the portion of the state space where the analysis can be carried out. This aspect,
formally presented in Section 2.3, can obviously have detrimental effects when ana-
lyzing the ROA of a limit cycle. Indeed, it might be the case that, even though the
attractive region of the periodic orbit is large, only small regions around it can be
verified because the well-definedness condition is not otherwise fulfilled. A possible
remedy for this was investigated in [30], where a nonlinear optimization program
aiming at maximizing the well-defined region of the transformation is proposed.
Similarly, in [41] an application-specific choice of MOC was proposed which reduces
the computational load of the transformation and resulting transverse equations.

Contributions.
Prompted by these shortcomings, the first contribution of this work, presented in
Section 3, is the formulation of the center point MOC (cp-MOC), that is a novel
strategy to construct the MOC which ameliorates the limitations associated with
the constraints of the classical transformation. In particular, the proposed cp-MOC
allows the analyst to have control over the regions in which the transformation
is well-defined. This will be shown by providing an analytical description of the
regions, and by pointing out the flexibility with which the regions can be modified.

The second contribution, discussed in Section 4, is the application of this frame-
work to ROA analysis of polynomial nonlinear systems. Algorithms to test the
aforementioned sufficient conditions and obtain Lyapunov functions verifying inner
estimates of the ROA of the limit cycle are proposed. The computational approach
consists of sum-of-squares (SOS) programs and are obtained by formulating the
Lyapunov conditions as set containment conditions and applying results from semi-
algebraic geometry. More precisely, the arguments used here are a relaxation of the
Positivstellensatz of Stengle [39] in the form of a hierarchy of sufficient SOS con-
ditions for the existence of a polynomial identity which certifies the emptiness of a
semialgebraic set [36]. The appeal of SOS is that the condition that one or more
polynomials is a sum of square can be equivalently reformulated via semidefinite
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programs (SDPs). However, by combining the novel cp-MOC for the system analy-
sis with Lyapunov-based stability conditions, bilinear SOS programs are obtained.
Therefore, the problem of maximizing inner estimates of the ROA is non-convex,
but a coordinate descent approach is employed in order to approximately solve
it via iterative convex SDP. Sum-of-squares methods have been widely employed
for nonlinear stability analysis [34, 40, 44, 47, 24, 21, 20] and control [22, 37, 9].
The verification of stability regions along trajectories, also referred to as ‘funnels’,
of feedback controlled robotic systems, was obtained from SOS programming in
[42, 43, 31, 32, 29]. In order to apply the SOS methods to non-polynomial sys-
tems polynomial approximation techniques are explored in [50, 10, 35]. See [11]
for a comprehensive overview of applications of SOS programming in these fields.
Despite its popularity, the application of SOS to complex control problems is still
limited by scalability issues and by the fact that set containment conditions often
results in non-nonlinear programs, as noted above. Moreover, an additional source
of computational burden is here due to the fact that time-discretization of the pe-
riodic orbit is performed, with a consequent increase in the number of optimization
variables and constraints in the SOS program. The contribution of this work is
the proposal of several algorithmic options, investigated in Section 4, to ameliorate
these shortcomings.

Finally, the analysis method is demonstrated in Section 5 by three numerical
examples, which all show the benefit of using the cp-MOC in terms of accuracy
of the computed ROA. The first two consist of pedagogical systems studied in the
nonlinear dynamics literature, namely the Van der Pol oscillator and a modified
version of a Liénard system. The third example comes from airborne wind energy
systems, which are an emerging renewable energy technology in which tethered kites
are used to extract power from the wind. The adopted model has been previously
employed for control design of kites in the power-generating flight phase [49, 2].

2. Preliminaries.

2.1. Notation. Let Pn denote the ring of all n-variate polynomials with real coef-
ficients and let Pn≤r denote its subset containing polynomials of total degree at most

r ∈ N0. A polynomial g(x) : Rn → R, g(x) ∈ Pn≤r is SOS if it can be written as

g(x) =
∑
i qi(x)2, qi(x) ∈ Pn≤r/2. Moreover, g is SOS if and only if there is a matrix

Q � 0 such that g(x) = v(x)TQv(x), where v(x) is a vector of monomials. The
set of all SOS polynomials in the indeterminant x is indicated by Σ[x]. The degree
of a polynomial g in x is indicated by ∂(g). The function dist(a, b) indicates the
distance between two variables a, b ∈ Rn. Because this is a finite dimensional linear
space, any norm can be used to express the distance. The notation IT := [0, T ]
is used to denote closed intervals, and I◦T := [0, T ) is used for half-open intervals.
The symbols ‖ (∦) are used to indicate parallelism (not parallelism) between two
vectors, and Cd(R,Rn) denotes the space of continuous functions from R to Rn
with continuous derivatives up to order d. We say that a ∈ Rn is a unit vector if
its Euclidean norm is 1.

2.2. Local stability and region of attraction of periodic orbits. We consider
continuous-time nonlinear dynamics of the form

ẋ = f(x), (1)
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where x ∈ Rn is the state variable and f : Rn → Rn is the vector field. The
function f is assumed to be Lipschitz continuous in x and to have continuous partial
derivatives with respect to x.

It is assumed that system (1) has a steady-state consisting of a periodic trajectory,
referred to in the remainder as periodic orbit or limit cycle (LC), and defined next.

Definition 2.1 ([17] Periodic orbit). Let ω(t) : Rn → R be a periodic solution of
system (1) with period T . A periodic orbit Γ is defined as the closed curve

Γ = {x ∈ Rn |x = ω(t), t ∈ IT }. (2)

The curve Γ is invariant with respect to the solutions of (1), and the periodic
solution ω(t) can be obtained from example by considering the flow of the system
ψ(xini, t) with initial condition xini ∈ Γ. The periodic orbit Γ is either known
analytically or obtained numerically by simulation of (1).

Unlike equilibrium points, for which asymptotic stability is defined by the conver-
gence of all trajectories to one single point, trajectories of a system which converge
to a periodic orbit will not converge to a single point, instead to a set. Thus, the
notion of asymptotic orbital stability is used [17].

Definition 2.2 (Local asymptotic orbital stability). Let K ⊆ Rn be a region of
the state space with Γ ⊂ K. An orbit is stable if ∀ε > 0, there is a δ > 0 such that
∀xini ∈ K with dist(xini,Γ) < δ it holds ∀t > 0 that dist(ψ(xini, t),Γ) < ε. An orbit
is attractive if there is a δ > 0 such that ∀xini ∈ K with dist(xini,Γ) < δ it holds
limt→∞ dist(ψ(xini, t),Γ) = 0. A periodic orbit Γ is called asymptotically orbitally
stable if it is stable and attractive.

The region of attraction (ROA) of a periodic orbit Γ is defined as

R∗ := {xini ∈ Rn | lim
t→∞

dist(ψ(xini, t),Γ) = 0}, (3)

i.e. the set of initial conditions for which the system converges asymptotically to Γ.
The goal of this work is to propose computational strategies for the calculation of
inner estimates of R∗, that is, guaranteed regions of the state-space for which Γ is
attractive.

2.3. Moving transverse coordinate system. A pioneering contribution to the
study of orbital stability was given in [17], where the concept of MOC was intro-
duced. The basic idea is to decompose the dynamics of the system in the neighbor-
hood of Γ into two parts: the first contains the dynamics on a hyperplane transversal
to the trajectory of the limit cycle, and the second represents the dynamics in the
direction of the normal to the hyperplane. The construction of the hyperplanes
and the associated transformation operator depend on Γ, as discussed later. The
two parts of the decomposed dynamics, namely transverse and normal, are then
described by two separate sets of coordinates, respectively ρ ∈ Rn−1 and τ ∈ IT ,
which will be referred to as transverse coordinates.

More formally, let τ ∈ IT be a variable used to parametrize the orbit Γ as

Γ = {x ∈ Rn |x = ω(τ), τ ∈ IT }. (4)

This implicitly defines a function τ(t), −∞ < t <∞ which coincides with t on the
orbit, i.e. dτ

dt

∣∣
Γ

= 1.

The following result from [17] is preparatory for establishing existence of a MOC.
We denote by v : IT → Rn a function associating a unit vector to any point in IT .
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Lemma 2.3 (Lemma 1.1, Section VI.1,[17]). Given a unit vector function v : IT →
Rn with period T which is Lipschitz continuous. If n ≥ 3, then there exists a unit
vector ζ∗ (independent of τ) such that

v(τ) 6= ±ζ∗, ∀τ. (5)

The proof uses the fact that the curve described by any such v(τ) is rectifiable
on a sphere in Rn and thus covers a set of measure zero. Therefore there always
exists a vector ζ∗ which is not on this curve or its reverse.

Remark 1. The reason for excluding the case n = 2 in Lemma 2.3 lies in the fact
that a vector ζ∗ is not needed for the construction of a MOC for a 2-dimensional
system. This can be seen in the constructive proof of Theorem 2.4, stated next and
provided in the Appendix.

