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Abstract—This paper proposes a new methodology for sub-
space identification of linear time-periodic (LTP) systems with
periodic inputs. This method overcomes the issues related to the
computation of frequency response of LTP systems by utilizing
the frequency response of the time-lifted system with linear
time-invariant structure instead. The response is estimated with
an ensemble of input-output data with periodic inputs. This
allows the frequency-domain subspace identification technique
to be extended to LTP systems. The time-aliased periodic im-
pulse response can then be estimated and the order-revealing
decomposition of the block-Hankel matrix is formulated. The
consistency of the proposed method is proved under mild noise
assumptions. Numerical simulation shows that the proposed
method performs better than multiple widely-used time-domain
subspace identification methods when an ensemble of periodic
data is available.

Index Terms—Subspace methods, identification, time-varying
systems.

I. INTRODUCTION

L INEAR time-periodic (LTP) systems are systems with
periodically varying linear dynamics. Periodicity is ob-

served in various applications, e.g. [1], [2], [3]. More impor-
tantly, LTP systems serve as an intermediate step to capture
more general representations than linear time-invariant (LTI)
systems, for example, linear parameter-varying (LPV) systems
[4], [5], [6] and nonlinear systems along limit cycles [7].

This paper focuses on identifying state-space LTP models
from input-output data. Based on early work from [8], methods
were developed to estimate nonparametric models of the har-
monic transfer function [7], [9]. This input-output model can
then be realized as state-space form [5]. The most successful
state-space method is probably the time-domain subspace
identification method [10], which extends naturally from its
LTI counterpart [11]. This method, along with a similar version
in [12], has contributed to a number of successful applications
(e.g., [4], [13]), especially in identifying LPV systems where
modern subspace techniques have been incorporated [6]. On
the other hand, the frequency-domain subspace formulation
for LTP systems has not been investigated until the recent
paper [14] based on frequency lifting. However, the method is
limited to single-input and single-output (SISO) systems with
multi-sinusoidal inputs. In addition, the frequency grid needs
to be specially designed to avoid overlaps between different
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periodic harmonics. This work aims to propose an alternative
framework that is compatible with more general inputs and
systems.

The importance of developing frequency domain methods
in system identification lies in the advantage of using periodic
inputs in identification experiments. As discussed in [15],
periodic input design has a number of advantages compared to
random input design, including avoiding initial state estimation
and easier time-domain averaging. However, the frequency
response behaviour of LTP systems differs significantly from
that of LTI systems [8]. Most prominently, the independence
of the frequency response at different frequencies, a property
that is fundamental to frequency-domain identification of LTI
systems, does not hold for LTP systems. This prevents straight-
forwardly applying LTI techniques to frequency-domain iden-
tification of LTP systems. The key idea of this work is to
use the frequency response of time-lifted systems with LTI
structure to overcome this limitation.

The technical contribution of the paper is the proposal
of a novel frequency-domain subspace identification method
for multi-input multi-output (MIMO) LTP systems. First,
the frequency response of the lifted system is identified by
the generalized empirical transfer function estimate (ETFE).
Then, the method extends the frequency-domain subspace
identification method in [16] to LTP systems. By utilizing
the frequency response of the lifted system, the time-aliased
periodic impulse response of the original LTP system can be
obtained by a linear mapping. The time-aliased periodic im-
pulse response then leads to an order-revealing decomposition
of LTP systems with block-Hankel structure. This is followed
by a conventional subspace routine that identifies the range
space of the extended observability matrix by performing a
singular value decomposition. This algorithm is proven to be
consistent under a general class of output noise. Compared to
[14], the main advantages are that it can be applied to MIMO
systems and that generic periodic inputs can be used. However,
compared with previous time-domain methods which use
arbitrary input-output data sequence(s), this method requires
an ensemble of periodic identification data that are harmonic
with the fundamental frequency of the system. Finally, the
proposed algorithm is compared to the time-domain method
by numerical simulation to show its advantage with periodic
identification data. The consistency property is also verified in
simulation.

