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Abstract

There is currently great interest in innovative aircraft configurations. Among them,

Joined-Wing concept has captured the attention as a possible candidate layout for the air-

plane of the future.

However it is reasonable to wonder about the importance of their inherent structural

nonlinearities that may invalidate the results obtained with fast lower-fidelity tools, necessary

when exploring the large amount of parameters in the conceptual/preliminary design stage.

In addition these nonlinearities are thought to be more concerning when the deformation of

the wing is significant. This is a feature of modern aircrafts, where weight reduction has

brought to an increase of flexibility, and in particular of certain classes as the unmanned

aerial vehicles (UAV).

In the present work, dynamic (time-domain) solvers with different degrees of accuracy

are developed and later employed to describe the aeroelastic behaviour of three different

Joined-Wing configurations. Static and flutter (frequency-domain) solvers are employed as

well in the analyses in order to provide both a general description of the response and a

comparison between the predictions of linear and nonlinear tools.

The fluid-structure interaction problem is firstly presented, along with the aerodynamic

models adopted (vortex lattice method with rigid or free wake) and the algorithms used

for the interface (Infinite Plate Spline and Moving Least Square shape functions). For the

structure, a geometrically nonlinear finite element is employed. Since the goal is the study

of critical and postcritical conditions, an overview of stability and bifurcations of a generical

nonlinear dynamical system is presented.

Results are then shown, focusing on the flutter occurrence and analyzing postcritical

phenomena: Limit Cycle Oscillations (LCOs) are observed followed sometimes by a lost of

periodicity of the solution as speed is further increased. Differences between flutter speed

prediction with linear and nonlinear analyses are discussed, in order to understand if a less

computationally intense approach may be used with confidence; furthermore both frequency

and time-domain approaches are compared. In a perspective aimed to reduce the computa-

tional cost, but always staying within nonlinear tools, it is assessed in what measure the use

of more sophisticated aerodynamic and interface models impacts the aeroelastic predictions.



These differences range from the algorithms adopted for the fluid-structure coupling to the

models employed to describe the wake. When the tools give different results, a physical

interpretation of the leading mechanism generating the mismatch is attempted.

The complex scenario arising from the aeroelastic response of Joined-Wings is particularly

evident in the inception of topologically different bifurcations leading to multistability when

a meaningful parameter (for example the speed in this analysis) is varied.

Finally, it is presented a possible method to perform the evaluation of the aerodynamic

tangent matrix when un unsteady panel method (UPM) is used. This effort is meant as a

tool for future aeroelastic studies involving the UPM for analyses on wing box models.



Contents

1 Overview of the Joined-Wing concept 5

1.1 New challenges for the future aviation . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Advantages of Joined-Wing layout . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Issues of a preliminary design . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Aeroelastic model 11

2.1 Introduction to the FSI analysis . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Dynamic Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Newton’s Law and Definition of the Residual . . . . . . . . . . . . . . 13

2.2.2 Newmark’s β−Method . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Enforcing convergence with Newton’s method and Bathe predictor . . 15

2.2.4 The generalized α-method . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.5 Structural Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Aerodynamic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Geometry definition and evaluation of induced velocity . . . . . . . . 27

2.3.3 Wake model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.4 Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.5 Evaluation of Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Aero-Structural Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.1 New expression of the boundary condition . . . . . . . . . . . . . . . 41

2.4.2 Aeroelastic expression of Loads . . . . . . . . . . . . . . . . . . . . . 44

2.4.3 Residual and tangent matrix expression with aerodynamic loads . . . 45

3 Interface Algorithms 48

3.1 Infinite Plate Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1



3.1.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.2 Application to the aero-structural coupling . . . . . . . . . . . . . . . 50

3.1.3 Load transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Moving Least Square derivated algorithm . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Meshless Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.2 Main features of the algorithm . . . . . . . . . . . . . . . . . . . . . . 54

3.2.3 Issues connected to the minimization problem . . . . . . . . . . . . . 56

3.2.4 Locality of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.5 Conservation of energy . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Stability and Bifurcations of Nonlinear Dynamical Systems 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Fixed points and their stability . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Periodic Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Center Manifold Theory and Normal Forms . . . . . . . . . . . . . . . . . . 67

4.5 Dependence on parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5.1 Stationary Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.2 Hopf Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.3 Stability of Periodic Solutions . . . . . . . . . . . . . . . . . . . . . . 78

5 Codes employed in the analysis 86

5.1 Time-domain codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.1 Solver 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.2 Solver 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.3 Solver 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Static and frequency-domain codes . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 Nonlinear aeroelastic static tool

and its employment in the analysis . . . . . . . . . . . . . . . . . . . 90

5.2.2 DLM based code for flutter speed prediction . . . . . . . . . . . . . . 91

6 Validation 93

6.1 Validation of the Aerodynamic Solvers . . . . . . . . . . . . . . . . . . . . . 93

6.2 Validation of the Meshless Transferring Capability . . . . . . . . . . . . . . . 95

6.3 Validation of the Time-Domain Aeroelastic Codes Capabilities . . . . . . . . 96

6.3.1 Solver1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

2



6.3.2 Solver2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3.3 Solver3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 Results 100

7.1 Description of the Analyzed Joined-Wing Configurations . . . . . . . . . . . 100

7.2 Snap Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2.1 Time response on Snap divergence Occurence . . . . . . . . . . . . . 106

7.3 Postcritical Dynamic Aeroelastic Analysis . . . . . . . . . . . . . . . . . . . 108

7.3.1 Introduction to the Limit Cycle Oscillations . . . . . . . . . . . . . . 108

7.3.2 JW70 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3.3 PrP40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3.4 Sensorcraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.4 Flutter evaluated with Linear and

Nonlinear Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.4.1 PrP40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.4.2 Sensorcraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.5 Influence of Solver choice in the prediction

of flutter speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.5.1 JW70 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.5.2 PrP40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.5.3 Sensorcraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.6 Bifurcations and multistability . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8 Aerodynamic Tangent Matrix for

the Unsteady Panel Method 148

8.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.2 Application to the Unsteady Panel Method . . . . . . . . . . . . . . . . . . . 150

8.3 Evaluation of the single terms . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.3.1 Sensitivity of doublet strength in respect to displacements . . . . . . 151

8.3.2 Sensitivity of pressure in respect to doublet strength . . . . . . . . . 161

8.3.3 Sensitivity of area in respect to displacements . . . . . . . . . . . . . 163

8.3.4 Sensitivity of normal direction in respect to displacements . . . . . . 164

9 Conclusions 165

3



Appendices 173

A Infinite Plate Spline Interface Algorithm 174

B Moving Least Square (Meshless) Interface Algorithm 185

C Aerodynamic Tangent Matrix (UPM) 190

C.1 Sensitivity of doublet strength in respect to displacements . . . . . . . . . . 190

C.2 Sensitivity of pressure in respect

to doublet strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

4



Chapter 1

Overview of the Joined-Wing concept

1.1 New challenges for the future aviation

A new attention has been recently devoted to sustainable growth in air transport. In 2002

the European Community indicated the next challenges and goals to be reached in the future

in a document [1] titled ”Vision 2020: strategic research agenda”. Future aviation will need

to supply to restrictive commitments in terms of costs, environments, safety and security.

While at the advent of commercial aviation the aim was to fly as fast and high as possible,

now different requirements have to be satisfied. Environmental concerns, for example, will

become more restrictive: a 50% cut in CO2 emissions per passenger kilometer and 80% cut

in NOx emissions are required in the next years. Another objective is to eliminate excessive

noise outside the airport boundaries by day and night with a 50% reduction on perceived

external noise. Other aspects are ambitious too, as the air transport system efficiency, which

passes through a time reduction for boarding and disembarkation of passengers and luggage,

and a 30% cut in Direct Operating Costs.

The improvement of the aerodynamic design is essential in the attempt to satisfy the

previous requirements, in that a decrease of the drag would reduce operating costs together

with pollution and noise emissions. During cruise, friction drag of large aircrafts is about

the 45-50% of the total drag, while induced drag accounts for 40-45%, as depicted in Fig.1.1.

Possible ways of reducing friction drag (e.g. boundary layer suction, turbulent flow control

and others) are studied and applicable to all the aircraft configurations, even the innovative

ones. The induced drag, on the other side, depends on the lift distribution over the wing

span and thus it is fundamental the aircraft layout. Furthermore, the fraction of induced

drag increases in take-off and landing, leading to a big influence over the low speed perfor-
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Fig. 1.1: Subdivision of aerodynamic drag in cruise for different classes of aircrafts

mances.

Unfortunately, the lift distribution of today transport aircraft is so optimized due to the large

amount of CFD simulations, tunnel and flight tests and long service experience, that signifi-

cant reduction of induced drag cannot be easily obtained. Due to limitations of conventional

designs, new concepts have thus been conceived. An example of significant departure from

these layouts is represented by the Joined-Wing configurations [39,114].

1.2 Advantages of Joined-Wing layout

The Joined-Wing concept takes the cue from the studies of Prandtl [92] about the minimum

induced drag when multiplane layouts are considered. He showed that a particular configu-

ration exists, called“Best Wing System”, that minimizes the induced drag for a given span

and total lift; an exact solution of the Prandtl’s problem can be found in [40].

This system is made of a box in the front view, with the two horizontal wings carrying the

same lift, which has a distribution made of the superposition of an elliptical part and a

constant one; the induced velocity is constant with a value depending on the total lift. The

vertical wing (bulk) has a symmetric and butterfly shaped lift distribution with an induced
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velocity identically zero. This geometry is depicted in Fig.1.2.

Fig. 1.2: Geometry of the Prandtl’s Best Wing System

The efficiency of the wing system e, defined as the ratio of the induced drag of the multiplane

layout with the optimal lift distribution to the induced drag of the monoplane with same

span and total lift and elliptical lift distribution, results to be dependent on the gap-to-span

ratio h
b
. As this ratio increases, the efficiency of the wing system increases correspondingly.

In particular, in the range 0.1 < h
b
< 0.2, it is achieved a 30% reduction in induced drag

with respect to the equivalent monoplane, see Fig.1.3.

Making use of the fact that, due to Munk theorems, the induced drag is independent of

the sweep angle and thus these results have a broad validity, this idea was recovered and

developed, with proposals in the seventies for both commercial transport and supersonic

fighters [71,75] and several patents taken out [38,82].

Rearrangements led to a variation of the original concept, with the introduction of layouts as

the Strut-Braced Wings (SBW) [44] and the Truss-Braced Wings (TBW) [50]. Moreover in

the recent years the Joined-Wing configuration found applications in the study of relatively

new concepts as UAV [99] and HALE in particular [26].

Apart from the previously discussed high aerodynamic efficiency, many advantages on

the basic layout fuselage-wing-tail are claimed. For example it is more attractive a solution

in composites for the main structures (lifting systems). In fact: the chance to collocate the

propulsion system into the rear fuselage leaves the wings free of concentrated loads due to

the engines; the possibility to consistently reduce the chord length compared to cantilever

wings, leading to higher thickness of the skins, makes attractive the layout of a wing box

without stringers. The latter feature earns also significant technological and manufacturing

advantages [41].

The shape of the wings enables to think about unconventional controls, like for example for
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Fig. 1.3: Efficiency of the wing system with respect to the gap-to-span ratio, from [92]

the pitch control that could be obtained by means of two elevators located on both front

and rear wing roots moved in phase opposition (pure couple without a variation in total lift

is produced).

An example of application of the Joined-Wing concept is the PrandtlPlane [39], shown in

Fig.1.4.

1.3 Issues of a preliminary design

Attracted by these advantages, many works have been devoted in the last decades to the

analysis of Joined-Wings, both numerically and experimentally [96]. A design which could

realistically assess their behaviour is much more challenging than the one corresponding to

traditional configurations. Two of the main problems are the overconstrained layout and the

presence of strong structural nonlinearities [65]; this brings the necessity to wonder if it is

still adequate to rely on old, though consolidated, design strategies and used nowadays by

the industry [24].
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Fig. 1.4: PrandtlPlane layout for a civil aircraft

The results in fact could be misleading, as shown in [30] where has been demonstrated

via full post-buckling investigations than the linear buckling analysis is not very reliable.

Such evidences seems to suggest the importance to retain these nonlinearities early in the

design stage. However, the adoption of fully-nonlinear structural models is impractical for

design purposes especially if several alternative configurations are explored (for example in

an optimization perspective). This has pushed the research toward computational efficient

reduced order models [33], but outcomes in this direction have not been too encouraging.

The effort of the present paper is in the direction of showing, studying and gaining insight

into the dynamic aeroelastic phenomena inherent to these configurations, and which have

potential impact on the design stage. In a previous work [34], focus was devoted to the

differences arising in the detection of divergence speed through eigenvalue analysis about

particular configurations (usually the undeformed one) and nonlinear analysis, revealing

substantial discrepancies with an overprediction of the critical speed with the traditional

approach. It is then expected a mismatch also between flutter speed evaluated by means of

linear and nonlinear flutter analyses.

Finally, once the flutter speed is determined, the postcritical dynamic response deserves

a careful study. In fact, while flutter represents a critical condition for the design since a
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disturbance can quickly grow unbounded, this forthcoming failure may be attenuated ending

up in self-sustained Limit Cycle Oscillations (LCOs) if nonlinearities present in the dynamics

of the system limit the exponential growth in amplitude predicted by the linear flutter

analysis. This response actually is not desirable since has as main consequences a shortening

of the aircraft service life (speeding up failure by fatigue) and the risk to induce other critical

instabilities making available new couplings among the flexible aircraft components.
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Chapter 2

Aeroelastic model

2.1 Introduction to the FSI analysis

The aeroelastic analysis of a wing, here pursued, is a particular application of a broader

discipline, called Fluid-Structure Interaction (FSI), which studies the interaction of one or

more solid flexible structures with an internal or surrounding fluid flow. A big variety

of problems fall under this subject; just to cite a few examples: the behaviour of heavy

particles falling under their own weight through a fluid (sedimentation) [16]; turbulent and

transitional flows with dynamically moving boundaries [117]; dynamic of conducting fluids

immersed in magnetic fluids, also known as magneto-hydrodynamic flows [48]; biofluid [4] and

biomechanic, as blood-heart interaction; response of bridges and tall buildings to wind [109];

vibration of turbomachinery [17].

Despite the big variety of topics covered by these analyses, the numerical procedures to

solve a generical FSI problem can be classified into two approaches: monolithic and par-

titioned. The brief description given here has just the aim to give an introduction to the

subject; for a thorough review, see for example [56].

The monolithic approach [81] considers the fluid and structure dynamics in the same frame-

work, such that they form a single system of equations for the entire problem, which is solved

simultaneously by a unified algorithm. This implies that the interface, needed to pass the

informations between the two fields, is implicit in the solution procedure. While this choice

surely offers robustness to the method since domain splitting errors are not introduced, its

major drawbacks are that the matrix for the full system may be ill-conditioned because of

the difference in stiffness of the fluid and the structure [22] and it may not be a simple task

to develop such a specialized code starting from structural and fluid solvers, especially for

11



large scale problems.

The partitioned approach [51], in contrast, solves separately the fluid and the structure

fields, with their respective mesh discretizations and, mainly, numerical algorithms: these

disciplinary algorithms are converted into subroutines called alternatively from a master pro-

gram. The interfacial conditions, driven from this master, are used here explicitly to transfer

the informations between fluid and structure solutions. The obvious advantage, due to its

modularity, is the possibility to take advantage of single-disciplinary codes, just validated in

the solution of fluid or structural problems, enabling the solution of the FSI problem with a

possibly more sophisticated fluid and structural physic modelizations, since the best-suited

solution strategy can be selected for each field independently; moreover, the resulting equa-

tions systems are smaller and generally better conditioned than the one dealt with in the

monolithic approach. The difficulties of this approach are related to the effort in performing

an efficient and accurate coordination of the disciplinary algorithms without a substantial

modification of themselves. In this perspective, challenges can arise in the explicit definition

of the interface location as it is often not known a priori and it changes with time; in some

cases this can bring stability and convergence issues [102].

In the present investigation the former method is adopted, relying both on the simple

aerodynamic model adopted and on the relatively small size of the problems, which make

possible to avoid the difficulties concerning the latter approach.
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2.2 Dynamic Solver

2.2.1 Newton’s Law and Definition of the Residual

According to the second Newton’s law, at each time dynamic equilibrium has to be obtained.

Let consider at first a system with a single degree of freedom consisting of a point mass

F = Mẍ (2.1)

where M represents the mass of the point, x is the generic coordinate, and F is the net force

acting on the mass. The residual of the system could be defined as

R = Mẍ− F (2.2)

This approach can be extended to systems with multiple degrees of freedom like the one

under investigation; let s be the generalized coordinate array (arising from the FE dis-

cretization) and ṡ, s̈ its time derivatives. Let assume M to be the mass matrix, and that

the damping forces, related to the structural damping, are proportional to ṡ through the

damping matrix Cd, constant with time; the internal structural forces are indicated with

F int and, since only elastic materials are considered, they are functions of the deformation

only. Their evaluation is performed by mean of the in-house structural capability, consisting

in a finite element method.

The nonlinear finite element [42, 43, 76, 77] is based on the linear membrane constant strain

triangle (CST) and the flat plate discrete Kirchhoff triangle (DKT). The here considered

nonlinearity is then relative to the large displacement of the configuration only (geometric

nonlinearity). The code has also embedded the calculation of the structural tangent ma-

trix KST , which is the sum of two contributions: the elastic stiffness matrix, KE, and the

geometric stiffness matrix, KG. A corotational approach is used, thus rigid body motion

is eliminated from the elements and the pure elastic deformations are found. For previous

works based on this in-house structural capability, reader is referenced to [19,34].

