
Distributed Dual Quaternion Extended Kalman Filtering for
Spacecraft Pose Estimation

Mathias Hudoba de Badyn ∗, Jonas Binz †, Andrea Iannelli ‡, and Roy S. Smith §

Department of Technology Systems, University of Oslo, 2027, Kjeller, Norway
Automatic Control Laboratory, Department of Information Technology and Electrical Engineering, Swiss Federal

Instutute of Technology (ETH), Zürich, 8092, Switzerland
Institute for Systems Theory and Automatic Control, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart

In this paper, a distributed dual-quaternion multiplicative extended Kalman filter for the
estimation of poses and velocities of individual satellites in a fleet of spacecraft is analyzed. The
proposed algorithm uses both absolute and relative pose measurements between neighbouring
satellites in a network, allowing each individual satellite to estimate its own pose and that
of its neighbours. By utilizing the distributed Kalman consensus filter, a novel sensor and
state-estimate fusion procedure is proposed that allows each satellite to improve its own state
estimate by sharing data with its neighbours over a communication link. A leader-follower
approach, whereby only a subset of the satellites have access to an absolute pose measurement
is also examined. In this case, followers rely solely on the information provided by their
neighbours, as well as relative pose measurements to those neighbours. The algorithm is tested
extensively via numerical simulations, and it is shown that the approach provides a substantial
improvement in performance over the scenario in which the satellites do not cooperate. A case
study of satellites swarming an asteroid is presented, and the performance in the leader-follower
scenario is also analyzed.

Nomenclature

I=×: = identity matrix in R=×:
0=×: = zero matrix in R=×:
1= = vector of all ones in R=
� = inertial frame
�, �8 = body frame, body frame of satellite 8
�8 = body frame of the IMU of satellite 8
H,HD = set of quaternions/unit quaternions {@ ∈ H | @@∗ = 1}
�(@) = rotation matrix corresponding to quaternion @
@B , @̄ = scalar and vector parts of quaternion @
@�/� = unit quaternion defining the attitude transformation � to �
A �
�/� = vector quaternion defining the position of � in respect to � expressed in �
A �
�/� = three-dimensional vector defining the position of � in respect to � expressed in �
n = a dual number
H3 ,H

D
3

= set of dual quaternions, and unit dual quaternions {q ∈ H3 | qq∗ = 1}
q, @A , @3 = dual quaternion, real/dual parts of dual quaternion
q�/� , q�/� = unit, and reduced unit dual quaternion defining the pose transformation from � to �
8�
�/� ,8

�
�/� = vector and reduced dual velocity of � compared to � expressed in �

l�
�/� = angular velocity of � compared to � expressed in � [rad/s]

∗Associate Professor, Department of Technology Systems, University of Oslo, Gunnar Randers vei 19, 2027, Kjeller, Norway.
mathias.hudoba@its.uio.no, AIAA Member

†Master’s Student, Automatic Control Laboratory, Physikstrasse 3, 8092, Zürich, Switzerland.
‡Assistant Professor, Institute for Systems Theory and Automatic Control, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany

andrea.iannelli@ist.uni-stuttgart.de
§Professor, Automatic Control Laboratory, Physikstrasse 3, 8092, Zürich, Switzerland. rsmith@control.ee.ethz.ch, AIAA Associate Fellow

1

E�
�/� = linear velocity of � compared to � expressed in � [m/s]
[|@ |]', [|@ |]! = function from R4 → R4×4 denoting the right/left quaternion multiplication
[|q|]', [|q|]! = function from R8 → R8×8 denoting the right/left dual quaternion multiplication
G8 = the state of satellite 8
ΔG8 = Kalman state update of satellite 8
%8 = the estimation covariance matrix of satellite 8
�8 = state transition matrix of satellite 8
�8 = process noise matrix of satellite 8
I8 = measurement vector of satellite 8
I8,: = measurement vector of satellite 8 expressed in the states of satellite :
�8 = observation matrix of satellite 8
�8,: = observation matrix of satellite 8 expressed in the states of satellite :
q̂�/� , q�/� ,< = estimate/measurement of the pose transformation from I to B
8̂�
�/� ,8

�
�/� ,< = estimate/measurement of the dual velocity of B compared to I expressed in B

bl , b̂l = dual bias/estimate of dual bias
J8×8 = extended inertia matrix
G = communication graph of the satellite network
+ = indexed set of nodes of G corresponding to individual satellites
!, � = sets of leader/follower nodes
� = set of edges of G corresponding to commmunication links between satellites
#8 = set of all neighbours of satellite 8, excluding 8
�8 = set of all neighbours of satellite 8, including 8
Λ8,: = set of all neighbours which satellite 8 and satellite : have in common
−→̂
@8 = estimate of all satellite poses ∈ �8 done by satellite 8
−→̂
18 = estimate of all dual bias’ ∈ �8 done by satellite 8
−→̂
l8 = estimate of all dual velocities ∈ �8 done by satellite 8
−→̂
l 8,< = dual velocities measurements ∈ �8 done by satellite 8
H8 = aggregated measurement vector of satellite 8
(8 = aggregated covariance matrix of satellite 8
`@,8 = weight of the soft consensus of satellite 8 on the quaternion
`A ,8 = weight of the soft consensus of satellite 8 on the position
`1,8 = weight of the soft consensus of satellite 8 on the bias

I. Introduction
Terrestrial constraints such as light pollution, the day-night cycle, and an increasingly more crowded low-Earth

orbit all point towards the future of astronomy being on spaceborne satellites in deep space [1]. Distributing the task of
observation over multiple satellites has the potential to increase observational capacity by extending the baseline for
imaging [2], or providing a disturbance-free environment for novel telescope types like laser interferometers [3, 4].
Such satellite systems require the ability for every satellite in the fleet to point at the same object cooperatively, or
maintain some relative formation, including both position and attitude (in other words, pose) constraints. This requires
the development of novel distributed pose control and estimation algorithms.

Attitude control for spacecraft using quaternions is a mature field [5–8]. Conversely, the paradigm of dual
quaternions, which allows a compact representation of attitude and position (or the pose) of a spacecraft, is a new area
of research. Novel control scenarios using dual quaternions include distributed control methods [9], powered-descent
guidance [10], data-driven techniques [11], as well as static distributed estimation [12]. Dual quaternions also provide a
natural formalism for multi-spacecraft proximity operations such as rendezvous [13–15] and multi-spacecraft formation
flight [16].

Much effort has been dedicated to spacecraft estimation [7, 17]. Kalman filtering based on the unit quaternion is
well-understood, and has been used in many different applications, including NASA spacecraft [6, 7, 18]. The success
of the quaternion multiplicative extended Kalman filter (Q-MEKF) can be attributed to different key components of
the filter. In contrast to Euler angles, unit quaternions provide a non-singular representations of attitude, while using

2

the minimum number of parameters∗. Additionally, updating attitudes in the unit quaternion framework has a lower
computational complexity in comparison to Euler angles.

Dual quaternion multiplicative extended Kalman filtering (DQ-MEKF), on the other hand, is a more recent
development and has not been used to the same degree as the Q-MEKF [8, 19]. However, the compact representation of
the pose via the dual quaternion make their use in spacecraft pose estimation appealing for several reasons. Firstly, the
kinematic and dynamic equations in the dual quaternion setting have the same form as that in the attitude-only quaternion
setting, meaning that much of intuition on quaternion-based estimation and control can be re-interpreted in the dual
quaternion algebra. Secondly, visual navigation systems, such as Position Sensing Diodes [20, 21], or camera-based
relative measurements [19, 22, 23], inherently couple attitude and translation. Therefore, a unified framework for pose
estimation is useful when considering these types of sensors.

Distributed Kalman filtering has also been an area of rapid recent development [24]. A distributed estimation
procedure based on dual quaternions was proposed in [12], wherein each sensor node estimates the pose through the
Kalman filter and then updates its estimate by solving a minimization problem which is represented by a function of the
estimates and covariances of its neighbours. A DQ-MEKF was used in a two-satellite setting for pose estimation and
control in [25]. A more general approach is that of the Kalman-consensus filter, where a consensus term is added after
the update step of the Kalman filter [26–28]. This approach also assumes a multi-sensor model in which all sensor nodes
estimate the same state — other works with similar assumptions include [26, 29, 30]. A multi-robot distributed Kalman
filter where each robot estimates only its own state (in 2D), but uses relative measurements between neighbouring
robots, is proposed by [31]. A clear gap in the literature is a distributed version multiplicative extended Kalman filter in
the dual quaternion framework. We address this here, for general network topologies, and for several sensor models.

The contributions of this paper are as follows. First, we present a novel distributed dual quaternion extended Kalman
filter operating on a fleet of satellites defined on a network described by a graph. Each satellite has access to a pose
measurement, but can also measure the pose of its neighbours relative to its own pose. Facilitated by communication
between neighbouring satellites, measurement, covariance and estimation data can be exchanged, by which the pose
estimates can be further improved by sensor and covariance fusion. In particular, we propose two sensor and state
estimate fusion steps, which we dub ‘soft’ and ‘hard’ consensus, which allow neighbouring satellites to share information
about their state estimates and relative measurements and improve the overall performance of each satellite in the fleet.
Briefly, soft consensus is a distributed averaging of the estimates with neighbouring satellites, and hard consensus
includes a measurement and covariance fusion step. The proposed distributed algorithm is then tested in numerical
simulations and compared to the setting in which each satellite computes its own state estimate without any cooperation.
The simulations show that the proposed algorithm results in smaller Root Mean Square (RMS) errors in pose and
velocity compared to a satellite fleet without any cooperation.

Second, we examine the filter algorithm in the case where there is a set of ‘leaders’, which have access to a ‘global’
pose measurement with respect to an inertial frame (e.g., a star-tracker for attitude and a laser range-finder/GPS to a
nearby body for position), and a set of followers which have only access to relative measurements with respect to their
neighbours. We derive the necessary algebraic steps for filtering, sensor and measurement fusion, and communication.
Numerical experiments show that we are able to remove the absolute pose measurement from a substantial part of the
satellite fleet without degradation in performance of the estimator. Third, we provide an open-source repository [32]
containing the code to reproduce the numerical examples in the paper, which can also be used for more general
distributed filtering problems.

The paper is organized as follows. We introduce preliminaries in §II, and we derive our distributed filter, including
the hard and soft consensus terms, and the leader-follower setting in §III. Numerical experiments are presented in §IV,
and the paper is concluded in §V. Lengthy calculations are delegated to appendices.

II. Preliminaries
Our notation follows that of [19]. Additionally, for matrices �1, . . . , �= we define blkdiag{�1, . . . , �=} to be the

matrix formed by placing �1, . . . , �= on the block-diagonal. A summary of the DQ-MEKF from [19] is provided in
Appendix B of supplementary material [33].

∗It should be noted that the Q-MEKF, which only uses the vector part of the quaternion, can still be singular if the error between the attitude and
its estimate is greater than 180◦

3

A. Information Form Extended Kalman Filter
Consider the nonlinear dynamical system,

¤G(C) = 5 (G(C), C, D(C)) + 6(G(C), C)F(C) (1)

with state variable G(C) ∈ R=, input D(C) ∈ R@ , and Gaussian process noise F(C) ∈ R? with � [F(C)] = 0? and
Cov[F(C)] = &(C). The function 5 : R=×R×R@ ↦→ R= maps the state and input to its derivative, and 6 : R=×R ↦→ R=×?
maps the noise onto the dynamics.