In [17], it is suggested to take v(τ) as the normalized tangent vector to Γ, that is

v(τ) =
f(ω(τ))

||f(ω(τ))||2
. (6)

The MOC based on this selection of v(τ) will be referred to in the remainder as
classical MOC (class-MOC). The proof of its existence is provided in the following
theorem.

Theorem 2.4 (Theorem 1.1, Section VI.1, [17]). Given ω ∈ Cp(R,Rn), p ≥ 2,

ω(τ + T ) = ω(τ), T > 0, dω(τ)
dτ 6= 0, 0 ≤ τ < T , and Γ defined in (4). Then, there

is a moving orthonormal system along Γ which is Cp−1(R,Rn).

The proof of this theorem is constructive, and is included in the Appendix. Let
the vectors defining the class-MOC system be denoted by

On = {v(τ), ζ2(τ), ..., ζn(τ)}. (7)

The class-MOC is used to construct a hyperplane “tube” S : IT → Rn−1 around
Γ defined as

S(τ) = {x ∈ Rn|v(τ)T (x− ω(τ)) = 0}. (8)

such that it satisfies the transversality condition

f(ω(τ)) /∈ S(τ), ∀τ ∈ IT . (9)

This is done by taking the n−1 basis vectors in On orthogonal to v(τ) to define a
transverse projection operator

Z(τ) := [ζ2(τ), ..., ζn(τ)] ∈ Rn×(n−1). (10)

Since v(τ) is given by (6), Z(τ) represents the operator projecting onto a mov-
ing transverse hyperplane which is orthogonal to the flow of the system at each
ω(τ). Thus, for any given x in a sufficiently close neighborhood of ω(t), τ specifies
the corresponding transversal hyperplane and ρ is the projected position on that
hyperplane where ρ = 0⇔ x = ω(τ).

The construction of On and the resulting projection Z(τ) provide the transfor-
mation law that maps a state x onto the transverse coordinates (τ, ρ)

x = Z(τ)ρ+ ω(τ). (11)

Critically, this transformation is only locally well-defined. The condition for the
transformation to be well-defined can be derived by applying the Implicit Function
Theorem.
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Lemma 2.5 (Well-definedness condition, Section VI.1, [17]). The transformation
(11) is well-defined for all x ∈ Rn in the neighborhood of Γ for which the condition

η(τ, ρ) := v(τ)T f(ω(τ)) + v(τ)T
∂Z(τ)

∂τ
ρ > 0, (12)

is satisfied.

Proof. Consider the algebraic equation F (x, τ, ρ) = Z(τ)ρ + ω(τ) − x. Then the
Jacobian with respect to τ, ρ is

J =

[
∂F

∂τ
,
∂F

∂ρ

]
, (13)

where

∂F

∂τ
=
dω(τ)

dτ
+
dZ(τ)

dτ
ρ, (14)

∂F

∂ρ
= Z(τ). (15)

Existence of the inverse of J needs to be guaranteed for the transformation to be
well-posed, and thus it is required that det[J ] 6= 0. Since (15) has rank n − 1 and
Z(τ) forms an orthonormal system with v(τ), the following condition results from
projecting (14) onto v(τ)

v(τ)T

(
f(ω(τ)) +

∂Z(τ)

∂τ

T

ρ

)
6= 0, (16)

for the inverse of J to exist. From the Implicit Function Theorem condition (16)
implies well-definedness of the transformation. Specifically, the Lemma prescribes
that the left-hand side of (16) be strictly positive. This follows from the following
two observations. First, from the definition of v(τ) (6), one has v(τ)T f(ω(τ)) >

0, ∀τ ∈ IT . Second, at the origin of On (i.e. for ρ = 0), it holds ∂Z(τ)
∂τ

T
ρ = 0.

These two facts thus lead to the condition (12) prescribed by the Lemma.

It is useful to observe that (12) is affine in ρ for a fixed τ .

Remark 2. When η(τ, ρ) = 0, there exists a set of points x for which the transfor-
mation (11) is no longer well-defined. An intuition about this set of points can be
obtained by the following consideration. Given x, the corresponding coordinate τ
of the transformation depends on ω(τ) and associated v(τ) via Eq. (8). If there is
more than one ω(τ) for which (8) is satisfied then the transformation x→ (τ, ρ) in
(11) is not unique, i.e., it is not well-defined. In the case n = 2, this set of points
can be visualized as the intersection between neighboring planes orthogonal to the
orbit.

3. An improved MOC formulation for ROA analysis of limit cycles. The
standard MOC proposed in [17] has been extensively used in analysis and control of
nonlinear systems [18, 16, 25, 30, 14, 12]. However, the well-definedness condition
stated in Lemma 2.5 poses a strict upper bound on the region which can be consid-
ered in the analyses. Intuitively, and quantitatively shown later in the results, this
is a critical limitation when transverse coordinates are used for ROA analysis, as
it limits the portion of the state space where property (3) can be verified. In other
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words, the inner-estimates cannot go beyond the region for which the transforma-
tion is well-defined. In this section, the center point MOC is proposed to addresses
the limitations related to the well-definedness conditions of the class-MOC.

3.1. Formulation of the cp-MOC. We begin by introducing two notions which
are instrumental to define the new coordinate system.

Definition 3.1 (Well-defined “tube”). The connected set in which the transforma-
tion to a MOC at a given location τ in Γ is well-defined is named the well-defined
region at τ and is denoted by Vτ

Vτ := {ρ ∈ Rn−1 | ρ = Z(τ)T (x− ω(τ)) , (12) holds, τ ∈ I◦T }. (17)

The union V =
⋃

τ∈I◦T
Vτ has a tube-like structure and is defined as the well-defined

tube.

Making use of (11), Vτ represents the set of all x located on a given hyperplane
S(τ) for which (12) holds.

Definition 3.2 (Well-defined MOC). If Vτ 6= ∅ for all τ ∈ I◦T then the MOC is
referred to as well-defined MOC.

The key observation now is that, as it can be observed in Eqs. (12)-(11), the size
of Vτ depends on the choice of v(τ). While in [17] the existence of an MOC (the
class-MOC) was shown for the particular choice of v(τ) in (6), the existence results
can be generalized to a broader class of function v(τ), as is shown in the following.

Corollary 1. Given a vector function v : IT → Rn which satisfies Lemma 2.3. If,
in addition, it satisfies the condition

v(τ)T f(ω(τ)) > 0, ∀τ ∈ IT , (18)

then there exists a well-defined MOC associated with it.

Proof. Lemma 2.3 guarantees the existence of a vector ζ∗ 6= ±v(τ), ∀τ . Using the
properties imposed on v(·), Theorem 2.4 proves the existence of an MOC. Thus,
the construction of On shown in the proof of Theorem 2.4 (see Eq. (63) in the
Appendix) can be directly applied for any such v(τ). From (18) it follows that
the transversality condition (9) holds and thus the operator Z(τ) given by (10)
projects onto a transversal hyperplane representing the desired “tube” around Γ.
Further, because (18) holds, the set Vτ is non-empty for all τ and thus there exists
a neighborhood in which the transformation (11) is well-defined for each τ ∈ I◦T as
stated in Lemma 2.5.

The foregoing discussion points out important features that are desirable for a
moving coordinate system and thus should drive the design of a new one. One the
one hand, it is advantageous to formulate a lower bound on the size of Vτ for all
τ and to have the possibility to tune it via design parameters. On the other hand,
the variation in the size of Vτ over τ would be ideally minimized.

A possible strategy to achieve the first point is to directly maximize the aforemen-
tioned lower bound on the size of Vτ . In [31] the authors propose an optimization
problem to obtain a v(τ) for which the set of ρ where (12) is fulfilled is maximized.
The resulting program is, however, non-convex and the result is sensitive to the
initial guess. More subtly, there can be choices of v(τ) for which Vτ becomes for

some τ practically unbounded (namely when ∂Z(τ)
∂τ goes to zero). This has a twofold
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Π−1
H (xHc )

vcu(τi)
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x
3

Figure 1. Illustration of the orthogonal projection of a notional
3-dimensional periodic orbit with periodic solution ω0.

consequence: on the one hand, it introduces limitations to the size of Vτ for other
values of τ ; and on the other, it can result in large variations in the size of Vτ , which
in turn can cause numerical problems, particularly in the ROA analysis.

To achieve the aforementioned goals and address the previous limitations, the
proposed construction of the novel MOC builds around the choice of a tunable
point xc, which is named here the center point. This is a simple (or single) point,
and thus, differently from the construction of class-MOC which is defined about a
set of points lying on the orbit, the new transverse coordinates depend only on the
location of one point. We will therefore refer to it as the center point MOC (cp-
MOC). The cp-MOC provides explicit knowledge of the Vτ for each τ , and makes it
possible to directly adjust these regions by means of xc. In this way, the selection of
MOC can be tailored to the particular class of systems, and to the type of analysis
performed, which was not previously possible.

We first present the construction of the cp-MOC and the resulting regions Vτ ,
and then provide the description of the class of systems for which a cp-MOC can
be constructed.

