
A multiobjective LQR synthesis approach to
dual control for uncertain plants

Andrea Iannelli and Roy S. Smith

Abstract—The paper proposes a dual control finite
horizon LQR synthesis procedure for unknown sys-
tems characterized by mean and covariance estimates.
The optimized policy comprises time-varying state-
feedback and dithering components, and the control
problem is framed as a multiobjective synthesis which
seeks a balance between exploitation and exploration
costs. It is shown that classic experiment design prob-
lems can be recast in this framework by replacing the
exploitation cost with an information reward. Numer-
ical examples demonstrate the different dual control
trade-offs on plants with different properties.

Index Terms—Optimal control, Robust control, Iden-
tification for control, Uncertain systems, LMIs

I. Introduction

DATA-driven methods have recently received great
interest, owing to their potential to provide feedback

laws without requiring accurate models of the plant. This
is indeed a favourable feature in scenarios where systems
are increasingly complex and data are seemingly unlim-
ited. Using data to infer properties of dynamical systems
requires, however, particular care. Informativity plays a
crucial role [1], as the collected data should be useful (in
a sense to be formally stated) for making decisions. In
addition, data obtained from physical systems come with
a cost, which encompasses different aspects from resource
use to safety. Formulating systematic approaches to gather
data such that these aspects are fulfilled is thus central
to enable effective data-driven methods, and has been an
active topic of research in different communities.

Taking the viewpoint of system identification, exper-
iment design proposed strategies to account for infor-
mativity criteria in the selection of the input signal [2].
In application-oriented experiment design [3], the aim is
specifically to design the least-costly experiment delivering
a model that, when later used to synthesize a controller,
provides satisfactory performance [4]. By simultaneously
considering input design and performance aspects in the
synthesis, the problem originally investigated by dual
control is recovered [5]. When parametric models are
used for identification, the information requirement can be
enforced by minimizing a measure of the error associated
with the estimator [6], e.g. for prediction error methods
this can be approximated by the Fisher information ma-
trix (FIM) [7]. An alternative approach used to promote
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informativity in dual controllers is to prescribe persistent
excitation, which ensures identifiability and favours con-
vergence of the identification algorithm [8].

In Reinforcement Learning (RL), this problem is framed
as the search for a policy that balances exploration and
exploitation [9], which are conceptually related to the dual
control tasks of identifying the system while minimizing
a predefined cost. The typical approach, e.g. Q-learning
and actor-critic, is to calibrate exploration by optimizing
regret bounds, which quantify the merits of a policy by
comparing its running cost with that incurred by an ex-
pert baseline policy [10]. Examples are forced-exploration
schemes [9] and optimism in the face of uncertainty [11].

Drawbacks of the previous approaches are that the
exploratory actions are generically aimed at reducing the
amount of uncertainty, are fixed a priori (e.g. using regrets
to prescribe a rate of decay of random actions), and
do not directly leverage the properties of the system.
The concept of structured exploration, inspired by ideas
initially presented in [12], was recently proposed in [13]
to address some of these aspects. The problem is framed
within the dual Linear Quadratic Regulator (LQR) set-
ting, commonly used as a baseline for data-driven algo-
rithms [14], [15], [10], [16], [11]. Starting from a Coarse-ID
[15] description of the plant (i.e. nominal estimate of the
state-space matrices and ellipsoidal confidence region with
finite samples), a robust time-varying policy is designed for
a finite horizon optimal control problem to simultaneously
gather information of the plant and regulate it.

However, an important feature in [12], [13] is that
the worst-case system’s response is used to update the
ellipsoidal uncertainty set. This means that, in practice,
the uncertainty reduction for which the dual policy is
optimized can only be achieved if the true system coincides
with the worst-case one in the ellipsoidal set. To overcome
this limitation, this work proposes a more realistic scenario
where the expected system’s response is used for the un-
certainty set update. Two distinct costs are defined to for-
mally state the problem. The first, namely the exploration
cost, is the LQR cost incurred by the expected system,
whose covariance is used for the uncertainty set update.
The second, namely the exploitation cost, is the cost that,
due to uncertainty in the plant, a robust policy would
incur in operation. The latter cost is thus a functional of
the uncertainty set, and measures the quality of the data
that are generated by the dual policy. In the experiment
design literature, this functional is commonly expressed
as an information reward (e.g. related to the FIM), and
it will be shown that the proposed framework can easily