II. PROBLEM STATEMENT

Consider a discrete-time strictly-causal LTP system with the
following minimal state-space model



{
x(t +1) = Atx(t)+Btu(t)

y(t) = Ctx(t)
, (1)

where x ∈ Rnx , u ∈ Rnu , and y ∈ Rny are the states, inputs,
and outputs respectively. The time-varying matrices At =At+P,
Bt = Bt+P, Ct = Ct+P are periodic state-space matrices of
appropriate dimensions, and P is the period length. Denote the
collection of unique A-matrices as A = [A>0 A>1 · · · A>P−1]

>,
similarly for B and C. The monodromy matrix of the system is
defined as ΨA,t = At−1At−2 · · ·At−P [17]. The periodic impulse
response of the system is defined as

gt
r =CtAt−1At−2 · · ·At−r+1Bt−r ∈ Rny×nu , (2)

where t is the tag time of the impulse response and r > 0 is the
input-output lag. The response gt

r is P-periodic with respect
to t.

In the remainder of the paper, the following system identi-
fication problem is considered:

Given: J input-output data sequences of system (1) with
periodic inputs of length NP, where J ≥ Pnu. The inputs and
noise contaminated outputs are denoted as ui(t) and yi(t) =
yi

0(t)+wi(t) respectively, where t = 0,1, · · · ,NP− 1 denotes
the measured time instants, i = 1,2, · · · ,J denotes the index
of the experiments, yi

0(t) is the noise-free output, and wi(t) is
the unknown noise.

Assumptions: 1) the system is stable, i.e., ρ(ΨA,t) < 1;
2) the noise is i.i.d. across experiments, and not corre-
lated with the inputs, i.e., E

[
(u(t1)−E [u(t1)])w>(t2)

]
= 0;

3) the noise is zero mean with fast-decaying covariances
∑

∞
τ=1
∣∣τ ·E [wp(t)wp(t− τ)]

∣∣ = cp < ∞, where wi
p is the p-th

element of wi; 4) the period length P is known.
Objective: estimate a state-space LTP model that is equiv-

alent to (1) up to a similarity transform.

III. FREQUENCY RESPONSE OF LTP SYSTEMS

An important characteristic of LTP systems is that, unlike
LTI systems, an input with spectral content at frequency ω will
generate an output response not only at ω , but also at a series
of other harmonics ω +2kπ/P, k ∈Z [8]. Thus, the frequency
response at a particular frequency ω is not a complex gain,
but a function Gω(ω + 2kπ/P) of k. This function-valued
frequency response can be estimated at individual frequencies
with a technique known as frequency lifting [14]. However,
this method is very restrictive in input design, in that only
carefully designed multi-sinusoidal inputs can be applied to
ensure no overlap of harmonics with different input frequency
content. In this paper, a time-lifted method is considered for
arbitrary periodic inputs of length NP, N ∈ N+. As will be
seen in Section IV-B, this method is useful in extending the
available frequency-domain subspace identification algorithm
to LTP systems. For the rest of the paper, the term lifting refers
to time-lifting.

Lifting is one of the most common LTI reformulations of
LTP systems. In the lifted system, the inputs and outputs of
one whole period in the LTP system are concatenated as the
new inputs and outputs

ũi(k)=
[
ui>(kP) ui>(kP+1) · · · ui>(kP+P−1)

]>
, (3)

similarly for ỹi(k) and w̃i(k). The result is a structured LTI
system of P-times larger input and output dimensions and P-
times slower. The state dimension remains the same.