3.2. Construction of a well-defined cp-MOC. The algorithm below presents
the proposed construction of the vector function v(τ) used in cp-MOC. Figure 1
depicts a notional limit cycle and schematically illustrates the vectors introduced
below.

Center point algorithm (CPA):
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Step 1: Compute the normalized tangent vectors vt(τ) to ω(τ),

vt(τ) =
f(ω(τ))

||f(ω(τ))||
. (19)

Step 2:
– n = 2: Choose a point xc in the state space inside the area encircled by

Γ.
– n ≥ 3: Choose a point xc in the state space which lies inside the encircled

area obtained from an orthogonal projection of Γ onto a 2-dimensional
plane.

Step 3: Construct the normalized vectors vc(τ) connecting each point in Γ
to the center point xc

vcu(τ) = −ω(τ) + xc, (20)

vc(τ) =
vcu(τ)

||vcu(τ)||
. (21)

Step 4:

– n = 2: Take v(τ) = [−vc2(τ), vc1(τ)]
T

, where vc1(τ), vc2(τ) are the com-
ponents of vc(τ).

– n ≥ 3: Construct a (n − 2)-dimensional (τ -independent) subspace Nf ⊆
Rn−2 for which the following hold:

vc(τ) /∈ Nf , vt(τ) /∈ Nf , ∀τ ∈ IT . (22)

Compute v(τ) ∈ Rn as the unit vector normal to the subspace generated
by span {Nf , vc(τ)}, for each τ ∈ IT .

v(τ) :
[
ef1 , ... efn−2

, vc(τ)
]T
v(τ) = 0, τ ∈ IT . (23)

As long as a subspace Nf can be found which satisfies the conditions (22) in
Step 4, a vector function v(τ) can be computed from the CPA. However, not all
v(τ) obtained from the CPA result in a well-defined MOC when used as a basis to
construct a MOC, as stated in Lemma 2.3 and Theorem 2.4. In particular, both
the class of orbits Γ and the choice of xc in Step 2 can be constraining factors. The
conditions for existence of a vector function v(τ) generated by the CPA algorithm
and providing a well-defined MOC are formalized next. First, define

ΠH : Rn → R2, (24)

to be the orthogonal projection onto a 2-dimensional plane H ⊆ R2. Then, the set

ΓH = {ωH ∈ R2 |ωH(τ) = ΠH (ω(τ)) , ∀τ ∈ IT }, (25)

denotes the projected orbit on H.

Theorem 3.3. Assume that there exists a projection (24) and a point xHc ∈ H such
that there is a bijective map h,

h :
ωH(τ)− xHc
||ωH(τ)− xHc ||

−→ (1, ϕ), τ ∈ I◦T , ϕ ∈ [−π, π), (26)

where ϕ is the angular coordinate of a point on the unit circle, and

dϕ

dτ
6= 0 ∀τ ∈ I◦T . (27)

Then, the vector v(τ) obtained from the CPA choosing xc ∈ Π−1
H (xHc ), xc < ∞,

results in a well-defined cp-MOC. That is, Vτ 6= ∅, ∀τ ∈ I◦T .
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Proof. Let vHcu = −ωH(τ) + xHc indicate the vectors connecting each element in ΓH

to xHc . From the existence of the bijective map h onto the polar coordinates of a

unit circle, i.e., h

(
−vHcu(τi)

||vHcu(τi)||

)
= ϕi with a unique ϕi for each τi, it follows that

vHcu(τi) ∦ vHcu(τj) ∀τi, τj ∈ I◦T , i 6= j. (28)

Let fH denote the dynamics projected onto H. From (28) and (27) follows that

fH
(
ωH(τ)

)
∦ ±vHcu(τ), ∀τ ∈ I◦T , (29)

This can be shown by contradiction. If fH(ωH(τi)) ‖ ±vcuH(τi) for a τi ∈ I◦T ,
then either of the following holds. There is a symmetry in ωH(τ) with respect to

vHcu(τ), and thus there exist τi and τj for which
−vHcu(τi)

||vHcu(τi)|| =
−vHcu(τj)

||vHcu(τj)|| , which would

contradict (28). There exists a saddle-point in the mapping, that is a point where
dϕ
dτ = 0, which would contradict (27).

From (29) it follows that f(ω(τ)) ∦ ±vc(τ), ∀τ ∈ I◦T , where vc(τ) is in defined

(21) where xc is any element in the set given by the inverse projection Π−1
H (xHc ).

The function vc(τ) then allows the computation of a constant (n−2)-dimensional
subspace Nf satisfying the conditions stated in Step 4 of the CPA, and the com-
putation of v(τ) as in (23) for which results v(τ)T f(ω(τ)) > 0, ∀τ ∈ I◦T , and thus
Vτ 6= ∅, ∀τ ∈ I◦T .

Remark 3. Theorem 3.3 provides sufficient conditions, depending on the particular
shape of the orbit, such that a well-defined cp-MOC is guaranteed to exist. This
result also shows that theoretically the cp-MOC can be constructed from any finite
xc ∈ Π−1

H (xHc ). In the notional example of Fig. 1, any xc on the vertical red dotted
line would be a valid choice. However, for numerical reasons it is often beneficial to
choose a xc ∈ Π−1

H (xHc ) which lies close to the orbit Γ, e.g., its centroid.

Theorem 3.3 provides a sufficient condition for the cp-MOC to be well-defined
in terms of xc. This is important as it provides formal guarantees for an admissible
construction of v(τ), and thus of the MOC, based on the center point. In practice,
the well-definedness of a cp-MOC can be ascertained by checking the conditions
of Corollary 1, which are directly in terms of v(τ). Since v(τ) is continuous by
construction, the remaining condition to check is (18).

Remark 4. As it will be discussed in Section 4, to numerically estimate the re-
gion of attraction of the limit cycle we will restrict attention to polynomial vector
field. In this case, checking (18) amounts to computing the zeros of the polynomial
v(τ)T f(ω(τ)), τ ∈ I◦T , after all steps up to Step 4 in the Center point algorithm
have been completed. If the polynomial has no zeros then the cp-MOC constructed
from the obtained v(τ) is well-defined. If the polynomial has one or more zeros,
then the algorithm can be repeated for a different choice of xc. Often, existing
information on the shape of the orbit can be helpful in finding a suitable xc from
geometrical considerations.

An important feature of the cp-MOC is that it allows an analytical expression
for the sets Vτ to be obtained, as stated next.
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Corollary 2. For a cp-MOC, the set Vτ for each τ ∈ I◦T is given by the open
half space containing ρ = 0 and resulting from the subtraction of the (n−2)-

dimensional hyperplane SVτ (τ) generated by span
{
Z(τ)T

(
vcu(τ) + ker

(
∂v(τ)
∂τ

))}
from the (n−1)-dimensional subspace S(τ).

Proof. As stated in Definition 3.1, for a τ ∈ I◦T the set Vτ is given by all ρ ∈ Rn−1 for
which the well-definedness condition (12) is satisfied. Eq. (12) is an affine equation
in ρ for a given τ , and thus the well-defined region is limited by the ρ at which the
condition (12) is no longer satisfied, i.e. by the ρ for which η(ρ, τ) = 0. Because
the hyperplane SVτ (τ) is located by definition at the boundary of the well-defined
region, it is associated with the condition η(ρ, τ) = 0. This implies, according to
(12), that

v(τ)T f(ω(τ)) + v(τ)T
∂Z(τ)

∂τ
ρ = 0. (30)

Rewriting the partial derivative in (30) yields

v(τ)T f(ω(τ)) +
∂

∂τ

(
v(τ)TZ(τ)

)
ρ− ∂v(τ)T

∂τ
Z(τ)ρ = 0,

=⇒ v(τ)T f(ω(τ))− ∂v(τ)T

∂τ
Z(τ)ρ = 0, (since v(τ)TZ(τ) = 0),

=⇒ v(τ)T f(ω(τ))− ∂v(τ)T

∂τ
(x− ω(τ)) = 0, from (11),

=⇒ ∂v(τ)T

∂τ
x = v(τ)T f(ω(τ)) +

∂v(τ)T

∂τ
ω(τ),

=⇒ ∂v(τ)T

∂τ
x =

∂

∂τ

(
v(τ)Tω(τ)

)
,

=⇒ ∂v(τ)T

∂τ
x =

∂

∂τ

(
v(τ)T (−vcu(τ) + xc)

)
, from (20),

=⇒ ∂v(τ)T

∂τ
x =

∂

∂τ

(
v(τ)Txc

)
, since v(τ)T vcu(τ) = 0 by construction,

=⇒ ∂v(τ)T

∂τ
x =

∂v(τ)T

∂τ
xc, since xc = const.

