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Abstract— This paper considers a finite sample perspec-
tive on the problem of identifying an LTI system from a
finite set of possible systems using trajectory data. To this
end, we use the maximum likelihood estimator to identify
the true system and provide an upper bound for its sample
complexity. Crucially, the derived bound does not rely on a
potentially restrictive stability assumption. Additionally, we
leverage tools from information theory to provide a lower
bound to the sample complexity that holds independently of
the used estimator. The derived sample complexity bounds
are analyzed analytically and numerically.

Index Terms— Linear System Identification, Maximum
Likelihood Estimation, Finite Sample Analysis

I. INTRODUCTION

IN this work, we consider the problem of identifying an
linear time-invariant (LTI) system from a finite set of system

models using data from a finite and noisy trajectory. To this end,
we use tools from statistical learning theory and information
theory to derive high probability upper and lower bounds of
the sample complexity of identifying the true system using the
maximum likelihood estimator (MLE).

The problem of identifying the true system from a given finite
set of systems naturally appears in many applications [1]. In par-
ticular, switched systems are prevalent across different domains
such as mechanical systems or the automotive industry [2].
Identifying the active mode of a switched system is also a
relevant problem for control, as shown, e.g., by several works in
the adaptive control literature [3]. Recently, renewed interest has
emerged in this literature for considering uncertainty in the form
of a finite set of models [4]. An additional application domain
motivating our interest are ecological and evolutionary models
where often the correct hypothesis out of a finite hypothesis
class needs to be determined from observations [5]. Choosing
an element from a finite set by leveraging information coming
from measured data is also paradigmatic of many decision-
making problems, e.g., in the bandits literature [6]. A notable
example is best-arm identification, a pure exploration problem
that has been successfully applied, e. g., for clinical trials [7].
In the fixed confidence setting [8], the goal is to identify the
best arm among a selection of arms with a desired confidence.
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In the dynamical systems setting, this translates into the high-
probability identification of the true system from a finite set
of systems. A key difference, to the setup considered in this
work is that best-arm identification assumes static arms and
uses the control input to achieve the goal as fast as possible
In this work, we assume Gaussian control inputs however the
system dynamic introduces correlation we need to address.

Related Works: While in the asymptotic regime, the statistic
analysis of system identification has a long history [9], recently
novel tools in statistical learning theory [10], [11] sparked an
increasing interest in non-asymptotic results, analyzing error
bounds of estimated models, especially the ordinary least
squares estimator (OLS), from a finite-sample perspective.
While first works [12], [13] relied on i.i.d data the now
predominant part of the literature analyzes the case of trajectory
data. Hereby, [14] was the first work to provide a finite sample
analysis for fully observed marginally stable systems. The
analysis was extended to unstable systems [15] uncovering a
statistical inconsistency of the OLS under certain conditions.
Results providing lower bounds on the sample complexity [16]
further enabled a fundamental analysis and understanding
of difficulties in identifying linear systems from trajectory
data [17]. The finite sample analysis of the identification of
switched systems using OLS has been considered in [18], with
known switching sequences and unknown system matrices.
For a comprehensive overview of non-asymptotic system
identification, we refer to [19].

Contribution: To the best of our knowledge, we provide the
first sample complexity analysis for the problem of identifying
an unknown LTI system from a finite set of models. To this
end, we derive an instance specific sample complexity upper
bound for the MLE. Hereby, the tools used to analyze the
unconstrained OLS when identifying an unknown system from
a continuous set can not be applied, since they rely on the
closed-form solution of the OLS. In contrast, our proof relies
on showing high-probability concentration of the cost of the
MLE for the true system and anti-concentration for all other
systems. A further advantage of the proposed approach is
that, unlike most finite sample results for the continuous set
case, the results in this work do not rely on any stability
assumptions. In addition, we provide an instance specific
sample complexity lower bound for δ-stable algorithms. An
analytical and numerical analysis of the bounds shows which
factors influence the hardness of identification.

Notation: The unit sphere in Rn is denoted by Sn−1. Given
a matrix M we denote its Frobenius norm by ∥M∥F. Given a
vector x ∈ Rn and a matrix P ≻ 0 we define ∥x∥2P = x⊤Px.