accommodate this alternative choice. The dual controller
thus results from the joint minimization of these two costs.
This problem can be approached from a multiobjective
control perspective [17], where the costs usually represent
different systems’ norms. Here both costs represent H2
norms, but have the different meaning discussed above.
The time-varying policy is obtained by solving a Semidef-
inite program (SDP), whose structure is quite flexible
and allows different definitions of the costs. One of the
main benefit of the approach is that, by linking the policy
with the reduction in the uncertainty in a finite horizon
setting where transient effects are captured, trade-offs
classically arising in the dual control problem could be
optimized over. Numerical examples illustrate interesting
features of the optimized policies, and show good results
in simulation, also for off-nominal scenarios.

While the method proposed here can be sequentially
applied to identify the system from measurements ob-
tained with the dual policy, and then robustly control the
uncertain system, future efforts will consider the problem
of using the collected data to directly update the policy,
in the spirit of data-driven methods [10], [16], [18], [14].

II. Problem statement
Consider the discrete linear time-invariant system:

xt+1 = Axt +But + wt, wt ∼ N (0, σ2
wInx

), x0 = 0,
(1)

where xt ∈ Rnx is the (measured) state, ut ∈ Rnu is the
control input, and wt ∈ Rnx is a normally distributed
process noise with zero mean and covariance σ2

wInx . The
objective is to optimally control the plant, according to
a quadratic cost J introduced later, in a given finite
horizon t ∈ [1, T ], T ∈ N. The matrices A and B are
unknown and estimated from measurements of x and u
through the Coarse-ID approach [15]. Given a dataset
G = {(xt, ut) : 1 ≤ t ≤ N}, a nominal estimate is
computed as:

(Â, B̂) = arg min
Ā,B̄

N−1∑
t=1

∥∥−xt+1 + Āxt + B̄ut
∥∥2

2 , (2)

and the true dynamics is assumed to belong to the set:

Ω(X,DN ) = {X : X>DNX � I}, DN ∈ Snx+nu , (3a)

X =
[

(Â−A)>
(B̂ −B)>

]
, X ∈ R(nx+nu)×nx . (3b)

Therefore, DN defines an ellipsoidal uncertainty set which
holds with probability 1-δ if chosen as:

DN = 1
cχσ2

w

N∑
t=1

[
xt
ut

] [
xt
ut

]>
, cχ = χ2

n2
x+nxnu

(δ), (4)

where χ2
n(δ) is the critical value for a Chi-squared dis-

tribution with n degrees of freedom and probability level
δ. See [15] for less conservative coefficients than cχ. An
interpretation of DN is as the covariance of the posterior
distribution of θ = vec([A B]) given G [19], i.e.:

θ ∼ p(θ|G) = N
(

vec([Â B̂]), (cχDN )−1 ⊗ Inx

)
. (5)

The probabilistic plant’s description (5) is then replaced
by the (high-probability) deterministic one (3a) by using
the Chi-squared distribution.

We consider a time-varying policy π(Kt, St):

ut = Ktxt + et, et ∼ N (0, St), St ∈ Snu . (6)

This consists of a state-feedback part Kt and white noise
(dithering) et, normally distributed with covariance St.
Given cost matrices Q � 0 and R � 0, the expected finite
horizon quadratic cost J in [1, T ] is defined as:

J = E

[
T−1∑
t=1

(
x>t Qxt + u>t Rut

)
+ x>TQxT

]
, (7)

where the expectation is with respect to w and e. The
following closed-loop costs can be defined from J :

J π1 (Â, B̂) = min
π
J, (8a)

J π2 (Â, B̂,Dt) = min
π

max
(A,B)∈Ω(X,Dt)

J. (8b)

Eq. (8a) defines the optimal LQR cost for the expected
plant, which is achieved by πDRDE(KDRDE

t , 0) where
KDRDE
t is associated with the stabilizing solution of the

Riccati difference equation (DRDE). Eq. (8b) defines the
worst-case LQR cost among all the plants in Ω(X,Dt).
Note that Ω can be a time-varying set if Dt changes within
the horizon (as pointed out by the subscript).