The equality

∂v(τ)T

∂τ
x =

∂v(τ)T

∂τ
xc, (31)

is satisfied by all x such that

x = xc + ker

(
∂v(τ)T

∂τ

)
. (32)

Substituting (32) in (11) and solving for ρ results in

ρ|η(τ,ρ)=0 = Z(τ)T
(
xc − ker

(
∂v(τ)T

∂τ

)
− ω(τ)

)
,

= Z(τ)T
(
vcu(τ)− ker

(
∂v(τ)T

∂τ

))
, (from (20)). (33)

Due to the linearity of η(τ, ρ) in ρ and ρ = 0⇒ η(τ, 0) > 0, the condition (12) holds
for all ρ in the half space which contains ρ = 0 and is given by the subtraction of
the hyperplane SVτ (τ) := ρ|η(τ,ρ)=0 from S(τ).
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Figure 2. Left plot: Illustration of the hyperplanes S(τ) given
by the class-MOC for the limit cycle of the Van der Pol oscilla-
tor. Right plot: Illustration of the hyperplanes S(τ) given by the
cp-MOC with xc = [0, 0]T for the limit cycle of the Van der Pol
oscillator.

Remark 5. For n = 2, the sets Vτ given by Corollary 2 is the 1-dimensional open
half space containing ρ = 0, which is given by the intersection of S(τ) with the
center point xc.

To provide a pictorial interpretation of the results, Figure 2 illustrates the hy-
perplanes obtained in a class-MOC and in a cp-MOC for a planar example. As
stated in Remark 2, the regions Vτ are limited by the point of intersection of two
neighboring hyperplanes. The hyperplanes for the class-MOC (left plot) show that,
in the inner part of Γ, this results in significantly smaller regions at locations of
large curvature of Γ compared to locations of small curvature. In contrast, the
hyperplanes for the cp-MOC reveal a unique intersection point at xc which defines
the limit of the regions Vτ as described by Corollary 2. This illustration showcases
how the cp-MOC is able to provide well-defined regions Vτ with more uniform size.
Moreover, it is possible to infer from the figure that, by changing the location of xc,
the size of the sets Vτ can be changed with a certain degree of flexibility.

3.3. Transverse coordinate dynamics. Consider the nonlinear dynamics (1)
and let x satisfy the transformation equation (11) obtained from a well-defined
MOC (class-MOC or cp-MOC are two particular cases). The dynamics in the
transverse coordinate (τ, ρ) are then obtained by considering

dZ(τ)

dτ
τ̇ρ+ Z(τ)ρ̇+ f(ω(τ))τ̇ = f(Z(τ)ρ+ ω(τ), ϑ). (34)

Projecting both sides of (34) onto v(τ) gives the 1-dimensional normal dynamics:

τ̇ =
v(τ)T f(ω(τ) + Z(τ)ρ, ϑ)

v(τ)T f(ω(τ)) + v(τ)T ∂Z(τ)
∂τ ρ

, (35)
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where (18) was used. Inspection of (35) reveals the denominator to be equal to the

left hand side in (12). Let us thus define τ̇(τ, ρ) = µ(τ,ρ)
η(τ,ρ) , with

µ(τ, ρ) := v(τ)T f(ω(τ) + Z(τ)ρ). (36)

Further, projecting both sides of (34) onto Z(τ) gives the (n−1)-dimensional
transverse dynamics:

ρ̇ =
dZ(τ)

dτ
τ̇Z(τ)ρ+ Z(τ)T f(ω(τ) + Z(τ)ρ, ϑ)− Z(τ)T f(ω(τ))τ̇ . (37)

Note that in the case of class-MOC, Z(τ)T f(ω(τ)) = 0, and thus the second term
in the right-hand side of (37) is equal to 0.

4. Region of attraction analysis of limit cycles in transverse coordinates.
This section presents a computational approach to numerically estimate the ROA of
limit cycles. The approach is based on Lyapunov theory arguments formulated with
respect to dynamical systems transformed into transverse coordinates, for which
the new formulation developed in Section 3 is leveraged. Whereas the results were
presented therein for a more general class of vector fields (which only need to satisfy
the assumptions of continuity and differentiability), we restrict the attention here
to polynomial functions f . A numerical procedure based on SOS is then proposed
to compute verifiable inner estimates of the ROA.

4.1. Lyapunov criteria for the ROA of a limit cycle. Conditions to charac-
terize the local stability of periodic orbits in the context of transverse coordinates
were first proposed in [30]. In the following, the notation I◦T is used to denote,
given the period T , the half-open time interval [0, T ).

Theorem 4.1. [30, Theorem 2]

Let V : IT × Rn−1 → R be a function that is piecewise continu-
ously differentiable in τ and continuously differentiable in ρ, and such that
R := {(τ, ρ) ∈ I◦T × Rn−1 | V (τ, ρ) ≤ γ} is a compact set, where γ > 0 is a con-
stant. If V satisfies:

V (τ, ρ) > 0, ∀(τ, ρ) ∈ R, ρ 6= 0, (38)

V̇ (τ, ρ) =
∂V (τ, ρ)

∂ρ
ρ̇+

∂V (τ, ρ)

∂τ
τ̇ < 0, ∀(τ, ρ) ∈ R, ρ 6= 0, (39)

V (τ, 0) = V̇ (τ, 0) = 0, ∀τ ∈ R, (40)

η(τ, ρ) > 0, ∀(τ, ρ) ∈ R, (41)

where η(τ, ρ) is as defined in (12), then R ⊆ R∗. That is, R is an inner estimate
for the ROA of Γ.

The proof uses classic Lyapunov arguments. From the Lipschitz assumption on
f and (41) it follows that trajectories (τ, ρ) of the system starting from R exist and
are unique. Equations (38)-(39) guarantee that R is invariant. Finally, Eq. (40)
implies that trajectories starting in R all have the property ρ→ 0 as t→∞. From
this, it follows that Γ is locally asymptotically orbitally stable and R is an inner
estimate of the region of attraction.
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In the following we restrict V to be polynomial in both τ and ρ. Using the
transverse dynamics (37) and (35), condition (41) results in

∂V (τ, ρ)

∂ρ

[
dZ(τ)

dτ

T

τ̇Z(τ)ρ+ Z(τ)T f(ω(τ) + Z(τ)ρ)τ̇ − Z(τ)T f(ω(τ))τ̇

]

+
∂V (τ, ρ)

∂τ
τ̇ < 0.

(42)
Equation (35) reveals that the left hand side in the condition (42) contains rational
terms. Since the denominator term, η(τ, ρ), is, however, constrained to be positive
in order for the transverse coordinate transformation to be well defined, it is possible
to multiply both sides of (42) by η(τ, ρ) . This results in the polynomial inequality
condition

∂V (τ, ρ)

∂ρ

[
dZ(τ)

dτ

T

µ(τ, ρ)Z(τ)ρ+ Z(τ)T f(ω(τ)

+ Z(τ)ρ)η(τ, ρ)− Z(τ)T f(ω(τ))µ(τ, ρ)

]
+
∂V (τ, ρ)

∂τ
µ(τ, ρ) < 0.

(43)

If we replace (41) by (43), the constraints in Theorem 4.1 are now all polynomial
and thus are amenable to be solved using tools from polynomial optimization.

4.2. Algorithms for an inner estimate of the ROA of the orbit. The con-
ditions (38), (39), (40) and (43) on the set R can be reformulated as semialgebraic
set containment conditions. In the following, an optimization problem is presented
to maximize the size of R. This program is obtained by using classic Positivstellen-
satz arguments for which computationally tractable relaxations are available [36].
Specifically, they provide the set containment conditions in the form of SOS con-
straints.

The resulting prototypical optimization problem that needs to be solved is non-
convex, and is in the form of a SOS program with bilinear terms in the decision
variables.

max
V,s1,s2

volume (R) (44a)

subject to

V (τ, ρ)− l(ρ) ∈ Σ[τ, ρ], (44b)

− V̇ (ρ, τ)− (γ − V (τ, ρ))s1(τ, ρ)− l(ρ) ∈ Σ[τ, ρ], (44c)

η(ρ, τ)− (γ − V (τ, ρ))s2(τ, ρ) ∈ Σ[τ, ρ], (44d)

s1(τ, ρ), s2(τ, ρ) ∈ Σ[τ, ρ], (44e)

where s1 and s2 are so-called SOS multipliers. The addition of l(ρ) = ερT ρ with
ε � 1 in (44b) is used to enforce strict inequality constraints, and (44d)-(44c)
certify that the inequality constraints (38)-(39) hold. This follows from standard
SOS arguments, and the reader is referred to [34, 45] for concise reviews of SOS
techniques and their application to enforce set containment conditions. Note that in
general (44b) enforces a stricter constraint on the function V , which is only required
to be positive semidefinite inside of its γ-sublevel set, to improve the numerical
robustness of the computations.
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Because of the particular application considered here, there are various possibil-
ities for the choice of Lyapunov function V and for the cost function in (44a), in
particular regarding the implementation of the time-varying nature of V . These
choices are very important, as they have a strong influence on the computational
complexity and on the size of the certified set R. Driven by the objective to maxi-
mize R, possible choices for Lyapunov functions and cost functions, referred to as
algorithmic options, are investigated in the following, ordered by increasing com-
plexity.