In this way, the frequency response matrix of the lifted LTI
system G(e jωk) can be used as the frequency response data
of the original LTP system. It is shown in Section 4.3 of [18]
that the frequency response of the lifted system is given by

Gl,m(e jωk) =
∞

∑
s=0

gl
sP+l−m exp(− jωks), (4)

where Gl,m ∈ Cny×nu denotes the l-mth block element of G,
ωk = 2πk

N , k = 0,1, · · · ,N − 1. Note that, due to the strict
causality assumption of (1), gt

r = 0 for all non-strictly-causal
impulse response coefficients, that is for r ≤ 0.

Despite its LTI structure, frequency response estimation of
the lifted MIMO system is not a trivial problem as conven-
tional methods such as swept-sine and multi-sines [19] are not
applicable to lifted LTP systems as the input channels cannot
be excited separately, since they come from the same input
sequence. Therefore, we propose the following generalized
ETFE Ĝ(e jωk) similar to [19] but from an ensemble of time-
domain identification data with periodic inputs.

We apply the discrete Fourier transform (DFT) on each
channel of the lifted inputs and outputs,

Ui(e jωk) =
N−1

∑
n=0

ũi(n)exp
(
− j

2πnk
N

)
, (5)

and similarly for Yi(e jωk) and Wi(e jωk). Then the frequency
response estimate is given as

Ĝ(e jωk) = Ỹ (e jωk)Ũ†(e jωk), (6)

where

Ũ(e jωk) =
[
U1(e jωk) U2(e jωk) · · · UJ(e jωk)

]
, (7)

similarly for Ỹ (e jωk) and W̃ (e jωk). Here, for the right pseudo-
inverse to be well defined, Ũ(e jωk) needs to have full row
rank, which requires J ≥ Pnu.

The estimate (6) generalizes the ETFE for the SISO case

Ĝ(e jωk) =
Y (e jωk)

U(e jωk)
(8)

with multiple experiments to satisfy the persistency of ex-
citation requirement for MIMO systems. We will show that
this estimate has similar properties to the ETFE, i.e., it is
unbiased with bounded covariances and the estimation errors
are independent across different frequencies. Note that for
notational simplicity, a MISO structure is considered in the
proof but the same properties hold for the MIMO system with
covariance of the vectorized Ĝ(e jωk).

Lemma 1: Given the assumptions in Section II, the fre-
quency response estimate (6) has the following properties:

1) E
[
Ĝ(e jωk)

]
= G(e jωk),

2) Cov
[
Ĝ(p)

]
=
(
Φwp +ρp(N)

)(
Ũ†
)H Ũ†, where Ĝ(p) de-

notes the p-th row of Ĝ, Φwp is the power spectral den-
sity of the p-th element of w, and |ρp(N)| ≤ 2cp/N. Note
that the frequency dependence is omitted for simplicity.



3) estimates at different frequencies are independent.
Proof: Decompose the lifted MIMO system into Pny

multiple-input single-output (MISO) systems with

G(e jωk) =
[
G(1)>(e jωk) G(2)>(e jωk) · · · G(Pny)

>
(e jωk)

]>
,

(9)
and similarly for Ĝ(e jωk). Then,

Ỹ (p)(e jωk) = G(p)(e jωk)Ũ(e jωk)+W̃ (p)(e jωk), (10)

Ĝ(p)(e jωk) = G(p)(e jωk)+W̃ (p)(e jωk)Ũ†(e jωk), (11)

where Ỹ (p)(e jωk), W̃ (p)(e jωk) denote the p-th row of Ỹ (e jωk),
W̃ (e jωk) respectively. With zero-mean noise, the estimate is
unbiased

E
[
Ĝ(p)(e jωk)

]
= G(p)(e jωk)+E

[
W̃ (p)(e jωk)

]
Ũ†(e jωk)

= G(p)(e jωk).
(12)

The covariance of the estimate is given by

E
[(

Ĝ(p)(e jωk)−G(p)(e jωk)
)H(

Ĝ(p)(e jωm)−G(p)(e jωm)
)]

=
(
Ũ†(e jωk)

)HE[(W̃ (p)(e jωk)
)H

W̃ (p)(e jωm)

]
Ũ†(e jωm).