In the special case of P = I we omit the subscript. We denote
matrix blocks that can be inferred from symmetry by ⋆, i. e.,
we write Λ⊤ΣΛ = [⋆]ΣΛ. We denote the canonical basis in
Rn with e1, . . . , en. Given some z ∈ R we write ⌊z⌋ to denote
the floor-function. We use the shorthand Pθ[·] (Eθ[·]) when
referring to the probability (expectation) given that the system
generating the data is given by θ.

II. PRELIMINARIES

A. Problem setup
Consider the linear time-invariant discrete-time system

xt+1 = A∗xt +B∗ut + wt, (1)

where xt ∈ Rnx is the state of the system, ut ∈ Rnu is the
control input and wt ∈ Rnx is unknown process noise. We
seek to identify the unknown system matrices θ∗ = (A∗, B∗)
from a single trajectory {xt}Tt=1, {ut}T−1

t=1 of length T . We
assume the data is collected as follows.

Assumption 1: The process noise and control input are i. i. d.
zero-mean Gaussian with known covariance matrices Σw,Σu ≻
0, i. e., wt

i.i.d.∼ N (0,Σw) and ut
i.i.d.∼ N (0,Σu).

While Assumption 1 is standard in non-asymptotic identification
literature [14], [19], extensions to other noise classes are an
interesting topic for future work. Further, we assume to know
a finite set of possible systems which contains the true system,
i. e., θ∗ ∈ S := {θ0, . . . , θN}, where θi = (Ai, Bi). We assume
(A∗, B∗) = (A0, B0) to simplify the notation.

B. Maximum likelihood estimation
To identify the true system (A∗, B∗) from data we resort to

the MLE, which is asymptotically optimal and efficient [20].
Here, we analyze its non-asymptotic behavior, by means of
statistical learning theory tools. To this end, observe that the
probability of collecting the data dt := {xt+1, xt, ut} from
system i is given by

Pθi(dt) =
1√

(2π)nx |Σw|
e−

1
2 [⋆]Σ

−1
w (xt+1−Aixt−Biut).

Based on this observation, we define the cost

ℓθi(xt, ut) = ∥xt+1 −Aixt −Biut∥2Σ−1
w
, (2)

which is proportional to the negative log-likelihood of observ-
ing the data {xt+1, xt, ut} from system i. Thus, the MLE
minimizes the empirical risk L̂(θ) = 1

T

∑T
t=1 ℓθ(xt, ut), i. e.,

θ̂T ∈ argmin
θ∈S

L̂(θ). (3)

For our analysis we adopt the notion of sample complexity
(see, e. g., [19]) and aim at deriving an instance specific sample
complexity upper bound for the MLE (3). That is, given a
chosen failure probability δ ∈ (0, 1), we provide guarantees of
the form

P[θ̂T = θ∗] ≥ 1− δ, if T ≥ Tub, (4)

where Tub = Tub(δ,A,S, θ∗) is an upper bound of the
problem specific sample complexity of an analyzed estimation
algorithm A. Additionally, we provide an instance-specific

sample complexity lower bound that holds independently of
the used estimator, i. e., we show that any

P
[
θ̂T = θ∗

]
≤ 1− δ if T ≤ Tlb, (5)

where Tlb = Tlb(δ,S, θ∗) is a lower bound of the problem
specific sample complexity for any estimation algorithm
yielding the estimate θ̂T .

III. FINITE SAMPLE IDENTIFICATION

A. A sample complexity upper bound
Plugging the dynamics (1) into the cost (2) yields

ℓθi(xt, ut) = ∥wt +∆Aixt +∆Biut∥2Σ−1
w
,

where we defined ∆Ai := A∗ − Ai and ∆Bi := B∗ − Bi.
Further, we define

zit := Σ−1/2
w (wt +∆Aixt +∆Biut), (6)

where Σ−1
w =

(
Σ

−1/2
w

)⊤
Σ

−1/2
w . With this, the empirical

risk reads L̂(θi) =
1
T

∑T
t=1 ∥zit∥2. Since the sum of Gaussian

random variables is Gaussian we have that for all t ∈ [1, T ]

xt ∼ N

(
Atx0,

t∑
τ=0

[⋆]Σu(A
τ
∗B∗)