The external loads may be generic ones in this treatise, however, they are specialized

to be the aerodynamic forces acting on the body, and are a generical function of t, s, ṡ

and s̈; these dependencies are related to the history (wake evolution), current configuration

(steady production of aerodynamic forces), velocity of deformation (which changes the local

speed) and acceleration of deformation, respectively. The dynamic equilibrium law, with the

previous assumptions, reads

M s̈+Cd ṡ = P ext(s, ṡ, s̈, t)− F int(s) (2.3)
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In analogy with eq.(2.2), the residual is then defined as

R(s, ṡ, s̈, t) = Ms̈+Cdṡ− (P ext(s, ṡ, s̈, t)− F int(s)) (2.4)

In order to obtain the dynamic equilibrium the residual has to be zero at each generic

time t. However, when the problem is discretized in respect of the time, it is possible

to enforce the dynamic equilibrium only at some temporal points. In literature several

methods exist for the time discretization of dynamic structural problems, see for example

[11,28,57]. In the present study the framework of Newmark’s β−Method is considered, with

its successive improvements leading to the Generalized α-Method (GAM). The reasons that

led to the introduction of the so called Generalized Energy-Momentuum Method (GEMM)

and its implementation will be shortly presented.

2.2.2 Newmark’s β−Method

Before further proceeding, the notation by which is meant the evaluation of the quantity A

at the generic time t is introduced
tA = A|t (2.5)

If the generic quantity A has both a direct and indirect dependence on time, for example

A(s(t), t), then
tA = A(s|t,t) (2.6)

At first [88] a generic multivariate Taylor expansion on the velocity array is considered

t+∆tṡ = tṡ+∆tts̈+ o(∆t2) (2.7)

The mean value theorem assures the existence of a time t̂ in the interval [t, t+∆t] such that

eq.(2.7) is exactly satisfied when the second derivative is there evaluated, that is

t+∆tṡ = tṡ+∆tt̂s̈ (2.8)

Now the value of the acceleration array at t̂ could be expressed as a linear combination of

the values of the acceleration at times t and t+∆t, leading from eq.(2.7) to

t+∆tṡ = tṡ+ (1− γ)∆tts̈+ γ∆tt+∆ts̈ (2.9)

With the same line of reasoning, the mean value theorem could be used for the Taylor

expansion of p

t+∆ts = ts+∆t tṡ+ (1− 2β)
∆t2

2
ts̈+ β∆t2 t+∆ts̈ (2.10)
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where for the linear combination of the values of the acceleration at the two different times

the parameter 2β is used for commodity. The choice of γ and β determines important

characteristics as accuracy, rate of convergence, stability and the alternatively explicit or

implicit nature of the scheme [57]. Common choice is to take

γ =
1

2
β =

1

4
(2.11)

which gives an unconditionally stable (irrespective of the size of the timestep) and quadratic

convergent scheme (this applies for linear problems [59]); no numerical damping is added

to the system. Adopting this values and rearranging eq.(2.9) and eq.(2.10), the following

equations are obtained

t+∆tṡ = tṡ+
∆t

2

(
t+∆ts̈+ ts̈

)
t+∆ts = ts+

∆t

2

(
t+∆tṡ+ tṡ

) (2.12)

which define the scheme to discretized eq.(2.3) with respect to time and show why it is called

the average acceleration method or the trapezoidal rule.

2.2.3 Enforcing convergence with Newton’s method and Bathe

predictor

Once the time scheme has been chosen, the dynamic equilibrium has to be enforced. A first

problem comes out in the choice of the time when the solution has to be dynamically in

equilibrium, or mathematically, the residual has to vanish. Considering Newmark’s method,

where all the quantities are expressed in terms of the values assumed at times t and t+∆t,

and assuming the former to be known, a natural choice is to drive to convergence of the

system at the end of the timestep, that is at time t + ∆t. In this perspective, eq.(2.4)

becomes
t+∆tR = M t+∆ts̈+Cd

t+∆tṡ−
(
t+∆tP ext − t+∆tF int

)
= 0 (2.13)

The problem is then set, because eq.(2.13) can be recast in terms of t+∆ts thanks to eq.(2.12)

which relates the unknowns and enables to stress out the dependance from one only, for

example t+∆ts. The system to be solved is nonlinear and so an iterative process is established

to advance the solution at time t+∆t, once the status is known at t, driving to zero t+∆tR.

Since the Newton’s method is used to perform this task, a predictor approach should be

employed, that is at the beginning of each timestep an esteem of the values of the unknown
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t+∆ts and of their two derivatives is given, such that the residual expression is recast in terms

of a fixed part (predictor) and an iterative contribution (corrector). The choice adopted is

the one presented in [9], which consists in the following assumptions (Bathe predictor)

t+∆tspred = ts

t+∆tṡpred =

(
1− γ

β

)
tṡ+

(
1− γ

2β

)
∆t ts̈

t+∆ts̈pred = − 1

β∆t
tṡ−

(
1

2β
− 1

)
ts̈

(2.14)

The predicted quantities on the l.h.s. of eq.(2.14) are totally defined once the status at time

t is known and the superscript t + ∆t is reported just to point out that they can be used

to predict the dynamic status at time t+∆t; it’s now possible to give another expression of

the relationships between the three unknowns of the problem, rearranging eq.(2.10)

t+∆ts̈ =
1

β∆t2
(
t+∆ts− t+∆tspred

)
+ t+∆ts̈pred (2.15)

and eq.(2.9)
t+∆tṡ =

γ

β∆t

(
t+∆ts− t+∆tspred

)
+ t+∆tṡpred (2.16)

The residual expression in terms of the predictor is as follows

t+∆tR =
1

β∆t

(
1

∆t
M + γCd

)(
t+∆ts− t+∆tspred

)
+

M t+∆ts̈pred +Cd
t+∆tṡpred − t+∆tP ext +

t+∆tF int (2.17)

Introducing tRitern to indicate the value of the residual at time t during the n-th iteration,

in a Newton’s method the residual is locally approximated with an affine model and the new

linearly predicted is enforced to zero, leading to the the single Newton iteration

0 = t+∆tRitern +
t+∆t[

dR
ds

]itern (
t+∆tsitern+1 − t+∆tsitern

)
(2.18)

where the symbolism
t+∆t[

dR
ds

]itern
(2.19)

indicates the system tangent matrix evaluated at t+∆tsitern, and it holds

t+∆tsitern+1 − t+∆tsitern = t+∆tuitern (2.20)
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where t+∆tuitern is used to define the increments at the n-th iteration of the coordinates of
t+∆ts. To enable the iterative procedure to be carried on, a key point is the definition of the

system tangent matrix. With the previously discussed assumptions that the mass matrix

M and the damping matrix Cd are constant throughout the iteration, it has the following

expression, according to eq.(2.17)

t+∆tKT
itern =

t+∆t[
dR
ds

]itern
=

1

β∆t

(
1

∆t
M + γCd

)
−
(
d t+∆tP ext

d t+∆ts
+

d t+∆tF int

d t+∆ts

)
(2.21)

Notice that eq.(2.35) changes during iterations only if the internal structural forces F int

or the external (aerodynamic) loads P ext are nonlinear with t+∆ts. The resolution of the

following linear system is finally required

t+∆tKT
iternt+∆tuitern = −t+∆tRitern (2.22)

With eqs.(2.17) and (2.21) the iterative process shown in eq.(2.22) can be initialized evalu-

ating t+∆tuitern; the residual is then re-evaluated and, if it does not satisfy the convergence

criterion, this evaluation is repeated.

An approach in this sense is to compare the norm of the residual with the biggest between

external loads P ext, internal forces F int, inertial loads Ms̈ and the damping loads Cd ṡ [11];

a drawback of this method is that convergence is numerically difficult to be reached in those

cases when very small external loads are acting, since each term of the residual is approaching

to zero with the same order of magnitude of the comparison term (the residual itself); an

option in this sense could be to select an absolute value of the residual (depending of the

user experience on the problem) under which the solution is considered converged. Together

with the residual, a check on the ratio of the norm of the iterative displacement u to the

norm of the predictor’s displacement can be performed.

In eq.(2.21) the term
t+∆t

∂F int

∂s is called structural tangent matrix, while
t+∆t

∂P ext

∂s is the

load tangent matrix, that in the present study is related to the aerodynamic forces acting

on the body. As stated in eq.(2.3), the external loads results as a function of not just

displacement, but both of velocity and acceleration, indeed to perform the evaluation of the

related aerodynamic tangent matrix this dependence has to be carried out. Before showing

the models adopted to solve the coupling between aerodynamic and structural framework

which enables to evaluate this matrix, a further refinement of the time-integration scheme

is presented because this influences eq.(2.17) and so the evaluation of both the residual and

the tangent matrices.
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2.2.4 The generalized α-method

It is desirable in structural dynamics problems solved through step-by-step time integration

algorithms to possess algorithmic damping. Particularly, it is necessary to control the dis-

sipation on the high frequency modes since using standard FEM to discretize the spatial

domain, the spatial resolution of these modes is poor. Thus, spurious high frequency modes

should be damped out without affecting the low frequency modes, otherwise the accuracy

of the results may be compromised. For example the Newmark β-method family algorithms

provides high-frequency dissipation if a different choice of the parameters in eq.(2.11) is

made, with the drawbacks of only a first-order accuracy in time and too much dissipation

on the low frequency modes [25]. This has driven the formulation of improved methods

which enable to overcome these limitations, mantaining second-order accuracy: the HHT-α

method [55] and the WBZ-α method [115] are just some examples. All these schemes are

particular cases of the more general Generalized α-method (GAM), which represents a family

of implicit time-integration schemes, introduced in reference [25].

The scheme giving the relationships between the values of s, ṡ and s̈ is the same carried

out for eqs.(2.9) and (2.10), but now the additional equation needed to close the problem

is a modified version of the standard choice of eq.(2.13): the idea is to force the dynamic

equilibrium using convex combinations of these variables, defining the following quantities
t+αf∆ts = (1− αf )

ts+ αf
t+∆ts

t+αf∆tṡ = (1− αf )
tṡ+ αf

t+∆tṡ

t+αm∆ts̈ = (1− αm)
ts̈+ αm

t+∆ts̈

(2.23)

where, differently from the previous section, the superscripts of the variables on the l.h.s.

are here used to indicate a convex combination of the values at the beginning (t) and at the

end (t+∆t) of the timestep, and not values evaluated at time t+ α∆t. Clearly, αm=αf=1

takes back to the Newmark β-method. The task is now to determine the relations between

the algorithmic parameters αm, αf , γ and β to gain the desired numerical features.

It can be demonstrated [25], that the generalized α-method is second-order accurate,

provided that

γ =
1

2
+ αm − αf (2.24)

The stability property of an algorithm applied to linear problems depends upon the eigen-

values of its amplification matrix, say λ1, λ2 and λ3 where the spectral radius ϱ is defined

as the maximum of those; as this is a function of the parameter Ω = ω∆t where ω is the
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generical natural frequency of the system and ∆t is the timestep adopted, unconditionally

stability is reached if ϱ ≤1 for all Ω ∈ [0,∞[, which provides these relations

αm ≥ αm ≥
1

2

β ≥ 1

4
+

1

2
(αm − αf )

(2.25)

The spectral radius is also important because it is a measure of the numerical dissipation,

i.e. a smaller spectral radius value corresponds to greater numerical dissipation; to obtain

a numerical algorithm which gives the desired numerical damping at the high frequencies

without an excessive dissipation in the low frequency region its spectral radius should be

close to unity in this latter domain and smoothly decreasing as Ω increases. This property

imposes restrictions on the values of the eigenvalues of the amplification matrix, requiring

these smoothness design conditions

β =
1

4
(1 + αm − αf )

2

ϱ∞ =
αm − αf − 1

αm − αf + 1

(2.26)

where ϱ∞ denotes the value of the spectral radius in the high-frequency limit (Ω→∞) and as

will be shortly shown, is the user-specified value to control high-frequency dissipation. The

last relation is provided by the result that for a given level of high-frequency dissipation, i.e.,

for fixed ϱ∞, low-frequency dissipation is minimized when

αm = 3αf − 1 (2.27)

Combining eqs.(2.26) and (2.27), the values of αm and αf as a function of ϱ∞ are obtained

αf =
1

1 + ϱ∞

αm =
2− ϱ∞
1 + ϱ∞

(2.28)

Eqs. (2.24), (2.26) and (2.28) completely define this algorithm unconditionally stable (for

linear problems), second-order accurate and with optimal numerical damping combination.

Defining the parameter ϱ∞, that as stated before is related with the amount of numerical

damping applied to the high frequencies of the system, the parameters of the scheme can be

evaluated and the quantities in eq.(2.23) are thus known.

Application of this method to eq.(2.4) nevertheless is not straightforward. In fact in liter-

ature [25,28] this method has been developed mainly for linear cases in which the forces were
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depending on time or linearly on displacements only. Thus, using the convex combination

of the generalized coordinates as shown in eq.(2.23) would be completely identical to the

case in which the convex combination is used for the different terms of the residual (that

is, acting on the forces instead on the coordinates and their derivatives). However, in the

present case, there is the internal force term depending nonlinearly from the displacement

(F int) and the aerodynamic force term depending on t, s, ṡ and s̈ (P ext).

Focusing at first on the external forces, one option is to remain consistent with the evaluation

in time dictated by eq.(2.23) (and with the original algorithm presented in reference [25]),

i.e., to apply the convex combinations at the displacements and their derivatives and conse-

quently take the forces

P ext|(t+αf∆ts, t+αf∆tṡ, t+αm∆ts̈, t+αf∆t
) (2.29)

If this approach is followed, in cases for which an explicit linear dependence of the external

forces on the displacements, velocities, accelerations, and a dependence (not necessarily

linear) on time, is found, the residual in eq.(2.4) can be written as

R(s, ṡ, s̈, t) =
(
M −MA

)
s̈+

(
Cd −CA

d

)
ṡ−KA s−

(
P A

ext(t)− F int(s)
)
= 0 (2.30)

whereMA, CA
d andKA express the linear dependence of the aerodynamic forces, and P A

ext(t)

represents the time dependence.

Applying this first approach also to the internal forces, the discrete equation for the

residual can be written as:

t+∆tR = M t+αm∆ts̈+Cd
t+αf∆tṡ− P ext|(t+αf∆ts, t+αf∆tṡ, t+αm∆ts̈, t+αf∆t)

+ F int|(t+αf∆ts)
(2.31)

If the structural model is linear, then

F int|(t+αf∆ts) =
t+αf∆tF int (2.32)

or rather is equivalent to consider a convex combination of the terms of the residual equation

or the displacements. This no longer holds if the forces are nonlinear, arising the question

of which form should be considered.

Generalized Energy-Momentum Method

The second possible approach, consisting to apply the convex combination directly to the

edge values of the internal and external loads and not to the displacements, proves to be

very important for the properties of the numerical scheme, in particular the stability one. In
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fact, algorithms which are unconditionally stable for linear dynamics often lose this stability

in the non-linear case [28,58,59,66,67,89,116], also when algorithmic damping is employed.

A further criterion for the stability of time-integration algorithms (other than the eigenvalue

analysis shown earlier for the Generalized α-method) is the conservation of energy, motivated

by the theorem presented in reference [12] which states that, when applied to Hamiltonian

systems, a numerical algorithm is stable in energy if the sum of kinetic and internal energies

are bounded within each timestep relative to the external work, kinetic and internal energies

in the previous timestep. The first algorithm which guaranteed unconditional stability in

nonlinear dynamics of three-dimensional elastic bodies was the Energy-Momentum Method

[105]. Its appeal has been redimensioned by some numerical experiments [35, 66, 67] which

showed convergence problems and the necessity of considering small timesteps to obtain a

stable and converged solution. These difficulties have been put in relation to high modes

which are responsible of numerical collapse driven by an unphysical highly oscillatory re-

sponse. It seems then advisable to introduce some form of damping in order to keep under

control difficult cases [67].

A strategy to introduce controllable numerical dissipation to the Energy-Momentum

Method, denoted as Generalized Energy-Momentum Method was presented in [66,68], ap-

plied to three-dimensional truss element and nonlinear dynamics of shells respectively. It

includes numerical dissipation adopting the Generalized α-method to advance the solution

within time and guarantees the energy conservation or decay using the convex combination

of the internal forces at the beginning and at the end of the time interval, t+αf∆tF int.

Unfortunately, is it not possible to automatically extend this approach to the aerodynamic

forces, since the simultaneous dependence on acceleration, velocity and displacement does

not make straightforward the use of a unique convex combination. In this effort, both the

option t+αf∆tP ext, namely:

t+αf∆tP ext = (1− αf )
tP ext + αf

t+∆tP ext (2.33)

and the one previously introduced in eq.(2.29), have been used.

Summarizing, the algorithm adopted to discretize in time the equations of motion is the

GEMM, whereas the aerodynamic term is evaluated both with a GAM and a GEMM-

like approach. For the particular considered cases, no appreciable differences were noticed

between the two approaches.

In the following, the derivation of the Newton process for convergence is shown for the
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GEMM-like approach. The residual equation becomes:

t+∆tR = M
(
(1− αm)

ts̈+ αm
t+∆ts̈

)
+Cd

(
(1− αf )

tṡ+ αf
t+∆tṡ

)
−

(1− αf )
tP ext − αf

t+∆tP ext + (1− αf )
tF int + αf

t+∆tF int (2.34)

and the tangent matrix for the system is now

t+∆t[
dR
d s

]
=

αm

β∆t2
M +

αf γ

β∆t
Cd − αf

(
d t+∆tP ext

d t+∆ts
− d t+∆tF int

d t+∆ts

)
(2.35)

where the iteration superscript has been dropped for clarity. As already made for the β-

Newmark case, for an iterative oriented implementation it is convenient to express the resid-

ual combining eq.(2.34) with the Bathe predictor in eq.(2.14), leading to

t+∆tR =
1

β∆t

(αm

∆t
M + αfγCd

) (
t+∆tp− t+∆tppred

)
+

αmM
t+∆tp̈pred + αfCd

t+∆tṗpred + (1− αm)M
tp̈+ (1− αf )Cd

tṗ−

(1− αf )
(
tP ext − tF int

)
− αf

(
t+∆tP ext − t+∆tF int

)
(2.36)

As it can be seen, the residual expression can be divided in a term that doesn’t vary during

the iterative process to convergence, containing all the terms referring to the predictors and

the initial time-point tp, and in another one with terms directly related to the end-time point
t+∆tp that gives a direct contribution to the tangent matrix; it is useful to give an expression

of eq.(2.36) in this sense, ascertaining the nature of the term (inertial, damping and loads)

as it follows

t+∆tR = (MTX1 +MTX2)
t+∆tp+ V CT inert + V CT damp−

V CT 6 − αf

(
t+∆tP ext − t+∆tF int

)
(2.37)
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where 

MTX1 =
1

β∆t

αm

∆t
M

MTX2 =
1

β∆t
αf γCd

V CT 1a = MTX1
t+∆tppred

V CT 1b = MTX2
t+∆tppred

V CT 2 = αmM
t+∆tp̈pred

V CT 3 = αfCd
t+∆tṗpred

V CT 4 = (1− αm)M
tp̈

V CT 5 = (1− αf )Cd
tṗ

V CT 6 = (1− αf )
(
tP ext − tF int

)
V CT inert = −V CT 1a + V CT 2 + V CT 4

V CT damp = −V CT 1b + V CT 3 + V CT 5

(2.38)

2.2.5 Structural Damping

The structural model provides the possibility to reproduce more consistently the dynamic be-

haviour taking into account the presence of structural damping, represented by the damping

matrix Cd; the approach consists in the extrapolation of structural modal damping from the

system. Considering a problem with one degree of freedom, the unforced spring-damping-

mass system is described by equation

m s̈+ 2c ṡ+ k s = 0 (2.39)

being s the generic coordinate describing the motion, m the mass, c the damping coefficient

and k the spring constant. Rearranging the equation, the canonical form is easily obtained

s̈+ 2ζωnṡ+ ω2
ns = 0 (2.40)

where ωn represents the natural frequency of the system and ζ the damping factor. Once

eq.(2.39) is stated in canonical form, is easy to choose the c damping coefficient since common

values for the damping factor are in the range of 0.05− 0.01.