(13)
From Section 6.3 of [20] and the independence across different
experiments, we have

E
[(

W̃ (p)(e jωk)
)H

W̃ (p)(e jωm)

]
=

{(
Φwp(e

jωk)+ρp(N)
)

I, ωk = ωm

0, ωk 6= ωm
, (14)

Substituting (14) into (13) completes the proof.
Remark 1: When P is unknown, cross-validation can be

performed by obtaining the generalized ETFE estimate with
lifting structures of different P.

IV. FREQUENCY-DOMAIN SUBSPACE IDENTIFICATION OF
LTP SYSTEMS

To develop the frequency-domain subspace identification
method for LTP systems based on the frequency response of
the lifted system, we first examine the algorithm for that of LTI
systems. This is briefly summarized based on the uniformly
spaced data case in [16].

A. The algorithm for LTI Systems

Suppose M frequency response data Gk are given on uni-
formly spaced frequencies ωk = 2πk/M,k = 0,1, · · · ,M− 1.
First, apply the inverse discrete Fourier transform (IDFT) on
Gk,

hr =
1
M

M−1

∑
k=0

Gk · exp
(

j
2πrk

M

)
, r = 1,2, · · · ,M. (15)

The sequence ht is then the time-aliased impulse response of
the system,

hr =
∞

∑
i=0

gr+iM. (16)

Based on this result, the block-Hankel matrix of ht has the
following decomposition that reveals the order of the system.

H =


h1 h2 · · · hr
h2 h3 · · · hr+1
...

...
. . .

...
hq hq+1 · · · hr+q−1



=


C

CA
...

CAq−1

(I−AM)−1 [B AB · · · Ar−1B
]
,

(17)

Thus, the extended observability matrix of the system can be
identified up to a similarity transform from the range space of
H by singular value decomposition and truncation. The order
of the estimated system can be determined by thresholding or
cross-validation.

B. Order-revealing decomposition for LTP systems

With the frequency response of the lifted system, the order-
revealing decomposition analogous to (17) can be developed
for LTP systems.

Take the IDFT of Ĝl,m(e jωk) in (6),

wl,m(n) =
1
N

N−1

∑
k=0

Ĝl,m(e jωk)exp
(

j
2πnk

N

)
=

1
N

N−1

∑
k=0

∞

∑
s=0

gl
sP+l−m exp

(
− j

2π(s−n)k
N

)
.

(18)

Since the summation over k is on the whole unit circle, it is
only non-zero when s−n = iN, i ∈ N. We have

wl,m(n) =

{
∑

∞
i=0 gl

(iN+n)P+l−m, nP+ l−m > 0,

∑
∞
i=0 gl

(iN+N+n)P+l−m, nP+ l−m≤ 0,
. (19)

Define the time-aliased periodic impulse response as

ht
r =

∞

∑
i=0

gt
r+iNP, r = 1,2, · · · ,NP. (20)

According to the definition of gt
r (2), ∀p = 0,1, · · · ,r−1,

ht
r =CtAt−1 · · ·At−p

(
I−Ψ

N
A,(t−p)

)−1
At−p−1 · · ·At−r+1Bt−r.

(21)
Therefore, the periodic block-Hankel matrix of ht

r can be
decomposed as follows

Hτ
p =


hτ

1 hτ
2 · · · hτ

r
hτ+1

2 hτ+1
3 · · · hτ+1

r+1
...

...
. . .