Consider an estimate of G(C) defined as Ĝ(C) := � [G(C)], and the covariance of that estimate %(C) := Cov[G(C)]. The
estimate and its covariance satisfy respectively,

¤̂G(C) = � [5 (G(C), C, D(C))] (2)
¤%(C) = � (C)%(C) + %(C)�) (C) + � (C)&(C)�) (C), (3)

where

� (C) = m 5 (G, C, D(C))
mG

����
Ĝ (C)

(4a)

� (C) = 6(Ĝ(C), C). (4b)

Eq. (2) is usually approximated as,
¤̂G(C) ≈ 5 (Ĝ(C), C, D(C)). (5)

Consider the measurement I(C:) ∈ R< given by the model,

I(C:) = ℎ(G(C)) + E(C), (6)

where E(C) is measurement noise represented as a Gaussian process with � [E(C)] = 0< and Cov[E(C)] = '(C).
We can write the discrete measurement update as,

Ĝ+ (C:) = Ĝ− (C:) + ΔĜ(C:) (7)

where Ĝ− is the predicted value given by the time update from the previous timestep, Ĝ+ is the predicted value after the
measurement update, and ΔĜ(C:) is the Kalman state update given by,

ΔĜ(C:) = (C:) [I(C:) − Î(C:)], (8)

where the predicted measurement is,

Î(C:) = ℎ(Ĝ(C)), (9)

and the Kalman gain ∈ R<×= is given by

 (C:) = %− (C:)�) (C:)
[
� (C:)%− (C:)�) (C:) + '

]−1
, (10)

where � (C:) is the Jacobian of the measurement function,

� (C:) =
mℎ(G)
mG

����
Ĝ− (C:)

. (11)

After the measurement, the covariance is updated by

%+ (C:) = (I − (C:)� (C:))%− (C:). (12)

Finally, Ĝ+ (C:) is propagated forward to C:+1 via the dynamics (5), yielding Ĝ− (C:+1).
Following [34], we introduce the information form Kalman filter, modified to the current setting of an EKF. The

information form Kalman filter has some benefits in comparison to the usual Kalman filter in the distributed case;

4

in particular it allows batch measurement processing with lower complexity by avoiding several superfluous matrix
inversions. From Eq. (1) to Eq. (7) the steps of the filter are the same. We introduce:

D(C:) = �) (C:)'−1I(C:) (13)

* (C:) = �) (C:)'−1� (C:) (14)

" (C:) =
(
%−1 (C:) +* (C:)

)−1
. (15)

Finally, the Kalman state update is computed by

ΔĜ(C:) = " (C:) (D(C:) −* (C:)Ĝ(C:)) . (16)

The matrix " can be seen as the a posteriori covariance.

B. Dual Quaternions
For reasons of brevity, we assume that the reader is familiar with the basic properties and operations of quaternions,

as in [17]. These operations have algebraic representations that are useful for computation; in this setting, the quaternion
is represented as a vector @ ∈ R4. In order to multiply two quaternions 0 and 1, we define the following

[0] =
[
00 01 02 03

])
:=

[
00

0̄

]
, [0]× :=

[
0 01×3

03×1 0̄×

]
, 0̄× :=


0 −03 02

03 0 −01

−02 01 0

 , (17)

where we have adopted the scalar-first convention. We can respectively write the left and right quaternion multiplication
operators as,

[|0 |]! :=

[
00 −0̄)

0̄ [0̃]!

]
, [|0 |]' :=

[
00 −0̄)

0̄ [0̃]'

]
(18)

where [0̃]! = 00I3×3 + 0̄× and [0̃]' = 00I3×3 − 0̄×. Then, quaternion multiplication and the cross product are given by
[01] = [|0 |]! [1] = [|1 |]' [0] ∈ R4 and [0 × 1] = [0]× [1] ∈ R4, respectively.

The unit quaternions are used for attitude estimation as they describes a rotation from one coordinate frame (for
example, the inertial frame �) to another coordinate frame (for example, the body frame �). Here, @∗ denotes the
quaternion conjugate. Formally, a rotation amplitude \ and a rotation axis −→= ∈ R3, which describes the rotation from
frame � to �, can be described as the quaternion @�/�

@�/� = [cos(\/2),−→=) sin(\/2)]) . (19)

The inverse rotation is then simply @∗
�/� . The scalar part of the quaternion can be computed as,

@0 =

√
1 − ‖@̄‖2. (20)

Dual quaternions are an extension of quaternions that encode both the position and attitude of a rigid body. The
dual quaternion is defined by,

q = @A + n@3 @A , @3 ∈ H, (21)

where the dual number n satisfies n2 = 0 and n ≠ 0. The basic operations on dual quaternions are analogous to that of
the quaternions, and are as follows:
Addition:

a + b = (0A + 1A) + n (03 + 13) ∈ H3 (22)

Multiplication by scalar:
_a = (_0A) + n (_03) ∈ H3 (23)

5

Multiplication:
ab = (0A1A) + n (0A13 + 031A) ∈ H3 (24)

Conjugation:
a∗ = 0∗A + n0∗3 ∈ H3 (25)

Cross Product:
a × b = 0A × 1A + n (03 × 1A + 0A × 13) ∈ H3 . (26)

As in the case of the quaternion, it is convenient to represent the dual quaternion operations in algebraic terms. Define
the following vectors and operators:

[q] =
[
[@A]
[@3]

]
∈ R8 [|a |]' =

[
[|0A |]' 04×4

[|03 |]' [|0A |]'

]
∈ R8×8

[|a |]! =
[
[|0A |]! 04×4

[|03 |]! [|0A |]!

]
∈ R8×8 ā =

[
0̄A

0̄3

]
∈ R6

[ã] =
[
[0̃A] 03×3

[0̃3] [0̃A]

]
∈ R6×6 ā× =

[
0̄×A 03×3

0̄×
3

0̄×A

]
∈ R6×6.

(27)

Then, we can represent dual quaternion multiplication as [ab] = [|a |]! [b] = [|b |]' [a] ∈ R8.
The set of unit dual quaternions is of particular interest in the setting of pose estimation and control, where the pose

is a representation of both position and attitude.
Consider an object whose � frame is at A �

�/� with respect to the � frame, expressed in the � frame. Its rotation from
the origin to its body frame is described by an angle \ and its rotation axis, −→= . The (real) rotation quaternion @A is
computed using Eq. (19). Then, the unit dual quaternion describing the pose of the object is

@3 =
1
2
A �
�/� @A , A �

�/� = (0, A ��/�), q = @A + n@3 ∈ HD3 (28)

C. Rigid Body Model in Dual Quaternions
We now introduce the kinematics and dynamics for a single rigid body using dual quaternions [16, 19].

1. Dual Kinematics
The unit dual quaternion which defines the transformation from inertial frame � to the body frame � of the rigid

body is

q�/� = @A + n@3 = @A + n
1
2
A �
�/� @A = @A + n

1
2
@AA

�
�/� . (29)

The dual velocity 8�
�/� ∈ H

E
3
, which is a vector quaternion, is defined as

8�
�/� =

[
0

l�
�/�

]
+ n

[
0

E�
�/�

]
(30)

where 8/
-/. describes the dual velocity in the - frame compared to the . frame, expressed in the / frame. The real

part describes the angular velocity, whereas the dual part describes the linear velocity. Using the dual velocity, the dual
kinematics are derived using Eq. (21) as,

¤q�/� = ¤@A + n ¤@3 (31)

=
1
2

q�/�8��/� , (32)

where the form of ¤@3 is derived as,

¤@3 =
1
2
E�
�/� @A +

1
2
A �
�/� ¤@A (33)

=
1
2
@A E

�
�/� +

1
2
@3l

�
�/� . (34)

6

Inertial Frame I

Body Frame B

Fig. 1 The dual quaternion q�/� defines the pose of the body frame � with respect to the intertial frame �.
Forces 5� and torques g� are applied in the body frame.

2. Dual Dynamics
All forces and torques from actuators are exerted on the satellite in the body frame; thus the dual force f� is

introduced as,

f� =

[
0
g�

]
+ n

[
0
5�

]
. (35)

An illustration is shown in Fig. 1. The extended inertia matrix is defined as

J8×8 = blkdiag {1, <I3×3, 1, J} , (36)

where < is the mass of the object and J is its inertia matrix. Following [16], the dual dynamics are given by,

8�
�/� = J−1 (f� − 8��/� × J8�

�/�). (37)

D. Graph Theory and Distributed Kalman Filtering
When performing Kalman filtering across a network of distributed computational nodes with access to only local

information, a centralized algorithm for state estimation is infeasible. Furthermore, each node may only have access
to a measurement of a subset of the states of the system. These were some of the motivating factors for introducing
distributed Kalman filtering for sensor networks in [27]. This is the foundation for the distributed approach of our
present work and is therefore explained in detail here.

A graph describes the connectivity of a set of objects. In particular, a graph � = (+, �) is a set of nodes
+ = {1, . . . , ;} and a set of edges � ⊆ + ×+ , where for 8, 9 ∈ + , 8 9 ∈ � if and only if there is a connection between 8 and
9 . In the context of this paper, a ‘connection’ between satellites 8 and 9 denotes that satellite 8 and 9 can communicate,
as well as measure relative poses of each other. For simplicity, we assume that � is undirected, in that if 8 9 ∈ � , then
98 ∈ � : if satellite 8 can communicate with 9 , then 9 can also communicate with 8†. The neighbourhood #8 of 8 ∈ + is
defined as the set of 9 ∈ + such that 8 9 ∈ � . We later use a set +8 := #8 ∪ {8} to describe the neighbourhood of 8 if 8 is
defined to be a neighbour of itself.

Let us assume a graph � with connectivity defined by an adjacency matrix A, where each node 8 has a set of
neighbours #8 . Furthermore, the nodes want to estimate the state G of the dynamical system given by Eq. (1)‡.

Every node has an estimate Ĝ8 of the state G§. As such, the time update can be executed locally, using the EKF
procedure described in §II.A. Every node propagates its estimate and covariance locally. However, in such a setting a

†If we were to consider directed graphs, then this would imply one-way communication and measurements between neighbouring satellites
‡In our work, each node will only estimate a subset of the states of the system. This will be elaborated on in §III.B.
§Later in the paper, we adapt the distributed Kalman filter so that each satellite 8 estimates its own state, and that of its neighbours

7

node may not be able to observe all states, or each node might have a different sensor. Even if all nodes had a full state
measurement, it may be advantageous to fuse this information to get better estimates than one node might have by itself.

Let each node 8 ∈ + have the sensor model

I8 (C:) = ℎ(G(C:)) + E8 (C:). (38)

For ‘local’ (read: non-distributed) Kalman filtering, only this measurement would be used to compute the Kalman
update. In the distributed setting [27], measurement, estimate and covariance data from the neighbours of 8 can be fused
to improve the estimate Ĝ8 of 8.

At each timestep C: , each node 8 first does the time update of its estimate Ĝ8 and covariance "8 by using Eqns. (3), (4)
and (5). Then, each node 8 ∈ + takes a measurement I8 with the measurement model given in Eq. (38). Each node can
now compute D8 and*8 with Eq. (13), which is then broadcast along with the state estimate to its neighbours. Explicitly,
the data the neighbours receive is the packet,

msg8 = (D8 ,*8 , Ĝ−8). (39)

Now the data and covariance matrices are aggregated in a data fusion step as,

H8 =
∑
9∈#8

D 9 (8 =
∑
9∈#8

* 9 "8 =

(
%−1
8 + (8

)−1
(40)

and the Kalman state update is given by,

Ĝ+8 = Ĝ
−
8 + "8 [H8 − (8 Ĝ−8] + `8

∑
9∈#8

(
Ĝ−9 − Ĝ−8

)
(41)

where `8 > 0 is a tuning parameter. The assumptions surrounding the optimality of the state update in Eq. (41) and are
discussed in [34].