If the system has more than one degree of freedom, and the differential equations of

motion are linear, it is possible, by means of the so called light damping approximation [45],

to describe the evolution of the system decoupling the evolution of each natural mode. Thus,
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for the generic i-th mode the following relation holds:

q̈i + 2ζiωni
q̇i + ω2

ni
qi = 0 (2.41)

which in matrix form is written as

q̈ +C∆ q̇ +Ω q = 0 (2.42)

The addition of damping to the lower frequencies influences the solution so it is introduced

only if it is desired to model a physical phenomenon and in this sense eq.(2.41) represents a

convenient strategy since it shows that is possible to set this damping factor for each mode

independently.

The starting point is the generic n dimensional system which describe the dynamic be-

haviour of the degrees of freedom s of the structure

M s̈+Cd ṡ+K s = 0 (2.43)

For linear systems, the matrices are constant, and it is possible to write the response as a

superposition of elementary solutions through the modal coordinates q:

s = Φ q (2.44)

where Φ is the modal matrix. Substituing eq.(2.44) in eq.(2.43) and pre-multiplying by ΦT ,

it holds

M̂ q̈ + Ĉ q̇ + K̂ q = 0 (2.45)

where M̂ and K̂ are respectively the mass and stiffness modal matrices, both diagonal for

the properties of the modal coordinates; the aims is thus to define Cd through Ĉ. Assuming

that Ĉ is diagonal, the equation for the generic i-th mode reads

µiq̈i + 2ζiµiωni
q̇i + µiω

2
ni
qi = 0 (2.46)

that differs from eq.(2.41) because generally the modal mass µi ̸= 1; anyway, for a known

property, it holds

[ΦTM̂Φ]ij = δijµi (2.47)

where δij is the Kronecker’s delta. It is then possible to define the damping ratios ζi for

each mode in this form and reconstruct the matrix Cd using the inverse of the relation in

eq.(2.44) and left-multiplying by Φ−T , namely:

Cd = Φ−T ĈΦ−1 (2.48)
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Actually the dynamic behaviour of a system is ruled by the most meaningful modes that are

associated with the lower natural frequencies, so it can be preferable both from a computa-

tional and accuracy point of view to consider the previous process just for the n modes on

which is significant to apply the damping. If N is the total number of degrees of freedom of

the structure, Φ is now an N×n matrix; eqs.(2.45) and (2.47) are thus still valid, but hold

just for the first n modes, whereas eq.(2.48) it has no more sense since Φ is not a square

matrix. To perform a similar equivalence, but in a least square sense [32], the following

operations are performed starting from eq.(2.44)

ΦTs = ΦTΦ q

T = [ΦTΦ]−1ΦT

Ts = q

Cd = T T ĈT

(2.49)
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2.3 Aerodynamic model

2.3.1 Introduction

In the present section will be presented the aerodynamic model adopted. The hypothesis

of irrotational, non viscous and incompressible flow are assumed to be valid; in addition,

non-linearities in the flow field like stall and dynamic stall are neglected. This flow model

allow the existence of a potential function, the velocity potential Φ, such that its gradient

is the flow velocity. The continuity equation in this circumstances reduces to the Laplace

equation

∇2Φ = 0

which is a linear, second order partial differential equation requiring the boundary condition

of zero normal velocity on the body surface. This equation can be solved by means of different

numerical methods. Since the Laplace equation is linear, particular solutions of this equation

can be combined. A potential flow numerical code assumes certain types of singularities to

describe the flow field; by their definition, these singularities satisfy the Laplace equation

and have a strength which is found imposing the no-penetration boundary condition in a

finite number of points over the aerodynamic body. The speed induced by the singularities

produce a resultant flow at the control points whose normal component to the wing balances

the normal component of the free stream velocity.

In order to establish a numerical solution to solve this aerodynamic problem, some steps

have to be covered:

� selection of type (source, doublet or vortex) and number of singularity elements

� discretization of geometry (grid generation): once the basic solution elements are se-

lected, the geometry of the problem has to be subdivided in such a way that it consists

of these elements and that notable points useful for the prosecution are defined (for

example control points, load points)

� calculation of influence coefficients used to impose the boundary conditions in the

prescribed points (collocation points)

� statement of the Right Hand Side (RHS) of the matrix equation, that is the known

portion of the flow (free-stream and wake contribution usually) in terms of velocity or

potential depending on the type of boundary condition adopted (Dirichlet or Neumann)
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� solve linear set of equations to find the strength of the unknown singularities

� evalutation of pressures and loads through Bernoulli theorem

In the following, the application of this strategy at the present problem is presented.

2.3.2 Geometry definition and evaluation of induced velocity

The decision is to choose as singularity the vortex ring element, adopting the Unsteady

Vortex Lattice Method (UVLM) as aerodynamic model; its main advantage is the simple

programming effort that it requires, which makes it preferable when operating with thin

wings. This method treats the airfoil as a series of flat plates and neglects both thickness

and viscous effects: however for most cases these effects offset each other producing good

agreement between predictions and experimental data [14].

Each vortex ring is composed by four constant-strength vortex line segments with the

same value of circulation Γ. The wing is discretized in an arbitrary number of quadrilateral

aerodynamic panels subdividing it spanwise and chordwise; after that the ring elements are

located over the wing in the way showed in Fig. 2.1: the leading segment of the vortex ring

is placed on the panel’s quarter chord line and the collocation point P (the point where the

boundary condition is applied) is at the center of the three-quarter chord line (the normal

vector n is also specified at this point). By placing the leading segment of the vortex ring

at the quarter chord line of the panel the two-dimensional Kutta condition is satisfied along

the chord (this result is demonstrated for the lumped-vortex element). In the same figure is

shown how from the numerical point of view it would be useful to store these ring elements

in rectangular patches with i,j indexing, from which is automatically possible to obtain,

defining an arbitrary way to numerate the rings, a unique sequential counter K that scan all

the vortex rings on the wing surface. The velocity induced at an arbitrary point P, obtainable

from the Biot-Savart law, by the generical vortex segment of circulation Γ that points from

vertex A to vertex B, is given by:

qA,B =
Γ

4πh
(cos θ1 − cos θ2)e (2.50)
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Fig. 2.1: Location of the vortex rings in the aerodynamic grid

with

e = (ex, ey, ez) =
l12 × r1

|l12 × r1|
r1 = rP − rA

r2 = rP − rB

l12 = rB − rA

h = r1 sin θ1

cos θ1 =
l12 · r1

|l12||r1|

cos θ2 =
l12 · r2

|l12||r2|

(2.51)

Symbols are schematically shown in Fig. 2.2: rA, rA and rA are the position vectors of

points A,B and P, respectively; h is the perpendicular distance between P and the line AB

and θ1 and θ2 are the included angles. The positive sign of Γ is defined accordingly to the

right-hand rotation rule, as pointed out in Fig. 2.1. Calling V SIkm the velocity induced by

m-th body ring of unitary circulation in the k-th collocation (or control) point whose local

normal direction is nk, it is possible to define the generic term of matrix of body influence
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Fig. 2.2: Nomenclature adopted for the calculation of the induced velocity of a single vortex

line

coefficients A

akm = V SIkm · nk (2.52)

If N is the total number of rings of the wing, this matrix has dimension N×N

A =


a11 a12 ... a1m ... a1N

... ... ... ... ... ...

ak1 ak2 ... akm ... akN

... ... ... ... ... ...

aN1 aN2 ... aNm ... aNN


2.3.3 Wake model

Now the wake has to be considered; assuming for a moment a stationary flow, it is prescribed

that the trailing vortex of the last panels row is cancelled to satisfy the three-dimensional

Kutta condition, that is γT.E. = 0. This is done attempting to align the wake vortex panels

(modelled as horseshoe elements) parallel to the local streamlines and imposing their strength

equal to the strength of the corresponding shedding panel at the trailing edge (ΓT.E. = ΓW

for each wake panel) as showed in Fig. 2.3. The matrix which contains all the influence

coefficients, the A matrix previously presented, can be completely evaluated.

For an unsteady flow a key role is played by the modelling of the wake. The most

accurate model prescribes that each vortex moves with the local stream velocity since the
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Fig. 2.3: Method of attaching an horseshoe vortex wake element to fulfill the Kutta condition

(steady case)

vortex wake is force free, obtaining the so called ”wake rollup”; however this approach is

quite time consuming and so often a simplifying one, consisting on assuming a prescribed

shape for the wake, is adopted.

In both cases, the wake is modelled with several rows of vortex ring elements of different

strength (and not more with horseshoe elements like for the steady problem) and the wake

shedding procedure is thought in a time-stepping tecnhique perspective: during the first

timestep only the wing bound vortex rings exist (as pointed out in Fig. 2.1); consequently,

there are no wake panels and the solution is easily found by specifying the zero normal

flow boundary condition on the K collocation points. During the second timestep, the wing

moves along its flight path and each trailing edge vortex panel sheds a wake ring with a

vortex strength equal to its circulation in the previous timestep, automatically satisfying the

Kelvin condition which prescribes no time variation of the circulation Γ around a fluid curve

enclosing the wing and its wake. For the case of prescribed wake, it’s enough to impose

that each wake’s point is convected by the free stream velocity and so the procedure can be

continued at each successive timestep determining in such a way a wake of known geometry

and known strength (assuming no decay in vortex, as Helmotz’s theorems state, once the

wake ring is shed it maintains its known intensity in the other timesteps).

On the other hand, if the free wake is modelled, at the end of each timestep, once the problem

is solved and the unknown intensity of the circulation Γ of every ring of the body is known,

the evaluation of the induced velocity (u,v,w) at each vortex ring corner point l is requested;

after this calculation, the vortex elements are moved, other than for the contribution of the
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free stream, by

(∆x,∆y,∆z)l = (u, v, w)l ·∆t (2.53)

This is the only difference between the two methods, because once the wake geometry is

defined, the calculation of influence matrices and so the solution of the problem at the

following timestep are established in an identical manner.

For the numerical implementation of the wake shedding procedure, both prescribed and

free, a subtle aspect is the specification of the position of the leading segment of the rings

belonging to the first row of the wake (the closest to the body); the wake is presumably shed

along the wing trailing edge so at a first estimate it can be placed on a generic point of the

path where it has moved during the latest timestep; for the choice of the distance where

it’s located, the reference [62] suggests to place the leading corners of the rings shed in the

considered timestep at a distance of 0.2-0.3 U∆t from the wing trailing edge (where U is the

speed with which the wing moves and ∆t is the timestep) to take in account in such a way

the effective continuous wake vortex sheet geometry and so the correct induction, because it

would produce an understimation the choice to put this points at the middle of the interval

covered by the trailing edge in a timestep (as an average approach at the problem could

suggest).

This strategy (in good agreement with experimental results for 2D case when a lumped

vortex wake is adopted) however proved to result, after testing the model through simula-

tions, in an unacceptable dipendance of the steady-state solution (in terms, for example,

of the CL value of the configuration), from the ∆t chosen, being dependent from that the

position where the leading segments of the shed wake rings are placed (with a strong con-

sequence on the influence over the body). This drawback, encountered also in Ref.[29] is

resolved considering that in the steady-state flow conditions all wake panels shed from a

particular trailing-edge panel should have the same vortex strength, which equal to the

strength of the shedding panel. The trailing and leading segments of the adjacent vortex

rings of the wake should indeed cancel each other and only a horseshoe-like vortex has to

remain, such that the situation returns the one pointed out in Fig. 2.3. The only way that

this can happen is to place the two leading corners of the wake rings shed in the actual

timestep at a quarter chord (of the corresponding shedding wing panel) distance from the

trailing edge of the wing, so to make these corners coincide with the ones of the trailing

segment of the trailing edge wing rings (as indeed happens in the steady model between the

trailing-edge panel and its corresponding horseshoe vortex). In this way the position of the

leading segment of the ring is univocally defined.
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This strategy is shown in Fig. 2.4 where the blank spaces between rings are just used

for clarity. The modelling of the wake is completed and so it is possible to evaluate the

x

y

z

Trailing edge wing ring

First wake ring

Fig. 2.4: Method of placing the wake rings at a typical trailing edge panel

contribution of each wake ring r-th to the local velocity in the k-th control point. It’s

interesting to notice that, on the contrary of the steady case, in the unsteady case only the

body rings give a contribution to the A matrix of influence coefficients that multiplies the

vector of unknown strengths Γ. Each ring r of the wake contributes in fact just to the RHS

of the boundary condition equation with the component of the wake-induced velocity V WI

along the direction nk that can be easily evaluated with eq.(2.50) and is stored in the Aw

matrix of wake influence coefficients

Aw =


aw,11 aw,12 ... aw,1r ... aw,1R

... ... ... ... ... ...

aw,k1 aw,k2 ... aw,kr ... aw,kR

... ... ... ... ... ...

aw,N1 aw,N2 ... aw,Nr ... aw,NR


with

aw,kr = V WIkr · nk (2.54)

where N is always the number of body rings while R is the total number of wake rings at the

considered timestep. Before going on in the description of the model, it’s worth to highlight

a few important aspects concerning the roll up modelling.

The use of discrete vortex segments to account for the vorticity in the shed wake origi-

nates accuracy issues due to the singularity that arises from eq.(2.50) when the induced point
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is located very close to the vortex line, leading to unphysically values of the local induced

velocity assigned to it. This usually occurs when a wake encounters another body or when

the wake has an intense roll-up causing intersections in the wake itself. Aeroelastic response

of a highly deformable wing seems to emphasize this aspect, since the trailing edge of the

body changes significantly position with time thus causing a variation in the position where

the wake is shed.

In order to prevent this kind of numerical problems and lack of accuracy, many techniques

have been introduced, as for example the vortex-core model. This model comes from the

rotary wing field, where the blade tip vortex interaction with the oncoming rotating blades

has a significant impact on loads; the basic idea is that [74] the formation of the wake behind

any lifting surface must be considered as a viscous phenomenon, with the vorticity contained

in the vortex core diffused radially outward with time. This observation is corroborated, for

example, by experimental measurements of the distribution of tangential velocity surround-

ing a tip vortex shed from a blade at various wake ages [73], which show how the distance

between two velocity peaks, a measure of the size of the region where vorticity is concen-

trated, increases with time. According to a potential theory, this region is infinitesimal

because all the vorticity is concentrated along the axis of the vortex filament and this leads

to singularity in the evaluation of the Biot-Savart law near the vortex; in a more realistic

model, this segment should have an inner part, that is a finite core, where the flow rotates

almost as a solid body whereas in the outer part behaves almost as a potential flow, as de-

picted in Fig. 2.5. With this line of reasoning, it’s possible to define the core radius rc both

V

r

Fig. 2.5: 2-D tangential velocity profile inside a tip vortex

as the radial location where the tangential speed induced by the vortex has a maximum and

as the boundary from the inner rotational flow field and the outer potential flow. Now that
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the physical meaning of the sought de-singularization of the induction expression is pointed

out, a revisited version of the Biot-Savart law [73] is presented in eq.(2.55)

V =
Γ

4π

h

(r2nc + h2n)
1
n

(cos θ1 − cos θ2) · e (2.55)

where the notation is the same of eq.(2.50) and it can easily be seen that the singularity

presented in the original law is removed by the introduction of the core radius, which enables

to model a profile velocity similar to that on of Fig. 2.5; n defines the particular velocity

profile among the family of algebraic models proposed by Vatistas [111], which show a good

comparison with the measured swirl velocities [72].