It is important to recognize that, given a plant (the
expected plant (Â, B̂) will always be considered here) and
an horizon [1, T ], there exists a mapping from a policy π to
the uncertainty set Dt. Consider the time-varying policy
π(Kt, St) acting on the given plant through the dynamics
(1). By recalling the definition of DN in (3), the output of
the aforementioned mapping at t ∈ [1, T ] is:

Dt = 1
cχσ2

w

t∑
l=1

[
Pl PlK

>
l

∗ KlPlK
>
l + Sl

]
, (9)

where Pl denotes the state covariance matrix at timestep
l, i.e. Pl = E

[
xlx
>
l

]
∈ Snx . The mapping (9), which

associates a policy π(Kt, St) with an ellipsoid at each time
inside the horizon, will be denoted by D(π) : T Rnu×nx ×
T Snu → T Snx+nu .

The objective of the work is to design a dual control
policy πDc which balances exploration and exploitation in
the LQR problem with uncertain plants. The problem is
framed as the joint optimization of the exploration cost
J π1

1 and the exploitation cost J π2
2 , coupled via D(π1). The

cost J π1
1 accounts for the exploration side of the problem,

since the associated policy contributes to the reduction
of the uncertainty. The cost J π2

2 is a functional of the
uncertainty set, and provides a characterization of the cost
to pay for robust operation of the plant, thus accounts for
the exploitation side. The following optimization problem
can then be defined (the superscripts of the costs denote
the associated optimized policy):

min
π1,π2

J π2
2 (Â, B̂,D0 +D(π1)), (10a)

such that: J π1
1 (Â, B̂) < αJ πDRDE

1 (Â, B̂), (10b)



where D0 is the initial estimate’s ellipse, α > 1, and
J πDRDE

1 is the cost associated with πDRDE. The two costs
are coupled via D(π1), which maps the action of π1
into the uncertainty set to which J π2

2 must be robust.
The solution of the multiobjective synthesis problem in
Eq. (10) provides a dual policy πDc ≡ π1 which bal-
ances exploration of the expected system (according to
J π1

1 ), while targeting future exploitation by minimizing
the worst-case cost J π2

2 incurred to robustly operate the
plant. The trade-off between the costs is condensed in
the parameter α, which accounts for the multiobjective
problem by characterizing the sublevel set of policies π1
with respect to the cost achieved by the greediest one, i.e.
πDRDE. It is noted that π2(K2

t , 0) does not represent the
robust policy redesigned with the new uncertain model, as
this would be computed a-posteriori by solving problem
(8b) with the new uncertainty set, and is only a fictitious
policy introduced to allow the definition of the worst-case
cost J π2

2 as a functional of the uncertainty. While inspired
by their application-oriented strategy, the problem in (10)
is distinct from those solved in [12], [13]. Differences, which
force the problem to be solved with a different approach,
include: the finite horizon setting (also used in [13]); the
multiobjective formulation; and the use of the expected
system response to update the uncertainty. The impor-
tance of the latter feature, which is deemed a more realistic
working assumption, will be evident in Section IV, where
simulation results show that the predicted uncertainty
reduction is effectively achieved in practice, and at the
same time the dual policy exhibits a certain degree of
robustness to mismatches between the true and expected
plants.

III. Convex optimization formulation
A. Multiobjective synthesis approach

The starting point is Lemma 1 from [13].