III. Distributed Dual Quaternion Extended Kalman Filter
In this section, we present the distributed dual quaternion extended Kalman filter for spacecraft pose estimation. The

derivation of the distributed filter is conducted by assuming that each satellite has access to absolute pose measurements,
after which we elaborate on the leader-follower scenario where only some satellites have absolute pose measurements.

A. Problem Statement
Let us assume a fleet of ; satellites, whose communication topology is described by a graph G = (+, �). Each node

8 ∈ + represents a satellite, which has a set of neighbours #8 with |#8 | = :8 . We emphasize that + is an ordered set, i.e.,
each satellite has a numerical label 8 ∈ + , and we assume that the fleet knows its own label and those of its neighbours.

We assume that at each timestep, every satellite 8 takes :8 relative pose measurements in its own body frame, one for
each neighbouring satellite. For now, we will also assume that each satellite takes one absolute pose measurement with
respect to the inertial frame, and we consider cases where the satellites may or may not have access to its velocities and
accelerations in the body frame. We will relax this assumption later in the paper.

The relative pose measurements can be taken by a visual sensor [20, 35–37]. The absolute pose measurements can
be taken by a combination of star trackers and a Global Positioning System (GPS). The angular velocity and linear
acceleration measurement can be taken via an IMU. Furthermore, we assume that each satellite has communication
links to its neighbouring satellites for data exchange. Each satellite therefore only keeps track of its own state, and the
state of its neighbours.

B. Derivation of the distributed DQ-MEKF (DDQ-MEKF)
In this setting, consider the set of satellites¶ + with |+ | = ;. Each satellite 8 ∈ + will only estimate its own pose and

the pose of its neighbours, i.e., it can only estimate the poses of satellites 9 ∈ +8 := #8 ∪ 8. Furthermore, each node 8
shall compute the pose, the pose error, as well as the velocity measurement bias and velocity of the 8th satellite. We can
thus define the state and process noise vector of each satellite.

¶We will use ‘nodes’ and ‘satellites’ interchangeably from this point onwards

8

Inertial Frame

Sat 1

Sat 2

Sat 3

Sat 4

Sat 5

Connectivity Matrix:

0 1 0 1 0

1 0 1 0 0

0 1 0 1 1

1 0 1 0 0

0 0 1 0 0

Fig. 2 Configuration of a fleet of ; = 5 satellites. The states of satellite 2 are shown, where G2 is the filter state,
and
−→̂
q2 and

−→̂
12 are the respective estimated pose and bias of satellite 2 and its neighbours.

Let 8 ∈ + . We write +8 = { 98,1, . . . , 98,:8+1} ⊂ + , where 98,: ∈ +8 is the :th neighbour of 8 – note that due to the
definition of +8 , satellite 8 is also treated as a neighbour of 8. Since 8 knows the node labels of its neighbours, we
can assume without loss of generality that +8 is sorted in ascending order of those labels. Then, we denote for each
8 = 1, . . . , ; the state variables G8 ∈ R12(:8+1) and F8 ∈ R12(:8+1) given by,

G8 =

[
%q
)

98,1/� b8
)

98,1 · · · %q
)

98,:8+1/� b8
)

98,:8+1

])
F8 =

[
(8

)
98,1

(b8
)
98,1
· · · (8

)
98,:8+1

(b8
)
98,:8+1

])
,

(42)

where we simplify the notation via %q 98,:/� := %q� 98,: /� . Following the centralized filter described in Appendix B of the

supplementary material [33], %q 98,:/� is the error dual quaternion representing the pose error relative to a reference of
the :th neighbour of 8, b8 98,: is the dual bias of the velocity, and F8 is a vector of process noises.

In contrast to the non-cooperative case in Appendix B of the supplementary material [33], the definition of the state
and noise in Eqn (42) is a stacking of the states of satellite 8 and its neighbours. The top state is always the state of the
satellite with the smallest nodal label. We further define the stacked pose estimate vector

−→̂
q8 and the stacked dual bias

vector
−→̂
18 for 8 = 1, . . . , ; as,

−→̂
q8 =

[
q̂)
8, 98,1/� · · · q̂)

8, 98,:8+1/�

])
∈ R8(:8+1) (43a)

−→̂
18 =

[
b̂8

)

8, 98,1 · · · b̂8

)

8, 98,1

])
∈ R6(:8+1) . (43b)

Again, to simplify notation we denote q̂8,:/� := q̂8,�:/� as the estimate that satellite 8 computes of the pose of
neighbouring satellite : .

1. Time Update
At the beginning of each iteration, each satellite 8 ∈ + takes a measurement 8�8

�8/� ,< (where the subscript < denotes
‘measurement’) of its own dual velocity in its body frame �8 , and propagates this information to its neighbours. To

9

reduce notational burden of notation, we write 8 98,:/� ,< := 8
� 98,:

� 98,: /� ,<
to denote the measured dual velocity of the :th

neighbour of satellite 8 in the body frame of the :th neighbour of satellite 8. Hence, each satellite 8 ∈ + can construct the
stacked dual velocity measurement as,

−→8 8,< =

[
8 98,1/� ,<

) · · · 8 98,:8+1/� ,<
)
])
∈ R6(:8+1) . (44)

By removing the dual bias from the dual velocity, each 8 ∈ + can compute the estimated stacked dual velocity via,

−→̂
8 8 =

−→8 8,< −
−→̂
18 =

[
8̂ 98,1/� ,<

) · · · 8̂ 98,:8+1/� ,<
)
])

(45)

This yields the set of differential equations for the estimate,

3

3C


q̂8, 98,1/�

...

q̂8, 98,:8+1/�

 ≈


1
2 q̂8, 98,1/� 8̂ 98,1/� ,<

...
1
2 q̂8, 98,:8+1/� 8̂ 98,:8+1/� ,<

 =
1
2


[|q̂8, 98,1/� |]! 0

. . .

0 [|q̂8, 98,:8+1/� |]!



8̂ 98,1/� ,<

...

8̂ 98,:8+1/� ,<

 , (46)

from which the time update of the state is computed.
Next, the covariance of the state is propagated. Each node 8 ∈ + must compute the Jacobians of the dynamics �8,<

and �8,< for each of its neighbours < ∈ +8 using Eq. (4). Explicitly, these are,

�8,< =

[
−8̂8, 98,:/�

× − 1
2 I6×6

06×6 06×6

]
for < = 1, . . . :8 + 1, (47a)

�8,< =

[
− 1

2 I6×6 06×6

06×6 I6×6

]
for < = 1, . . . :8 + 1. (47b)

The complete Jacobians of the dynamics and measurement models �8 and �8 of satellite 8 ∈ + are computed by
concatenating the aforementioned �8,: and �8,: matrices block-diagonally, yielding

�8 = blkdiag{�8,<}:8+1<=1 ∈ R
12(:8+1)×12(:8+1) (48a)

�8 = blkdiag{�8,<}:8+1<=1 ∈ R
12(:8+1)×12(:8+1) . (48b)

The stacked &8 matrix therefore becomes,

&8 = blkdiag
{
&̃8,<

}:8+1
<=1 (49)

&̃8,< = blkdiag
{
&8 98,<

, &b8 98,<

}
. (50)

Next, each node 8 ∈ + can propagage the covariance using Eq. (3) As stated above, the only communication needed
between satellites is the exchange of the dual velocity measurement 8�8

�8/� ,<. In the case where this information is not
accessible (i.e., no gyro or linear acceleration measurement), no communication is necessary.

2. Measurement Update
We must fuse both the relative and absolute pose measurements in order to derive the measurement update step. As

explained in §III.A, each satellite 8 ∈ + has access to an absolute pose measurement q�8/� ,<, and :8 relative attitude and
relative position measurements, @�:/�8 ,< and A�8

�:/�8 ,<, in its own body frame. We can thus denote the measurement
vector I8 of satellite 8 as,

I8 =

[
@�=8,1/�8 ,<

) A
�8
�=8,1/�8 ,<

)

· · · q̂∗8,8q�8/� ,<
)
· · · @�=8,:8

/�8 ,<
) A

�8
�=8,:8

/�8 ,<

)
])

(51)

:=
[
ℎ@=8,1/8

(G8)
)

ℎA 8
=8,1/8
(G8)

) · · · ℎ01B (G8)
) · · · ℎ@=8,:8 /8

(G8)
)

ℎA 8
=8,:8

/8
(G8)

)
])
+ E8 . (52)

10

Note that I8 ∈ R6(:8+1) . In Equation (52), ℎ@=8,: /8 is the function which outputs the relative measurement from satellite 8
and its neighbour with index =8,: to the state G8 of satellite 8. In a similar manner, ℎA 8

=8,: /8
gives the relative position. Only

one entry is different, namely q̂∗8,8q�8/� ,<, which is the satellite’s measurement of its own state. E8 is the measurement
noise acting on all measurements.

The Jacobian � of the measurement function given in Eq. (52) can be viewed as the (linearized around zero error)
mapping from the state to the measurement. In the case of Eq. (52), the Jacobian consists of three submatrices: the
mapping of the absolute pose measurement to the state, the mapping from the relative attitude measurement to the state,
and finally the mapping from the relative position measurement to the state. For sake of clarity, we derive the Jacobians
of the individual measurement functions ℎ in Appendix A.A, and proceed to the construction of the full Jacobian of the
measurement in Eq. (52).

Full Jacobian of the Measurement:
We begin as follows. We define the following four matrices as,

�8
8,:

:=

[
1
2�@8/: , X@8/� 03×3
1
4�A 8:/8 , X@8/�

1
4�A 8:/8 , X ?8/�

]
, �:

8,:
:=

[
1
2�@8/: , X@:/� 03×3
1
4�A 8:/8 , X@:/�

1
4�A 8:/8 , X ?:/�

]
(53)

�88,: :=

[
1
2�@8/: , X@8/� 04×4
1
4�A 8:/8 , X@8/�

1
4�A 8:/8 , X ?8/�

]
, �:8,: :=

[
1
2�@8/: , X@:/� 04×4
1
4�A 8:/8 , X@:/�

1
4�A 8:/8 , X ?:/�

]
, (54)

where the submatrices �0 ∈ R4×4, �0 ∈ R3×3 corresponding to the Jacobians of the various measurement models of
attitude and position are derived in Appendix A.A. The matrix �8

8,:
can be understood as the part of the measurement

Jacobian which transforms the state of satellite 8 to the relative measurement that satellite 8 takes of satellite : . On
the other hand, �:

8,:
is the part of the measurement Jacobian which transforms the state of satellite : , estimated from

satellite 8 to the relative measurement that satellite 8 takes of satellite : . Here, we define �0 ∈ R3×3 as the matrix
�0 ∈ R4×4 with its first row and column (corresponding to the scalar part of the quaternion) deleted. Thus, �0 is
congruent with the reduced state space defined in Eq. (42).

Finally, let �8 := �8,8 and �8 := �8,8 . The stacked measurement Jacobian for each satellite 8 is given by,

�8 =



�
=8,1
8,=8,1

08×6 . . . �8
8,=8,1

08×6 . . . 08×8 08×6
...

...
. . .

...
...

. . .
...

...

08×8 08×6 . . . I8×8 08×6 . . . 08×8 08×6
...

...
. . .

...
...

. . .
...

...

08×8 08×6 . . . �8
8,=8,:8

08×6 . . . �
:8
8,=8,:8

08×6


∈ R8(:8+1)×14(:8+1) (55)

�8 =



�
=8,1
8,=8,1

06×6 . . . �8
8,=8,1

06×6 . . . 06×6 06×6
...

...
. . .

...
...

. . .
...

...

06×6 06×6 . . . I6×6 06×6 . . . 06×6 06×6
...

...
. . .

...
...

. . .
...

...