The size of core radius is still an open problem, since the literature for the rotary wing

shows a big variety of experimental results for different particular cases (mainly referred

to the tip vortex structure, which has presumably a different evolution than the vortices

shed from the inner part of the aerodynamic body) and doesn’t give general instructions for

a proper estimate, suggesting semi-empirical models to be validated through experimental

measurements. Moreover, this dimension is not constant because of a diffusive growth with

time: considering a vortex tube, it is known that its strength (given by the circulation around

it) has to be constant (second Helmholtz theorem), which implies that as the vorticity diffuses

because of the viscosity its cross-section has to increase. Another source of change in the core

dimension is the strain of the vortex filaments with a consequent stretching or contraction

process that determines a change in the vorticity of the flow field (according to the vorticity

equation) and indeed a new radius; the significance of this phenomenon is mainly related to

conditions typical of rotary wings, such roll up of tip vortices shed from lateral edges of a

rotor disk in forward flight or descending flight with wake distortions caused by blade/vortex

interaction [5], so in the present analysis is taken into account only the diffusive contribution

to the vortex core dimension. An estimate of the growth rate can be made using the Lamb-

Oseen model [69] , that is a solution of the one-dimensional (axial and radial velocity are

assumed to be zero), laminar, Navier-Stokes equations, with the hypothesis of absence of

an external velocity gradient which can cause stretching and so affect the core development;

once the velocity profile is analitically obtained, the core radius is by definition the radial

location where the swirl velocity has a maximum and so can be obtained by differentiating

the speed with respect to r and setting the derivative to zero. The expression of the core

radius so found is

rc =
√
4ανt (2.56)

where ν is the kinematic viscosity and α is the Oseen parameter and has a value of 1,25643
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[73]. This equation predicts the way the core radius varies taking in account just molecular

diffusion; actually after an initial laminar behavior, the vortex progressively becomes turbo-

lent and the diffusion of vorticity contained in it is much quicker than using eq.(2.56). It

is possible to give a measure of the tendency toward turbulance generation with the vortex

Reynolds number, a parameter defined as Reν = Γν

ν
where Γν is the circulation of the consid-

ered vortex. The vortex Reynolds number allows to introduce the average turbulent viscosity

coefficient [107] which is given by δ = 1 + a1
(
Reν
ν

)
, where a1 is obtained through experi-

mental observations and correlation studied proving to have an average value of 2× 10−4 for

rotating wings and 5×10−5 for fixed wings [5]. With this relations δ is known (and constant

as the vortex ages in the flow since its circulation is conserved) and eq.(2.56), considering

also the turbulent diffusion, becomes

rc =
√

4δαν(t− t0) (2.57)

where with the introduction of t0 it has been hypothesized that the vortex has a starting

radius immediately after its formation. Considering the typical values of the physical quan-

tities involved, it can be observed that in a real flow the viscous diffusion process occurs 100

times faster than what would be expected on the basis of only molecular diffusion. A final

comment involves the rate of growth of the vortex core that as is pointed out in eq.(2.57) is

proportional to the square root of time, revealing how for older wake ages the core grows less:

this is consistent with experimental observations which show especially for rotor vortices how

they can exist persistently as coherent structures.

The other important aspect is related to the issue of reducing as much as possible the

time needed to update at each timestep the new geometry of the wake; as said before, vortex

filaments are choosen as singularity to simulate the vorticity field, but it has been demonos-

trated [54] that an equivalence subsists between a general surface doublet distribution and

a surface vortex distribution whose order is one less than the order of the doublet one plus

a vortex ring whose strength is equal to the edge value of the doublet distribution; so in

this particular case one can arbitrarily substitutes a vortex ring of intensity Γ with a dou-

blet panel with constant strength µ=Γ. This is made to take advantage of the diminishing

influence of the inducing singularity as its distance from the point of evaluation increases,

which in turn allows to approximate the quadrilateral panel (in this case, thanks to the

equivalence, the ring) with an area A by a point doublet when the point of interest P is far

from the center of the element. Usually the approximation can be assumed valid when the

distance is more than 3-5 average panels diameters [62]. In order to formulate the induction
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of a point source, its position and orientation (given by the direction n) are requested to

be known: the first is assumed as the center of the element and the second is given by its

normal following the convention depicted in Fig. 2.6. In these calculations, as the geometry

of the free wake consists no more of planar rings, a medium plane is assumed.

x

y

z
Vortex ring

Doublet panel

m

n

Point Source

Fig. 2.6: Equivalence and conventions for the far field approximation

The speed induced by a generical doublet distribution depends explicitly from the direc-

tion of the normal to its plane; to give a general expression of the induced velocity in the

generical point P by a point doublet of arbitrary orientation n=(nx,ny,nz), three generic

doublet elements aligned with the absolute coordinate directions and with strength µx, µy

and µz respectively are considered, where

µx = ΓAnx

µy = ΓAny

µz = ΓAnz

(2.58)

In eqs.(2.59),(2.60) and (2.61) are given the expressions of the scalar components of the

velocity V x, V y and V z induced by the generic unit doublet point which orientation is
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respectively along x, y and z direction

ux = −
1

4π

(y − y0)
2 + (z − z0)

2 − 2(x− x0)
2

[(x− x0)2 + (y − y0)2 + (z − z0)2]
5
2

vx =
3

4π

(y − y0)(x− x0)

[(x− x0)2 + (y − y0)2 + (z − z0)2]
5
2

wx =
3

4π

((z − z0)(x− x0)

[(x− x0)2 + (y − y0)2 + (z − z0)2]
5
2

(2.59)

uy =
3

4π

(y − y0)(x− x0)

[(x− x0)2 + (y − y0)2 + (z − z0)2]
5
2

vy = −
1

4π

(x− x0)
2 + (z − z0)

2 − 2(y − y0)
2

[(x− x0)2 + (y − y0)2 + (z − z0)2]
5
2

wy =
3

4π

(z − z0)(y − y0)

[(x− x0)2 + (y − y0)2 + (z − z0)2]
5
2

(2.60)

uz =
3

4π

(z − z0)(x− x0)

[(x− x0)2 + (y − y0)2 + (z − z0)2]
5
2

vz =
3

4π

(y − y0)(x− x0)

[(x− x0)2 + (y − y0)2 + (z − z0)2]
5
2

wz = −
1

4π

(x− x0)
2 + (y − y0)

2 − 2(z − z0)
2

[(x− x0)2 + (y − y0)2 + (z − z0)2]
5
2

(2.61)

Finally the velocity V induced in the point P by the point doublet is given by

V = µxV x + µyV y + µzV z (2.62)

Another option to reduce the computational cost is the truncation of the wake domain:

a threshold is defined so that beyond that distance the contribution of the wake on the local

velocity of the control points over the body is assumed negligible and so there’s no need

to update the far wake geometry; this wake truncation is thought to be sufficiently reliable

because here there’s only interest in the wake influence over the body, and this considerably

diminishes with the distance as stated before.
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2.3.4 Boundary Condition

In order to be able to write the wall tangency condition, which states the no normal velocity

condition on the control points over the body, all the contribution have to be taken into

account: the self-induced velocity V SI, the wake-induced velocity V WI and the kinematic

velocity V KIN. The last one is the velocity due to the motion of the wing, as viewed in the

body frame of reference, and can be expressed as

V KIN = V 0 +Ω ∧ r + V rel (2.63)

where V 0 is the velocity of the (x,y,z) system’s origin, r is the position vector, Ω is the rate

of rotation of the body’s frame of reference and Vrel is an additional contribution that is

present when the points of the wing don’t experience just a rigid motion, that is the wing is

elastically deformed

In the present treatise the motion considered is a pure translation, i.e. Ω=0, but an important

contribution to the loads and so to the dynamic behaviour of the structure is given by the

term V rel.

At the present stage is possible to write in a matrix form the equation that gives the unknown

strengths for each k-th vortex ring

AΓ = RHS (2.64)

where A is the matrix of body influence previously defined, Γ is the array containing the

unknowns

Γ =



Γ1

Γ2

...

Γk

...

ΓN


and RHS is the vector containing the known part of the normal velocity components

RHS =



RHS1

RHS2

...

RHSk

...

RHSN


with RHSk = −(V WI + V KIN)k · nk.
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2.3.5 Evaluation of Loads

Once solved the linear set of equations, next step is the evaluation of pressure pk over each

panel and subsequently the lift force applied in the load points. The Bernoulli equation for

incompressible and irrotational flow with the hypothesis of negligible body force states that

the sum of the left-hand side terms of eq.(2.65) are a function of time only

p

ρ
+

q2

2
+

∂Φ

∂t
= C(t) (2.65)

where p is the pressure, ρ is the density, q is the local fluid velocity and Φ its potential.

Evaluating the left-hand side of eq.(2.65) in two points of the fluid, an arbitrary point and

a reference point at infinity (where ϕ = 0), eq.(2.66) is obtained

p∞ − p

ρ
=

q2

2
+

∂Φ

∂t
(2.66)

The pressure difference between the upper and lower surfaces is then

∆p = pl − pu = ρ

((
Q2

t

2

)
l

−
(
Q2

t

2

)
u

+

(
∂Φ

∂t

)
l

−
(
∂Φ

∂t

)
u

)
(2.67)

The tangential velocity component Qt can be developed in two arbitrary directions r and m

(chordwise and spanwise for example) such that

Qtr = (V WI + V KIN) · τ r ±
∂Φ

∂τr

Qtm = (V WI + V KIN) · τm ±
∂Φ

∂τm

(2.68)

where the ± stands for under and above the surface, respectively. The last contribute, that

is the tangential velocity due to the wing vortices, can be approximated considering that

a relation exists between the potential and the circulation Γ of the ring. Recalling the i,j

indexing shown in Fig.2.1, the following holds for the leading-edge panels

± ∂Φ

∂τr
≈ ± Γi,j

2∆ci,j

± ∂Φ

∂τm
≈ ± Γi,j

2∆bi,j

(2.69)

while for all the panels behind them (making use of a first order finite difference scheme for

the differentiation)

± ∂Φ

∂τr
≈ ±Γi,j − Γi-1,j

2∆ci,j

± ∂Φ

∂τm
≈ ±Γi,j − Γi,j-1

2∆bi,j

(2.70)
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where ∆ci,j and ∆bi,j are the panel lengths in the r and m directions and τ r and τm are the

panel tangential vectors in the r and m directions (of course they are different for each panel

and the i, j subscript is dropped for the sake of simplicity). The time derivative of potential

in eq.(2.67) can then be obtained, leading to

±∂Φ

∂t
= ± ∂

∂t

Γi,j

2
(2.71)

Substituting these terms into the eq.(2.67) the pressure difference over the generical panel

is evaluated

∆pk = ∆pi,j = ρ[V WI + V KIN] · τ r
Γi,j − Γi-1,j

∆ci,j

+ ρ[V WI + V KIN] · τm
Γi,j − Γi,j-1

∆bi,j
+ ρ

∂Γi,j

∂t

(2.72)

for the panels behind the leading edge, while for the leading edge panels it is

∆pk = ρ

{
[V WI + V KIN] · τ r

Γi,j

∆ci,j
+ [V WI + V KIN] · τm

Γi,j

∆bi,j
+

∂Γi,j

∂t

}
(2.73)

Then its contribution to the loads in terms of the force vector is

∆F k = (∆p∆S)knk (2.74)

which directly takes to the expression of the lift produced by each panel ∆L projecting

eq.(2.74) along the lift direction nL.
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2.4 Aero-Structural Coupling

In Sec. 2.3 it was discussed the aerodynamic model considered for this study and how the

evaluation of loads could be carried out. In this section the goal is to express the aerodynamic

loads so that they can be combined with the dynamic model presented in Sec. 2.2 in order

to formulate the aeroelastic problem, that is the dependence of the aerodynamic loads from

displacements of the structural nodes and their derivatives is stressed out.

2.4.1 New expression of the boundary condition

The starting point to obtain the sought expression is the boundary condition, enforced in

the control points; recalling its matrix formulation from eq.(2.64), with the same notation it

is

AΓ = RHS (2.75)

whereA is body influence coefficients matrix and Γ is the array with the unknown circulation

on the rings of the body. It is worth to highlight the various contributions to the RHS

vector. The first contribution can be written as

RHS1 = −AwΓw (2.76)

where Aw is the wake influence coefficients matrix and Γw is the vector with the strength

of the wake singularities, both completely defined from the previous time steps calculations.

The second term is the free stream contribution

RHS2 = −V n
∞ (2.77)

where V n
∞ is the component of the free stream velocity along the normal to the ring. In

order to evaluate this term, it’s useful to consider Fig.2.7, where is depicted the k-th body

ring with the position of the control point and a sketch of both the deformed and undeformed

configurations. Unit vector i is parallel to the free stream, while iS is the direction of the

free stream projected to the undeformed ring plane. By definition, the k-th element of V n
∞

is given by V∞i · nk, where nk is the normal to the ring in its actual configuration, and the

following holds

i · nk = cos
(π
2
− αk

)
= sinαk = sin

(
αk + βk

)
= sinαk cos βk + cosαk sin βk (2.78)
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Fig. 2.7: Geometry and local normal of the body ring

being αk the angle of attack of ring k in the undeformed configuration and the angles αk

and βk are explained in Fig.2.7. Under the assumption of small angles, it’s easy to see that

cosαk ≈ 1

cos βk ≈ 1

sin βk ≈ tan βk = − tan
(
π − βk

) (2.79)

A synthetic expression of eq.(2.77) can be given, discerning the different meanings of the

terms involved

V∞i · nk = V nk
∞, 0 + V nk

∞, d (2.80)

where V nk
∞,0 = V∞ sinαk is the k-th element of V n

∞,0, and is related to just the change in

the rigid angle of attack (rigid aoa). The other term V nk
∞, d is the contribution of the free

stream due to the deformation of the wing (elastic aoa) and is a function of the deformed

shape. Observing that tan βk is equal to the opposite of the derivative of the displacement

of the control point in the direction of the undeformed normal in respect to the direction iS

(undeformed x direction), it can be written:

V nk
∞, d = −V∞

dẐk

dxS
k

(2.81)
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where the vector Ẑ collects the displacements of the control points along the undeformed

aerodynamic rings’ normals. This contribution can thus be directly related to the slope of

the normal component of displacement of the control point k.

The third term depends on the strain rate of the structure: it originates from the relative

body-flow velocity that is established as the body changes its shape, giving a contribution

to the effective flow speed that has to be taken into account for a correct evaluation of

eq.(2.64). This proved to be an important source of aerodynamic damping, in that as the

body increase its rate of strain, the consequent induction on it in order to have satisfied the

boundary condition is such that the external load is decreased, and viceversa. It holds:

RHS3 = Ż (2.82)

where the sign in eq.(2.82) is attributed according to the fact that the relative velocity of the

fluid respect to the body is sought. The generical term of Ż can be obtained multiplying the

array U̇ which contains the translational velocity of the structural nodes by an interpolation

matrix that gives this information on the control points and multiplying it by the normal to

the k-th ring nk, in its actual configuration.

Now that all the RHS terms have been conveniently treated, eq.(2.64) can be re-written

as
A · Γ = RHS1 +RHS2 +RHS3

= −Aw · Γw − V n
∞ + Ż

(2.83)

and inverting A, this final form is obtained

Γ = Γ1 + Γ2 ·U + Γ3 · U̇ (2.84)

Γ1 is the known contribution due to the wake and to the rigid aoa, i.e., the first term in

eq.(2.80)

Γ1 = −A−1Aw · Γw −A−1V n
∞0 (2.85)

Γ2 is the matrix that multiplies the displacement field U ; it features a matrix performing the

interpolation between the aerodynamic and structural meshes in order to get the derivative

in respect to xS of the displacement (Hdx). This matrix is multiplied by N 0 in order to

sample correctly just the component parallel to the undeformed normal of the ring

Γ2 = −V∞A−1N 0Hdx (2.86)

Γ3 multiplies the given velocity field U̇ . Matrix Hdisp performs the interpolation between

the two meshes, and is multiplied by Nd in order to sample correctly just the component
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parallel to the actual normal of the ring.

Γ3 = A−1NdHdisp (2.87)

2.4.2 Aeroelastic expression of Loads

In Sec. 2.3.5 it has been demonstrated as starting from the Bernoulli equation for an incom-

pressible, irrotational and unsteady flow, the pressure difference acting on the k-th panel

is the one predicted by the Kutta-Joukowsky theorem for the unsteady case, as expressed

in eqs.(2.72) and (2.73) respectively for rings behind the leading-edge and for leading edge

panels. These relations can be advantageously expressed in matrix form as

p = ρ∆Γ+ ρ
∂Γ

∂t
(2.88)

where p is the array containing the difference between upper and lower pressure for each

panel, ∆ is the matrix that, for each ring of the body, applies the finite difference derivative

scheme to Γ and multiplies it with the suitable dimensional coefficients. To finally obtain

the expression of the lift acting on the load points of the aerodynamic mesh, the direction

rk
L of the lift over the k-th panel is chosen accordingly to the Kutta-Joukowsky theorem as

rk
L = i× r4kL−1kL

(2.89)

where r4kL−1kL
connects the projections of the load point P k

L along the segments 3k − 4k and

2k−1k as depicted in Fig.2.8 and has a modulus equal to the width of the ring panel. Calling

Vector that connects the points

P

P

C

L

k

k

P
C

k

P
L

k

Lift point (where the lift is applied)

Control point (where the WTC is imposed)

Element k

Fig. 2.8: Direction of the lift over the ring k
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ck the chord of the ring and i, j, k the unit vectors of the global coordinate system, it is

possible to give a general expression of the three components of the lift force acting on the

k-th panel

Lk
x = cki · r4kL−1kL

pk

Lk
y = ckj · r4kL−1kL

pk

Lk
z = ckk · r4kL−1kL

pk

(2.90)

which in matrix form becomes

L = S · p (2.91)

If N is the number of body rings, S is a 3N × N matrix such that when multiplied by p

gives rise to the array L with 3N elements.

As it can be seen from eq.(2.88), the unsteady part of the pressure depends on the

derivative of Γ with respect to time. The derivation can be carried out from eq.(2.84),

leading to
∂Γ

∂t
=

∂Γ1

∂t
+ Γ2 · U̇ + Γ3 · Ü (2.92)

where the derivatives of Γ2 and Γ3 are considered negligible. Now eq.(2.88) combined with

eqs.(2.84) and (2.92) leads to the sought expression of the aerodynamic loads

LLP = LLP
1 +LLP

2 ·U +LLP
3 · U̇ +LLP

4 · Ü (2.93)

with

LLP
1 = ρS ·∆ · Γ1 + ρS · ∂Γ1

∂t

LLP
2 = ρS ·∆ · Γ2

LLP
3 = ρS ·∆ · Γ3 + ρS · Γ2

LLP
4 = ρS · Γ3

(2.94)

The superscript LP is used here to outline how these are the forces applied on the load

points of the ring. The interface algorithm will provide the way to transfer these quantities

on the structural nodes, together with the definition of the matrices Hdx and Hdisp.

2.4.3 Residual and tangent matrix expression with aerodynamic

loads

As pointed out in Sec. 2.2.3, to start the iterative process for the resolution of the dynamic

equation it is necessary to give an operative expression of the residual term in eq.(2.34) and
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of the tangent matrix in eq.(2.35) that both request the formal expression of the external

loads as a function of the unknowns of the equation, i.e. s, ṡ and s̈. This task has been

accomplished in Sec. 2.4.2, with the final relation presented in eq.(2.93).