⊤ + [⋆]ΣwA
τ
∗
⊤

︸ ︷︷ ︸
:=Σxt

)
. (7)

With this, we see that zit is Gaussian distributed as well, i. e.,

zit ∼ N
(
Σ−1/2

w ∆AiA
tx0,Σ

i
zt

)
, (8)

where

Σi
zt

:= I +Σ−1/2
w

(
[⋆]Σu∆B⊤

i + [⋆]Σxt
∆A⊤

i

)
Σ−1/2

w

⊤
. (9)

It is important to note that the sequence (zit)t≥1 is highly
correlated due to the underlying LTI system generating the data.
To handle the correlation, we leverage the block martingale
small-ball condition introduced in [14].

Definition 1 (Block Martingale Small-Ball [14]): Let
(ζt)t≥1 be a {Ft}t≥1-adapted random process taking values
in R. We say (ζt)t≥1 satisfies the (k, ν, p)-block martingale
small-ball (BMSB) condition if, for any j ≥ 0

1

k

k∑
i=1

P[|ζj+i| ≥ ν|Fj ] ≥ p a.s.

Given a process (zt)t≥1 taking values in Rnz , we say that
it satisfies the (k,Γsb, p)-BMSB condition for Γsb ≻ 0 if,
for any fixed v ∈ Snx−1 the process ζt = ⟨v, zt⟩ satisfies
(k,
√
v⊤Γsbv, p)-BMSB.

The BMSB condition establishes a level of anti-concentration
along a sequence. We can show that the sequence (zit)

T
t=1

satisfies the BMSB condition.
Proposition 1: Let Assumption 1 hold, let zit be defined

according to (6) and define

Ft := (w0, . . . , wt, x0, . . . , xt, u0, . . . , ut).

Then the {Ft}Tt=1-adapted random process (zit)
T
t=1 satisfies

the
(
k,Σi

zk/2
, 3/20

)
-BMSB condition for all k ∈ [1, T ].



The proof of Proposition 1 builds on arguments used in [14]
and can be found in Appendix B. Before we state the main
theorem of this section we define

∆Λu
i (t) := ∆Ai

t∑
s=0

As
∗B∗Σ

1/2
u (10a)

∆Λw
i (t) := ∆Ai

t∑
s=0

As
∗Σ

1/2
w (10b)

describing the excitations due to the control input (10a) and
noise (10b) projected on the differences between A∗ and Ai.

Theorem 1: Let {xt}Tt=1, {ut}Tt=1 be data collected from
system (1) according to Assumption 1. Fix a failure probability
δ ∈ (0, 1). If there exists k ∈ [1, T ] such that

⌊T/k⌋ ≥ 320/3 log(2nxN/δ) (11a)

and for all i ∈ [1, N ]

√
nx + nx ≤ 9k⌊T/k⌋

3200T

(
∥Σ−1/2

w ∆Λw
i (k/2)∥2F + nx (11b)

+ ∥Σ−1/2
w ∆BiΣ

1/2
u ∥2F + ∥Σ−1/2

w ∆Λu
i (k/2)∥2F

)
,

then the MLE (3) yields the true system θ∗ with probability
at least 1− δ, i. e., P[θ̂T = θ∗] ≥ 1− δ.

Proof: The proof is articulated in three steps. First,
we use the BMSB condition to show anti-concentration of
1
T

∑T
t=1 ∥zit∥. Secondly, we show that 1

T

∑T
t=1 ∥wt∥ concen-

trates. Finally, we combine the previous two results to obtain
that L̂(θ∗) < L̂(θi) ∀θi ̸= θ∗ with high probability.

a) Lower bounding the empirical risk of θ ̸= θ∗: Recall
that Proposition 1 shows that the process (zit)

T
t=1 satisfies the(

k,Σi
zk/2

, 3/20
)

-BMSB condition. Note that eℓ ∈ Snx−1 ∀l ∈
[1, nx]. Thus, for some fixed ℓ ∈ [1, nx], it follows from the
BMSB condition that

1

k

k∑
t=1

P
[
|[zis+t]ℓ| ≥

√
eℓ⊤Σi

zk/2
eℓ

]
≥ 3

20
,

where [·]ℓ extracts the ℓ-th element from a vector. By applying
Corollary 1 (Appendix C), which is a tighter version of [14,
Proposition 2.5], we obtain the anti-concentration result