06×6 06×6 . . . �8
8,=8,:8

06×6 . . . �
:8
8,=8,:8

06×6


∈ R6(:8+1)×12(:8+1) , (56)

where �=8, 9
8,=8, 9

is always in the 9-th column and 9-th row if =8, 9 < 8, and in the 9 + 1-th column and 9 + 1-th row otherwise.

The matrix �8
8,=8, 9

is always in the 8-th column and 9-th row if =8, 9 < 8, and in the 8-th column and 9 + 1-th row otherwise.
The matrix I6×6 is always in the 9-th column and row where =8, 9 = 8.

To complete the measurement update, we must compute the measurement covariance matrix as well as the
transformed data vector required for the information filter. These are given by,

11

*8 = �
ᵀ
8
'8
−1
�8 (57)

D8 = �
ᵀ
8
'8
−1
I8 (58)

*8 = �
ᵀ
8
'−1
8 �8 , (59)

where,

'8 := Cov[E8] = blkdiag
{
'=8,< ,8

}:8+1
<=1

(60)

'8 := Cov[E8] = blkdiag
{
'=8,< ,8

}:8+1
<=1 . (61)

Here, '=8,< ,8 ∈ R6×6 is the covariance of the measurement of the pose of satellite< as taken by satellite 8 in Equation (52).
The matrix '=8,< ,8 is the ‘extension’ of '=8,< ,8 to R8×8, where a row and column are added corresponding to each scalar
entry of the dual quaternion. We add entries to the diagonal (say, 1) in these new rows and columns such that the
matrix is not singular, however, what is set in those two added entries is of no importance as those entries will not be
propagated. Further note that '8 ∈ R6(:8+1)×6(:8+1) and '8 ∈ R8(:8+1)×8(:8+1) .

Next, the Kalman state update is computed by each node 8 ∈ + via,

ΔG8 =

[
Δ%q̂ 98,1/�

)
Δ%b̂l 98,1

)

· · · Δ%q̂ 98,:8+1/�
)

Δ%b̂l 98,:8+1
)

]
= "8

(
D8 − (*81)

)
, (62)

where "8 is given by Eq. (40) as,

"8 =

(
%−1
8 +*8

)−1
. (63)

Finally, the Kalman state update is used to compute the time update. Similarly as to the non-cooperative case in the
supplementary material [33], each node 8 ∈ + updates each dual quaternion entry in ΔG8 for : = 1, . . . :8 + 1 as,

ΔX@̂ 98,: ,A =

(√
1 − ||ΔX@̂ 98,: ,A | |2,ΔX@̂ 98,: ,A

)
ΔX@̂ 98,: ,3 =

©­­«
−ΔX@̂ 98,: ,A

)
ΔX@̂ 98,: ,3√

1 − ||ΔX@̂ 98,: ,A | |2
,ΔX@̂ 98,: ,3

ª®®¬
(64)

and again each node 8 ∈ + concludes the measurement update by computing the estimate for : = 1, . . . :8 + 1 as,

q̂+
8,:/� = q̂−

8,:/�ΔXq̂ 98,:/�

b̂+l8,: = b̂−l8,: + ΔXb̂l8,: .
(65)

The DDQ-MEKF is summarized in Algorithm 1.

C. Consensus
In Algorithm 1, the satellites communicate with each other for velocity measurements only. In this subsection, we

describe a consensus algorithm that allows each satellite to update and improve its state estimate by incorporating the
state estimates of its neighbours.

We propose two consensus algorithms, denoted soft and hard. The goal of soft consensus is to average the state
estimates of neighbouring satellites without any knowledge of the error covariance. Hard consensus, building upon [27],
fuses covariance data exchanged between neighbours.

1. Description of the Soft Consensus Term
Before formally stating the algorithm, we give an example which illustrates the soft consensus step. Consider

satellite 4 in Fig. 2. Satellite 4 has two neighbours, namely satellites 1 and 3, and thus has no notion of any other
satellites in the fleet. After the measurement update of each satellite, the available estimates are listed in Table 1. Hence,

12

Algorithm 1 Distributed Dual Quaternion Kalman Filter

Require: ∀8 ∈ � : &8 , '8 ,
−→̂
@8 (C0) := @0, %̂8 (C0) := %0

while C: ≥ 0 do
for 8 ∈ � do

Take measurement 8�8
�8/� ,<

Propagate measurement to neighbours 9 ∈ #8
Compute dual velocity estimate

−→̂
l8 =

−→l 8,< −
−→̂
18

Propagate each estimate
−→
@̂+
8
→ −→̂@−

8
via Eqn. (46)

Compute �, �; propagate % via Eqns. (48), (3)
Measure own and relative poses I8 via Eqn. (52)
Compute �8 and �8 matrix via Eqn. (56)
Compute*8 ,*8 , and D8 via Eqn. (57), (58) & (59)
Compute "8 via Eqn. (63)
Compute ΔG8 via Eqn. (62)
Extend Kalman state update via Eqn. (64)
Update estimate and bias via Eqn. (65)

end for
end while

Satellite 1 Satellite 3 Satellite 4

−→
q̂+1 =


q̂+1,1/�
q̂+1,2/�
q̂+1,4/�


−→
q̂+3 =


q̂+3,2/�
q̂+3,3/�
q̂+3,4/�
q̂+3,5/�


−→
q̂+4 =


q̂+4,1/�
q̂+4,3/�
q̂+4,4/�


Table 1 Example of available estimates to each satellite, following Fig. 2.

13

satellite 4 can use certain measurements from its neighbour to improve its own state estimates. From satellite 1, it
can use q̂+1,1 and q̂+1,4; similarly, from satellite 3 it can use q̂+3,3 and q̂+3,4. The other estimates from the neighbouring
satellites are not used, as those are estimates of states of satellites not in the neighbourhood of satellite 4. The same
notion pertains to the estimated biases.

The idea is now to average the estimated states of satellite 4, namely
−→
@̂+4 , with the estimated states of satellite 1 and 3

which they have in common. In other words we would like to implement the consensus term in Eq. (41),

q8 = `8

∑
9∈#8

(
G−9 − G−8

)
, (66)

adapted to the dual quaternion setting. As our state estimate is the error of the quaternion, it is nonsensical to use
Eq. (66). Instead, the Kalman state update is computed first, then the pose estimate is updated, and then a consensus
step is performed. Furthermore, computing the arithmetic difference of the pose as is done in Eq. (66) must be adapted
to the dual quaternion setting; hence, we propose a consensus step which utilizes a more natural notion of averaging
dual quaternions.

Soft Consensus on the Position and Velocity:
After performing the measurement update, each satellite 8 ∈ + has an estimate of its own pose and bias and the pose and
bias of its neighbours:

−→
q̂+8 =

[
q̂+,)
8, 98,1/� · · · q̂+,)

8, 98,:8+1/�

])
∈ R8(:8+1) (67)

−→̂
1+8 =

[
b̂+,)l 8, 98,1

· · · b̂+,)l 8, 98,1

])
∈ R6(:8+1) . (68)

Each satellite 8 ∈ + first needs to propagate this data to its neighbours : ∈ #8:

msg8,: =
(−→
q̂+8 ,
−→̂
1+8

)
. (69)

We now focus on the issue of the correct arithmetic notion of the ‘difference’ between two dual quaterions. First, the

dual part of the dual quaternion is transformed to the position using A�
�/� =

[
0 A�

�/�
)
])
= 2?�/� @�/� , yielding the

position estimate for each 8 ∈ + ,
Â+
8
=

[
Â
+,)
8, 98,1

· · · Â
+,)
8, 98,:8+1

])
∈ R3(:8+1) . (70)

Since each satellite is estimating its own state and that of its neighbours, the various state vectors of each satellite are not
compatible with one another. To rectify this, we extend each satellite’s estimated position vector to R3 |+ | = R3; by
padding the entries of untracked satellites with zeros. Then, we copy this position vector for each neighbour : ∈ #8 of
satellite 8, and delete position estimates that satellite 8 and : do not have in common.

Formally, we define the subset Λ8,: := (+8 ∩+:) ⊂ + , in other words the set of nodes which satellite 8 and :
have in common. For example, satellite 2 and 3 in the running example of Fig. 2 have Λ2,3 = {2, 3}. We write
Λ8,: = {_8:,1, . . . , _8:, |Λ8,: |} ⊂ + , i.e. Λ8,: is sorted in ascending order, as again, we assume that satellites know their
own label in + . The full position estimate vector of satellite 8 ∈ + with respect to its neighbour : ∈ #8 is thus defined as,

−→
Â+full,8,: =

[
A1
) · · · A;

)
])
∈ R3; (71)

where A 9 =

{
Â+
8, 9
, if 9 ∈ Λ8,:

03×1, otherwise,
(72)

and where A+
8, 9

is the estimated position of satellite 9 by satellite 8.
We can now easily subtract position vectors between neighbouring satellites to compute their difference:

qfull,8,A = `8,A
∑
9∈#8

(−→
Â+full, 9 ,8 −

−→
Â+full,8, 9

)
∈ R3; . (73)

Now, qfull,8,A needs to be reduced to remove the padded zeros corresponding to positions that satellite 8 does not estimate.
This is achieved by removing each entry corresponding to the indices of A 9 in Eq. (71) which satisfies 9 ∉ +8 , yielding
q8,A ∈ R3(:8+1) . This concludes the portion of the soft consensus step on the position part of the dual quaternion.

14

For velocity consensus, as one can see from Eq. (45) it is sufficient to perform consensus on the bias. Therefore,
achieving consensus on the bias automatically achieves consensus on the velocity. Consensus on the bias is performed
using the same procedure as on position. We define the full bias vector of satellite 8 ∈ + with respect to its neighbour
: ∈ #8 as,

−→̂
1+full,8,: =

[
1)1 · · · 1)

;

])
∈ R6; (74)

where 1 9 =

{
b̂+l8, 9 , if 9 ∈ Λ8,:
06×1, otherwise,

(75)

and where b̂+l8, 9 is the estimated bias of satellite 9 by satellite 8. The consensus step on the bias is therefore,

qfull,8,1 = `8,1
∑
9∈#8

(−→̂
1+full, 9 ,8 −

−→̂
1+full,8, 9

)
∈ R6; . (76)

The resulting vector qfull,8,1 is then reduced by removing the extraneous entries corresponding to the padded zeros, as
was done on qfull,8,A , yielding q8,1 ∈ R6(:8+1) .

Soft Consensus on the Attitude
Next, we define consensus on the attitude quaternion by exploiting a notion of ‘averaging’ a quaternion. First, for each
8 ∈ + , we define the attitude vector as,

@̂+
8
=

[
@̂
+,)
8, 98,1

· · · @̂
+,)
8, 98,:8+1

])
∈ R4(:8+1) . (77)

Next, as for the position vector case, we pad the attitude vector with additional elements for the parts of the attitude
corresponding to satellites which 8 doesn’t track, and create copies of the vector for each neighbour : ∈ #8 which only
contain estimates in common:

−→
@̂+full,8,: =

[
@
8,:,)

1 · · · @
8,:,)

;

])
∈ R4; (78)

where @8,:
9
=


@̂+
8, 9
, if 9 ∈ Λ8,:[

1 0 0 0
])
, otherwise,

(79)

and where @+
8, 9

is the estimated attitude of satellite 9 by satellite 8.
The correct notion of the ‘difference’ between quaternions @1 and @2 can be expressed as @∗1@2, and the correct

notion of ‘summation’ over all of the quantites is given by quaternion multiplication. Hence, the correct notion of the
consensus step for the attitude quaternions is given by,

\full,8,@ =
∏
9∈#8

(−→
@̂+full,8, 9

)∗ (−→
@̂+full, 9 ,8

)
(80)

=
∏
9∈#8


(
@
8, 9

1

)∗ (
@
9 ,8

1

)
...(

@
8, 9

;

)∗ (
@
9 ,8

;

)

=


\8,@1
...