First is observed that since s was expressing the generalized structural coordinates

whereas U represents the displacement from an initial reference configuration, it holds

d

ds
=

d

dU
(2.95)

It is the possible to give a new expression of the residual and of the tangent matrix (always

in the generalized α-method framework)

t+∆tR = (MTX1 +MTX2 −AERO) t+∆ts+ V CT inert + V CT damp − V CAE−

V CT 6 + αf
t+∆tF int (2.96)

t+∆t[
dR
d s

]
= MTX1 +MTX2 −AERO + αf

∂ t+∆tF int

∂ t+∆ts
(2.97)

where have been defined AERO and V CAE, while the other quantities have just been

previously introduced in Sec. 2.2.4 . The generalized α-method in the form adopted in the

present study (Generalized Energy Momentum Method) prescribes the convex combination

of the forces and not of the variables (for reasons earlier investigated) when dealing with

the internal forces; now as showed in eq.(2.93), the external loads prove to depend from

the acceleration Ü too, so again as for the non linear internal forces case, but for different

reasons, it’s not coincident the expression obtained making the combination of the variables

and the one obtained with the combinations of the forces.

The difference between the two expressions is hidden in the definitions of AERO and
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V CAE, which for the first case (convex combination of variables) is

AERO = AERO1 +AERO2 +AERO3

AERO1 = LS
2

AERO2 =
1

β∆t
αf γL

S
3

AERO3 =
1

β∆t

αm

∆t
LS

4

V CAE = V CAE1 + V CAE2 + V CAE3 + V CAE4 + V CAE5

V CAE1 = αfL
S
1

V CAE2 = αfL
S
3
t+∆tṡpred

V CAE3 = −AERO2
t+∆tspred

V CAE4 = −AERO3
t+∆tspred

V CAE5 = αmL
S
4
t+∆ts̈pred

(2.98)

instead for the second case (convex combination of forces) is

AERO = AERO1 +AERO2 +AERO3

AERO1 = LS
2

AERO2 =
1

β∆t
αf γL

S
3

AERO3 =
1

β∆t

αf

∆t
LS

4

V CAE = V CAE1 + V CAE2 + V CAE3 + V CAE4 + V CAE5

V CAE1 = αfL
S
1

V CAE2 = αfL
S
3
t+∆tṡpred

V CAE3 = −AERO2
t+∆tspred

V CAE4 = −AERO3
t+∆tspred

V CAE5 = αfL
S
4
t+∆ts̈pred

(2.99)

where, as it can be seen, αm is not more present in the expressions of AERO3 and V CAE5.

The previously defined LLP
1 , LLP

2 , LLP
3 and LLP

4 are now named as LS
1, LS

2, LS
3 and LS

4

assuming that the aerodynamic forces have been projected to the nodes of the structural

solver trough one of the load transferring techniques.
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Chapter 3

Interface Algorithms

In Sec. 2.4 the steps which finally leads to the aero-structural coupling have been shown.

It raised the need to provide an interface algorithm which enables to transfer geometry and

loads between the aerodynamic and the structural fields. In this chapter two possible ways

to perform this task are presented, namely the Infinite Plate Spline and the Moving Least

Square methods. Differences, advantages and drawbacks are shown, since both of them will

be used in the aeroelastic analysis of the Joined-Wing configurations.

3.1 Infinite Plate Splines

3.1.1 Theory

The Infinite Plate Spline concept was introduced in [52] and is employed in several of the

interpolation schemes used in today’s aeroelastic solvers (MSC/NASTRAN and ASTROS

for example). This method is based on a superposition of the solutions of the equilibrium

equation describing an infinite plate subjected to bending actions in the hypothesis of small

deflections. The key idea is to consider a set of discrete points (xi,yi) lying within a two-

dimensional domain, each of them has associated a known deflection wi that defines the

vertical position of the surface on which both structural and aerodynamic points are pre-

sumed to be. Using a superposition of solutions, it is possible to calculate the values of a

set of fictitious concentrated loads acting at the known set of points that give rise to the

required deflection w. In this way given the deflections of the structural grid points, the

concentrated forces are obtained and it is possible to interpolate the position in a set of

aerodynamic grid points considering them on the same smooth surface. The interpolated
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function is differentiable everywhere and points far away from known points are extrapolated

linearly. The main drawback of the method is that it is inherently 2-D and so it is limited to

interpolate out-of-plane displacement; moreover, a piecewise flat planform for the wing has

to be assumed, also when the wing is deformed. The mathematical procedure to establish

the interface algorithm [106] is reported in Appendix A, while in the following just the

major features are outlined.

The governing equation for a plate extending to infinity in both directions and subjected

to bending only is

D11
∂4w

∂x4
+ 2 (D12 + 2D66)

∂4w

∂x2∂y2
+D22

∂4w

∂y4
= p (3.1)

where p is the applied pressure. The material is considered to be isotropic, giving this a

specific value for the D11, D12, D22, D66 terms. Radial symmetry is imposed to the problem

and a concentrated load is considered applied at the origin of the reference system. After

that, with the argument that no singular displacement is acceptable at the origin and that

at infinity oscillations must be avoided, some terms in the closed form of the solution of

eq.(3.1) are set to zero.

If Ñ concentrated loads are applied, each of them thought to act in the point i where the

deflection (wi) is known, by superimposition of elementary solutions of eq.(3.1) it is possible

to obtain the vertical displacement w in a generical point of the two-dimensional domain as

w (x, y) = a0 + a1x+ a2y +
Ñ∑
i=1

F̃ir
2
i ln r

2
i (3.2)

with:

a0 =
Ñ∑
i=1

[
Ai +Bi

(
x2
i + y2i

)]
a1 = −2

Ñ∑
i=1

Bixi

a2 = −2
Ñ∑
i=1

Biyi

(3.3)

Ai, Bi and ri are known quantities and F̃i are the fictitious concentrated loads used to

reconstruct the shape of the plate, given the actual position of the set of the Ñ known

points.
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3.1.2 Application to the aero-structural coupling

The goal of this interface algorithm is to provide a relation between the vectors representing

the unknowns (i.e. the degrees of freedom and their derivatives) associated with the struc-

tural nodes and the corresponding aerodynamic quantities in order to get an expression of

the external loads that allows the resolution of the dynamic equation. Then these forces

have to be transferred from the aerodynamic load points to the structural nodes, where the

equilibrium is enforced.

The reference planes where the splines are specified are planar, and have the local x-axis

(xS) along the free stream direction. The local vertical displacement (which is perpendicular

to the spline plane but of course not necessarily coincident with the vertical displacement in

the global coordinates z) are denoted with ZS and ZS for the generic structural node and

aerodynamic control point respectively, where S specifies that these are quantities evaluated

in the spline’s plane. Eq.(3.2) shows how IPS is employed to evaluate the z coordinate of a

generic point of the system once both its position through the local coordinates x and y and

the required coefficients are given; this can be applied, for example, to the i-th structural

node, allowing to write

ZS
i (xi, yi) = a0 + a1xi + a2yi +

Ñ∑
j=1

F̃jKij (3.4)

Writing this relation for the Ñ structural nodes of the system, eq.(3.4) can be rearranged in

matrix form leading to

ZS = GF̃ (3.5)

where F̃ is the array of fictitious concentrated loads acting at the known set of points which

enable to rebuild the deflection associated with the local vertical displacements stored in ZS.

Since G is a known matrix once the set of points and the geometry has been fixed, eq.(3.5)

can be advantageously used to get an expression of the unknown array

F̃ = G−1ZS (3.6)

In order to avoid the time consuming task of updating the vector F̃ at each timestep, the

assumption that during the deformation process the original local coordinates xi and yi of the

generical point i do not change is made, i.e. the vertical projection is always corresponding

(or at least in good approximation) to the initial position of the structural point considered.

If this hypothesis is not satisfied, G changes during the simulation and has to be continuously

evaluated.
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The expression of the aerodynamic loads is calculated starting from the boundary con-

dition applied on the control points and the involved quantities are thus related to the

derivative of the vertical displacement with respect to the xS direction
dZS

dxS
(which has

been shown to be related to the changing of relative angle of attack), the speed ŻS and the

acceleration Z̈S of these set of points. Considering that eq.(3.2) holds for whatever set of

points lying in the plane of the splines, a relation similar to eq.(3.5) holds

ZS = C F̃ (3.7)

where ZS is the array containing the local vertical displacements of control points, C has a

similar expression of G but with different terms because now eq.(3.4) is written referring to

another set of points. Using the result in eq.(3.6) and defining H = CG−1 as the interface

matrix for the displacement field, the following holds

ZS = HZS (3.8)

which can advantageously used to establish the sought relations

ŻS = HŻS

Z̈S = HZ̈S
(3.9)

since for the fixed expression (earlier motivated) of the spline’s matrices G and C, the time

derivatives have the same interface matrix of the displacements.

In order to calculate the spatial derivative of the vertical displacement is necessary to

differentiate the spline equation ( eq.(3.4) ) specialized for the control points which, leaving

the details in appendix A, leads to

dZS

dxS
= HDZS (3.10)

with HD the interface matrix for the spatial derivative of the displacement.

Once the rotation matrices are built to shift from the local reference system of the spline to

the global coordinate system (this choice can be performed considering the wing as piecewise-

planar and assuming a local reference for every section that has a different normal), eqs.(3.9)

and (3.10) allow to completely define the aerodynamic loads providing the sought interface

matrices.
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3.1.3 Load transfer

The last task to be performed to completely stress out the present interface algorithm for the

aerodynamic-structural coupling originates from the following issue. For a correct application

of the Kutta-Joukowsky theorem, the aerodynamic loads have to be applied in the load points

of the vortex ring. In order to use a FEM structural solver, the loads are thought to act

on the structural nodes (where the equilibrium is enforced) and so this transfer has to be

achieved; in the present structural model, triangular shell elements are adopted, thus first

is needed an algorithm that can determine whether a point (the load point in this case) is

inside a triangle or not. After each load point has been associated with a structural element,

the goal is to find the nodal forces equivalent to the given concentrated load applied in an

internal point P . The problem, depicted in Fig. 3.1 can be tackled with an energy conserving

Fig. 3.1: Applied load in a triangular element

approach imposing that the virtual work done by the external force is equal to the virtual

work done by the nodal forces of the element. The expression of the forces acting on the

three vertices of the triangle m equivalent to the aerodynamical load applied in the point P

with coordinates (xP ,yP ) is given by

Lm
1 = hm

1 (xP , yP )L
k

Lm
2 = hm

2 (xP , yP )L
k

Lm
3 = hm

3 (xP , yP )L
k

(3.11)

The shape functions corresponding to the nodes 1, 2 and 3 of the triangle m, here indicated

respectively as hm
1 , h

m
2 and hm

3 , depend on the generic point of the triangle where they are

evaluated (with generic local coordinates
(
xE, yE

)
) and can be evaluated making use of the

area coordinates [9].
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3.2 Moving Least Square derivated algorithm

The present interface algorithm has the purpose to satisfy the coupling of the aerodynamic

and structural fields granting important features [95]: possibility to interface both non-

matching surfaces or non-matching topologies; capability to deal with situations when a

control point fall outside the range of the source mesh; computational efficiency in the

evaluation of interface operators; capability to deal with a wide variation of the node density

in the source mesh; indipendence from the numerical formulation of the solvers of the two

fields (if differents). A very important feature is the conservation of exchanged quantities,

in particular momentum and energy: this is a keypoint since in literature [22] it has been

shown how nonconservartive interfaces may lead to wrong results.

3.2.1 Meshless Problem Statement

To reach the goals previously listed, a meshless approach is considered. Traditionally, the

complex partial differential equations that govern physical phenomena in engineering systems

are solved using numerical method such as finite element method (FEM), finite difference

method (FDM) and finite volume method (FVM) where the spatial domain is often dis-

cretized into meshes. A mesh is any of the open spaces formed by the strands of the net

obtained connecting nodes in a certain manner and is specified by the definition of a property

which provides a certain relationship between the nodes. The strategy is then to approxi-

mate the differential equations by a set of algebraic equations for each mesh and then get

the system of algebraic equations for the whole problem by assembling in the proper way

the contribution of all of them.

In a mesh free method [78], this system of algebraic equations for the whole problem is

obtained using a set of nodes scattered in the domain which not form a mesh because no

informations on the relationship between the node are required. These methods seem to

solve some issues of the classical approaches. First, the creation of an adequately discretized

mesh is notoriously a bottleneck in the process since it is both manpower and computer

time consuming. Second, the classical approaches have a limited regularity of the solution,

especially in derivatives evaluation at the elements boundaries (although approaches using

higher order continuous basis function like NURBS were already proposed in [23]). More-

over, with lagrangian grids/meshes there is a lost of accuracy when large deformations are

investigated because of the element’s distortion. Adaptive techniques to upload the mesh in

successive stages of the problem solution, which usually presents lack of accuracy and sig-
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nificant computational cost, are no longer needed. A close examination of these difficulties

shows as the root of the problem is the necessity to use elements (mesh); on the contrary a

meshless method does not have these limitations, and could add or delete nodes when they

are needed, providing a great flexibility to the analysis.

In the present work is not actually adopted a meshless method, but one of its central and

most important feature: the shape functions. A number of ways to construct shape functions

have been proposed and the choice is to rely on Moving Least Square approximation (MLS),

which belongs to the family of finite series representation methods. This shape functions

were originally introduced for data fitting and surface reconstruction [70], while in [87] they

were used for the first time to build shape functions for the Diffuse Element Method (DEM),

which was among the firsts properly called mesh free method and had a strong impact on

the field. The two main features of MLS are that the appoximated field function obtained is

continuous and smooth in the entire problem domain and it is capable of produce the desired

order of consistency, where a method is said to have k-th order consistency if can reproduce

polynomials up to the k-th order. The procedure of constructing shape functions using MLS

approximation is fully presented in Appendix B, while in this section just the main features

are outlined.

3.2.2 Main features of the algorithm

The basic idea is to compute the value of a function u(x) on a set of nodes {η1,η2, ...,ηN̂}
from its values û(ξ1), û(ξ2), ..., û(ξn̂) on scattered centers (or sources) {ξ1, ξ2, ..., ξn̂} without
deriving an analytical expression. The result of this extrapolation is denoted ûh and is built

as a sum of m̂ basis functions p̂i

ûh(η) =
m̂∑
i=1

p̂i(η) a
ξ
i (η) = p̂(η)aξ(η) (3.12)

where a
ξ
i are the unknown coefficients of the basis functions which depend on the point

η where the value is sought and on the set of scattered centers ξ where the function is

known (this latter dependence, denoted by the superscript in eq.(3.12), will be omitted in

the following for clearness). The array p̂ of basis functions consists often of monomials of

the lowest order such to form polynomial basis with minimum completeness but particular

functions can be added to reproduce a particular behaviour of the investigated variables.

In the present study linear and quadratic polynomials are adopted leading to the following
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expressions for p

p̂T = (1, x, y, z)T

p̂T = (1, x, y, z, x2, xy, y2, yz, z2, zx)T
(3.13)

Eq.(3.12) is similar to that one used in the Finite Element Method, but the interpolation

valid only element by element is replaced here by a local weighted least square fitting in

a neighbourhood of point η. The neighbourhood of point η, called its support domain, is

given by a subset of ξ, namely ξs, made of n̂s nodes which are the only ones used locally

to approximate the field function. Each node η has a different set ξs with in general a

different number of nodes n̂s, that is n̂s=n̂s(η). The m̂ coefficients ai describing (as shown

in eq.(3.12)) the function in the point η are obtained minimizing the functional weighted

residual (a weighted discrete L2 norm) J(η)

J(η) =
n̂∑

i=1

W (η − ξi) [ũ(ξi,η)− û(ξi)]
2 (3.14)

where

ũ(ξi,η) = p̂(ξi)a(η) (3.15)

is the approximated value of the the field function in the generical center of the set ξ obtained

by means of the same extrapolation process pointed out in eq.(3.12).

The weight function W used in eq.(3.14) is positive for all the ξi centers in the support

of node η and zero outside, and fulfills two important roles in constructing the MLS shape

functions: it provides weighting for the residual at different nodes in the support domain

(small weights are wanted for centers far from η); it ensures a smooth manner for centers to

leave and enter the support domain of the considered node. Here comes out the important

difference with the FEM shape functions, which are obtained minimizing the residual J in

eq.(3.14) assuming a unitary constant weight function and repeating this operation element

by element (which coincides in that case with the support domain of the nodes). By replacing

the discontinuous weights of FEM approach with continuous weighting functions evaluated

in the centers of the nodes the smoothness of the approximate function is granted. Solving

the minimization problem
∂J(η)

∂a
= 0 (3.16)

an expression for the coefficient vector a(η) is obtained, allowing to rewrite eq.(3.12) as

ûh(η) = Φ(η)û (3.17)
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where Φ(η) is the array containing the coefficients of the MLS shape function corresponding

to the node η, while û holds the values of the field function on the centers. For more details

on the derivation refer to Appendix B.

It should be observed that the shape functions in eq.(3.17) do not satisfy the Kronecker

delta criterion Φi(ξj) = δij resulting in ûh(ξi) ̸= û(ξi), that is, the nodal parameters û(ξi)

are not coincident with the nodal values ûh(ξi); this means that they are not interpolants,

but rather approximates of a function; this property can represents a drawback when the

imposition of essential boundary conditions is requested, but it is possible to overcome it as

shown in Appendix B.

As stated, the MLS approximation is able to reproduce the desired order of consistency,

depending on the complete order of the monomial basis p̂: if the complete order of the base

is k, it can be demonstrated that the shape function will possess k consistency.

The calculation of spatial derivatives of the function û, requires to derive eq.(3.12), that

is:
∂u

∂x
≃ ∂uh

∂x
=

∂p̂

∂x
· a+ p̂ · ∂a

∂x
(3.18)

The second term of eq.(3.18) is not trivial to evaluate and a straight procedure is showed

in [78]; it is not an expensive task itself, however it requires the knowledge of the cloud of

particles surrounding each point η and, thus, it depends on the point where the information

is evaluated; on the contrary, the first term can be evaluated a priori. Work [87] proposed

the concept of diffusive derivative, which consists in approximating the derivative only with

the first term on the right hand side of eq.(3.18), and it proved convergence at optimal rate.