4.2.1. Scaling the sublevel set of a pre-computed V (referred to as VSS-∂lin). A
Lyapunov function for an asymptotically orbitally stable periodic orbit Γ can be
directly obtained by solving the periodic Lyapunov equation presented in [18] (and,
in more general form, in [7]). The periodic Lyapunov equation is a generalization
of Lyapunov’s Indirect Method to periodic solutions. It requires the linearization
of the transverse dynamics (37) and (35) of system (1) around ω(τ) (i.e., ρ = 0).
The transverse linearization associated with (1) is

AS(τ) =

[
d

dt
Z(τ)T

]
Z(τ) + Z(τ)T

∂f(ω(τ))

∂x
Z(τ)

− Z(τ)T f(ω(τ))
v(τ)T ∂f(ω(τ))

∂x Z(τ)− v(τ)T ∂Z(τ)
∂t

v(τ)T f(ω(τ))
.

(45)

The periodic Lyapunov equation can then be written as

Ṗ (τ) +AS(τ)TP (τ) + P (τ)AS(τ) +H(τ) = 0, (46)

where H(τ) � 0 is a continuous positive definite T -periodic matrix. Once a user-
defined H(τ) has been chosen [18, Theorem 2.2], one can solve (46) to obtain the
unique periodic solution P (τ) � 0. The Lyapunov function

V (τ, ρ) = ρTP (τ)ρ, (47)

can then be used in (44) where the objective is to maximize the sublevel set size γ.
The associated optimization problem is

max
γ,s1,s2

γ, (48a)

subject to (44b), (44c), (44d), (44e). (48b)

The drawback of this strategy, originally presented in [31], is that the shape
of the inner estimate, which is an important degree of freedom when computing
inner estimates of the ROA, is set to the solution of (46) and can not be optimized
over. Moreover, the choice is limited to quadratic functions, which again limits the
flexibility of the algorithm.

4.2.2. Scaling the sublevel set and optimizing the shape of a quadratic V (referred
to as VSS-∂(2)). To partially ameliorate these shortcomings, one can parametrize
the Lyapunov function as a quadratic form with a τ -varying Gram matrix

V (τ, ρ) = ρTQ(τ)ρ, (49)

where Q(τ) is linear in τ . In order to prevent an artificial increase of the sublevel
set size by a rescaling of Q(τ) (with no effect on the computed region), the trace of
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Q(τ) is set to a constant value c > 0 at each τ ∈ I◦T . The associated optimization
problem is

max
s1,s2,γ,Q

γ (50a)

subject to (44b), (44c), (44d), (44e), (50b)

tr (Q(τ)) = c(τ), ∀τ ∈ I◦T . (50c)

4.2.3. Scaling the ellipsoid inside a variable-degree-V sublevel set (referred to as
SE-∂(r)). It is well-known that higher degree Lyapunov functions have the potential
to verify larger ROA estimates [40, 44, 3]. In this algorithmic option, the Lyapunov
function is thus parametrized as

V (τ, ρ) = v(ρ)TQ(τ)v(ρ), (51)

where v(ρ) is the monomial vector in ρ up to degree r/2, with r ≥ 2. In order
to formally define the objective of maximizing the volume of R, a fixed shape
surrogate set is considered. Its size is then maximized, subject to the constraint
that the surrogate set lies inside of R. This approach is similar to the method
proposed in [23] in the context of ROAs of equilibrium points. Here we propose
a generalization of this approach to Lyapunov functions for periodic orbits. The
surrogate set is given by the sublevel set of a quadratic function b = ρTBF ρ

BF = {ρ ∈ Rn−1 | b(ρ) ≤ α}, (52)

where BF ∈ R(n−1)×(n−1) is a fixed positive definite matrix prescribing the shape of
the elliptical surrogate set. The constraint that BF ⊆ R is a set containment condi-
tion and can thus be enforced as is done for the others. The associated optimization
problem is

max
s1,s2,s3,Q

α (53a)

subject to − (α− b(ρ)) s3(τ, ρ) + (1− V (τ, ρ)) ∈ Σ[τ, ρ], (53b)

(44b), (44c), (44d), (44e), (53c)

where s3(τ, ρ) is an additional SOS multiplier. Note that in this option the scaling
factor of a single fixed shape ellipsoid is maximized while the ellipsoid is constrained
to lie inside the τ -varying 1-sublevel set of V . This simultaneously maximizes the
sublevel set of V since Q enters the optimization as decision variable. The size of
the verified set R can depend significantly on the choice of the ellipsoid shape.

4.2.4. Expanding the ellipsoid(s) inside a variable-degree-V sublevel set (referred to
as EE-∂(r)). In order to circumvent the dependency of the verified set R on the
choice of ellipsoid’s shape, an extension of the SE-∂(r) approach is presented here.
Specifically, a set with a shape which is not fixed a priori, but will be optimized
over, is expanded inside R. This surrogate set is taken as the sublevel set of a
quadratic function b(τ, ρ) = ρTB(τ)ρ,

B = {(τ, ρ) ∈ I◦T × Rn−1 | b(τ, ρ) ≤ 1}, (54)

with a fixed sublevel set scaling factor. The matrix B(τ) ∈ R(n−1)×(n−1) is con-
strained to be positive definite and its entries enter as decision variables into (44).
The objective is to maximize the size of the set (54), and thus one would want to
minimize det

(
B(τ)

)
, which represents the inverse of its volume. However, this is a

non-convex function, and thus we resort here to a common heuristic in minimum
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volume ellipsoid problems. Precisely, to preserve tractability of the optimization
problem, we consider the trace of B [8], which is inversely proportional to the sum
of the principal axes of the ellipsoidal set. Since the goal here is to maximize the
size of the ellipsoid defined by B, it is proposed to minimize tr (B). The associated
optimization problem is

min
s1,s2,s3,Q,B

tr (B) (55a)

subject to − (1− b(τ, ρ)) s3(τ, ρ) + (1− V (τ, ρ)) ∈ Σ[τ, ρ], (55b)

(44b), (44c), (44d), (44e), (55c)

It is noted that whereas tr (B) is only a surrogate of the volume of the ellipsoid,
numerical tests suggest that it performs better than other metrics, such as the geo-
metric mean of the eigenvalues of B, which would lead to less tractable formulations.

An interesting variation of this option, considered later in the analysis and aimed
at reducing the computational complexity, consists of considering a constant B
which is independent of τ . In this way, the importance of a variably expanding
ellipsoid compared to a fixed shape surrogate set can be assessed. In terms of nota-
tion, the variant for the option with the τ -varying B is indicated by the subscript
m (EE-∂(r)m), and the τ -independent B variant by s (EE-∂(r)s).

It is emphasized that the algorithmic options considered here are not exhaustive.
However, in terms of complexity and range of resulting estimate sizes, they cover an
interesting range of possible objective function choices having a noticeable impact,
as investigated in Section 5.

We conclude this section by providing some more detail on the implementation
of the optimization programs. In all the algorithmic options presented above, the
resulting SOS programs have constraints featuring bilinear terms in the decision
variables. A coordinate descent approach is used here, whereby one successively
minimizes the objective function by optimizing over different variables. Namely, we
alternate between V and s1, s2, s3. The original optimization problem is therefore
solved iteratively by a sequence of SDPs.

An important feature, specific to the limit cycle ROA problem, is that, due to
the dependency on the time-like variable τ , the program has a time-varying nature.
Since this leads to a significant computational complexity, accuracy of the solution
can be traded for computational efficiency by solving the problem for a discrete
set of τ (of length N) within the full interval [0, T ] [43]. This effectively chooses a
set of fixed transversal hyperplanes on which the conditions of Theorem (4.1) are
tested. Note that, the finer is the sampling of τ , the greater is the accuracy of the
solution, but the higher is the computational cost due to the added constraints for
each hyperplane. The τ -sampled polynomials are denoted with a superscript i in
the following.