\8,@;

 ∈ R
4; , (81)

where the product shown here can be understood as a quaternion multiplication which acts on each quaternion in the
vector independently.

The last step needed for the soft consensus is to correctly define a tuning constant `, which acts as a feedback gain
on the quaternion consensus term in Eq. (81). To preserve the normalization of the quaternion, we define the quaternion
scaling function,

@B (@, `) =



√
1 − `2 ∑3

:=1 @
2
:

`@1

`@2

`@3


, (82)

15

and with this function the quaternion error is scaled appropriately as,

q
`

full,8,@ :=


@B (\8,@1 , `8,@)

...

@B (\8,@; , `8,@)

 ∈ R
4; . (83)

As a consistency check, as `→ 0, the attitude approaches [1 0 0 0], which denotes an error of zero. Finally, as for the
bias and position vectors, the last step is to reduce this quantity to the appropriate size by only keeping the entries which
are in the set +8 , yielding q8,@ ∈ R4(:8+1) .

Combining the Soft Consensus Terms
Now that the three soft consensus terms are computed, they need to be applied to the estimate of satellite 8. To apply
the correction term on the attitude, the current estimate of the attitude is multiplied (in the quaternion sense) with the
attitude component of the soft consensus term q8,@ as,

@̂++
8
= @̂+

8
q8,@ =


@̂+
8, 98,1

q8,@1
...

@̂+
8, 98,:8+1

q8,@:8+1

 . (84)

The bias estimate is corrected by adding the bias soft consensus term as,

−−→
1̂++8 =

−→̂
1+8 + q8,1 . (85)

Finally, the position soft consensus term is added to Eq. (70)

Â++
8
= Â+

8
+ q8,A , (86)

and then transformed to the dual quaternion position, as

−−→
@̂++8 =



@̂++
8, 98,1

1
2

[
0

Â++
8, 98,1

]
@̂++
8, 98,1

...

@̂++
8, 98,:8+1

1
2

[
0

Â++
8, 98,:8+1

]
@̂++
8, 98,:8+1


. (87)

2. Description of the Hard Consensus Term
The purpose of the hard consensus term is to fuse measurement data and error covariance matrices between

neighbouring agents. We adapt the method proposed in [27] to the dual quaternion setting. The main challenge is
computing the distributed versions of the Kalman information filter quantities in (13), as each satellite has a different
number of estimated states and so the measurement matrices have different sizes for each node and also incorporate
different measurements. As such, each satellite needs to prepare a measurement matrix and vector compatible with each
of its neighbours.

Consider the measurement matrix of satellite 8 as defined in Eq. (56). Then, �8,8 = �8 ∈ R8(:8+1)×14(:8+1) . We will
define the matrix �8,: as just a reconfiguration of �8,8 to match the different state of satellite : , as shown in Appendix A.B
Eqs. (140)-(141). Because some states are not estimated by satellite 8 but are estimated by its neighbour satellite : , it
may be the case that depending on the neighbourhood, some of the measurement Jacobians satisfy �=:,1

8,=:,1
= 08×8.

A similar procedure can now be done for the measurement itself. As for the measurement Jacobian, each satellite
needs to prepare the measurement and convert it to a vector compatible with the state estimate of the neighbouring

16

satellites. The measurement of satellite 8 is defined as in Eq. (52). Then, the vector E> ∈ R6 (being the >-th entry of I8,:)
is equal to the vector 2; ∈ R6 (being the ;-th entry of I8) if 98,; = 9:,>. Otherwise the entry is 06×1. Explicitly, for : ∈ +8 ,

I8,: =


E1
...

E::+1

 where

{
E> = 2; , if 98,; = 9:,>
E> = 06×1, otherwise

. (88)

In the running example described in Fig 5, the sensitivity matrices and measurement vectors of satellite 4 for the
estimates of itself and its neighbours 1 and 3 are shown in Eqns (89a), (89b) and (89c).

�4,1 =


�1

4,1 06×6 06×6 06×6 �4
4,1 06×6

06×6 06×6 06×6 06×6 06×6 06×6

06×6 06×6 06×6 06×6 I6×6 06×6

 ∈ R
18×36 I4,1 =


@�4/�1 ,<

A
�4
�1/�4 ,<

06×1

q̂4,4/�q�4/� ,<


(89a)

�4,3 =


06×6 06×6 06×6 06×6 06×6 06×6 06×6 06×6

06×6 06×6 �3
4,3 06×6 �4

4,3 06×6 06×6 06×6

06×6 06×6 06×6 06×6 I6×6 06×6 06×6 06×6

06×6 06×6 06×6 06×6 06×6 06×6 06×6 06×6


∈ R24×48 I4,3 =



06×1

@�4/�3 ,<

A
�4
�3/�4 ,<

q̂4,4/�q�4/� ,<
06×1


(89b)

�4,4 =


�1

4,1 06×6 06×6 06×6 �1
4,1 06×6

06×6 06×6 �3
4,3 06×6 �4

4,3 06×6

06×6 06×6 06×6 06×6 I6×6 06×6

 ∈ R
18×36 I4,4 =



@�4/�1 ,<

A
�4
�1/�4 ,<

@�4/�3 ,<

A
�4
�3/�4 ,<

q̂4,4/�q�4/� ,<
06×1


(89c)

Now that the measurement matrices and vectors are compatible between neighbours, we can formalize the consensus
step. The only equations which change in comparison to the distributed Kalman filter without a consensus step are
Eqs. (57)-(59). Each 8 ∈ + satellite prepares the measurement covariance matrix and the measurement for its neighbour
: ∈ #8 ,

*8,: = �
)
8,:
'−1
8,:�8,:

*8,: = �
)
8,:'

−1
8,:�8,:

D8,: = �
)
8,:
'−1
8,: I8,: ,

(90)

and sends a message to its neighbour : ,
msg8,: =

(
*8,: ,*8,: , D8,:

)
. (91)

Next, each satellite 8 ∈ + calculates the aggregated covariance matrix (8 and the aggregated sensor data H8 as,

H8 =
∑
9∈+8

D 9 ,8 (8 =
∑
9∈+8

* 9 ,8 (8 =
∑
9∈+8

* 9 ,8 . (92)

Each satellite 8 ∈ + then computes the state update (63) as,

ΔG8 =

[
Δ%q̂)

98,1/� Δ%b̂)l 98,1 · · · Δ%q̂)
98,:8+1/�

Δ%b̂)l 98,:8+1

])
= "8

(
H8 − ((81)

)
, (93)

where
"8 =

(
%−1
8 + (8

)−1
. (94)

Finally, each agent 8 ∈ + updates the estimates of the pose and bias using Eqs. (64) and (65).

17

D. Leader-Follower Consensus
In a satellite fleet where absolute pose measurements are difficult to obtain or would require an expensive sensor

(i.e., a star-tracker), it might be interesting to only provide pose measurements to a subset of the satellite fleet. The
remaining satellites would then only have relative pose measurements with their neighbours.

In this configuration, we define a set of leaders ! ⊂ + which includes all satellites that have access to absolute pose
measurements. We then denote � = + \ ! as the followers.

The removal of the pose measurement for the followers only changes their respective measurement update of
the Kalman filter. A straightforward modification consists of removing the absolute pose measurement from the
measurement vector and remove the corresponding row of the measurement matrix in (56) for all satellites 8 ∈ �.
Empirically, this solution does not yield good results if the set ! is small. Hence, a different approach was chosen for
the estimation of the followers.

1. Calculation of Absolute Pose Measurements
To address this issue, we propose a method whereby an absolute pose measurement is constructed from relative pose

measurements and absolute pose estimates. At each timestep, satellite 8 ∈ + estimates its own pose and the pose of its
neighbours : ∈ #8 . Additionally, it measures the relative pose of the neighbouring satellites in its own body frame.
Satellite 8 can thus compute |#8 | = :8 absolute pose measurements for : = 1, . . . , :8 through

@�8/� ,<: = @̂
−
8,=8,:

@∗
�=8 ,:/�8 ,<

(95)

A �
�8/� ,<: = 2@̂−8,=8,: ?̂

−
8,=8,:
− @�=8 ,:/�8 ,<A

�8
�=8 ,:/�8 ,<

@∗
�=8 ,:/�8 ,<

. (96)

Informally, to get an absolute attitude measurement of satellite 8, we remove the relative attitude measurement from
satellite 8 to satellite : from the estimated attitude of satellite : computed by satellite 8. The same is done for the position
measurement. To fuse the various position estimates, we can average them as,

A �
�8/� ,< =

1
:8

∑
:∈#8

A �
�8/� ,<: . (97)

The notion of the ‘average’ of the attitude quaternion is proposed by [38] and is computed as the minimizer of the linear
program,

@�8/� ,< =


argmax Tr

(
�(@�8/� ,<)�)

)
subject to � =

∑
:∈#8

�(@�8/� ,<:),
(98)

where �(@) is the rotation matrix of quaternion @. The dual quaternion for the pose measurement is then constructed
from A �

�8/� ,< and @�8/� ,<, and no further changes to the algorithm are necessary.

2. Stubborn Leaders
In the leader-follower setting, it is quite clear that leaders always have more information than followers due to

their absolute pose measurement. In many cases, a follower may only be able to improve the estimate of a leader
if it has immediate knowledge of another leader satellite, i.e., if the follower is connected to two or more leaders.
Notwithstanding pathological cases, this occurs in a graph when a large percentage of satellites are leaders. Conversely,
as the percentage of leaders becomes small, the follower satellites may very well reduce the estimator performance of
the leader, which in turn may deteriorate the performance of the whole fleet. In this section, we describe the notion of a
‘stubborn’ leader which does not perform consensus with followers, which, as we will see in §IV.C, provides better
average performance when the percentage of leaders is low. Only two changes need to be made. In the case of soft
consensus, it sufffices to set `8,A = `8,@ = `8,1 = 0 if 8 ∈ ! for leaders to ignore the follower estimates. In the case of
hard consensus, Eq. (92) must be replaced with,

H8 =


D8,8 , if 8 ∈ !∑
9∈+8

D 9 ,8 , otherwise, (8 =

*8,8 , if 8 ∈ !∑
9∈+8

* 9 ,8 , otherwise, (8 =

*8,8 , if 8 ∈ !∑
9∈+8

* 9 ,8 , otherwise. (99)

With these modifications, the leaders will not be influenced by the follower estimates.

18

IV. Numerical Examples
In this section, we present three numerical experiments that demonstrate the advantages of the distributed DQ-MEKF.

First, in §IV.A we compare the DQ-MEKF and its distributed counterpart. Next, in §IV.B we showcase the filter in
a scenario where a fleet of satellites swarm around an asteroid. Finally, in §IV.C, we examine the performance of
the distributed DQ-MEKF in the leader-follower scenario where only a subset of the satellites have an absolute pose
measurement. We provide an open-source repository [32] containing the code to reproduce the numerical examples in
this section.

A. Comparison of Cooperative vs Non-Cooperative Fleet

Matrix Value
&1l

10−3

SNR2 I3×3

&1E
10−1

SNR2 I3×3

&l , &E 03×3

'6×6 blkdiag{std2
@I3×3, std2

A I3×3}
%12×12 (0) blkdiag{10−1I6×6, 10−2I6×6}
%15×15 (0) blkdiag{10−1I6×6, 10−2I9×9}

Table 2 Simulation parameters for the comparison between the DQ-MEKF and DDQ-MEKF.

We aim to compare the performance of Algorithm 1 on a fleet of satellites with that same fleet of satellites running
the DQ-MEKF algorithm from [19], as this essentially quantifies the improvement of performance when distributing the
algorithm.