3.2.3 Issues connected to the minimization problem

The minimization problem in eq.(3.16) involves the inversion of the symmetric matrix Â,

called moment matrix, and proves to have a unique solution if Â is positive definite; as

can be seen by its expression presented in Appendix B, this matrix may become singular

when the interface is not a well-posed problem, as for example when the number of terms

of polynomial basis m̂ is bigger than the number n̂ of nodes used in the support domain

or when nodes and relative centers are such that the basis functions vanish in the local

support. Especially the latter case can often represent an issue; in fact it can happen to

study configurations lying, at least partly, in one of the three main planes of the global

system (xy,xz,yz). It is useful in these situations to resort to the concept of Moore-Penrose

pseudoinverse. The so-called Moore-Penrose pseudoinverse of a matrix [83] is a concept that
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generalizes the usual notion of inverse of a square matrix, but that is also applicable to

singular square matrices or even to non-square matrices. For this reason it proves to be

particularly useful in dealing with certain least squares problems, when an approximation

for solutions of linear equations like Âz = c is sought, where Â is a given m̂ × n̂ matrix and

c is a column vector with m̂ components; the solution is expressed as the set of all vectors z⋆

such that the Euclidean norm ||Âz⋆− c|| has the least possible value, called the minimizing

set of the linear problem; it can be demonstrated that this set is obtained through a matrix

Â+, named the Moore-Penrose pseudoinverse of Â and satisfying the following properties:

ÂÂ+Â = Â

Â+ÂÂ+ = Â+

ÂÂ+ and Â+Â are self-adjoint

(3.19)

For the Singular Value Decomposition Theorem [8] a matrix Â can always be written as

Â = V SW ⋆ (3.20)

where V and W are unitary matrices given by the Polar Decomposition Theorem and S is

a diagonal matrix whose diagonal elements are the N singular values of Â, by definition the

square root of the eigenvalues of ÂT Â

S =



s1 0 0 0 0

0
. . . 0 0 0

0 0 sr 0 0

0 0 0
. . . 0

0 0 0 0 sN


(3.21)

Eq.(3.20) shows the so-called singular value decomposition of the matrix Â. It can be

demonstrated that the Moore-Penrose pseudoinverse is given by

Â+ = WS+V ⋆ (3.22)

where S+ is a diagonal matrix whose diagonal elements are the reciprocal of the singular

values of Â. The crucial point is thus the choice of which diagonal elements have to be

retained in S+: the way an inverse matrix of a singular one is given adopting the Moore-

Penrose pseudoinverse consists indeed in replacing the diagonal terms of S+ corresponding
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to a zero singular value of Â with 0, i.e., just the invertible part is inverted, as shown in

eq.(3.23) where sn is the first non zero eigenvalue

S+ =



1
s1

0 0 0 0 0

0
. . . 0 0 0 0

0 0 1
sn

0 0 0

0 0 0 0 0 0

0 0 0 0
. . . 0

0 0 0 0 0 0


(3.23)

It should be observed that when the matrix Â is singular (ill-conditioned), it has at least

one of its singular values equal to zero and so this procedure enables to find an inverse of the

matrix: this happens for example when the support domain of η is contained in one of the

three main planes of the global system such that at least one of the basis function vanishes.

More insidiously it can happen that the support domain lies in a plane which is slightly

different from the main ones (for example it can be caused by the dihedral angle of the

wing): although Â is non singular from a mathematical point of view (no zero eigenvalues)

it has a high condition number and eq.(3.22) without further modifications would lead to

inaccurate results. The procedure which generalized the process shown in eq.(3.23) consists

in the esteem of a cut-off value sc (to make this threshold independent of the particular case,

a good way could be to normalize the singular values of Â dividing them by the maximum

one) such that just the greater are retained

S+ =



1
s1

0 0 0 0 0

0
. . . 0 0 0 0

0 0 1
sc−1

0 0 0

0 0 0 0 0 0

0 0 0 0
. . . 0

0 0 0 0 0 0


(3.24)

This procedure is equal to fix a cut-off value for the singular values of Â as obtained from

its Polar Decomposition Theorem in eq.(3.20).

3.2.4 Locality of the algorithm

The great advantage of the problem expressed in this form is the possibility to preserve the

locality of the MLS approximation choosing a compact support weight function W , which is
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supposed to satisfy the following requirements:

� W is a monotonically decreasing function that depends only on a scalar parameter r

that represents the Euclidean distance from the two considered points

� W has a compact support, so

{
W (r) > 0 if r < r

W (r) = 0 if r > r
(3.25)

� W enjoys normal property such that∫
Ω

W (η − x) dΩ = 1 (3.26)

where r is the radius delimiting Ω, the local support of node η

Examples of functions that satisfy these requirements are the Radial Basis Function (RBF)

family, which can be found in different forms as Multiquadratics, Gaussian, Thin Plate

Spline and Logarithmic. In this study are adopted functions which possess the lowest possible

degree among all piecewise polynomial compactly supported radial functions of a given order

of smoothness [112]: this is an important property since the approximate functions are as

smooth as the involved weight function.

After the dimension of the local support is chosen, the last operation to completely define

the local domain is the determination of the centers which belong to each node η; several

strategies exist to solve this task and a suitable choice from the computational point of view

is to rely on nearest neighbor searching algorithms [6]: given a set S of n data points in a

metric space X in real d-dimensional space, the idea is to preprocess these points so that,

given any query point q ∈ X, the k nearest points to q can be efficently reported. These

algorithms perform the geometric preprocessing of building the structure at O(d) cost and

the subsequent operation to get the nearest neighbor from the data set with O(k log d) cost.

3.2.5 Conservation of energy

As previously stated, an important property sought in the present interface algorithm is

the conservation of momentum and energy; using eq.(3.17) to exchange the information of

displacement and velocity from the structure to the aerodynamic field, conservation (al-

though not in a strictly mathematical sense) is achieved because a minimization process is
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performed and so a limited amount of information can be transmitted [95]. While indeed

the conservation of momentum transmitted is taken in account with the definition of the Φ

interface matrix, other considerations lead to conservation of energy. As demonstrated in

Appendix B, to ensure the balance of the energy exchanged bewteen fluid and structure, the

loads on the structural nodes f i have to be evaluated by multiplying the loads F i on the

aerodynamic grid by the transpose of the interpolation matrix H (same as Φ of eq.(3.17))

that matches the two displacement fields.
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Chapter 4

Stability and Bifurcations of

Nonlinear Dynamical Systems

4.1 Introduction

Dynamics is the subject that deals with systems that evolve in time, whether the system

in question settles down to equilibrium, keeps repeating in cycles or does something more

complicated. There are two main ways to study dynamical systems: differential equations

and iterated maps (or difference equations), the former describing the evolution of systems

in continuous time (widely used in science and engineering), whereas the latter involves

problems where time is discrete. One of the main goal is to control the system, finding out

how one or more parameters affect its state bringing it close to a critical threshold where the

response may change abruptly resulting in a transition, i.e. a bifurcation is encountered.

4.2 Fixed points and their stability

Ordinary Differential Equations (ODEs), written in terms of the states variables of the

system (for example position and velocity of a particle), represent a valid way to study

qualitative changes in the behaviour system under investigation; in vectorial notation, this

can be written as

ẏ = f(y) (4.1)

This system is called autonomous since the functions in f (namely the vector field) do not

depend explicitly on the independent variable t, which is often time. For non-autonomous
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systems instead it holds

ẏ = f(y, t) (4.2)

If y has m components, the trajectories sorting out from the solution of eq.(4.1) can be

represented in the state space ∈ Rm; this solution are selected by requesting that it passes

through a prescribed state z of initial values, as depicted in Fig.4.1. Of great interest are

Fig. 4.1: Example of Phase Diagram for a two dimensional system varying the initial values,

taken from [104]

the equilibrium points ys (also called stationary solutions or fixed points), so called because

the system is at rest as they are defined by

f(ys) = 0 (4.3)

The resolution of the system in eq.(4.3) is not a trivial task, so when two dimensional

problems are handled it’s helpful to plot the nullclines, defined as the curves where either

ẏ1 = 0 and ẏ2 = 0; hence, stationary solutions in the plane are given by the intersections of

these lines.
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Stability of stationary point is a wide subject [86], here are just reported the basic

definitions and a possible classification. A stationary solution ys is asymptotically stable, also

called sink, if the response to a small perturbation approaches zero (i.e. the system comes

back to its starting state) as the time approaches infinity; these kind of stables equilibria are

examples of attractors and the set of initial values z from which trajectories converge to the

attractor is called domain of attraction. A different notion of stability exists, related to the

behaviour of the solution for all time, not just when infinity is approached: ys is referred

as Liapunov stable (or neutrally stable) if all trajectories that start sufficiently close to it

remain close for all time. Otherwise ys is unstable or a source.

To handle the stability issue from a quantitative point of view, first a system of two

ODEs is considered
ẏ1 = f1(y1, y2)

ẏ2 = f2(y1, y2)
(4.4)

A Taylor series expansion of f1 about the investigated fixed point (ys1, y
s
2) gives

ẏ1 = f1(y1, y2) = f1(y
s
1, y

s
2) +

∂f1
∂y1

(ys1, y
s
2)(y1 − ys1)

+
∂f1
∂y2

(ys1, y
s
2)(y2 − ys2) + terms of higher order

(4.5)

Expanding also f2, observing that f1(y
s
1, y

s
2) = f2(y

s
1, y

s
2) = 0 and dropping the higher-order

terms (that are at least of order 2) leads to a system of two differential equations where the

Jacobian matrix f s
y is introduced, containing the first-order partial derivatives evaluated at

the equilibrium

f s
y =

∂f

∂y
(ys) =

[
∂f1
∂y1

(ys1, y
s
2)

∂f1
∂y2

(ys1, y
s
2)

∂f2
∂y1

(ys1, y
s
2)

∂f2
∂y2

(ys1, y
s
2)

]
(4.6)

Introducing h as the array representing the first order approximations of distances (con-

sidered small accordingly with the previous linearization) between the actual state and the

stationary points

h1(t) ≃ y1(t)− ys1

h2(t) ≃ y2(t)− ys2
(4.7)

the linearized system in vectorial notation is

ḣ = f s
yh (4.8)

Eq.(4.8) describes the evolution of a deviation from the fixed point, that can be of various

kind, as a numerical disturbance when these equations are integrated numerically, fluctua-

tions of the model due to the the formulation of the problem adopted or an impulse from
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the external force not included in the law f ; mathematically speaking, these perturbations

can be described as a jump in the trajectory at some instant t1

(y1(t1), y2(t1))→ (z1, z2) (4.9)

The way the perturbation influences the state of the system is so described by eq.(4.8), that

is h(t) describes the local (due to the assumptions to neglect higher order terms) behaviour

of the solution. The question of local stability is reduced to the eigenvalue problem

(f s
y − µI)w = 0 (4.10)

which underlines the hypothesis that

h(t) = eµtw (4.11)

The two eigenvalues describe qualitative behavior of trajectories close to the equilibrium and

give rise to three definitions for the fixed point ys about which the linearization is performed
Node µ1, µ2 real, µ1 · µ2 ≥ 0, µ1 ̸= µ1

Saddle µ1, µ2 real, µ1 · µ2 ≤ 0

Focus µ1, µ2 complex coniugate with nonzero real part

In the Node case, if µ < 0 h(t) tends to zero, thus small perturbations die out and this type

of node is called stable node, whereas µ > 0 means that locally the trajectories y(t) leave the

neighborhood of the stationary solution and so this type of node is called unstable node. The

two real eigenvectors w1 and w2 have a geometrical meaning: they define two straight lines

passing through the stationary point (eigenspace) such that the local trajectories directed

toward (or outward) it are tangent to them; an example is shown in Fig.4.2, where the

eigenspace is depicted with dashed lines for the case of stable node. A Saddle point is

always unstable as two of the four trajectories associated with the eigenspace leave the

equilibrium. In the Focus case, going back to eq.(4.11), it’s clear that, assuming µ1 = α+iβ

and µ2 = α − iβ, the time-dependent part of h(t) is made of a factor eiβt representing a

rotation in the phase plane and the factor eαt which is a radius (i.e. the distance of the

actual state from the origin of the plane), increasing if α > 0 (unstable focus) and decreasing

if α < 0 (stable focus), such that any trajectories close to the equilibrium resembles a spiral.

The introduced eigenspace is useful to handle the concept of manifold (see [113] for a

complete definition); simplifying, an n-dimensional manifold M ⊂ RN can be seen as a set
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Fig. 4.2: Eigenspace of a stable node (dashed lines),taken from [104]

which locally has the structure of an Euclidean space and in applications in often used to

indicate n-dimensional surfaces embedded in RN. Referring to the bifurcation case, if the

set of initial conditions in the phase plane is such that as t→ +∞ the solution enter (leave)

the fixed point, this set is called a stable manifold (unstable manifold). Thus for example

the stable node of Fig.4.2 is surrounded by a two-dimensional stable manifold; a saddle node

instead has both.

As seen above, the eigenvalues of the Jacobian matrix determine the dynamic behaviour

in the neighborhood of the equilibrium point; when f s
y has no eigenvalue with zero real part

(as the cases previously presented) the corresponding fixed point is called hyperbolic, while

if µ1,2 = ±iβ it is called nonhyperbolic; one of the main meaning of this classification lies in

its impact on the reliability of the linearized stability analysis presented, where the set of

trajectories of the nonlinear ODE in eq.(4.1) in a neighborhood of a stationary solution is

compared with the behaviour of its linearization (Eq.4.8). This results passes through the

importance of the small nonlinear terms neglected in eq.(4.5): for hyperbolic fixed points,

stability is not affected by them as assured by the Hartman-Grobman theorem [53] which

states that the local phase diagram near a hyperbolic fixed point is topologically equivalent

to the one of the linearization (for which it can be defined the manifolds and so on) and as a

consequence the stability type of the fixed point is faithfully captured by the linearization;

stable and unstable manifolds at equilibria are tangent to the corresponding eigenspaces of
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the linearization, formed by linear combinations of the eigenvectors of the stable eigenvalues

and of the unstable eigenvalues, respectively. Conversely for the nonhyperbolic case, the

condition Re(µ) = 0 makes this result fall and also the higher order nonlinear terms should

be considered in the analysis .

Most of the above results generalize to systems of n ODEs: the Jacobian matrix consists

now of n2 first-order partial derivatives ∂fk
∂yj

where k, j = 1, ..., n and the stability of the

equilibria is characterized by its eigenvalues µ1, ..., µn. A general stability result [80] states

that if fy is two times continuously differentiable and f(ys) = 0, the real parts of the

eigenvalues µj of the Jacobian evaluated at the stationary solution ys determine stability:

Re(µj) < 0 for all j implies asymptotic stability; Re(µj) > 0 for at least one eigenvalue

implies instability. Since the number of cases generated by the various combinations of the

signs of the eigenvalues enormously increases with n, a classification is not simple as in the

planar situation. The Hartman-Grobman theorem is still valid and here the dimension of

the stable manifold equals the number of eigenvalues with negative real part as well as the

dimension of the unstable manifold is equal to the number of the eigenvalues with positive

real part.

4.3 Periodic Orbits

As earlier emphasized, these concepts of stability and instability have a local meaning and

so even defining all kind of equilibria of a particular system, there are possibly other at-

tractors, for example the limit cycle. A limit cycle is an isolated closed trajectory [108],

where isolated means that neighboring trajectories are not closed and spiral either toward

or away from the limit cycle; if all neighboring trajectories approach the limit cycle, it’s said

to be stable, otherwise it’s unstable, as depicted in Fig.4.3. Limit Cycle Oscillations (LCOs)

model systems that exhibit self-sustained oscillations (even in the absence of external peri-

odic forcing). Limit cycles are inherently nonlinear phenomena: a linear system can have

closed orbits but they won’t be isolated, since if f gives rise to a periodic orbit y, the same

will be for c · f for any constant c ̸=0, thus y it’s surrounded by a family of closed orbits.

Consequently, while the amplitude of a linear oscillation is set by the initial conditions and

any slight disturbance to the amplitude will persist forever, the limit cycle oscillations are

determined by the structure of the system itself, f(y). Normally it’s difficult to tell whether

a given system has a limit cycle from the governing equation alone. One of the most common
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Fig. 4.3: Stable and unstable limit cycle,taken from [108]

way is to follow the definition of limit cycle

y(t+ T ) = y(t) (4.12)

where the minimum T satisfying this equation is called period, performing numerical simu-

lations of eq.(4.1) given an initial condition y(0) = z and a final time t=tf to cover.

4.4 Center Manifold Theory and Normal Forms

It is desirable to reduce the complexity of the analysis of real dynamical systems allowing

the use of simplified geometrical and algebraic schemes.

Two possible approaches are to reduce the dimensionality of the system and to eliminate

some nonlinearities; these tasks can be accomplished through two rigorous mathematical

techniques: center manifold theory and method of normal forms.

The basis of the first theory [49] is the Center Manifold Theorem which provides a means

for systematically reducing the dimension of the state spaces being considered; in Sec. 4.2

the concepts of eigenspace and manifold have been introduced, which together with the

Hartman-Grobman theorem enable to describe quite simply the flow near a fixed point from

its linearized vector field. In general once the eigenvalue problem of Eq.4.10 is solved, the

subspace spanned by the n eigenvectors wi can be divided in three classes
the stable subspace, Es = span

{
a1, ..., ans

}
the unstable subspace, Eu = span

{
b1, ..., bnu

}
the center subspace, Ec = span

{
c1, ..., cnc

}
such that ns+nu+nc=n; a1, ..., ans are the ns generalized eigenvectors whose eigenvalues

have negative real parts, b1, ..., bnu are the nu generalized eigenvectors whose eigenvalues
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have positive real parts and c1, ..., cnc are those whose eigenvalues have zero real parts. The

name reflects the facts that solutions lying on Es (Eu) are characterized by exponential

decay (growth), either monotonic or oscillatory, leading to the concept of stable (unstable)

manifold that eases the description of the local dynamical behavior since it is controlled

just by exponential contraction (expansion). The goal is to gain a similar type of ’reduction

principle’ applied to the study of nonhyperbolic fixed points, that is a center manifold passing

through the fixed point to which the system could be restricted in order to study its behaviour

in its neighborhood. The Center Manifold Theorem states the existence of such a manifold

(together with the other two), defining it as an invariant manifold tangent to the center

subspace; the term invariant is used to enlighten the property that each x ∈ M, where M is a

n-dimensional manifold embedded in RN, has a neighborhood U for which there is a smooth

invertible mapping ϕ : Rn → U (n ≤ N).