P

[
T∑

t=1

[zit]
2

ℓ ≤ 9k⌊T/k⌋
3200

eℓ
⊤Σi

zk/2
eℓ

]
≤ e−

3
320 ⌊T/k⌋. (12)

In the following we impose exp(−3/320⌊T/k⌋) ≤ δ
2nxN

, which
requires the burn-in time condition

⌊T/k⌋ ≥ 320/3 log(2nxN/δ), (13)

which is (11a). We consider the events

Eℓ :=
T∑

t=1

[zit]
2

ℓ ≥ 9k/320⌊T/k⌋eℓ⊤Σi
zk/2

eℓ,

as well as their union E :=
nx⋃
ℓ=1

Eℓ. It follows that

E =⇒
nx∑
ℓ=1

T∑
t=1

[zit]
2

ℓ ≥
nx∑
ℓ=1

9k/3200⌊T/k⌋eℓ⊤Σi
zk/2

eℓ.

Because of (13) we have P[Eℓ] ≥ 1 − δ
2nxN

. Hence, using
union bound arguments, we obtain

P

[
T∑

t=1

∥zit∥2 ≥
nx∑
ℓ=1

9k/3200⌊T/k⌋eℓ⊤Σi
zk/2

eℓ

]

= P

[
nx∑
ℓ=1

T∑
t=1

[zit]
2

ℓ ≥
nx∑
ℓ=1

9k/3200⌊T/k⌋eℓ⊤Σi
zk/2

eℓ

]

≥ P [E ] ≥
nx∏
l=1

(
1− δ

2nxN

)
≥ 1− δ

2N
.

Finally, observe
∑nx

ℓ=1 eℓ
⊤Σi

zk/2
eℓ = Tr

(
Σi

zk/2

)
to obtain

P

[
T∑

t=1

∥zit∥2 ≥ 9k/3200⌊T/k⌋Tr
(
Σi

zk/2

)]
≥ 1− δ

2N
. (14)

b) Upper bounding the empirical risk of θ0: Note that ∆A0 =

∆B0 = 0. Set ζ⊤t = w⊤
t Σ

− 1
2

w
i.i.d.∼ N (0, I) to obtain

L̂(θ0) =
1

T

T∑
t=1

∥wt∥Σ−1
w

=
1

T

T∑
t=1

ζ⊤t ζt =
1

T

nxT∑
t=1

ξ2t ,

where ξk
i.i.d.∼ N (0, 1). Clearly, ξ2k is sub-exponential

with parameters (4, 4). Since the sum of sub-exponential
random variables Xi with parameters (ν2i , αi) is sub-
exponential with parameters (

∑
i ν

2
i ,maxi(αi)) [11], we have∑T ·nx

t=1 ξ2t ∼ subExpo (4Tnx, 4). Using [11, Proposition 2.9]
with t =

√
nxT after minor reformulations we obtain

P

[
1

T

nxT∑
k=1

ξ2k ≥
√
nx + nx

]
≤ exp(−T/8) ≤ δ

2
, (15)

where the last inequality is satisfied if

T ≥ 8 log(2/δ). (16)

c) Leveraging concentration and anti-concentration: First, note
that the burn-in time condition (13) implies the burn-in time
condition (16). Hence, from (15) we have

P[Eθ0 ] := P
[
L̂(θ0) ≤

√
nx + nx

]
≥ 1− δ

2
.

Because of (14) for each θi, i ∈ [1, N ] it holds that

P[Eθi ] := P
[
L̂(θi) ≥

9k⌊T/k⌋
3200T

Tr
(
Σi

zk/2

)]
≥ 1− δ

2N
.

If
√
nx + nx < 9k⌊T/k⌋

3200T Tr(Σi
zk/2

) holds ∀i ∈ [1, N ] we have

P
[
θ̂ = θ∗

]
≥ P

[
N⋃
i=0

Eθi

]
=
(
1− δ

2

) N∏
i=1

(
1− δ

2N

)
≥ 1− δ,

where the second inequality follows from union-bound argu-
ments. From here we can conclude the proof, by using linearity
of the trace, as well as Tr(AA⊤) = ∥A∥2F to obtain

Tr
(
Σi

zk/2

)
= ∥Σ−1/2

w ∆Λw
i (k/2)∥2F + nx

+ ∥Σ−1/2
w ∆BiΣ

1/2
u ∥2F + ∥Σ−1/2

w ∆Λu
i (k/2)∥2F.