Lemma 1: Define Q̄t :=
[

Q
1
2

R
1
2 Kt

]
∈ R(nx+nu)×nx , and

R̄ :=
[

0
R

1
2

]
∈ R(nx+nu)×nx . The cost J defined in Eq. (7)

is equivalent to:

J = Tr
(
T−1∑
t=1

(
Q̄tPtQ̄

>
t + R̄tStR̄

>
t

)
+QPTQ

>

)
. (11)

Lemma 1 gives an expression of J which depends sepa-
rately on Pt and St (via a summation of terms). This
is similar to the infinite horizon case (where only one
term would feature), for which an SDP formulation exists
[17]. From this premise, in [13] the two separate synthesis
problems in Eq. (8) were solved by using standard Linear
Matrix Inequalities (LMIs) for the H2 norm and, in the
case of (8b), combining them with a matrix version of the
S-procedure [20] to enforce the robust constraint. The SDP
formulation for problem (8a) is given below as it will be
useful for later discussion. Its solution is the optimal LQR
cost J πDRDE

1 appearing in Eq. (10b), and the optimizer is
the Riccati controller πDRDE(KDRDE

t , 0).

Program 1: SDP for J π1 (8a).

min
Yt,Pt,Zt,St

Tr
(
T−1∑
t=1

Yt +QPTQ
>

)
= J π1 , (12a)Yt − R̄StR̄> [

Q
1
2 Pt

R
1
2 Z>t

]
∗ Pt

 � 0, (12b)

[
Pt PtÂ

> + ZtB̂
>

∗ Pt+1 − σ2
wI − B̂StB̂>

]
� 0, (12c)

Yt � 0, St � 0, P1 � 0, Pt+1 � 0, ∀t ∈ [1, T − 1], (12d)

where Zt := PtK
>
t .

The problem in Eq. (10) differs from those in (8) because
of the multiobjective feature, i.e. J π1

1 and J π2
2 are jointly

optimized. A first important aspect concerns the state
covariance update for the expected plant, which, for a
policy π(Kt, St), must follow the Stein equation [21]:

Pt+1 = (Â+ B̂Kt)Pt(Â+ B̂Kt)> + σ2
wI + B̂StB̂

>. (13)

This is typically enforced with the LMI (12c), which
however only guarantees (by Schur complement) that Pt+1
is greater than the right-hand side of (13), i.e. it gives a
lower bound for the updated covariance. In problem (10),
the state covariances also influences, via the mapping D,
the cost J π2 , thus a lower bound on Pt+1 does not generally
guarantee that (13) holds. To this end, the following upper
bound LMI at each t is proposed:

Ut(Pt, Zt, St, V̄t) + U>t (Pt, Zt, St, V̄t) � 0, (14)

Ut(Pt, Zt, St, V̄t) =
[
−Pt −Ft
F>t Pt+1 − σ2

wI − B̂StB̂> − V̄t

]
,

Ft = PtÂ
> + ZtB̂

>,

where V̄t ∈ Snx are given positive definite matrices. By
Schur complement, LMI (14) implies that at each t:

Pt+1 � (Â+B̂Kt)Pt(Â+B̂Kt)>+σ2
wI+B̂StB̂>+V̄t. (15)

Clearly, the quality of the upper bound depends on V̄t.
The following Program provides tight matrices V̄t for the
upper bound LMI (14).

Program 2: SDP for the matrices V̄t in (14).

min
Vt

Tr
(
T−1∑
t=1

Vt

)
,

Ut(PDRDE
t , ZDRDE

t , 0, Vt) + Ut(PDRDE
t , ZDRDE

t , 0, Vt)> � 0,
Vt � 0, ∀t ∈ [1, T − 1].

The optimizers of Program 2 are the tightest (as measured
by their traces) matrices V̄t for which the upper bound
LMI constraint (14) is satisfied by the solution of Program
1, for which Eq. (13) is always guaranteed to hold. This
provides a systematic and effective way of pre-computing
the matrices V̄t to use in constraint (14).



The other instrumental step consists of formulating a
convex relaxation of the bilinear term in the lower diagonal
block of the mapping D (9):

KlPlK
>
l = Z>l P

−1
l Zl � Z>l K̄>l + K̄lZl − K̄lPK̄

>
l , (17)

This bound, derived for the static case in ([12], Lemma 1),
is tight when K̄l = Kl. Here it will be used K̄l = KDRDE

l .
Eq. (17) allows Dt to be lower bounded by:

Dt � D̂t = 1
cχσ2

w

t∑
l=1

[
Pl Zl
∗ Z>l K̄

>
l + K̄lZl − K̄lPlK̄

>
l + Sl

]
(18)

This lower bound is important since by using D̂t in the
place of Dt uncertainty is underestimated in the optimiza-
tion, i.e. in practice its reduction will be larger.