The piecewise linear Lyapunov function obtained by sampling τ is indicated as

V (i)(ρ) := v(ρ)TQ(i)v(ρ), (56)

The explicit expression of its τ -derivative is

∂V (i)(ρ)

∂τ
= v(ρ)T

(
Q(i+1) −Q(i)

τ (i+1) − τ (i)

)
v(ρ), i = 1, ..., N−1. (57)

The constraint (44b) is automatically satisfied by enforcingQ(i) � 0. The τ -sampled
optimization program for the algorithmic option EE-∂(r)m results in the following
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SOS program.

min
s
(i)
1 ,s

(i)
2 ,s

(i)
3 ,Q(i),B(i),i=1...N−1

N−1∑
i=1

tr
(
B(i)

)1/(n−1)

(58a)

subject to − V̇ (i)(ρ)−
(

1− V (i)(ρ)
)
s

(i)
1 (ρ)− l(ρ) ∈ Σ[ρ], (58b)

η(i)(ρ)−
(

1− V (i)(ρ)
)
s

(i)
2 (ρ) ∈ Σ[ρ], (58c)

−
(

1− b(i)(ρ)
)
s

(i)
3 (ρ) +

(
1− V (i)(ρ)

)
∈ Σ[ρ], (58d)

s
(i)
1 (ρ), s

(i)
2 (ρ), s

(i)
3 (ρ) ∈ Σ[ρ], (58e)

Q(i) � 0. (58f)

The implementation of the iterative steps to solve (58) is shown in Algorithm 1. The
iteration is initialized by solving the periodic Lyapunov equation (46) for the trans-
verse linearization of the dynamics and scaling the result via bisection until SOS
multipliers certifying (58b)-(58e) are found. Since the initial Lyapunov function is
quadratic, a feasible surrogate set can always be found by proper scaling. In Step
1, the Lyapunov function is kept fixed and, for each τ (i), a feasibility test consisting
of (58b)-(58e) is performed to obtain the SOS multiplier for that τ (i). The problem
for each τ (i) sample is independent from the others, and so N − 1 feasibility tests
(the first and last points of the grid coincide) are performed in parallel in this step.
In Step 2, the problem on each hyperplane depends on the neighboring ones due
to the Lyapunov derivative. Thus, for each τ (i), the multipliers are fixed and the
constraints on V are added to a single large optimization program. In this second
step the degree of the Lyapunov function can be increased to the desired order.
Steps 1 and 2 are repeated until the maximum increase of the expanding ellipsoids
on the hyperplanes falls below a specified threshold (convCritB in Algorithm 1).

Note finally that by appropriately replacing the cost function and constraints,
Algorithm 1 can be used for any of the algorithmic options presented above.

5. Numerical examples. This section illustrates the application of the ROA anal-
ysis to three case studies comprising two planar systems and an airborne wind energy
system in the power generating phase. In addition to showing the succesful applica-
tion of the proposed method, this section offers two important types of comparison:
one concerning the impact of the adopted MOC (either class-MOC or cp-MOC) and
the other relative to the algorithmic options for the ROA computation. The scripts
used to perform the analyses are available in the repository [1], and all the SOS
problems are solved using Yalmip’s built-in module for sum-of-squares calculations
[28, 27].

5.1. Van der Pol oscillator. The Van der Pol oscillator dynamics [26] are defined
by the following system of ordinary differential equations

ẋ1 = x2,

ẋ2 = (1− x2
1)x2 − x1.

(59)

This system has a unique stable limit cycle ΓVDP which encircles an unstable equi-
librium point at xEP = [0, 0]T . The ROA of ΓVDP thus includes all of R2\{xEP}.

We use this example to investigate the effect of the choice of the MOC and the
effect of different degrees of Lyapunov functions on the ROA estimates R. For this
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Algorithm 1 Find Lyapunov function for orbit to maximize R

1: Input: N , ∂(s
(i)
1 ), ∂(s

(i)
2 ), ∂(s

(i)
3 ), ∂(V (i)), convCritB

2: Output: V , R
3: procedure maxROAestimate

4: ρ̇, τ̇
(37),(35)←−−−−− f(x), ω(t)

5: Initialization:
6: Qini(τ) ← c · P (τ) solution of (46), bisect c such that (58b)-(58e) feasible
7: Qini

(i) ← Qini(τi)
8: choose B(i) small enough such that (58d) is feasible

9: Iteration:
10: k ← 0
11: repeat
12: k ← k + 1
13: for i = 1 : N−1 do
14: Step 1: s

(i)
1 , s

(i)
2 , s

(i)
3 ← fix Q(i), B(i) solve (58b)-(58e)

15: end for
16: Step 2: Q(i), B(i), i=1...N−1 ← fix s

(i)
1 , s

(i)
2 , s

(i)
3 , i=1...N−1 solve (58a)-

(58d)

17: until max{det(B(i))k−1 − det(B(i))k}N−1i=1 < convCritB
18: end procedure

purpose we use the option EE-∂(r)m in the Algorithm 1 and fix the multiplier to
∂(s1) = 6, ∂(s2) = 2 and ∂(s3) = 2. Figure 3 shows the volume of the computed R
as a function of τ for the four cases of a quadratic and a quartic Lyapunov function
used in conjunction with class-MOC and cp-MOC. The computations are performed
using N = 50, giving 49 distinct hyperplanes (recall that τ1 = τ50). As can be seen
in the plot, the ROA estimates are significantly larger for the cp-MOC than for
the class-MOC. Furthermore, as expected, for both MOCs the quartic Lyapunov
function returns on average a larger R than the quadratic. The center point for
these analyses is xc = [0, 0]T .

Figure 4 provides insights into the marked difference in the size of the estimates
R corresponding to the two MOC (left plot is for class-MOC and right plot is for cp-
MOC). The center point is xc = [0, 0]T . The results for quartic Lyapunov function
are overlaid with those for quadratic Lyapunov function. This figure reveals the
reason for the significantly smaller ROA estimates obtained with class-MOC, which
is a consequence of Corollary 2. That is, the intersection of neighboring hyperplanes,
which represents the limit point of the well-definedness of the transverse coordinate
transformation (11), precludes finding larger sets R. In the case of cp-MOC the
hyperplanes all intersect in the single point xc which allows much larger regions R
to be found by Algorithm 1 in this example.

5.2. Dual-orbit system. The goal of this case study is to investigate in detail the
effect of the different algorithmic options proposed in Section 4.2 on the quality of
the inner approximations of the true ROA. The system has a locally stable limit
cycle and is obtained by modifying a version of the Liénard system presented in [15]

ẋ1 = −x2 + 3x1(x2
1 − 1/4)(x2

1 − 1),

ẋ2 = x1.
(60)
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Figure 3. Comparison of R sizes obtained from Algorithm 1 for
the algorithmic choice EE-∂(r)m where both quadratic and quartic
Lyapunov functions were used for class-MOC and cp-MOC.

Figure 4. Illustration of the computed ROA estimates shown in
Figure 3 for the Van der Pol oscillator (59). The results for the
quartic Lyapunov function are overlaid with those for the qua-
dratic. Left plot: ROA estimates for the class-MOC. Right plot:
ROA estimates for the cp-MOC.

The main modification consists of reducing the degree of the polynomials from 7
to 5. This was done to lower the complexity of the SOS optimization problems,
and its only effect was to eliminate the outermost stable LC, with no effect on the
dynamical behaviour of interest for these analyses. In the form considered here the
system has two LCs of which one is encircling the other. The inner one, denoted
by ΓAdual, is an attractive LC around the unstable equilibrium point xEP = [0, 0]T .
The outer one is an unstable LC and is denoted by ΓUdual. Figure 5 shows a phase
portrait of the system in the neighborhood of the LCs. The true ROA of ΓAdual is
given by the region encircled by ΓUdual (excluded xEP).
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Figure 5. Phase portrait of the dual-orbit system (60) in the
neighborhood of the attractive and unstable LCs. The green lines
show examples of converging trajectories while the red lines repre-
sent diverging ones.

For this system, all algorithmic options presented in Section 4.2 were used to
compute a ROA estimate for both the class-MOC and cp-MOC. For the two options
SE-∂(r) and EE-∂(r), which allow for higher order Lyapunov functions, the cases
of a quadratic and a quartic function were both considered. The multiplier degrees
were fixed for all options to ∂(s1) = 6, ∂(s2) = 2, and ∂(s3) = 2. Each estimate
was obtained for the same range of 50 discrete values of τ ∈ [0, T ]. The aim of the
comparison is to investigate the differences in the outcome among the algorithmic
choices as well as to analyze the conservativeness of the results with respect to the
true ROA. The center point coincides with xEP.

The volumes for the computed R are shown as a function of τ in Figures 6 for
the class-MOC and in Figure 7 for the cp-MOC. Both figures reveal that larger
sets R are obtained with higher degree Lyapunov functions and with more flexible
cost functions definitions. Indeed, R obtained from VSS-∂lin is significantly smaller
than all other estimates as its only flexibility consists of the uniform scaling of the
Lyapunov sublevel set obtained for the linearized system. Allowing the shape of this
sublevel set to vary results in significantly larger estimates, as the setsR obtained for
VSS-∂(2) show. This option still only considers quadratic Lyapunov functions and
the cost function is equal to the one in VSS-∂lin while the computational complexity
is significantly increased due to the constraints on Q and added decision variables.

In both cases, the results from the algorithmic options involving quadratic Lya-
punov functions (except for VSS-∂lin) give very similar results. While for the class-
MOC the use of a surrogate set in the options SE-∂(2), EE-∂(2)s and EE-∂(2)m
results in small increases compared to VSS-∂(2), these are negligibly small in the
results for cp-MOC. The more significant benefit of using surrogate sets is clearly
shown in the comparison of the results obtained for the quadratic Lyapunov func-
tion compared to the results of the quartic one, where the latter almost always
shows better results. Another important aspect, confirming the results of the Van
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Figure 6. ROA estimates as a function of τ , obtained from the
different algorithmic choices presented in 4.2 for the class-MOC.
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Figure 7. ROA estimates as a function of τ , obtained from the
different algorithmic choices presented in 4.2 for the cp-MOC. For
comparison, the EE-∂(4)m result obtained for the class-MOC is
included.

der Pol oscillator, is that cp-MOC provides, for all the algorithmic options (except
for VSS-∂lin), larger regions.