Remark 1: Theorem 1 imposes no stability assumptions on
the system (1). This is in contrast with non-asymptotic results
for the unconstrained OLS, where a statistical inconsistency
has been shown for certain classes of unstable systems [15].
Note that any T satisfying the conditions in Theorem 1
is an upper bound to the sample complexity as defined
in (4). Further, the cardinality N + 1 of the set S enters
Theorem 1 in (11a) and (11b). Whereas the former shows the
dependence O(logN), the influence of N on (11b) is more
subtle and depends on the particular systems being added as
N increases. Note also, that Theorem 1 depends on the true
systems matrices, which are unknown in practice. While data-
dependent results might prove more useful from a practical
perspective, the value of Theorem 1 lies in understanding the
fundamental difficulty of the learning problem. To investigate
the conservatism of Theorem 1 analytically, we now derive
finite-sample identification lower bounds.

B. A sample complexity lower bound
In this section, we provide a sample complexity lower bound

for the class of δ-stable estimation algorithms, which we define
as follows.

Definition 2 (δ-stable algorithms): Consider the setup de-
scribed in Section II-A. An algorithm is called δ-stable, if for
all δ ∈ (0, 1), and any θ∗ and S there exists a finite time T̄
s.t. for all t ≥ T̄ we have Pθ∗(θ̂t = θ∗).
The notion of δ-stable algorithms excludes algorithms that
yield the same estimate independently of the data observed
and is inspired by (ε, δ)-locally-stable algorithms in [16].

Theorem 2: Let Assumption 1 hold. Then, for any δ-stable
algorithm, all δ ∈ (0, 1) and all i ∈ [1, N ] it holds that

T̄
∥∥∥Σ− 1

2
w ∆BiΣ

1/2
u

∥∥∥2
F
+

T̄−1∑
s=0

∥∥∥Σ−1/2
w ∆Λu

i (s)
∥∥∥2
F

(17)

+
∥∥∥Σ−1/2

w ∆Λw
i (s)

∥∥∥2
F
≥ 2 log

(
1

2.4δ

)
.

The proof of Theorem 2 is inspired by [16] and can be found
in Appendix A. Importantly, Theorem 2 can be analyzed to
see which factors contribute to identifying the true system.

C. Analysis of the sample complexity bounds
Having established a sample complexity upper bound for

the MLE (3) as well as an estimation algorithm independent
lower bound, we can now analyze and compare Theorems 1
and 2. To this end, we will focus on three key factors that
influence the identification of the true system.

a) Excitation and noise level: For simplicity consider the
case where Σw = σ2

wI and Σu = σ2
uI . In this case, according

to both the upper bound (Theorem 1) and the lower bound
(Theorem 2) increasing the ratio σu/σw allows for either a
decrease in the number of samples T or in the failure probability
δ.

b) Excitation directions: Observe that condition (11b) of the
upper bound and condition (17) of the lower bound qualitatively
both depend on the same three terms and can be interpreted
as a signal-to-noise ratio (SNR) condition. To this end, recall
that ∆ΛB

i (t), ∆BiΣ
1
2
u and ∆ΛI

i (t) can be interpreted as the

excitation of the system projected to the difference between
systems θ∗ and θi. Weighting this measure of relevant excitation
with the covariance of the noise yields an effective SNR.
Importantly, the directions of the excitation matter. That is,
using the control input to excite the system where ∆Ai is large
results in a smaller burn-in time or failure probability. Further,
if the noise affects some states more than others this will also
affect the lower and upper bounds.