...
hτ+P−1

q hτ+P−1
q+1 · · · hτ+P−1

q+r−1


=Oτ

q
(
I−Ψ

N
A,τ
)−1 Cτ

r ,

(22)

where q+ r−1≤ NP, and

Cτ
s =

[
Bτ−1 Aτ−1Bτ−2 · · · Aτ−1 · · ·Aτ−s+1Bτ−s

]
∈ Rnx×snu

(23)



Oτ
s =


Cτ

Cτ+1Aτ

...
Cτ+s−1Aτ+s−2 · · ·Aτ

 ∈ Rsny×nx , (24)

are the extended controllability and observability matrices of
LTP systems respectively [17]. By selecting q,r such that
qny ≥ nx, rnu ≥ nx, together with the minimality and stability
of the system, we have

rank
(
Hτ

p
)
= rank

(
Oτ

q
)
= rank

((
I−Ψ

N
A,τ
)−1
)

= rank(Cτ
r ) = nx.

(25)

Note that the rank requirements on q and r put a lower bound
on N. Then the range space of Hτ

p coincides with that of Oτ
q .

Thus, Oτ
q can be identified, up to a similarity transform, by

performing singular value decomposition on Hτ
p . From the

extended observability matrix, the matrices A and C can be
estimated by the same shifting method as in the time-domain
subspace identification of LTP systems [10]. The input matrix
B can be estimated by least-squares fit to the time-aliased
impulse response.

V. ALGORITHM & CONSISTENCY ANALYSIS

Built on the decomposition (22), we propose Algorithm 1
for frequency-domain subspace identification of LTP systems
with periodic inputs.

Algorithm 1 Frequency-domain subspace identification of
LTP systems with periodic inputs

1: Lift the input-output data ui(t), yi(t) to ũi(k), ỹi(k), k =
0,1, · · · ,N−1, as in (3).

2: Estimate the frequency response Ĝ(e jωk) of the lifted
system from ũ(k), ỹ(k) by (5) and (6).

3: Apply the IDFT on each block element Ĝl,m(e jωk) of
Ĝ(e jωk) according to (18) and denote it as ŵl,m(n).

4: Construct the time-aliased periodic impulse response{
ĥt

r
}

, r = 1,2, · · · ,NP by rearranging elements in ŵl,m(n)
according to (19) and (20).

5: Construct Ĥτ
p for τ = 0,1, · · · ,P−1, according to (22).

6: Calculate the singular value decomposition of Ĥτ
p for τ =

0,1, · · · ,P−1
Ĥτ

p = Ûτ Σ̂τV̂>τ . (26)

7: Determine a system order nx and define Ûτ =
[
Û s

τ Ûo
τ

]
,

where Û s
τ ∈ Rqny×nx .

8: The estimated state-space model is given as

Âτ = (J1Û s
τ+1)

†J2Û s
τ , Ĉτ = J3Û s

τ ,τ = 0,1, · · · ,P−1, (27)

B̂ = argmin
B

NP

∑
r=1

P−1

∑
τ=0

∥∥ĥτ
r − Q̂τ

r Bτ−r
∥∥2

F , (28)

where Û s
P = Û s

0 , J1 =
[
I(q−1)ny 0(q−1)ny×ny

]
, J2 =[

0(q−1)ny×ny I(q−1)ny

]
, J3 =

[
Iny 0ny×(q−1)ny

]
, Q̂τ

r =

Ĉτ

(
I−ΨN

Â,τ

)−1
Âτ−1 · · · Âτ−r+1.

The computational complexity of Algorithm 1 is dominated
by solving the least squares problem (28), which has a
complexity of O(n2

x ·n2
u ·N ·P2).

We will show the following consistency property of Algo-
rithm 1.

Theorem 1: Let At , Bt , and Ct define the minimal LTP state-
space model (1). Let Ât , B̂t , and Ĉt be the estimated state
matrices by Algorithm 1. Given the assumptions in Section II,
there exist nonsingular periodic matrices Tt ∈Rnx×nx , Tt = Tt+P
such that w.p. 1,

lim
N→∞

∥∥∥∥[At Bt
Ct 0

]
−
[

Tt+1 0
0 I

][
Ât B̂t
Ĉt 0

][
T−1

t 0
0 I

]∥∥∥∥
F
= 0,

(29)
for a fixed choice of q,r.