Figure 8 illustrates the sets R for EE-∂(4)m and VSS-∂(2) on the 49 chosen
hyperplanes for the class-MOC (left plot) and the cp-MOC (right plot). The results
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Table 1. Comparison of iteration numbers obtained for the dual
orbit example for each algorithmic option and MOC.

Algorithmic class-MOC cp-MOC
option ∂(V ) = 2 ∂(V ) = 4 ∂(V ) = 2 ∂(V ) = 4
EE-∂(r)m 23 51 20 49
EE-∂(r)s 10 9 8 8
SE-∂(r) 39 32 39 33
VSS-∂(2) 12 - 12 -
VSS-∂lin 10 - 6 -

for EE-∂(4)m are overlaid with those for VSS-∂(2). The figure shows that both MOC
enable the EE-∂(4)m to obtain ROA estimates which are very close to the size of the
true ROA towards its outer boundary. While due to the intersection of hyperplanes
in the class-MOC case the estimates are not covering the neighborhood of xEP, this
limitation does not hold for cp-MOC, where the ROA can also be certified in regions
close to xEP.

Table 1 lists the number of iterations performed for each algorithmic option,
choice of MOC and Lyapunov function degree. The comparison shows that there
were significant differences between the algorithmic options, variations among dif-
ferent Lyapunov function degrees and comparably little variation between the two
choices of MOC. By combining the volume plot results with the iteration numbers
it can be seen that the larger sized ROA estimate obtained for the option EE-∂(r)m
comes at the cost of a significantly higher number of iterations than its less flexible
counterpart EE-∂(r)s needed for a slightly smaller sized ROA estimate. It is noted
that the runtime of the proposed algorithms is dominated by the number of states
and highest polynomial degree and far less by the differences among the algorith-
mic options. The number of iterations needed until convergence, however, varies
strongly among the options.

Remark 6. Figure 8 provides an interesting insight onto the advantage of the cp-
MOC with respect to the class-MOC. Even though for class-MOC the estimates are
only close to the hyperplane intersection point for a few values of τ , the algorithm
can not efficiently increase the estimates on the hyperplanes on which the estimates
are still far from the intersection point. This happens even when there is a higher
flexibility for shaping the surrogate sets on each hyperplane, as it is the case with
the option EE-∂(4)m. The reason for this is due to the fact that the coordinate
frame used for the transverse coordinates determines an inherent limitation on the
verifiable ROA of the limit cycle. Indeed, if some initial conditions cannot be
verified in some hyperplanes (because the well-defined region is too small), other
initial conditions lying on other hyperplanes (possibly with a larger well-defined
region) and crossed by trajectories originating from the other initial conditions, will
not be verifiable either. This creates a particular coupling between the hyperplanes
and the verification of inner estimates of the ROA which depends on the dynamcs.
The cp-MOC is better able to cope with this because it allows the analyst to design
the hyperplanes in such a way that the well-defined sets Vτ are more similar in size.
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Figure 8. Illustration of selected ROA estimates shown in Fig-
ure 6 and Figure 7 for the dual-orbit system (60). The results for
the quartic Lyapunov function are overlaid with those for the qua-
dratic. Left plot: ROA estimates for the class-MOC. Right plot:
ROA estimates for the cp-MOC.

5.3. Stabilized Airborne Wind Energy system. The analysis considered in
this example investigates the regions of the state space in which a transverse feed-
back controller is able to stabilize an Airborne Wind Energy system in the power-
generating phase. The model of the kite system, the desired reference trajectory
and the transverse controller are taken here from [4]. The states are x = (θ, φ, γ),
where θ denotes the elevation angle, φ the azimuth angle, and γ the orientation
angle of the kite. The system dynamics can be described by

θ̇ =
vk
L

cos(γ),

φ̇ =
vk
L

cos(θ)−1 sin(γ),

γ̇ = vkGu,

(61)

where L is the tether line length, vk = vwE cos(θ) cos(φ) is the wind velocity, and
E = CL/CD is the glide ratio with CL denoting the lift coefficient and CD the drag
coefficient. Further, G is the steering gain and u is the control input.

The reference trajectory of the system is denoted by x̃(τ). The system parameters
are set to L = 60 m, E = 5.7, vw = 6 m/s, and G = 1.25. The parameter G
was obtained from a rough approximation of the steering gain derived from first
principles as proposed in [13]. For the τ -discretization, 50 evenly spaced discrete
values of τ were chosen over the period [0, T ], where T = 5 s.

Since the SOS verification methods require the system to be in polynomial form,
the closed-loop system is approximated by a third-order Taylor series around x̃(τ).

The kite system provides an example for the cp-MOC for a three dimensional
system. Figure 9 illustrates 8 randomly selected hyperplanes S(τi) in the cp-MOC
for the reference trajectory. The plots show how all hyperplanes intersect in a
1-dimensional subspace consisting in a line through the center point which was
chosen at xc = [0.3, 0, 0]T . The rotation in the left plot was chosen such that the
intersection line points out of the plane.
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Figure 9. Illustration of the hyperplanes in the cp-MOC from
two different angles. In the right plot, the red dashed line indi-
cates the 1-dimensional subspace given by the intersection of the
hyperplanes. In the left plot, this collpases to a point.

Figure 10 presents the results of the ROA analyses. The volume of the set R was
numerically obtained by fitting a polygon with 80 edges into the verified sublevel set
of V (τ, ρ), which for 3-dimensional system is a planar region on each hyperplane. In
order to obtain a meaningful comparison across these different algorithmic options,
certain parameters, such as the degrees of the SOS-multipliers, were fixed for all
options.

Similar characterizations to those already discussed for the previous two examples
can be observed. A peculiar feature, seen in class-MOC for both degrees of V , is a
spike for i = 14. For these hyperplanes, the curvature of the kite trajectory is very
small, which leads to the well-defined regions of the transformation being very large.
Due to the flexibility of EE-∂(r)m in adjusting the objective function individually
for each hyperplane, the algorithm takes advantage of these particularly large sets
in this case. The small sizes of the results for SE-∂(r) for all MOCs and V functions
show the potentially detrimental effect of a surrogate set which is fixed in shape
and could not be pre-adjusted to the shape of the sublevel set of V (τi, ρ) due to
lack of information.

The iteration numbers for each case are listed in Table 2. In particular the
comparison with the iteration number for the 2-dimensional dual orbit example in
Section 5.2 shows that the option EE-∂(r)s was again among the options requiring
a comparably low number of iterations. While the option EE-∂(r)m for the class-
MOC and quartic Lyapunov function gave the largest ROA estimates the number of
iterations required is also significantly higher than for most other options. For the
class-MOC, the number of iterations for the option SE-∂(r) is again very high, as
in the dual orbit example. They are acceptable for the cp-MOC, but the estimates
obtained are comparably small. This highlights the disadvantage of this algorithmic
option, owing to the fact that the shape of the surrogate set is fixed.
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Figure 10. Results showing the volume of R on each of the 49
selected distinct hyperplanes S(τi), i = 1, ..., 49, obtained from the
different algorithmic options in Section 4.2 and from both presented
options of MOC in Section 2.3. A quadratic and a quartic (where
applicable) Lyapunov function were used.

Figures 11 and 12 illustrate the region R obtained from EE-∂(4)s on each of
the selected 49 hyperplanes in a 3-dimensional plot for both the choice of the class-
MOC and the cp-MOC. The plots highlight the significantly larger regions obtained
with the cp-MOC choice of moving coordinate system. Figure 12 reveals that the
algorithm was able to verify the stability of the system on regions extending close
to the boundaries of the well-defined regions Vτ . The plots show also that the
intersecting sets for the class-MOC are much closer to the trajectory x̃(τ) around
the extreme values of φ, while for the cp-MOC all hyperplanes intersect in a single
line which goes through the center point, as shown in Fig. 9.

6. Conclusion. In this work the novel construction of a moving orthonormal coor-
dinate system based on a user defined center point is proposed. Its main appealing
feature is that it improves the well-definedness properties for transverse coordinates
compared to classical approaches. Based on this center point coordinate system and
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Table 2. Comparison of iteration numbers obtained for the de-
terministic kite example for each algorithmic option and MOC.

Algorithmic class-MOC cp-MOC
option ∂(V ) = 2 ∂(V ) = 4 ∂(V ) = 2 ∂(V ) = 4
EE-∂(r)m 19 44 11 10
EE-∂(r)s 10 18 15 19
SE-∂(r) 54 27 18 15
VSS-∂(2) 8 - 12 -
VSS-∂lin 7 - 14 -
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Figure 11. Results showing R obtained from EE-∂(4)s, plot-
ted on each corresponding hyperplane. The φ-θ plane of the 3-
dimensional plot is shown. Left plot: Results for the class-MOC.
Right plot: Results for the cp-MOC.