In particular, we compare the performance of the DQ-MEKF, Algorithm 1 with both hard and soft consensus, and
Algorithm 1 with soft consensus only. We assume absolute pose measurements for all satellites, and in each case, the
respective filter was initialized with the parameters in Table 2. In the distributed case, for each satellite 8 ∈ + , the
covariance matrices for the various noises are direct-summed with a copy for each neighbour 9 ∈ +8 . Whenever soft
consensus is employed, we set `8,A = `8,@ = `8,1 = 1/|�8 | where |�8 | is the number of neighbours of 8, including itself.

Each simulation is initialized with a given signal-to-noise ratio (SNR), and we do a simulation sweep over values
of the SNR from 5 to 105. In Table 2, std@ and stdA are the standard deviations of the Gaussian noise applied to the
attitude and position respectively, which are calculated from the given SNR. For each algorithm and each SNR, 80
such simulations were run at 20Hz for 60s. Finally, the graphs defining the connectivity of the fleet of satellites were
generated randomly, with the probability of an edge existing between 8, 9 ∈ + being set to 0.5. Disconnected graphs
generated in this manner were discarded and re-initialized.

The results of the parameter sweep are depicted in Fig. 3, where we plot the interquartile ranges of attitude, position,
angular velocity and linear velocity estimator error over the simulations for varying SNRs. For small SNRs, soft
consensus is is superior to the non-cooperative case and performs similarly to the case with both soft and hard consensus;
however, for higher SNRs, soft consensus provides an inferior velocity estimate compared to the other filters. However,
the DDQ-MEKF with both hard and soft consensus outperforms the non-cooperative case in every metric over all SNRs.

B. Distributed Swarming Around an Asteroid
In this example, we consider the performance of Algorithm 1 (with both hard and soft consensus) in a scenario

where 50 satellites arrange themselves around an asteroid, while maintaining an attitude representative of pointing a
scientific payload at the asteroid. The initial conditions of the satellites are arranged on a plane 40m from the asteroid,
and a Fibonacci lattice [39] is used to evenly space the target positions of the satellites on a sphere of radius 25m
centered around the asteroid. The reference attitude is constructed from the current estimate of the satellite and the
position of the asteroid, and an LQR controller is used to maneuver the fleet to their final positions and attitudes over
~200s. During the maneuver, the satellites perform Algorithm 1 across the connectivity graph seen in Fig. 5, with a
sampling rate of 20 Hz, and initialized with the parameters in Table 3.

A representative satellite with node label 10 is selected at random, and is coloured in blue in Figs. 4 and 5. Leader
nodes are depicted in red. The position and attitude (in quaternion form) of satellite 10 throughout the maneuver is
shown in Fig. 6 , along with the estimates of satellite 10 as computed by Algorithm 1 by satellite 10 itself, and its

19

5 10 50 100 500

SNR

10
-1

10
0

10
1

Attitude error as a function of SNR

No Consensus

Soft Consensus

Hard + Soft Consensus

1000 5000 10000 50000 100000

SNR

10
-3

10
-2

10
-1

Attitude error as a function of SNR

No Consensus

Soft Consensus

Hard + Soft Consensus

5 10 50 100 500

SNR

10
-2

10
-1

10
0

Position error as a function of SNR

No Consensus

Soft Consensus

Hard + Soft Consensus

1000 5000 10000 50000 100000

SNR

10
-3

10
-2

10
-1

Position error as a function of SNR

No Consensus

Soft Consensus

Hard + Soft Consensus

5 10 50 100 500

SNR

10
1

10
2

Angular velocity error as a function of SNR

No Consensus

Soft Consensus

Hard + Soft Consensus

1000 5000 10000 50000 100000

SNR

0.5

1

1.5

2

2.5

Angular velocity error as a function of SNR

No Consensus

Soft Consensus

Hard + Soft Consensus

5 10 50 100 500

SNR

10
1

10
2

Linear velocity error as a function of SNR

No Consensus

Soft Consensus

Hard + Soft Consensus

1000 5000 10000 50000 100000

SNR

2

4

6

8

Linear velocity error as a function of SNR

No Consensus

Soft Consensus

Hard + Soft Consensus

Fig. 3 Comparison of the different consensus filters for a fleet of ten satellites. Blue: the baseline non-
cooperative DQ-MEKF. Red: the distributed DQ-MEKF is shown with the soft consensus term. Yellow: the
distributed DQ-MEKF with soft and hard consensus.

neighbours. The RMS errors of the attitude, position, angular velocity, and linear velocity are shown in Fig. 7. As one
can see, the error decreases over time until it reaches a steady-state, showing that the estimator remains stable during the
maneuver. A supplementary video showing the swarming behaviour of entire the satellite fleet, as well as real time pose
data from satellite 10, may be found at [40].

C. Leader-Follower Scenario
In this section, we provide a set of numerical experiments to investigate the performance of Algorithm 1 with

leader-follower consensus as described in §III.D. Explicitly, we consider four cases: with hard and soft consensus,
with soft consensus only, with hard and soft consensus and subborn leaders, and with soft consensus and stubborn
leaders. In each case, only the leaders have access to absolute pose measurements, and followers create synthetic pose
measurements using Eqn. (95).

For each experiment, the SNR was fixed to 1000, and the filters were initialized with the parameters in Table 2. We
varied the percentage of leaders from 10%-100%, and leaders were selected uniformly at random in the graph in order
to understand how the performance varies with different sets of leaders. The graph itself was randomized as in §IV.A.
For each instance of leader percentage, the simulation was run 80 times (randomizing the graph and leaders each time),

20

Fig. 4 Target formation of the cooperative asteroid swarming scenario. Satellites depicted in red are the
leaders.

Fig. 5 Connectivity graph for the asteroid coverage scenario. Red nodes depict leaders, and the blue square
node depicts satellite 10.

21

Fig. 6 Attitude and position of satellite 10 in the asteroid coverage scenario.

0 50 100 150 200 250 300

Time (s)

10
-2

10
0

2
*a

c
o

s
(

q
0
)

[d
e

g
]

Attitude Error

0 50 100 150 200 250 300

Time (s)

10
-2

||
r e

s
t -

 r
tr

u
e
||
 [
m

]

Position Error

0 50 100 150 200 250 300

Time (s)

10
-3

10
-2

10
-1

10
0

||
e

s
t -

tr

u
e
||
 [
d

e
g

/s
]

Angular Velocity Error

0 50 100 150 200 250 300

Time (s)

10
-4

10
-3

10
-2

10
-1

||
v

e
s
t -

 v
tr

u
e
||
 [
m

/s
]

Linear Velocity Error

Fig. 7 RMS error of the attitude and position and their derivatives of satellite 10 in the asteroid coverage
scenario.

22

Parameter (∀8 ∈ +) Value
Attitude Noise Cov 2.79 × 10−7I4×4

Position Noise Cov 8.55 × 10−4I3×3

&88 blkdiag{0 × I6×6}
&b8 8 blkdiag{10−6I3×3, 10−4I3×3}
%8 (0) blkdiag{10−1I6×6, 10−2I6×6}
`8,@ , `8,A , `8,1 1/|�8 |
&!&',8 1 × 10−1I12×12

'!&',8 1 × 10−1I6×6

Table 3 Settings of the distributed DQ-MEKF for the distributed swarming example.

100 90 80 70 60 50 40 30 20 10

% Leaders

10
-1

10
0

10
1

Attitude error as a function of percentage leaders

Soft Cons. - Leaders ignore neighbours

Soft Cons.

Hard + Soft Cons. - Leaders ignore neighbours

Hard + Soft Cons.

Mean

Mean

Mean

Mean

100 90 80 70 60 50 40 30 20 10

% Leaders

10
0

Position error as a function of percentage leaders

Soft Cons. - Leaders ignore neighbours

Soft Cons.

Hard + Soft Cons. - Leaders ignore neighbours

Hard + Soft Cons.

Mean

Mean

Mean

Mean

100 90 80 70 60 50 40 30 20 10

% Leaders

10

20

30

40
50

Angular velocity error as a function of percentage leaders

Soft Cons. - Leaders ignore neighbours

Soft Cons.

Hard + Soft Cons. - Leaders ignore neighbours

Hard + Soft Cons.

Mean

Mean

Mean

Mean

100 90 80 70 60 50 40 30 20 10

% Leaders

20

40

60

80
100
120
140

Linear velocity error as a function of percentage leaders

Soft Cons. - Leaders ignore neighbours

Soft Cons.

Hard + Soft Cons. - Leaders ignore neighbours

Hard + Soft Cons.

Mean

Mean

Mean

Mean

Fig. 8 Comparison of the four variations of the DDQ-MEKF by varying the% of leaders over a random graph.
The fleet has ten satellites, and has a fixed SNR of 1000.

and each simulation was run for a duration of 60s at 20Hz (1200 iterations). In order to understand the steady-state error
of each simulation, the error values in Fig. 8 are computed using the last 600s of each simulation to discard transient
behaviour.

23

We can see in Fig. 8 that algorithms with stubborn leaders perform worse than with non-stubborn leaders, and
overall the algorithms perform better with larger percentages of leaders. This is expected. When leaders ignore their
neighbours and all satellites are leaders, this is equivalent to the case in §IV.A with non-cooperating satellites, where the
cooperating fleet has superior performance to that of the non-cooperating fleet. The soft consensus case also always
does worse than the combination of hard and soft consensus for a SNR of 1000, which is in agreement with §IV.B.

As expected, as the percentage of leaders decreases, the performance of the entire fleet also decreases. It can also be
seen that the case of stubborn leaders doesn’t suffer as much performance degradation as the case where all satellites
perform consensus. This is due to the fact that the followers cannot have a better estimate of the leader if the number of
leaders is very small. A final observation is that the performance of the fleet doesn’t degrade until approximately less
than 50% of fleet are leaders. Since the graphs and leaders are randomly generated, this is the point at which a follower
has a high likelihood of only being connected to one leader, or to no leaders at all. Therefore, its performance is limited
by the quality of measurements it has access to, which in turn is determined in part by the quality of the estimates of its
neighbours. If this neighbourhood doesn’t contain leaders, then the quality of the corresponding satellite’s estimate
reflects the fact that the absolute pose measurements provided by the leaders is degraded as it propagates across the
network.

V. Conclusion
In this paper, we have proposed, derived and validated a distributed version of the dual-quaternion multiplicative

extended Kalman filter as studied by [19]. The relevant algebraic quantities for distributing the filter were derived,
and the concepts of hard and soft consensus were introduced to improve measurement and estimate fusion between
neighbouring satellites in the network. We also described the filter in a leader-follower scenario, where only leaders in
the fleet have access to an absolute pose measurement.

Our numerical experiments show that distributing the DQ-MEKF over a network of satellites provides a substantial
performance increase across a variety of signal-to-noise ratios over the non-cooperative scenario when both hard and
soft consensus is employed alongside Algorithm 1. Furthermore, we established numerically that the filter is sufficiently
stable and provides an estimate of sufficient fidelity that it can be succesfully used in a dynamic scenario where satellites
are cooperating to swarm around an asteroid. This experiment also demonstated the scalability of the algorithm over a
larger fleet. Our final numerical experiment showed that we can remove expensive absolute pose measurement sensors,
such as star-trackers, from a large part of the fleet with no significant performance degradation. We leave the question of
optimally choosing which satellites to select as leaders (given a network) for future research.

Additional future work may include validation of the proposed methods on a hardware testbed involving multiple
satellite simulators, or adapting the filter to pose control of other vehicles such as quadrotors. Considering correlations
between neighbouring pose estimates in the consensus algorithms may yield further improvements in performance. One
remaining question not fully addressed in this paper is a detailed analysis of the effect of the network topology on the
performance of the algorithm – our chosen network topologies were randomly generated, and as such the average effect
of the networks were studied, but the question of optimizing specific networks for the filter remains. Aside from the
dynamical analysis contained in this paper, this line of work will involve topics in combinatorial optimization.