c) Sample efficiency: Assume Σw and Σu are fixed. Then,
decreasing the failure probability δ requires a larger T to
satisfy the lower bound (17), i. e., the failure probability can
be decreased when more samples are available. Regarding
the upper bound derived in Theorem 1, the burn-in time
condition (11a) shows a similar coupling between T and δ. On
the other hand, the SNR-condition (11b) does only exhibit a
weak dependence on T through the parameter k. An increase
in T allows for a larger k which in turn enters (11b) through
∆ΛB

i (k/2) and ∆ΛI
i (k/2). The dependence of these quantities

on k depends heavily on the stability properties of the system.
As expected, the more stable A∗, the harder it is to satisfy (11b).
To conclude, it has to be said that, even though the upper
bound (Theorem 1) and lower bound (Theorem 2) qualitatively
depend on similar quantities, there still is a substantial gap
between the two. This is largely due to the leading constants
in condition (11a) and (11b), which appear due to the BMSB
condition needed because of the correlation in the data.

IV. NUMERICAL EXAMPLE

In the following, we investigate the results and observations
of the previous sections using a numerical example.1 To do so
we consider the set S = {(A0, B), (A1, B), (A2, B)}, with

Ai =

ai 0.1 0
0 0.2 0
0 0 bi

 , B =

0 0
1 0
0 1

 ,

where a0 = a2 = 0.2, a1 = 0.1, b0 = b1 = 0.5 and b2 =
0.6. We choose a small cardinality of S and low state space
dimension since this setup suffices to make a number of key
observations while maintaining clarity of exposition. Note first,
that each θi ∈ S has a weak coupling between x1 and u
making it hard to excite the first mode of the system. This is
a structure known to make identification hard using OLS [17]
and also plays a key role here. To show the influence of the
directions of excitation on the identification of the true system,
we conduct three numerical experiments:

Exp. 1: Σu = diag(10, 0.1), Σw = 0.1I
Exp. 2: Σu = diag(0.1, 10), Σw = 0.1I
Exp. 3: Σu = diag(10, 0.1), Σw = diag(10, 0.1, 0.001).

Table I shows the percentage of the estimates (within 1000
trials) for varying T for estimation using MLE as presented
in this work as well as using OLS and projecting on the
closest system in spectral norm. The results in Table I
allow us to numerically show the observations made in
Section III-C. Firstly, the true positive rate increases as T
increases. Secondly, the different directions of excitation in

1The Python code for the numerical example can be accessed at: https:
//github.com/col-tasas/2024-bounds-finite-set-ID



TABLE I
ESTIMATION PERCENTAGES FOR DIFFERENT NUMBER OF SAMPLES. LOWER BOUND IS SATISFIED WITH δ = 0.05 FOR T ≥ 192 (EXP. 1), T ≥ 400

(EXP. 2) AND T ≥ 404 (EXP 3). UPPER BOUND IS NOT SATISFIED FOR ANY OF THE DISPLAYED EXPERIMENTS AND SAMPLE SIZES.

T PMLE[θ0] (POLS[θ0]) in % PMLE[θ1] (POLS[θ1]) in % PMLE[θ2] (POLS[θ2]) in %

Exp 1 Exp 2 Exp 3 Exp 1 Exp 2 Exp 3 Exp 1 Exp 2 Exp 3

250 80.2 (72.3) 77.7 (71.9) 78.3 (73.9) 10.9 (16.1) 22.3 (27.0) 21.7 (23.4) 8.9 (11.6) 0.0 (1.1) 0.0 (2.7)
500 92.8 (86.8) 87.6 (84.2) 87.7 (84.7) 4.7 (7.9) 12.4 (15.3 ) 12.3 (12.7) 2.5 (5.3) 0.0 (0.5) 0.0 (2.6)
750 96.6 (92.9) 91.2 (87.8) 90.7 (88.4) 2.5 (3.8) 8.8 (12.1) 9.3 (9.7) 0.9 (3.3) 0.0 (0.1) 0.0 (1.9)