Proof: Let ∆G(e jωk) = Ĝ(e jωk)−G(e jωk), ∆wl,m(n) =
ŵl,m(n)−wl,m(n). We have

∆wl,m(n) =
1
N

N−1

∑
k=0

∆Gl,m(e jωk)exp
(

j
2πnk

N

)
, (30)

which can be seen as the sample mean of zero-mean inde-
pendent random variables [16]. From Lemma 1, we know that
the covariances of the random variables are bounded. Thus,
according to the law of large numbers,

lim
N→∞

∆wl,m(n) = 0, w.p. 1, (31)

Then let ∆ht
r = ĥt

r−ht
r, ∆Hτ

p = Ĥτ
p −Hτ

p . We have

lim
N→∞

∆ht
r = 0, w.p. 1, (32)

which implies that, for τ = 0,1, · · · ,P−1,

lim
N→∞

∥∥∆Hτ
p
∥∥

F = 0, w.p. 1. (33)

Let
∥∥∆Hτ

p
∥∥

F ≤ ε . According to the proof of Lemma 4 in
[16], there exist a matrix Pτ satisfying ‖Pτ‖F ≤ 4ε/σnx(H

τ
p)

and a non-singular matrix Tτ such that

Û s
τ = (U s

τ +Uo
τ Pτ)Tτ , (34)

where Hτ
p = [U s

τ Uo
τ ]ΣτV>τ . Then, we have

Tτ+1Âτ T−1
τ =

(
J1(U s

τ+1 +Uo
τ+1Pτ+1)

)† J2(U s
τ +Uo

τ Pτ),

Ĉτ T−1
τ = J3(U s

τ +Uo
τ Pτ).

(35)

Note that
J1U s

τ+1Aτ = J2U s
τ . Cτ = J3U s

τ , (36)

Then, from Theorem 5.3.1 in [21] on the sensitivity of the
least squares estimate, for a sufficiently small ε such that the
regressor does not lose rank, there exists constants cτ ,c′τ , such
that ∥∥Tτ+1Âτ T−1

τ −Aτ

∥∥
F ≤ cτ ε∥∥Ĉτ T−1

τ −Cτ

∥∥
F ≤ c′τ ε.

(37)

For the estimate of
{

B̂τ

}
(28), let

Qτ
r =Cτ

(
I−Ψ

M
A,τ
)−1

Aτ−1 · · ·Aτ−r+1. (38)

Then a simple calculation shows that∥∥Q̂τ
r T−1

τ−r+1−Qτ
r
∥∥

F = O(ε). (39)



Since ∆ht
r = O(ε), again from Theorem 5.3.1 in [21], for a

sufficiently small ε ,∥∥Tτ−r+1B̂τ−r−Bτ−r
∥∥

F = O(ε). (40)

The above equation, together with (33) and (37) completes the
proof.

VI. NUMERICAL EXAMPLES

In this section, the proposed algorithm is tested against
multiple time-domain subspace identification algorithms for
LTP systems with two numerical examples. Example 1 is
based on the flapping dynamics of wind turbines, which is
taken from [4]. The true dynamics of the system are given by[

A0 B0
C0 0

]
=

 0 0.0734 −0.07221
−6.5229 −0.4997 −9.6277

1 0 0

 ,
[

A1 B1
C1 0

]
=

 −0.0021 0 0
−0.0138 0.5196 0

0 0 0

 ,
where nx = 2, ny = nu = 1, P = 2. Example 2 is used in [12]
with the dynamics[

A0 B0
C0 0

]
=

 1 1 0
0 2 1
1 0 0

 ,[ A1 B1
C1 0

]
=

 1
5 1 0
0 2

5 1
2 0 0

 ,
[

A2 B2
C2 0

]
=

 3 1 1
0 1 2
1 1 0

 ,
where nx = 2, ny = nu = 1, P = 3. Both systems are then
normalized to have an average steady-state gain of 1.