Lyapunov stability arguments, conditions for numerically computing inner estimates
of the region of attraction of a limit cycle are formulated in terms of sum-of-squares
optimization. Various algorithmic options are presented to reduce conservatism
of the inner estimates and extensive results obtained on three numerical examples
demonstrate their features. The presented work opens us interesting future direc-
tions. Algorithm 1 can be directly extended to systems with affine input for a
control design which aims at maximizing the ROA of the limit cycle. As shown
in the kite example, the transverse coordinate transformation does not alter the
affine dependence on the control gain. Furthermore, as shown in Theorem 3.3, the
center point can be freely chosen inside an appropriate set, which was analytically
defined in this paper. One can thus consider an optimization problem for the center
point location and the (n−2) dimensional subspace Nf with the aim of maximiz-
ing the verifiable ROA estimate. Whereas the proposed algorithmic options relax
to some extent the computational burden of the programs, scalability issues with
SOS program remain a limiting factor of the proposed approach for estimating inner
estimates of the ROA. In this regard, recently proposed relaxations [5] and sparsity-
exploiting algorithms [51] can ameliorate these known problems. We observe that
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Figure 12. Rotated view of the plots in Figure 11. Left plot:
Results for the class-MOC. Right plot: Results for the cp-MOC.

state-of-the-art SOS solvers such as SOSTOOLS [33] have included some of these
utilities in their latest releases.
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APPENDIX. The proof of Theorem 2.4 [17] is given here because it shows the
construction of the class-MOC system.

Suppose n ≥ 3. If v(τ) = f(ω(τ))||f(ω(τ))||−1
2 , then the hypotheses on ω imply

that v is periodic of period T and Lipschitz. Let e1 = ζ∗ be a constant unit vector
(the existence of which is assured by Lemma 2.3) such that e1 6= ±v(τ), 0 ≤ τ ≤ T .
Adjoin to e1 any constant vectors e2, ...en such that {e1, e2, ...en} is an orthonormal
basis for Rn. The moving orthonormal system along Γ is then obtained in the
following manner: Let S be the (n − 2)-dimensional subspace of Rn orthogonal to
the plane formed by e1 and v(τ). Rotate the coordinate system about S in the
positive sense until e1 coincides with v(τ). If ζ1, ζ2, ..., ζn are the rotated positions
of e1, e2, ...en, then the moving orthonormal system is given by

{v(τ), ζ2(τ), ..., ζn(τ)}, 0 ≤ τ ≤ T, (62)

where ζ1(τ) = v(τ).
If γj(τ), j = 1, 2, ..., n are the direction angles of v(τ), ej · v(τ) = cos(γj(τ), j =

1, 2, ..., n, then one can show that the vectors ζj are given by

ζj(τ) = ξj −
ξ′jv(τ)

1 + ξ1v(τ)
(ξ1 + v(τ)), j = 2, 3, ..., n. (63)

The derivation of (63) is omitted for brevity and can be found in [17].
The proof then continues by treating the case n = 2. For this case, the moving

orthonormal system is directly constructed as

{v(τ), ζ2(τ)}, ζ(τ) = ±[−v2(τ), v1(τ)]T , (64)
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where v1(τ), v2(τ) are the components of v(τ). The proof is concluded by observ-
ing that equations (62)-(64) for the class-MOC along Γ imply that the system is
Cp−1(R,Rn), if ω is Cp(R,Rn).
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[28] J. Löfberg, Pre- and post-processing sum-of-squares programs in practice, IEEE Transactions

on Automatic Control, 54 (2009), 1007–1011.

[29] A. Majumdar and R. Tedrake, Funnel Libraries for Real-Time Robust Feedback Motion Plan-
ning, The International Journal of Robotics Research, 36 (2017), 947–982.

[30] I. R. Manchester, Transverse Dynamics and Regions of Stability for Nonlinear Hybrid Limit

Cycles, in IFAC Proceedings Volumes, vol. 44, IFAC, 2011, 6285–6290.
[31] I. R. Manchester, M. M. Tobenkin, M. Levashov and R. Tedrake, Regions of Attraction for

Hybrid Limit Cycles of Walking Robots, in IFAC Proceedings Volumes, IFAC, 2011, 5801–

5806.
[32] J. Moore, R. Cory and R. Tedrake, Robust Post-Stall Perching with a Simple Fixed-Wing

Glider using LQR-Trees, Bioinspiration & biomimetics, 9 (2014), 1–15.
[33] A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, P. A.

Parrilo, M. M. Peet and D. Jagt, SOSTOOLS: Sum of squares optimization

toolbox for MATLAB, http://arxiv.org/abs/1310.4716, 2021, Available from
https://github.com/oxfordcontrol/SOSTOOLS.

[34] A. Papachristodoulou and S. Prajna, A Tutorial on Sum of Squares Techniques for Systems

Analysis, in Proceedings of the American Control Conference, 2005, 2686–2700.
[35] A. Papachristodoulou and S. Prajna, Analysis of non-polynomial systems using the sum of

squares decomposition, in Positive polynomials in control, 2005, 23–43.

[36] P. A. Parrilo, Structured semidefinite programs and semialgebraic geometry methods in ro-
bustness and optimization, PhD thesis, California Institute of Technology, 2000.

[37] S. Prajna, A. Papachristodoulou and F. Wu, Nonlinear Control Synthesis by Sum of Squares

Optimization : A Lyapunov-based Approach, in 5th Asian Control Conference, IEEE, 2004,
157–165.

[38] P. B. Reddy and I. A. Hiskens, Limit-induced stable limit cycles in power systems, IEEE
Russia Power Tech, 1–5.

[39] G. Stengle, A Nullstellensatz and a Positivstellensatz in Semialgebraic Geometry, Math. Ann,

207 (1974), 87–97.
[40] W. Tan and A. Packard, Stability Region Analysis Using Polynomial and Composite Poly-

nomial Lyapunov Functions and Sum-of-Squares Programming, IEEE Transactions on Au-
tomatic Control, 53 (2008), 565–571.

[41] J. Z. Tang, A. M. Boudali and I. R. Manchester, Invariant funnels for underactuated dynamic

walking robots: New phase variable and experimental validation, in IEEE International Con-

ference on Robotics and Automation, 2017, 3497–3504.
[42] R. Tedrake, I. R. Manchester, M. Tobenkin and J. W. Roberts, LQR-trees : Feedback Motion

Planning via Sums-of-Squares Verification, The International Journal of Robotics Research,
29 (2010), 1038–1052.

[43] M. M. Tobenkin, I. R. Manchester and R. Tedrake, Invariant Funnels around Trajectories

using Sum-of-Squares Programming, in IFAC Proceedings Volumes, vol. 44, IFAC, 2011, 9218–

9223.
[44] U. Topcu, A. Packard and P. Seiler, Local stability analysis using simulations and sum-of-

squares programming, Automatica, 44 (2008), 2669–2675.
[45] U. Topcu, A. Packard, P. Seiler and G. Balas, Help on sos [ask the experts], IEEE Control

Systems Magazine, 30 (2010), 18–23.

[46] M. Urabe, Nonlinear autonomous oscillations: Analytical theory., Academic Press, 1967.
[47] G. Valmorbida and J. Anderson, Region of attraction estimation using invariant sets and

rational Lyapunov functions, Automatica, 75 (2017), 37–45.

[48] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, vol. 53,
Springer-Verlag New York, 2003.



REGION OF ATTRACTION ANALYSIS OF LIMIT CYCLES 31

[49] T. A. Wood, H. Hesse, A. U. Zgraggen and R. S. Smith, Model-based flight path planning and
tracking for tethered wings, in IEEE Conference on Decision and Control, 2015, 6712–6717.

[50] M. Wu, Z. Yang and W. Lin, Domain-of-attraction estimation for uncertain non-polynomial

systems, Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 3044–
3052.

[51] Y. Zheng, G. Fantuzzi and A. Papachristodoulou, Chordal and factor-width decompositions
for scalable semidefinite and polynomial optimization, Annual Reviews in Control, . (2021), .


	1. Introduction
	2. Preliminaries
	2.1. Notation
	2.2. Local stability and region of attraction of periodic orbits
	2.3. Moving transverse coordinate system

	3. An improved MOC formulation for ROA analysis of limit cycles
	3.1. Formulation of the cp-MOC
	3.2. Construction of a well-defined cp-MOC
	3.3. Transverse coordinate dynamics

	4. Region of attraction analysis of limit cycles in transverse coordinates
	4.1. Lyapunov criteria for the ROA of a limit cycle
	4.2. Algorithms for an inner estimate of the ROA of the orbit

	5. Numerical examples
	5.1. Van der Pol oscillator
	5.2. Dual-orbit system
	5.3. Stabilized Airborne Wind Energy system

	6. Conclusion
	ACKNOWLEDGEMENTS
	APPENDIX
	REFERENCES