A. Appendix

A. Jacobians of Measurement Models
Here, we derive the Jacobians of the measurement functions in (52) for various measurement models. For the sake

of reducing notational burden, the time dependence of the estimates is neglected in the derivations below. However, we
ask the reader to keep in mind that the estimates and measurements are also time-dependent.

1. Jacobian of the Absolute Pose Measurement
As can already be seen in Equation (52), the measurement is multiplied with the conjugate of the estimate, directly

yielding the error dual quaternion. Hence, the measurement matrix � is simply,

�01B =

[
I6×6 06×6

]
. (100)

24

2. Jacobian of the Relative Attitude Measurement
The relative attitude @A is the real part of q�:/�8 = @A ,�:/�8 + n@3,�:/�� . To reduce notational burden, we will

denote @A ,�:/�8 := @:/8 and @3,�:/�� := ?:/8 . In this way, @:/8 is the quaternion describing the rotation from satellite 8
to satellite : , and ?:/8 denotes the position quaternion from satellite 8 to : .

We define the error quaternion as %q�/� = q̂∗
�/�q�/� , where � is the body frame of the satellite. Through the

definition of the dual quaternion, it immediately follows that X@�/� = @̂∗�/� @�/� . Dropping � from the notation as above
yields,

X@8/� = @̂
∗
8/� @8/� (101)

X@:/� = @̂
∗
:/� @:/� , (102)

which allows us to compute ℎ@:/8 (·) as,

@:/8 = @
∗
8/� @:/� (103)

= (@̂8/� X@8/�)∗ (@̂:/� X@:/�) (104)
=: ℎ@:/8 (G8). (105)

Given the measurement function ℎ@:/8 (·), we can now derive the corresponding Jacobian for the measured relative
attitude by differentiating @:/8 by the state variables X@8/� and X@:/� , as

�@:/8 , X@8/� =
m@:/8
mX@8/�

����
G8=Ĝ8

(106)

=
m ((@̂8/� X@8/�)∗ (@̂:/� X@:/�))

mX@8/�

����
G8=Ĝ8

(107)

= [|@̂:/� |]' [|@̂∗8/� |]'
m (X@∗

8/�)
mX@8/�

(108)

= [|@̂:/� |]' [|@̂∗8/� |]' �
∗ ∈ R4×4, (109)

and,

�@:/8 , X@:/� =
m@:/8
mX@:/�

����
G8=Ĝ8

(110)

=
m ((@̂8/� X@8/�)∗ (@̂:/� X@:/�))

mX@:/�
(111)

= [|@̂∗
8/� |]! [|@̂:/� |]!

m (X@:/�)
mX@:/�

(112)

= [|@̂∗
8/� |]! [|@̂:/� |]! ∈ R

4×4. (113)

3. Jacobian of the Relative Position Measurement
As before we will drop the subscript � denoting the body frame and introduce @A ,�:/�8 := @:/8 and @3,�:/�� := ?:/8 .

Satellite 8 measures its position in its body frame relative to the frame of its neighbour : . Denote this measurement A 8
:/8 .

To compute the measurement function ℎ8,A8: (·), we need two more equations, the position quaternion error and the
transformation of the position onto the quaternion position. The former is computed as,

%q�/� = q̂∗
�/�q�/� (114)

q�/� = q̂�/� %q�/� (115)
= (@̂�/� X@�/�) + n (@̂�/� X?�/� + ?̂�/� X@�/�) (116)
= @�/� + n ?�/� (117)

25

Hence, ?�/� = @̂�/� X?�/� + ?̂�/� X@�/� . The latter quantity is simply A�
�/� =

[
0 A�

�/�
ᵀ]ᵀ

= 2?�/� @�/� . We can thus
compute the measurement function as,

A �
:/� = A

�
8/� + @8/� A

8
:/8@

∗
8/� (118)

A 8
:/8 = @

∗
8/� (A

�
:/� − A

�
8/�)@8/� (119)

= @∗
8/� (2?:/� @

∗
:/� − 2?8/� @∗8/�)@8/� (120)

= 2(X@∗
8/� @̂

∗
8/�) ((?̂:/� X@:/�) (X@

∗
:/� @̂

∗
:/�)) (@̂8/� X@8/�) (121)

+ 2(X@∗
8/� @̂

∗
8/�) ((@̂:/� X?:/�) (X@

∗
:/� @̂

∗
:/�)) (@̂8/� X@8/�) (122)

− 2(X@∗
8/� @̂

∗
8/�) ((?̂8/� X@8/�) (X@

∗
8/� @̂

∗
8/�)) (@̂8/� X@8/�) (123)

− 2(X@∗
8/� @̂

∗
8/�) ((@̂8/� X?8/�) (X@

∗
8/� @̂

∗
8/�)) (@̂8/� X@8/�) (124)

= ℎ
8A8: (G8). (125)

Next, we compute the corresponding Jacobian by differentiating A 8
:/8 with respect to X@8/� , X@:/� , X?8/� and X?:/� .

First, we can compute

�A 8
:/8 , X ?:/�

=
mA 8
:/8

mX?:/�

�����
G8=Ĝ8

(126)

= 2
m (X@∗

8/� @̂
∗
8/�) ((@̂:/� X?:/�) (X@

∗
:/� @̂

∗
:/�)) (@̂8/� X@8/�)

mX?:/�

�����
G8=Ĝ8

(127)

= 2[|@̂∗
8/� |]' [|@̂8/� |]! [|@̂

∗
:/� |]' [|@̂:/� |]! ∈ R

4×4, (128)

followed by,

�A 8
:/8 , X@:/�

=
mA 8
:/8

mX@:/�

�����
G8=Ĝ8

(129)

= 2
m ((X@∗

8/� @̂
∗
8/�) ((?̂:/� X@:/�) (X@

∗
:/� @̂

∗
:/�)) (@̂8/� X@8/�)

mX@:/�
+ 2

m (X@∗
8/� @̂

∗
8/�) ((@̂:/� X?:/�) (X@

∗
:/� @̂

∗
:/�)) (@̂8/� X@8/�))

mX@:/�

�����
G8=Ĝ8

(130)

= 2[|@̂8/� |]' [|@̂∗8/� |]!
(
[|@̂∗

:/� |]' [| ?̂:/� |]! + [| ?̂:/� |]! [|@̂
∗
:/� |]' �

∗
)
∈ R4×4. (131)

Next we have,

�A 8
:/8 , X@8/�

=
mA 8
:/8

mX@8/�

�����
G8=Ĝ8

(132)

= 2
m ((X@∗

8/� @̂
∗
8/�) ((?̂:/� X@:/�) (X@

∗
:/� @̂

∗
:/�)) (@̂8/� X@8/�))

mX@8/�
−2
m ((X@∗

8/� @̂
∗
8/�) ((?̂8/� X@8/�) (X@

∗
8/� @̂

∗
8/�)) (@̂8/� X@8/�))

mX@8/�

�����
G8=Ĝ8

(133)
= 2[|@̂8/� |]' [| ?̂:/� @̂∗:/� |]' [|@̂

∗
8/� |]' �

∗ + 2[|@̂∗
8/� |]! [| ?̂:/� @̂

∗
:/� |]! [|@̂8/� |]! (134)

− 2[|@̂8/� |]' [| ?̂8/� @̂∗8/� |]' [|@̂
∗
8/� |]' �

∗ − 2[|@̂∗
8/� |]! [| ?̂8/� @̂

∗
8/� |]! [|@̂8/� |]! (135)

− 2[|@̂∗
8/� |]! [|@̂8/� |]' [|@̂

∗
8/� |]' [| ?̂8/� |]! − 2[|@̂∗

8/� |]! [|@̂8/� |]' [| ?̂8/� |]! [|@
∗
8/� |]' �

∗ ∈ R4×4, (136)

26

and finally,

�A 8
:/8 , X ?8/�

=
mA 8
:/8

mX?8/�

�����
G8=Ĝ8

(137)

= −2
m ((X@∗

8/� @̂
∗
8/�) (@̂8/� X?8/�))
mX?8/�

�����
G8=Ĝ8

(138)

= −2� ∈ R4×4. (139)

This concludes the computation of the Jacobians of the individual measurement functions in Eq. (52).

B. Full Jacobian for Hard Consensus
In the hard consensus step described in §III.C.2, the measurement Jacobian that satellite 8 prepares for its neighbour

: is given by,

�8,: =



�
=:,1
8,=:,1

06×6 . . . �8
8,=:,1

06×6 . . . 06×6 06×6
...

...
. . .

...
...

. . .
...

...

06×6 06×6 . . . I6×6 06×6 . . . 06×6 06×6
...

...
. . .

...
...

. . .
...

...

06×6 06×6 . . . �8
8,:8,::

06×6 . . . �
::
8,:8,::

06×6


∈ R6(::+1)×12(::+1) (140)

�8,: =



�
=:,1
8,=:,1

08×6 . . . �8
8,=:,1

08×6 . . . 08×8 08×6
...

...
. . .

...
...

. . .
...

...

08×8 08×6 . . . I8×8 08×6 . . . 08×6 08×6
...

...
. . .

...
...

. . .
...

...

08×8 08×6 . . . �8
8,:8,::

08×6 . . . �
::
8,:8,::

08×6


∈ R8(::+1)×14(::+1) . (141)

Acknowledgments
This research was funded by the Swiss National Science Foundation under the NCCR Automation (180545) and the

Research Council of Norway under the Centre for Space Sensors & Systems (309835).

References
[1] Johnson, N., “Orbital debris: The growing threat to space operations,” Advances in the Astronautical Sciences, Vol. 137, 2010,

pp. 3–11.

[2] Bandyopadhyay, S., and Quadrelli, M., “Optimal Transport Based Control of Granular Imaging System in Space,” 9th
International Workshop on Satellite Constellations and Formation Flying, 2017, pp. 1–11. https://doi.org/10.2514/1.G006001.

[3] Danzmann, K., and the LISA Study Team, “LISA: laser interferometer space antenna for gravitational wave measurements,”
Classical and Quantum Gravity, Vol. 13, No. 11A, 1996, p. A247. https://doi.org/10.2514/6.1995-829.

[4] Amaro-Seoane, P., Andrews, J., Arca Sedda, M., Askar, A., Baghi, Q., Balasov, R., Bartos, I., Bavera, S. S., Bellovary, J., Berry,
C. P., et al., “Astrophysics with the laser interferometer space antenna,” Living Reviews in Relativity, Vol. 26, No. 1, 2023, p. 2.
https://doi.org/10.1007/s41114-022-00041-y.

[5] Markley, L., “Attitude Error Representations for Kalman Filtering,” Journal of Guidance Control and Dynamics, Vol. 26, 2003,
pp. 311–317. https://doi.org/10.2514/2.5048.

[6] Farrell, J., “Attitude determination by Kalman filtering,” Automatica, Vol. 6, No. 3, 1970, pp. 419–430. https://doi.org/10.1016/
0005-1098(70)90057-9.

27

https://doi.org/10.2514/1.G006001
https://doi.org/10.2514/6.1995-829
https://doi.org/10.1007/s41114-022-00041-y
https://doi.org/10.2514/2.5048
https://doi.org/10.1016/0005-1098(70)90057-9
https://doi.org/10.1016/0005-1098(70)90057-9

[7] Crassidis, J., Markley, L., and Cheng, Y., “Survey of Nonlinear Attitude Estimation Methods,” Journal of Guidance Control
and Dynamics, Vol. 30, 2007, pp. 12–28. https://doi.org/10.2514/1.22452.

[8] Filipe, N., Kontitsis, M., and Tsiotras, P., “Extended Kalman Filter for spacecraft pose estimation using dual quaternions,” 2015
American Control Conference (ACC), 2015, pp. 3187–3192. https://doi.org/10.1109/ACC.2015.7171823.