The compared algorithms are: 1) Algorithm 1 in this paper
(Freq), 2) the MOESP algorithm in [10] (MOESP), 3) the
intersection algorithm in [12] (Int), and 4) the CCA algorithm
in Lemma 9.2 of [6] specialized for LTP systems (CCA).

In both examples, the following simulation configuration
and parameters are used. For each input-output data se-
quence, the systems are excited by periodic input of i.i.d. unit
Gaussian entries u(t)∼N (0,1) from zero initial conditions.
The outputs are contaminated with i.i.d. unit Gaussian noise
y(t) = y0(t) + w(t),w(t) ∼ N (0,1). The identification data
are collected with N = 50, J = 10 · P after the transient
effect becomes negligible. The number of block-rows q for
the Hankel matrices in all methods are selected by cross
validation. The system order nx is assumed to be known.

The identification results are shown in Figures 1 and 2
for Examples 1 and 2 respectively, in terms of the absolute
estimation errors of the periodic impulse responses gτ

r , as
the state-space matrices are only equivalent up to unknown
similarity transforms. In Example 1, the system is autonomous
at τ = 1, so only the impulse responses at τ = 0 are shown.
As can be seen from both figures, the estimation error of
the proposed method is smaller than the other three time-
domain methods. In particular for Example 2, the time-domain
methods fail to provide a meaningful estimation of the system,
whereas the proposed frequency-domain method is still able
to obtain reasonable results.
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Fig. 1. Errors in the periodic impulse response estimation for Example 1.

To quantitatively assess the performance of the identification
schemes, 100 Monte Carlo simulations with different noise
realizations were conducted for both examples. The perfor-
mances are parameterized by the following fitting metric

W = 100 ·

1−

[
∑

P
τ=1 ∑

ng
r=1(g

τ
r − ĝτ

r )
2

∑
P
τ=1 ∑

ng
r=1(g

τ
r − ḡ)2

]1/2
 , (41)

where gτ
r are the true impulse response coefficients, ĝτ

r are
the estimated coefficients, ḡ is the mean of true coefficients,
and ng is selected as 50 here. The box plots of the metric W
for both examples are shown in Fig. 3. In both examples, the
proposed method has a better fitting performance compared to
the time-domain method.

The above results demonstrate that the proposed method
performs better than the time-domain methods when periodic
input-output data are available. This advantage is mainly due
to the fact that it makes use of the periodic nature of the
identification data. This gives the complete input history of
the system or, in other words, the initial condition, whereas in
the time-domain method, past inputs are assumed unknown.

Finally, we demonstrate the consistency property that is
proved in Theorem 1 by conducting Monte Carlo simulations
of Example 1 with increasing data length N. The results are
shown in Fig. 4 where the estimation error is characterized
by the mean squared error of the periodic impulse response
estimate. It can been seen that estimate is consistent with a
convergence rate of 1/N.

VII. CONCLUSIONS

In this paper, we have proposed an LTP subspace iden-
tification method designed for periodic identification data.
This method applies a two-step approach: first the generalized
ETFE of the lifted LTP system is obtained from the identi-
fication data; then the time-aliased periodic impulse response
derived from the lifted frequency response is used to construct
an order-revealing decomposition of the original LTP system,
from which the general framework of subspace identification
can be utilized. The proposed algorithm complements the
available subspace identification algorithms for LTP systems,
and shows an advantage in model fitting from numerical
simulation when periodic data are available.
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Fig. 2. Errors in the periodic impulse response estimation for Example 2.

Freq   MOESP Int CCA

75

80

85

90

95

100

F
it
 W

 [
-]

Freq   MOESP Int CCA
-100

-50

0

50

100

F
it
 W

 [
-]

(a) Example 1 (b) Example 2

Fig. 3. Comparison of fitting performance with Monte Carlo simulations.
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