The idea underlying the center manifold method is to isolate the asymptotic behaviour

associated to the center eigenspace Ec by locating an invariant manifold tangent to it,

where the invariant property assures that a trajectory that starts on it stays there. The

resulting stable, unstable and center manifolds are denoted as W s, W u and W c.

The sought consequence of this theorem [49] is that a bifurcating system is topologically

equivalent to
˙̂x = f̂(x)

˙̂y = −ŷ
˙̂z = ẑ

(4.13)

where ( x̂ , ŷ , ẑ ) ∈ W c ×W s ×W u; eq.(4.13) represents a partition of the entire vector

field f in its three parts each of them referring to a different dynamical behaviour.

In order to compute the vector fields involved in eq.(4.13) (especially f̂(x) which describe

what locally happens in its center manifold), the system early introduced in eq.(4.1) is

expressed in a block diagonal form after a Taylor expansion and a linear transformation

ẏ− = A−y− + f−(y−,y+,y0)

ẏ+ = A+y+ + f+(y−,y+,y0)

ẏ0 = A0y0 + f 0(y−,y+,y0)

(4.14)

where the square matrices A−, A+ and A0 of sizes ns, nu and nc have eigenvalues with

negative, positive and zero real part respectively and the vector y is partitioned into three

subvectors of lengths ns, nu and nc. If, without loss of generality, a stationary solution is

assumed in the coordinate origin f(0)=0 and for simplicity (it’s the most interesting case
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physically) it’s assumed nu=0 (i.e. the unstable manifold is empty), it holds

ẏ− = A−y− + f−(y−,y0)

ẏ0 = A0y0 + f 0(y−,y0)
(4.15)

As by definition the center manifold is tangent to the eigenspace Ec (here the y−=0 space),

it can be represented as a (local) graph

W c =
{
(y0,y−) | y− = C(y0)

}
; C(0) = 0 , C ′(0) = 0 (4.16)

where the existence of the function C(y0) is assured by the invariant manifold theorem.

In Fig.4.4 the representation of the central manifold and its local graph is shown for the

case of one-dimensional manifolds; it’s worth to note that it’s not possible to assign apriori

directions to the flow without specific information on the higher-order terms of f 0 near 0.

Eq.(4.13) is finally obtained, considering the projection of the vector field f 0 on the center

E

E

C

s

y=c(x)

x

W

W
C

s

Fig. 4.4: Stable and unstable manifold with the respective subspaces

manifold

ẏ0 = A0y0 + f 0(C(y0),y0) (4.17)

One of the main conclusions of the Center Manifold theory states that the stability of the

equilibrium y=0 of eq.(4.15) is reflected by the reduced (nc-dimensional system) in eq.(4.17).
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An approximate procedure to find the functionC describing the center manifold can be found

in [18].

Assuming that the center manifold theorem has been applied to the system (eq.(4.17) is

considered), the goal of the Method of Normal Forms is to provide an additional coordinate

transformation which simplify the analytic expression of the vector field on the center man-

ifold f 0(C(y0),y0); this procedure can be applied of course to the other two manifolds too.

The resulting ’simplified’ vector field is called normal form.

Given a system of differential equations

ẋ = f(x) (4.18)

which has an equilibrium at x = 0, a coordinate change x = H(z) brings to

DH(z)ż = f(H(z))

ż = (DH(z))−1f(H(z))
(4.19)

where D is the derivative operator in respect to z. Depending on the maximum grade

of nonlinear terms sorting out from eq.(4.19) one can try to iteratively find a sequence

of coordinate transformations H1, H2, ... which remove terms of increasing degree from

the Taylor series of eq.(4.19), neglecting all the inessential terms. Recalling eq.(4.17), a

coordinate change H of the form identity plus higher order terms is sought which has the

property that, assuming x = y0 in eq.(4.18), eq.(4.19) has non-linear terms that vanish to

higher order than those of f 0 in eq.(4.17).

If k is the smallest degree of nonvanishing term of f 0
i , this transformation could be chosen

as

x = z + P (z) (4.20)

with P i a polynomial of degree k so that the lowest degree of the nonlinear terms in eq.(4.17)

is now k+1. Without probing the mathematical aspects of this method [113], it’s worth

to stress out some important characteristics: the method is local in the sense that the

coordinate transformations are generated in a neighborhood of a known solution (usually a

fixed point), reflecting thus only the local dynamic behaviour; the coordinate transformations

are nonlinear functions of the dependent variables and are found solving a sequence of linear

problems.
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4.5 Dependence on parameters

Usually the ODEs giving rise to eq.(4.1) involve one or more parameters; denoting one real

parameter by λ, the systems of ODES governing the problem can be written as

ẏ = f(y, λ) (4.21)

where the dipendence from λ gives reason of the common expression family of differential

equations; solutions (as well as stationary points, Jacobian matrix and its eigenvalues) de-

pend now on both the independent variable t and the parameter λ. Varying the parameter

λ, the position and the qualitative features of a fixed point can vary. In order to show

graphically the dependence of y on λ in a two-dimensional diagram, a scalar measure of the

n-vector y has to be chosen: options are any norm of this vector or a particular component,

i.e. [y]=yk(t). A diagram depicting [y] versus λ with ([y],λ) solving eq.(4.21), is called bifur-

cation diagram; the continuous curves in these diagrams are called branches and enables to

observe many aspects of the dynamic behaviour of the system, like for example the change

in the number of the solutions as the parameter is changed, as shown in Fig.4.5. The solu-

Fig. 4.5: Example of bifurcation diagram: varying the parameter the number of fixed points

varies

tion (y0,λ0) of eq.(4.21) where the number of possible equilibrium points changes is called

bifurcation; bifurcations are important from a practical point of view since they provide

models of transition and instabilities as some control parameters are varied. As λ increases
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(or decreases) the eigenvalues move in the complex plane and the original equilibrium point

describes an equilibrium path in the n-dimensional phase space of the variables y that has

interesting geometrical properties at the bifurcation points. However they are difficult to

visualize in such a complicated space; the two mathematical theory previously introduced

are valid instruments to legitimate the adoption of simple reduced systems, in one or two

dimensions, that preserve all the qualitative properties of the general n-dimensional system.

4.5.1 Stationary Bifurcations

The first bifurcation among stationary solutions to be examined is the Saddle-Node bi-

furcation, which is the basic mechanism by which fixed points are created and destroyed:

as a parameter is varied, two fixed points move toward each other, collide and mutually

annihilate (or reversely they both can originate). The normal form for this bifurcation is

given by eq.(4.22)

ẏ = y2 ± λ (4.22)

The solutions y(λ) form a parabola defined only for λ ≥ 0; anyway in general (when a normal

form slightly different than the basic on in eq.(4.22) is considered) it will exist a point where

the solutions begin to exist, resulting in no solutions on one side of a turning point and two

solutions on the other side: two solutions are born or two solutions annihilate each other.

The name given to this phenomenon derives from the stability behaviour of the solutions

when the earlier presented stability criteria are employed (if the normal form is considered,

the Jacobian is a scalar): referring to eq.(4.22), it’s clear than one branch of the parabola is

stable and the other is unstable.

In the Transcritical bifurcation a fixed point that exists for all values of the parameter

changes its stability as this is varied. The normal form for this bifurcation is given by

eq.(4.22)

ẏ = −y2 + λy (4.23)

The equilibria are y=λ and y=0, with the latter that loses its stability at the bifurcation

point (y,λ)=(0,0) and the former that gains (considering increasing values for λ) it, showing

a sort of exchange of stability between the branches. The important difference between

this bifurcation and the previous one is that the two fixed points don’t disappear after the

bifurcation and just switch their stability, as depicted in Fig.4.6.

The Pitchfork Bifurcation is common in physical problems that have a symmetry and

so fixed points tend to appear and disappear in symmetrical pairs; this property reflects on
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Fig. 4.6: Transcritical bifurcation, taken from [108]

the normal forms that as will be clear are invariants under the change of variables y → -y.

There are two very different types of pitchfork bifurcation: supercritical and subcritical. The

normal form for the Supercritical Pitchfork Bifurcation is given by eq.(4.24)

ẏ = −y3 + λy (4.24)

For λ ≥ 0 there are two stable equilibria ±λ while the fixed point y=0, stable for λ ≤ 0, loses

its stability in the bifurcation point (y,λ)=(0,0), exactly where the other two branches are

emanated; an example of this loss of stability is given by the buckling of a beam: the beam

is stable in the vertical position if the load (the role played by λ here) is small and the stable

stationary point corresponds to zero deflection. If the compression load exceeds the buckling

threshold the vertical position becomes unstable and the new two symmetrical equilibria,

corresponding to left and right buckled configurations, have been born. The reason why

there are stable solutions on both sides of the bifurcation has to be sought in the stabilizing

cubic term, which acts like a restoring force pulling the solution toward the two stable fixed

points. If in eq.(4.24) the minus of the cubic term is substituted with a plus, the normal form

of the Subcritical Pitchfork Bifurcation is gained. The behaviour of the fixed point y=0

doesn’t change, while the non-zero fixed points, existing now for λ ≤ 0 are unstable, that

is a loss of stability occurs at the bifurcation point, as depicted in Fig.4.7. In a system like

that, a blow up takes place, as starting from any initial condition z̸=0, the solution y →∞
in finite time; in real physical systems, such an explosive instability is usually opposed by

the stabilizing influence of higher-order terms. If symmetry holds, the first stabilizing term
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Fig. 4.7: Subcritical pitchfork bifurcation

is y5 and the new normal form is of this kind

ẏ = −y5 ++y3 + λy (4.25)

The bifurcation diagram for eq.(4.25) is shown in Fig.4.8. For small y the behaviour is

ll1
0 0

y stable

stable

stable

unstable

unstable

Fig. 4.8: Subcritical pitchfork bifurcation with the higher order stabilizing term

analogous to the one shown in Fig.4.7: the origin is locally stable and two backward branches

of unstable fixed points bifurcate; as y increases, the new feature due to the term y5 becomes
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evident as the two branches turn around and become stables; the bifurcation at λ1 is clearly

a saddle-node bifurcation and for λ ≥ λ1 these large amplitude branches exist. In the range

λ1 ≤ λ ≤ 0 three stationary points exist, as shown by the continuous lines, with the initial

condition determining which fixed point is approached; it can be stated that the origin is

stable to small perturbations, but not to large ones (local stability). Moreover the existence

of different stable states allows for the possibility of jumps and hysteresis as the parameter

is varied.

The bifurcations presented so far have a common feature: all the branches intersecting in

the bifurcation point consists of stationary solutions (eq.(4.3) holds), that is the bifurcation,

called stationary bifurcations involve the collision of two or more fixed points. When the

request that ẏ=0 is removed, equilibrium can be superseded by motion and new kind of

bifurcations can be detected.

4.5.2 Hopf Bifurcations

The Hopf Bifurcation is a bifurcation from a branch of fixed points to a branch of periodic

oscillations; from a linearized stability analysis point of view, when the Jacobian is evaluated

at the Hopf point, it has a pair of purely imaginary eigenvalues: in the previous cases, when

a bifurcation occurred there was a real eigenvalue µ1(λ0)=0 (zero-eigenvalue bifurcations),

whereas now two complex conjugate eigenvalues simultaneously cross the imaginary axis into

the right half of the Gauss plane. A formal definition of Hopf bifurcation can be found in the

following theorem by Hopf: assuming f ∈ C2, if f(y0,λ0)=0, fy(y0,λ0) has only a simple

pair of purely imaginary eigenvalues µ1,2(λ0)=±iβ and dReµ(λ0)
dλ0

̸= 0 then at (y0,λ0) there

is a birth of limit cycles with initial period T0=
2π
β
. In Fig.4.9 is summarized the difference

between these two families of bifurcations showing what happens in the complex plane to

the eigenvalues µ(λ).

Like pitchfork bifurcations, Hopf bifurcations can be supercritical and subcritical. In

Fig.4.9 it can be seen that before the eigenvalues cross the imaginary axis the physical

system settles down to equilibrium through exponentially damped oscillations (stable focus);

assuming that the decay rate depends on the control parameter λ, if it becomes slower and

finally changes to growth at a critical value λs the stationary solution loses its stability: the

system has undergone a supercritical Hopf bifurcation. In polar coordinates, a simple
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Hopf bifurcation

Stationary bifurcation

Fig. 4.9: Behaviour of the critical eigenvalue in the complex plane

example of supercritical Hopf bifurcation is given by the following system:{
ṙ = λr − r3

θ̇ = β + bθ3
(4.26)

where λ controls the stability of the fixed point (coincident in this example with the origin),

β determines the frequency of the infinitesimal oscillation and b gives the dependence of

frequency on amplitude for larger amplitude oscillations; the behaviour of this system is the

same of the general case previously pointed out: when λ ≤ 0 the origin is a stable spiral

while for λ ≥ 0 the origin becomes an unstable spiral and it starts a limit cycle at r≃
√
λ. In

general the size of the limit cycle grows continuously from zero and increases like
√
λ− λs if

the parameter is kept close to its critical value λs.

In the subcritical Hopf bifurcation the cubic term is destabilizing, thus driving tra-

jectories away from the origin. The same argument introduced for subcritical pitchfork
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bifurcation concerning the stabilizing effect of high-order terms can be adopted. The normal

form becomes {
ṙ = λr + r3 − r5

θ̇ = β + bθ3
(4.27)

The situation here is more complex and Fig.4.10 can be considered. Making use of the

Fig. 4.10: Subcritical Hopf bifurcation with the higher order stabilizing term

eigenvalues analysis, it’s clear that for λ ≤ −1
4
there is only the stationary point in the

origin, while in the range −1
4
≤ λ ≤ 0 there are also a stable and an unstable limit cycle;

when λ ≥ 0 the latter one engulfs the origin making it unstable and suddenly the limit

cycle becomes the only attractor remained: solutions that used to remain near the origin are

now forced to grow into large-amplitude oscillations (similar behaviour to the one depicted

in Fig.4.8). As it can be argued, subcritical case is always more dramatic and potentially

dangerous in engineering applications (these kind of bifurcations often exhibits in aeroelastic

flutter and other vibrations of airplane wings). Given a Hopf bifurcation, it’s a difficult task

to tell on which of the two families it belongs: the linearized analysis doesn’t help since in

both cases a pair of eigenvalues moves from the left to the right half-plane and an analytical

criterion exists but it can be difficult to use; a quick approach can be performed using

numerical simulations: if a small, attracting limit cycle appears immediately after the fixed

point loses its stability and no hysteresis phenomena arise when the parameter is reversed,

the bifurcation is supercritical, otherwise it’s probably subcritical.
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4.5.3 Stability of Periodic Solutions

In Sec. 4.3 it has been discussed the existence of attractors such that for the solution of

eq.(4.1) there is a minimum time interval T ≥0 after which the system returns to its original

state:

y(t+ T ) = y(t) (4.28)

The goal is here to provide a qualitative description of these possible behaviours of particular

dynamical systems under certain conditions (for the formal mathematical treatise good ref-

erences are [104],[86]). When tracing a branch of periodic solutions and the question arises

whether the periodic solutions are stable and in which way the stability is eventually lost.

The basic tools to answer this question are the monodromy matrix and the Poincaré map.

In what follows, it is first investigated the stability of one particular periodic solution y∗ and

later the dependence on λ.

The stability of a periodic solution (in particular a limit cycle) rely on the way neighboring

trajectories behave; defining φ(t;z) the periodic trajectory of eq.(4.1) with the initial condi-

tion y(0)=z∗, a trajectory that starts from the perturbed initial vector z∗ + d0 progresses

with the distance

d(t) = φ(t;z∗ + d0)− φ(t;z∗) (4.29)

from the periodic orbit. The distance d(T ) after one period T is given by φ(T ;z∗ + d0) −
φ(T ;z∗) and its Taylor expansion yields:

d(T ) =
∂φ(T ; z∗)

∂z
d0 + terms of higher order (4.30)

The matrix ∂φ(T ;z∗)
∂z , called monodromy matrix, plays an important role in deciding whether

the initial perturbation decays or grows. The definition of φ implies that φ(0; z)=z and so
∂φ(0;z)

∂z =I. Thus, since the trajectory has to obey the differential equation

dφ(t, z)

dt
= f(φ(t; z)) (4.31)

differentiating this identity with respect to z, it’s easy to see that the monodromy matrix

solves the matrix initial-value problem

Φ̇ = fy(y
∗)Φ , Φ(0) = I (4.32)

The monodromy matrix M :=Φ(T ) of the periodic solution y∗(t) with period T and initial

vector z∗ given from eq.(4.32) has the two important properties :
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� Φ(pT )=M p

� M has +1 as eigenvalue with eigenvector f(y(0)).

The class of dynamical systems in which the state y is determined just for discrete time

instances t1,t2,...,tm is governed by a law fM called map such that

yN+1 = fM(yN) (4.33)

The Poincaré map is extremely useful for describing oscillating systems; calling n the dimen-

sion of the state of the system, an (n-1)-dimensional hypersurface Ω can be chosen such that

all trajectories that cross Ω in a neighborhood of a point q∗ ∈ Ω intersect it transversally

and all in the same direction: these requirements allow to define Ω, also called the Poincaré

section, as a local set, which generally changes if another q∗ is considered. Let TΩ(q) be the

time taken for a trajectory φ(t; q) to first return to Ω

φ(TΩ(q); q) ∈ Ω , φ(t; q) /∈ Ω for 0 < t < TΩ(q) (4.34)

the Poincaré map P (q) is defined by

P (q) := P Ω(q) = φ(TΩ(q); q) for q ∈ Ω (4.35)

The geometrical meaning of this map and the relative section Ω previously defined is shown

in Fig.4.11. Calling back the periodic solution y∗ with period T , it intersects Ω in z∗ ∈ Rn,

Fig. 4.11: Poincaré map and section
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which can be represented in a coordinate system on Ω and indicated as q∗; this is a fixed

point of P , that is

P (q∗) = q∗ (4.36)

The idea underlying this line of reasoning is that the stability of the periodic orbit y∗ is

reduced to the behavior of the Poincaré map near its fixed point q∗, checking whether this

is repelling or attracting. As for the analysis of stability of fixed point, the linearization of

P around the fixed point q∗ is considered: this matrix is given by the monodromy matrix

restricted to the (n-1)-dimensional set Ω.