1000 98.5 (96.9) 95.1 (93.9) 94.8 (92.9) 1.3 (2.3) 4.9 (6.1) 5.2 (5.2) 0.2 (0.8) 0.0 (0.0) 0.0 (1.9)
1250 99.4 (99.0) 98.1 (97.3) 95.4 (93.7) 0.5 (0.7) 1.9 (2.7) 4.6 (4.7) 0.1 (0.3) 0.0 (0.0) 0.0 (1.6)

the experiments play an important role. Clearly, Exp. 1 allows
for the fastest identification of the true system, both in the
numerical simulation and in the lower bound. When considering
Exp. 2 and Exp. 3 we can observe that θ2 can be ruled out
very quickly because it differs from the true system in the x3

directions which has a very high SNR (either through large
excitation or low noise). Since the excitation of x1 is very low
in Exp. 2 and the noise affecting x1 is very large in Exp. 3
distinguishing between θ0 and θ1 takes longer than in Exp. 1.
Again this can be observed both numerically and in the lower
bound, even though the inputs only differ in their directionality,
not their size. Interestingly, both the lower bound and the
numerical results also indicate that Exp. 3 poses the hardest
identification problem out of the three. Numerically it can be
seen that MLE consistently outperforms OLS for our setup,
reinforcing the interest in its statistical analysis. Note that the
system considered is strongly damped and hence based on the
discussions in Section III-C the number of samples only has a
weak influence on the upper bound. Reducing the conservatism
in Theorem 1 especially in this strictly stable regime remains
an important open problem.

V. CONCLUSION

In this paper we provided upper and lower bounds for the
sample complexity of identifying an LTI system from a finite
set of candidates in absence of stability assumptions. These
are the first finite sample guarantees for this setting that, albeit
relevant, was not studied before. Future work includes reducing
the conservatism in the upper bound, considering additional
noise classes and relaxing the assumption that θ∗ /∈ S . Finally,
the fact that no stability is required here (Remark 1), suggests
to better understand whether this depends on the choice of the
estimator made here or the finite hypothesis class.
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APPENDIX

A. Proof of Theorem 2
Define the data observed up to time t as Dt :=

{x1, u1, . . . xt, ut} and the probability of the observing Dt

under system θ as Pθ(Dt). Then, we define the log-likelihood
ratio of the first t observations under θ∗ and some θi ∈ S\{θ∗}
as Lt = log

(
Pθ∗ (Dt)
Pθi

(Dt)

)
. Following the change of measurement

argument in [16], we use the generalized data processing
inequality [21, Lemma 1] to obtain

Eθ∗ [Lt] = KL(Pθ∗(Dt)∥Pθi(Dt))

≥ sup
E∈Ft

kl(Pθ∗(E)∥Pθi(E)),



where kl(x∥y) is the KL-divergence of two Bernoulli distri-
butions of means x and y, respectively. Since we analyze
δ-stable algorithms we define the event E := {θ̂t = θ∗} s.t.
consequently Pθ∗(E) ≥ 1− δ and Pθi(E) ≤ δ and hence

kl(Pθ∗(E)∥Pθi(E)) ≥ (2δ − 1) log

(
1− δ

δ

)
≥ log(1/2.4δ).

Further, we follow [16, Section IV.A] to obtain

Eθ∗ [Lt] =
1

2
Eθ∗

[
t−1∑
s=0

[⋆][⋆]Σ−1
w

[
∆Ai ∆Bi

] [xs

us

]]

=
1

2
Tr

(
[⋆]Σ−1

w

[
∆Ai ∆Bi

] t−1∑
s=0

Eθ∗

[[
xs

us

]
[⋆]

])
,

where in the last step we used the fact E
[
X⊤AX

]
=

Tr(AE
[
XX⊤]). Note that up to this point, we have not

used that u i.i.d.∼ N (0,Σu). By this assumption, we can write
Eθ∗

[
[⋆]
[
xs us

]]
= diag(Σxt ,Σu), where Σxt is the t-step

controllability Gramian defined in (7). Using Tr(ABC) =

Tr(BCA) with A =
[
∆Ai ∆Bi

]⊤
Σ

− 1
2

w , B = A⊤ and
C =

∑t−1
s=0 diag(Σxt

,Σu) we finally obtain

Eθ∗ [Lt] = Tr

(
[⋆]

(
t−1∑
s=0

[⋆]Σu∆B⊤
i + [⋆]Σxs

∆A⊤
i

)
Σ

− 1
2

w

)
and hence for any δ-stable algorithm

Tr

(
Σ

− 1
2

w

(
T̄−1∑
s=0

[⋆]Σu∆B⊤
i + [⋆]Σxs∆A⊤

i

)
Σ

− 1
2

w

)
≥ 2 log(

1

2.4δ
).