[9] Michieletto, G., and Cenedese, A., “Formation Control for Fully Actuated Systems: a Quaternion-based Bearing Rigidity
Approach,” 2019 18th European Control Conference (ECC), 2019, pp. 107–112. https://doi.org/10.23919/ECC.2019.8795869.

[10] Lee, U., and Mesbahi, M., “Constrained autonomous precision landing via dual quaternions and model predictive control,”
Journal of Guidance, Control, and Dynamics, Vol. 40, No. 2, 2017, pp. 292–308. https://doi.org/10.2514/1.G001879.

[11] Zinage, V., andBakolas, E., “Koopman operator basedmodeling and control of rigid bodymotion represented by dual quaternions,”
2022 American Control Conference (ACC), 2022, pp. 3997–4002. https://doi.org/10.23919/ACC53348.2022.9867584.

[12] Zu, Y., Sun, C., and Dai, R., “Distributed estimation for spatial rigid motion based on dual quaternions,” 53rd IEEE Conference
on Decision and Control, 2014, pp. 334–339. https://doi.org/10.1109/CDC.2014.7039403.

[13] Dong, H., Hu, Q., and Ma, G., “Dual-quaternion based fault-tolerant control for spacecraft formation flying with finite-time
convergence,” ISA Transactions, Vol. 61, 2016, pp. 87–94. https://doi.org/10.1016/j.isatra.2015.12.008.

[14] Filipe, N., and Tsiotras, P., “Adaptive position and attitude-tracking controller for satellite proximity operations using dual
quaternions,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 4, 2015, pp. 566–577. https://doi.org/10.2514/1.
G000054.

[15] Yang, J., and Stoll, E., “Adaptive sliding mode control for spacecraft proximity operations based on dual quaternions,” Journal
of Guidance, Control, and Dynamics, Vol. 42, No. 11, 2019, pp. 2356–2368. https://doi.org/10.2514/1.G004435.

[16] Reynolds, T. P., and Mesbahi, M., “Coupled 6-DOF Control for Distributed Aerospace Systems,” 2018 IEEE Conference on
Decision and Control (CDC), 2018, pp. 5294–5299. https://doi.org/10.1109/CDC.2018.8619618.

[17] Crassidis, J. L., and Junkins, J. L., Optimal Estimation of Dynamic Systems, CRC Press, 2004. https://doi.org/10.1201/b11154.

[18] Sabatini, A. M., “Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing,” IEEE
Transactions on Biomedical Engineering, Vol. 53, No. 7, 2006, pp. 1346–1356. https://doi.org/10.1109/TBME.2006.875664.

[19] Filipe, N., Kontitsis, M., and Tsiotras, P., “Extended Kalman filter for spacecraft pose estimation using dual quaternions,”
Journal of Guidance, Control, and Dynamics, Vol. 38, No. 9, 2015, pp. 1625–1641. https://doi.org/10.2514/1.G000977.

[20] Alonso, R., Du, J.-Y., Hughes, D., Junkins, J. L., and Crassidis, J. L., “Relative navigation for formation flying of spacecraft,”
2001 Flight Mechanics Symposium, 2001.

[21] Alonso, R., Crassidis, J., and Junkins, J., “Vision-based relative navigation for formation flying of spacecraft,” AIAA guidance,
navigation, and control conference and exhibit, 2000. https://doi.org/10.2514/6.2000-4439.

[22] Sung, K., Peck, C., Majji, M., and Junkins, J. L., “An Optical Navigation System for Autonomous Aerospace Systems,” IEEE
Sensors Journal, Vol. 22, No. 17, 2022, pp. 16862–16873. https://doi.org/10.1109/JSEN.2022.3190910.

[23] Mourikis, A. I., Trawny, N., Roumeliotis, S. I., Johnson, A. E., Ansar, A., and Matthies, L., “Vision-aided inertial
navigation for spacecraft entry, descent, and landing,” IEEE Transactions on Robotics, Vol. 25, No. 2, 2009, pp. 264–280.
https://doi.org/10.1109/TRO.2009.2012342.

[24] Mahmoud, M., and Khalid, H. M., “Distributed Kalman filtering: A bibliographic review,” Control Theory & Applications,
IET, Vol. 7, 2013, pp. 483–501. https://doi.org/10.1049/iet-cta.2012.0732.

[25] Zivan, Y., and Choukroun, D., “Dual quaternion Kalman filters for spacecraft relative navigation,” 2018 AIAA Guidance,
Navigation, and Control Conference, 2018, p. 1347. https://doi.org/10.2514/6.2018-1347.

[26] Olfati-Saber, R., “Distributed Kalman Filter with Embedded Consensus Filters,” Proceedings of the 44th IEEE Conference on
Decision and Control, 2005, pp. 8179–8184. https://doi.org/10.1109/CDC.2005.1583486.

[27] Olfati-Saber, R., and Shamma, J. S., “Consensus Filters for Sensor Networks and Distributed Sensor Fusion,” Proceedings of
the 44th IEEE Conference on Decision and Control, 2005, pp. 6698–6703. https://doi.org/10.1109/CDC.2005.1583238.

28

https://doi.org/10.2514/1.22452
https://doi.org/10.1109/ACC.2015.7171823
https://doi.org/10.23919/ECC.2019.8795869
https://doi.org/10.2514/1.G001879
https://doi.org/10.23919/ACC53348.2022.9867584
https://doi.org/10.1109/CDC.2014.7039403
https://doi.org/10.1016/j.isatra.2015.12.008
https://doi.org/10.2514/1.G000054
https://doi.org/10.2514/1.G000054
https://doi.org/10.2514/1.G004435
https://doi.org/10.1109/CDC.2018.8619618
https://doi.org/10.1201/b11154
https://doi.org/10.1109/TBME.2006.875664
https://doi.org/10.2514/1.G000977
https://doi.org/10.2514/6.2000-4439
https://doi.org/10.1109/JSEN.2022.3190910
https://doi.org/10.1109/TRO.2009.2012342
https://doi.org/10.1049/iet-cta.2012.0732
https://doi.org/10.2514/6.2018-1347
https://doi.org/10.1109/CDC.2005.1583486
https://doi.org/10.1109/CDC.2005.1583238

[28] Olfati-Saber, R., “Distributed Kalman filtering for sensor networks,” 2007 46th IEEE Conference on Decision and Control,
2007, pp. 5492–5498. https://doi.org/10.1109/CDC.2007.4434303.

[29] Ryu, K., and Back, J., “Distributed Kalman-filtering: Distributed optimization viewpoint,” 2019 IEEE 58th Conference on
Decision and Control (CDC), 2019, pp. 2640–2645. https://doi.org/10.1109/CDC40024.2019.9029645.

[30] Li, C., Dong, H., Li, J., and Wang, F., “Distributed Kalman filtering for sensor network with balanced topology,” Systems &
Control Letters, Vol. 131, 2019, p. 104500. https://doi.org/https://doi.org/10.1016/j.sysconle.2019.104500.

[31] Roumeliotis, S. I., and Bekey, G. A., “Distributed multirobot localization,” IEEE Transactions on Robotics and Automation,
Vol. 18, No. 5, 2002, pp. 781–795. https://doi.org/10.1109/TRA.2002.803461.

[32] Binz, J., Hudoba de Badyn, M., Iannelli, A., and Smith, R. S., Supplementary software for “Distributed Dual Quaternion
Extended Kalman Filtering for Spacecraft Pose Estimation”, 2023 [online]. https://doi.org/10.3929/ethz-b-000510769.

[33] Binz, J., Hudoba de Badyn, M., Iannelli, A., and Smith, R. S., Supplementary reference for “Distributed Dual Quaternion
Extended Kalman Filtering for Spacecraft Pose Estimation”, 2023 [online]. https://doi.org/10.3929/ethz-b-000619855.

[34] Olfati-Saber, R., “Kalman-Consensus Filter: Optimality, stability, and performance,” Proceedings of the 48h IEEE Conference
on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 2009, pp. 7036–7042. https:
//doi.org/10.1109/CDC.2009.5399678.

[35] Gunnam, K. K., Hughes, D. C., Junkins, J. L., and Kehtarnavaz, N., “A vision-based DSP embedded navigation sensor,” IEEE
Sensors Journal, Vol. 2, No. 5, 2002, pp. 428–442. https://doi.org/10.1109/JSEN.2002.806212.

[36] Kreiss, S., Bertoni, L., and Alahi, A., “OpenPifPaf: Composite fields for semantic keypoint detection and spatio-temporal
association,” IEEE Transactions on Intelligent Transportation Systems, Vol. 23, No. 8, 2021, pp. 13498–13511. https:
//doi.org/10.1109/TITS.2021.3124981.

[37] Kreiss, S., Bertoni, L., and Alahi, A., “PifPaf: Composite Fields for Human Pose Estimation,” Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 11977–11986. https://doi.org/10.1109/CVPR.
2019.01225.

[38] Markley, L., Cheng, Y., Crassidis, J., and Oshman, Y., “Averaging Quaternions,” Journal of Guidance, Control, and Dynamics,
Vol. 30, 2007, pp. 1193–1196. https://doi.org/10.2514/1.28949.

[39] Gonzalez, A., “Measurement of Areas on a Sphere Using Fibonacci and Latitude Longitude Lattices,”Mathematical Geosciences,
Vol. 42, 2010, pp. 49–64. https://doi.org/10.1007/s11004-009-9257-x.

[40] Binz, J., Hudoba de Badyn, M., Iannelli, A., and Smith, R. S., Supplementary video for “Distributed Dual Quaternion Extended
Kalman Filtering for Spacecraft Pose Estimation”, 2023 [online]. https://doi.org/10.3929/ethz-b-000606978.

29

https://doi.org/10.1109/CDC.2007.4434303
https://doi.org/10.1109/CDC40024.2019.9029645
https://doi.org/https://doi.org/10.1016/j.sysconle.2019.104500
https://doi.org/10.1109/TRA.2002.803461
https://doi.org/10.3929/ethz-b-000510769
https://doi.org/10.3929/ethz-b-000619855
https://doi.org/10.1109/CDC.2009.5399678
https://doi.org/10.1109/CDC.2009.5399678
https://doi.org/10.1109/JSEN.2002.806212
https://doi.org/10.1109/TITS.2021.3124981
https://doi.org/10.1109/TITS.2021.3124981
https://doi.org/10.1109/CVPR.2019.01225
https://doi.org/10.1109/CVPR.2019.01225
https://doi.org/10.2514/1.28949
https://doi.org/10.1007/s11004-009-9257-x
https://doi.org/10.3929/ethz-b-000606978

	Introduction
	Preliminaries
	Information Form Extended Kalman Filter
	Dual Quaternions
	Rigid Body Model in Dual Quaternions
	Dual Kinematics
	Dual Dynamics

	Graph Theory and Distributed Kalman Filtering

	Distributed Dual Quaternion Extended Kalman Filter
	Problem Statement
	Derivation of the distributed DQ-MEKF (DDQ-MEKF)
	Time Update
	Measurement Update

	Consensus
	Description of the Soft Consensus Term
	Description of the Hard Consensus Term

	Leader-Follower Consensus
	Calculation of Absolute Pose Measurements
	Stubborn Leaders

	Numerical Examples
	Comparison of Cooperative vs Non-Cooperative Fleet
	Distributed Swarming Around an Asteroid
	Leader-Follower Scenario

	Conclusion
	Appendix
	Jacobians of Measurement Models
	Jacobian of the Absolute Pose Measurement
	Jacobian of the Relative Attitude Measurement
	Jacobian of the Relative Position Measurement

	Full Jacobian for Hard Consensus