Assume now that from prior knowledge, or an exper-
imental dataset G, initial estimates for Â, B̂, and D0
are available such that (A,B) ∈ Ω(X,D0). The dual
control synthesis problem, stated in Eq. (10), is solved with
Program 3. The superscripts 2 and 1 of the optimization
variables emphasize their connection with J π2

2 and J π1
1 ,

respectively.
Program 3: SDP for the dual control problem (10).

min
Y 2

t ,P
2
t ,Z

2
t ,pt,Y 1

t ,P
1
t ,Z

1
t ,S

1
t

Tr
(
T−1∑
t=1

Y 2
t +QP 2

TQ
>

)
= J π2

2 ,

(19a)Y 2
t

[
Q

1
2 P 2

t

R
1
2 Z2>

t

]
∗ P 2

t

 � 0, (19b)

P 2
t −

[
P 2
t Z2

t

] [
Â>

B̂>

] [
P 2
t Z2

t

]
∗ P 2

t+1 − σ2
wI − ptI 0

∗ ∗ pt(D0 + D̂t(P 1, Z1, S1))

 � 0,

(19c)
Y 2
t � 0, P 2

1 � 0, P 2
t+1 � 0, pt ≥ 0, (19d)

Tr
(
T−1∑
t=1

Y 1
t +QP 1

TQ
>

)
= J π1

1 ≤ αJ πDRDE
1 (Â, B̂),

(19e)Y 1
t − R̄S1

t R̄
>

[
Q

1
2 P 1

t

R
1
2 Z1>

t

]
∗ P 1

t

 � 0, (19f)

[
P 1
t P 1

t Â
> + Z1

t B̂
>

∗ P 1
t+1 − σ2

wI − B̂S1
t B̂
>

]
� 0, (19g)

Ut(P 1
t , Z

1
t , S

1
t , V̄t) + U>t (P 1

t , Z
1
t , S

1
t , V̄t) � 0, (19h)

Y 1
t � 0, S1

t � 0, P 1
1 � 0, P 1

t+1 � 0, ∀t ∈ [1, T − 1]. (19i)

where Y 2
t ∈ Snu+nx , P 2

t ∈ Snx , Z2
t ∈ Rnx×nu , pt, Y

1
t ∈

Snu+nx , P 1
t ∈ Snx , Z1

t ∈ Rnx×nu , S1∈Snu

t and the total
number of decision variables is T (n2

x+ 3
2n

2
u+4nxnu+2nx+

3
2nu). LMIs (19b)-(19c)-(19d) provide the constraints
required to express J π2

2 by the linear cost in Eq. (19a).
This is achieved by first writing the true system matrices
A and B as a function of X, Â, and B̂ (3b). The S-lemma

(with multipliers pt) [20] is then employed to transform the
conditions in Program 1, valid for one specific plant, into a
robust optimization problem which holds for all the plants
in Ω(X,D0 + D̂t). A line search on pt is used to overcome
the bilinearity between pt and D̂t. LMIs (19f)-(19g)-(19h)-
(19i) provide the constraints required to enforce that
J π1

1 remains smaller than αJ πDRDE
1 . Additional convex

constraints could also be appended (e.g. norm bounds
on S1

t or P 1
t ). The coupling between the two problems

is given by D̂t, which, as highlighted by its argument
in (19c), depends on the variables with superscript 1.
The sought time-varying dual policy is πDc(KDc

t , SDc
t ) ≡

π1(Z̄1>
t P̄ 1−1

t , S̄1
t ). Both its state-feedback (which has a

dual purpose) and dithering (whose purpose is purely
exploration) components are optimized in Program 3, and
thus will be computed according to the defined multiob-
jective criterion (10).