Finally, we similarly as in the proof of Theorem 2 obtain

Tr

(
Σ

− 1
2

w

(
T̄−1∑
s=0

∆BiΣu∆Bi
⊤ +∆AiΣxs

∆A⊤
i

)
Σ

− 1
2

w

)

= T̄

∥∥∥∥∥Σ− 1
2

w ∆BiΣ
1
2
u

∥∥∥∥∥
2

F

+

T̄−1∑
s=0

s−1∑
k=0

∥∥∥Σ− 1
2

w ∆AiA
kBΣ

1
2
u

∥∥∥2
F

+
∥∥∥Σ− 1

2
w ∆AiA

kΣ
1
2
w

∥∥∥2
F
.

B. Proof of Proposition 1

Recall the definition of the random variable zit (6) and its
distribution (8). For some v ∈ Snx−1 we have ⟨v, zis+t⟩|Fs ∼
N
(
⟨v,∆AiA

txs⟩, v⊤Σi
ztv
)
. Now consider some k′ ≤ t s.t.

P

[
|⟨v, zis+t⟩| ≥

√
v⊤Σi

zk′ v|Fs

]
= P

[
|⟨v, zit⟩| ≥

√
v⊤Σi

zk′ v
]

≥ P
[
|⟨v, zit⟩| ≥

√
v⊤Σi

ztv
]
, (18)

where the first step follows since the distributions are equal and
the inequality follows from Σi

zt ⪰ Σi
zk′ for k′ ≤ t. Defining

ζit = ⟨v, zit −∆AiA
tx0⟩

i.i.d.∼ N (0, v⊤Σi
ztv) yields

P

[
|⟨v, zit⟩| ≥

√
v⊤Σi

ztv

]
= P

[
|ζit + ⟨v,∆AiA

tx0⟩| ≥
√
v⊤Σi

ztv
]

≥ P
[
|ζit | ≥

√
v⊤Σi

ztv
]
≥ 3

10
,

where the last inequality follows from the fact that for any
ξ ∼ N (0, σ2) we have P[|ξ| ≥ σ] ≥ 3/10. It follows that

1

k

k∑
t=1

P
[
|⟨v, zis+t⟩| ≥

√
v⊤Σi

zk′ v|Fs

]
=

1

k

k∑
t=1

P
[
|⟨v, zit⟩| ≥

√
v⊤Σi

zk′ v
]

≥ 1

k

k∑
t=k′

P
[
|⟨v, zit⟩| ≥

√
w⊤Σi

ztw
]
≥ 3

10

k − k′ + 1

k
.

The result then follows by choosing k′ = 1
2k.

C. Using the BMSB condition to show anti-concentration
If a sequence (zt)t≥0 satisfies the BMSB condition, anti-

concentration can be shown. In the following, we provide a
milder version of [14, Proposition 2.5], in which the probability
bound scales with p instead of p2.

Corollary 1: Suppose that (z1, . . . , zT ) ∈ RT satisfies the
(k, ν, p)-BMSB condition. Then

P

[
T∑

t=1

z2t ≤ ν2p2

8
k⌊T/k⌋

]
≤ exp

(
−⌊T/k⌋p

16

)
.

Proof: The proof of Corollary 1 builds on the original
work, thus we only provide a sketch here. Set S = ⌊T/k⌋ and

Bj = I

[
k∑

t=1

z2jk+t ≥
ν2pk

2

]
∀j ∈ [0, S − 1].

Using the same arguments as in the original proof we obtain

P

[
T∑

t=1

z2t ≤ ν2p2

8
kS

]
≤ inf

λ≤0
e−λS p

4E
[
eλ

∑S−1
j=0 Bj

]
. (19)

Inserting the optimizer λ∗ = log(
1− p

2

2− p
2
) of (19), yields

P

[
T∑

t=1

z2t ≤ ν2p2

8
kS

]
≤

((
2− p

4− p

)−p/4(
1− p

4− p

))S

≤
(
2
p/4

(
1− p

4− p

))S

≤ e−
S
4 p( p

4+1−log(2)) ≤ e−
S
16p,

where the last step follows from p > 0 and 1− log(2) > 1/4.