B. Interpretation and connections with input design
By using πDc to control system (1) in the finite horizon

[1, T ], the information gathered in expectation from the
system’s response is such that the worst-case LQR cost is
minimized. The expectation is with respect to w, e, and
the true dynamics, that at the beginning of the experiment
is inside Ω(X,D0), and for which the mean (Â, B̂) is
used. This choice is supported by recent studies on the
favourable sub-optimality gap properties of the certainty
equivalence assumption [22].

The policy can thus be seen as the solution of an
input design problem where the goal is to minimize the
uncertainty for a subsequent robust design [2], [3]. In fact,
Program 3 can easily accommodate experiment design
objectives by replacing the exploitation cost J π2

2 with
an information reward. Since the ellipsoidal matrix Dt

represents the system’s matrices error covariance at time
t (recall Eq. 5), it can be interpreted as the FIM for the
Coarse-ID setting. The following costs, all convex in the
optimization variables, could then be considered [23]:

• D-optimality: JFIM(D̂t) = −
∑T
t=1

(
detD̂t

) 1
nx+nu ,

• E-optimality: JFIM(D̂t) = −
∑T
t=1 min eig(D̂t),

• A-optimality: JFIM(D̂t) = −
∑T
t=1 Tr(D̂t)−1,

leading to different dual control synthesis problems.
Program 4: SDP for dual control with FIM objective.

min
Y 1

t ,P
1
t ,Z

1
t ,S

1
t

JFIM(D̂t(P 1
t , Z

1
t , S

1
t )), (20a)

Tr
(
T−1∑
t=1

Y 1
t +QP 1

TQ
>

)
= J π1

1 ≤ αJ πDRDE
1 (Â, B̂),

(20b)
LMI (19f),LMI (19g),LMI (19h),LMI (19i). (20c)

Program 4 presents the same LMIs constraints needed
for the exploration cost J π1

1 , and replaces J π2
2 with the

information objective JFIM.
It is noted that J π2

2 and JFIM consist of a summation
of terms from each time step inside the horizon. If this



method was used in conjunction with an explore-then-
commit strategy [24], whereby data, once the horizon
is concluded, are used to update the system’s estimate,
then these exploitation costs could be defined using only
the contribution at the final time T . However, in future
applications of this method we envisage updating the dual
policy πDc on-line, enabling in this way a data-driven
method which takes informativity into account. For this,
it is paramount that exploratory actions are performed
throughout the horizon, and the present definition of J π2

2
capture these fundamental transient features.

IV. Illustrative examples
Consider the two plants:

A1 =

0.9 0.5 0
0 0.9 0.2
0 −0.2 0.8

 , B1 =

 0 .1
0.6 0
0 0.6

 , (21a)

A2 =

0.1 2 2
0 0.1 2
0 0 0.1

 , B2 =

 0 .6
0.6 0
0 0.6

 , (21b)

with cost matrices Q = Inx
and R=blkdiag(10,1), and

σ2
w=0.5, T=100, δ=0.05. Plant 1 is lightly damped and the

least damped mode is close to uncontrollable. Conversely,
the upper triangular structure in Plant 2 shows that it is
highly damped and controllable. For each plant an esti-
mate (Â, B̂,D0) is obtained by simulating one trajectory
of length N=100 with ut ∼ N (0, σ2

uInu
), σ2

u = 3. The
SDPs are solved with MOSEK [25].

Figure 1 shows a comparison between the costs achieved
by the policies π1 obtained with Program 3 (Dc) and
Program 4 (FIM criteria).
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Fig. 1: Comparison of costs for plant 1 (left) and 2 (right).

For each value of the parameter α, the correspond-
ing exploitation cost J π2 (Â, B̂,D0 + D(π1)) divided by
J π2 (Â, B̂,D0 +D(πDRDE)) is plotted. This ratio indicates
the cost incurred by a robust design using the informa-
tion extracted by π1 compared to a design based on the
information obtained by the optimal LQR controller. For
a given ellipsoidal set, cost J π2 (8b) is computed with the
SDP formulation from [13]. While it is expected that the
uncertainty reduction achieved with πDc is associated with
the smallest J π2 since this is the objective in (10), it is
interesting to observe that the gap between the curves
is more pronounced when a small exploratory budget is
available and depends on the unknown plant.

In Fig. 2 the policies πDc for the two plants (Dc-solid
line) are compared with those obtained with the dual
control algorithm from [13] (Wc-dashed line), which uses
the worst-case state covariance to update the system’s
response, by showing the feedback gains (for reference,
KDRDE
t is also reported with dotted lines) and the dither-

ing covariance St. In the bottom plots, a break down of
J πDc

1 in terms of Jxt = E
[
x>t Qxt

]
, Jut = E

[
x>t K

>
t RKtxt

]
and Jet = E

[
e>t Ret

]
is displayed. The total number of

decision variables in Program 3 for this case is 4800 and
the run time for a fixed value of p is 29s.
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Fig. 2: Policies and costs for the two plants (α=2).

The comparison with Wc reveals that πDc uses larger
state-feedback exploratory actions (since it can only lever-
age the expected state covariance) and is able to use
smaller dithering actions. The comparison of πDc between
the two plants shows that in Plant 1 state-feedback and
dithering are both used to excite the system. Conversely,
for Plant 2 almost only state-feedback is used, and for
a longer time (see also the cost breakdown). This can
be interpreted observing its higher controllability, which
favours exploratory actions carried out using feedback.
Interestingly, the importance of controllability properties
for informative experiments was analytically found in [15]
with respect to the spectral norm of Coarse-ID estimates.

The results obtained by drawing 500 samples of wt and
et from their distributions and simulating the expected
estimate (Â, B̂) of Plant 1 under the dual policy are shown
in the first two plots of Fig. 3. The averaged quantities
of interest (Empirical) are compared with those obtained
from Program 3 (Optimized). The upper right box shows
a perfect match of the cost J1 incurred throughout the
horizon. This confirms that the dynamic of the state-
covariance in simulation is the same as the optimized
one, i.e. the upper bound (18) on Pt+1 correctly enforces
the state-covariance update. The singular values (sv) of
the matrix Dt also reveal interesting features. The top
left box confirms that the ellipse computed from data is
larger, but with a very small gap, than the optimized



one (i.e. Eq. 9 is a tight lower bound). Moreover, the
comparison of sv in the bottom left plot shows that the
ellipse associated with the D-optimality is smaller across
the horizon. Nonetheless, as seen in Fig. 1, it results
in a 50% higher exploitation cost. This points out the
key difference between the proposed dual policy, which
excites the system so that the most valuable information
for the intended application of the model is extracted,
and the experiment design policies, where only the size of
the uncertainty (defined according to a certain geometric
criterion) is targeted. The bottom right plot of Fig. 3
investigates the robustness of πDc by analyzing its action
on 2000 randomly drawn plants in the initial Coarse-ID set
Ω(X,D0) (3) and showing the ratios between the resulting
expected exploration (J1, on the left) and exploitation
(J2, on the right) costs and the corresponding costs for the
nominal plant considered in the previous analyses (and for
which πDc was designed). The covariance σ2

u of the white-
input signal employed in the Coarse-ID is a measure of the
size of the set Ω (note that σu

σw
can be interpreted as signal-

to-noise ratio of the experiment). The results show that
the policy allows efficient exploration also in off-nominal
conditions (the ratio J2 is always smaller than 1), at the
price of a higher exploration cost (the ratio J1 is always
greater than 1). This aspect can be mitigated by refining
the Coarse-ID estimate (i.e. by increasing σu), and points
out a potential advantage of employing this scheme in an
on-line setting where the dual policy can be updated.
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Fig. 3: Simulated results for Plant 1 (α=2).

V. Conclusions
A convex program to synthesize dual controllers for the

finite horizon Linear Quadratic Regulator is proposed.
The problem is formulated as the joint minimization of
two costs corresponding to exploration and exploitation
objectives. The designed policy excites the system in such
a way that estimates computed from the response of the
expected plant in the initial uncertainty set lead to the
smallest worst-case cost. Results show that the dual policy
captures dual control trade-offs including duration of the
exploratory actions and their distribution between state-
feedback and dithering components.
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