As stated before, this matrix has +1 as an eigenvalue with eigenvectors ẏ(0) tangent to

the intersecting curve y(t); since Ω is a local set, the intersection is transversal to this set

and so this eigenvector doesn’t belong to Ω: it can be concluded that the remaining n-1

eigenvalues of M are those of
∂P (q∗)

∂q . Consequently, the periodic orbit is stable if all the

remaining n-1 eigenvalues of the monodromy matrix are smaller than unity in modulus, since

they describe what happens to small perturbations within Ω; the eigenvalues ofM are known

as Floquet multipliers and are a milestone for the investigation of local stability of periodic

solution by the Floquet theory [97]. Summarizing, to each periodic orbit corresponds one set

of eigenvalues µ1,...,µn−1: if the modulus of all n-1 eigenvalues are smaller than 1, then q∗

is a stable fixed point (attracting) in the Poincaré map and so y∗ is a stable periodic orbit;

if the modulus of at least one eigenvalue is larger than 1, then q∗ is unstable (repelling).

Possible behaviours of a periodic solution on Ω are shown in Fig.4.12. The continuous curves

depicted are not trajectories since the map generates a sequence of points: they just indicate

the union of an infinite number of possible intersection points of distinct orbits. Fig.4.12.a

shows an example of saddle cycle, Fig.4.12.b of spiral cycle and Fig.4.12.c of nodal cycle, in

analogy with the nomenclature of the fixed points of differential equations.

In general the multipliers and hence the stability vary with λ; it’s useful to describe the

mechanism of loosing stability reporting the eigenvalues of M in the Gauss plane, as shown

in Fig.4.13 for three values of λ. The circle is the unit circle and one eigenvalue is unity

for all λ; for λ=λ1 the solution is stable since all the meaningful eigenvalues lie inside the

unit circle, while for λ=λ2 the periodic orbit is unstable, underlying the fact that for some

λ0 between λ1 and λ2 one multiplier crosses the circle and the stability is lost (or gained,

depending on which is the direction of variation of λ).

Of great importance is where the critical multiplier crosses the unit circle (in Fig.4.13

it’s assumed that this happens at -1), since depending on this different types of bifurcation

occur; the three possible ways for the critical multiplier to leave the unit circle are shown in

80



Fig. 4.12: Different behaviours of a periodic solution on the Poincaré section, from [104]

Re(m)

Im(m)

Fig. 4.13: Change in the position of the multipliers on the Gauss plane varying the parameter

λ, from [104]

Fig.4.14.

In Fig.4.14.a the eigenvalue becomes unitary, µ(λ0)= 1 (transcritical and cyclic-fold bifur-

cations); in Fig.4.14.b the multiplier crosses the unit circle at the negative real axis, µ(λ0)=-1

period doubling : in Fig.4.14.c the monodromy matrix has a pair of complex conjugate eigen-
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Fig. 4.14: Possible ways for the critical multiplier to leave the unit circle

values crossing the unit circle secondary Hopf.

The second case of loosing stability is here discussed, as is the one showing similarities

with the behaviour of one of the configurations under investigations in this study. Recalling

P as the Poincaré map defined in eq.(4.35), the study of periodic solutions brings to

P (q, λ) = q (4.37)

The fixed-point equation is equivalent to

f̃(q, λ) := P (q, λ)− q = 0 (4.38)

which forms a system of n-1 scalar equations at whom the previously results valid for fixed

points bifurcations can be applied; in particular the expression of the Jacobian of f̃ should

be exploited
∂f̃

∂q
=

∂P

∂q
− I (4.39)

Assuming situation b in Fig.4.14,
∂
˜f

∂q is non singular (the critical eigenvalue of ∂P
∂q is -1 and

the others are smaller), consequently there is no bifurcation of fixed point for P , as it would

be the case when µ(λ0)= 1 leading the system to exhibits another or other fixed points on

the Poincaré map (in a number depending on the multiplicity of the bifurcation), i.e. other

periodic solutions (attractors).

To understand what happens to periodic oscillations in this situation, it can be observed

that the chain rule implies
∂ [P (P (q))]

∂q
=

(
∂P (q)

∂q

)2

(4.40)

Defining the map P 2 as

P 2(q) = P (P (q)) (4.41)
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eq.(4.40) points out that when the monodromy matrix associated with the map P has -1

as an eigenvalue, P 2 has an eigenvalue of value +1, that is the P 2 fixed-point equation

experiences a fixed point bifurcation: this means that there is no more the attracting fixed

point of P (which has lost its stability) but there are two attracting fixed points of P 2.

This phenomenon, called period doubling or flip bifurcation, thus consists of an exchange of

stability of period-one fixed point to period-two fixed point, as illustrated in Fig.4.15. As λ

Fig. 4.15: Transition to period doubling, from [104]

approaches λ0, the orbit of simple period represented by the dashed curve loses its stability

and the new attractor is the heavy curve which depicts the stable orbit of double period;

when the parameter is reversed and stability for the single period orbit is regained, what

topologically happens is that the curve that winds twice shrinks to the curve that winds

once. The term period when related to the Poincaré map is the integer that reflects how

many iterations of P are required to reproduce the point from which iteration starts and so

varying λ this integer remains constant if no further period doubling occurs. In contrast the

period T referred to the periodic oscillation y(t) is affected by the variation of the parameter

and so the period after the bifurcation is not varied exactly by a factor 2, attaining it as a

limit as λ→λ0. The derivation of normal form for period doubling leads to a pitchfork shape,

which explains why often the bifurcation diagram of period doublings have a square-root like

shape.

This phenomenon is observed in many applications, as for example chemical reactions and
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Navier-Stokes equations [37]. Moreover in many studies a sequence of period doubling occurs:

after a first period doubling a second period doubling is more likely than other bifurcations

and this routes can culminate in chaos [86]. The period-doubling sequence to chaos was first

found in the context of one-dimensional maps [27] and studies have demonstrated it to occur

in three-dimensional and higher continuous-time systems. The transition of period-doubling

to chaos is also observed in experimental studies, for example on electric circuits [110] and

chemical reactions [61].

The key role played by the monodromy matrix in ascertaining the nature of the stability

of the periodic solution drove several strategies for its numerical evaluation. The solution of

eq.(4.32) consists in the integration of n2 differential equations and because the right-hand

side depends on y∗ and hence varies with t, the Jacobian is requested for each t, where

0≤t≤T ; a way of providing it is to attach the system in eq.(4.1) to the one providing the

monodromy matrix. This method requires that n+n2 scalar differential equations are inte-

grated simultaneously, bringing in this way storage issues. Other techniques try to reduce

the size of the problem, but drawbacks related to computational cost or complexity of the

algorithm rise up. Thus, even though there are different methods to compute this matrix,

all of them are impractical for problems concerning systems with several degrees of free-

dom. An efficient approach (implicit Floquet Analysis) consists in the evaluation of just a

limited number of eigenvalues of the monodromy matrix (the ones with the largest modu-

lus) using Arnoldi’s iterative algorithm and without requiring the explicit computation of

the matrix [10]; this enormous simplification allowed its use for complex systems as rotor-

craft stability analysis. This method, however, may lead to an erroneous estimation of the

stability margins since there are spurious eigenvalues associated with algebraic constraints

(when differential-algebraic equations are employed) which are meaningless for the analysis’

purposes [94].

Using the result that the Floquet characteristic multipliers are perfectly equivalent to

the eigenvalues of the Poincaré map, an empirical method [84] has been proposed to recon-

struct a local Jacobian from data obtained by experiments; such an algorithm, based on a

least-square identification of the Jacobian matrix, becomes impracticable with real systems.

This technique is nevertheless feasible also for large systems if its provided an efficient way to

condense the huge amount of data generated by numerical simulations, as the state vectors

at each timestep. With this perspective, an approach to extract the dominant eigenvalues

of the monodromy matrix based on the method of data analysis known as Proper Orthog-

onal Decomposition is proposed in [94], showing its application to the evaluation of ground
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resonance stability of an helicopter model.
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Chapter 5

Codes employed in the analysis

In this chapter the codes used to perform the analyses that will be presented in Cap. 7 are

discussed, together with a brief presentation of the means by which they have been used.

In the first section are described the dynamic time-domain aeroelastic codes developed in

the present work, while later sections are devoted to the other in-house codes used as well

(and sometimes slightly modified for clear needs).

5.1 Time-domain codes

In the present work three distinct solvers have been developed for dynamic analysis purposes.

Each of them is characterized by using different options both on the pure aerodynamic side

(always of course within the framework of potential flow) and on the aeroelastic coupling.

Therefore description of the full aeroelastic model given in Cap. 2 will be here frequently

recalled. The three solvers, called Solver1, Solver2 and Solver3 have increasingly computa-

tional cost.

5.1.1 Solver 1

This Solver adopts the Infinite Plate Spline as interface algorithm; as outlined in Sec. 3.1,

this implies simplified hypothesis, inherent both to the limits of the algorithm itself (as

the 2D assumption) and to simplifications needed to preserve low computational cost. As

a consequence in this model the aerodynamic mesh doesn’t follow the structure, i.e. the

coordinates of the inducted control points where the boundary condition is imposed and

the coordinates of the inducing rings employed in the evaluation of the coefficients of the
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matrices A and Aw in Secs. 2.3.2 and 2.3.3 are not updated during the deformation process

of the body. However, body’s deformation still influences the boundary condition (and thus

the aerodynamic loads) with the terms RHS2 and RHS3 discussed in Sec. 2.4.1.

This choice implies that a prescribed wake model is adopted, as it appears not consistent to

consider a free wake when the shedding aerodynamic mesh doesn’t occupy the real position

of the body, giving in any case a low accurate approximate shape for the wake.

On the other side, this model is still believed to capture the basic features of the aeroelastic

problem allowing at the same time a relatively low computational cost also for big sized

systems and refined meshes.

5.1.2 Solver 2

In Solver 2 the IPS is substituted with the Moving Least Square interpolation algorithm for

everything is linked with the coupling of aerodynamic and structural fields. This allows to

build up for each timestep the real aerodynamic mesh, because the simplifying assumptions

of the previous interface algorithm are no more necessary (see Sec. 3.2). Nonetheless this

Solver makes use of a mixed approach: the velocity vectors V SI and V WI used respectively

for the coefficients of matrices A and Aw are still evaluated ignoring the new position of

the body, but the aerodynamic coefficients of these matrices (i.e. the normal components of

these vectors) are partly updated at each timestep because in eqs.(2.52) and (2.54) is now

considered the actual normal direction nk of the ring where the k-th control point is placed,

while in Solver 1 nk was the one relative to the undeformed configuration.

The reason of this choice is the assumption that for a correct esteem of the velocity vector

the important thing is the relative distance between the vortex line and the induced point

(see Biot-Savart law, eq.(2.50)) and this is considered still in good agreement with the initial

one when the body is deformed. On the contrary, what mainly changes during the dynamic

evolution, especially for very deformed configurations as the ones under investigations, is the

direction along which the boundary condition should be written and so there is a lack of

accuracy to keep projecting the induced velocity vector on the initial normal direction. Once

this is ascertained, the assumption to consider the aerodynamic mesh still in the undeformed

configuration provides a great advantage since it enables to avoid a free wake approach

(with the consequent increase in computational cost), which would be mandatory once the

shedding rings are moved with the body. Morevorer the velocity vectors V SI and V WI are

not evaluated at each timestep, since just the change in their respective dot products is

contemplated.
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Thus this modification represents an improvement in the accuracy comparing to the previous

Solver without an excessive drawback in simulation run time.

The normal of each ring in the deformed configuration is obtainable by mean of the evaluation

of the updated rings position, a task performed applying eq.(3.17) to the 3D coordinates of

all the vertices (it’s worth to notice that this apparently easy task would have been less

trivial and accurate adopting the IPS); as in this case the ring is no more planar, a medium

plane is assumed and the vector product between the diagonals is used for the calculation

of the direction.

Consistently with this modification, another improvement is employed: vector rk
L, which

gives the direction of lift produced from the k-th ring as expressed in eq.(2.89) and shown in

Fig.2.8, is updated during each timestep. This is accomplished by means of the evaluation

of the actual position of points 4kL and 2kL. The aerodynamic load is thus follower both in

direction and intensity.

5.1.3 Solver 3

Solver 3 adopts the MLS interpolation algorithm and considers the aerodynamic mesh in its

actual (deformed) position, enabling the free wake model and the correct (in the sense that

no further assumptions as the previous are made) expression of all the quantities involved

in the evaluation of the external loads.

The main differences among the three Solvers are graphically presented in Fig. 5.1.
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Fig. 5.1: Differences between the time-domain aeroelastic solvers
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5.2 Static and frequency-domain codes

5.2.1 Nonlinear aeroelastic static tool

and its employment in the analysis

In-house code for the investigation of the role of geometric structural nonlinearities in the

detection of static aeroelastic instabilities (mainly, divergence speed) was presented and

validated in [34]. This tool solves the static equilibrium equations in the presence of aerody-

namic loads adopting iterative algorithms like the standard Newton-Raphson method and

arc-length method; the latter is a continuation technique necessary both to ensure conver-

gence in the neighborhood of critical points (prevented in the Newton-Raphson method from

the bad conditioning of the tangent matrix) and to track the response in the postcritical re-

gion [3, 98, 100]. Since a nonlinear problem is solved, a parameter is introduced, called load

level, which determines how much of the nominal (or final) load is being applied. Varying

the value of this parameter (generally from 0 to 1) a curve is obtained where are reported

the coordinates (or deformation) of each degree of freedom and the corresponding value of

the load level.

This code can be regarded the static equivalent of Solver 1, in that the same interface algo-

rithm (IPS) is employed and similar simplifying hypothesis on the aerodynamic coefficients

and lift direction are made.

As it will be shown in Cap. 7, one of the strategies adopted to study the dynamic response

of the Joined-Wings will consist in a re-start from a steady state reached by mean of static

solution. The static code, in fact, provides a deformed configuration relative to the flow

speed and the angle of attack assigned. Of course, this configuration can be assessed as

a stable stationary equilibrium point of the system only by mean of a dynamic analysis.

Therefore the deformed configuration, in equilibrium with the corresponding aerodynamic

forces, is perturbed and the response is tracked.

Following this line of reasoning, when Solver 2 is taken in consideration a modified static

tool should be used since otherwise the mismatch would introduce an involuntary and not

controllable source of errors which could lead to erroneous results. Therefore the static

equivalent of Solver 2 has been developed and, as a validation, its outcomes verified to fall

not too far from those of the original static tool.

When Solver 3 is considered, it is not so obvious on which kind of static equivalent tool it

has to be favourably relied on. The main ambiguity concerns the shape to assign to the wake

at the beginning of the dynamic simulation.
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In fact for Solver 1 and Solver 2 the wake is prescribed, and consistently with that at the

first timestep it is made of horseshoe vortices with an intensity related to the distribution

of circulation present over the wing in the steady state being restarted. As the simulation

goes on, this horseshoe wake moves back leaving space to the ring wake being shed (see Sec.

2.3.3).

This approach is no more pursuable when the time-domain capability employs a free wake

approach because a clear mismatch rises; this consideration was confirmed by various at-

tempts to start the dynamic simulation as made for the other two Solvers, showing how the

outcome of the dynamic analysis (also when a stable range of velocities was considered) was

a configuration considerably far from the static one.

In literature [62] a way to find a suitable steady state condition is presented, based on an it-

erative process on the shape of the wake starting from an initial guess of its geometry, which

is then moved accordingly with the induced velocity components parallel to a plane per-

pendicular to the free-stream velocity (wake relaxation). This strategy is believed to surely

improve the accuracy of a static analysis, without giving however a substantial contribution

to the present issue.

An alternative way to proceed is just to start from a rest condition (undeformed wing and

thus no wake in the flow domain) and follow the transient triggered by the onset flow having

a nonzero angle of attack until a steady state is reached. Here, an approach similar to the

second one is employed, where the angle of attack is not given impulsively, but rather slowly

increased within the time since it reaches the sought value, to resemble as much as possible

a quasi-static process.

5.2.2 DLM based code for flutter speed prediction

A doublet lattice method (DLM) is employed for the frequency-domain unsteady aerody-

namic calculation in order to assess the flutter speed of the given configuration. A prediction

of flutter velocity for the configurations investigated in the present work is desirable in order

to have a comparison among the critical speeds sorting out from the analysis through the

three time-domain Solvers. As reported in literature [118], whereas Computational Fluid

Dynamics (CFD) had a great impact on steady-state aerodynamic analysis, the same cannot

be said for the unsteady, especially when considering flutter analysis and thus DLM, based

on the hypothesis of potential flow, still proves to be a valid tool. This method was firstly

introduced in [2] and later on widely adopted from the aeronautical industry [101].

In literature however it is claimed [85] that DLM analysis could lack in precision when used
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for cases in which wake roll-up plays an important role, or for cases in which the structural

deformation is conspicuous. The first feature is possibly related to the fact that DLM makes

use of the concept of acceleration potential (similar to the velocity potential but its derivative

provides now the pressure instead of velocity) in order to satisfy the Laplace equation; this

practically enables to non consider (and thus not model) the wake since as known it doesn’t

have pressure difference.

For what concerns the effect of high deformations on the accuracy of results, in this work

nonlinear evaluations of flutter speed (in the sense shortly stressed out) are performed. A

study concerning the reliability of linear and nonlinear tools when investigating Joined-Wing

configurations was already pursued in [30, 34] for mechanical loading and static aeroelastic

conditions, respectively. It was assessed that linear analysis may give unreliable and noncon-

servative predictions and in some cases linear tools were not even able to correctly evaluate

trends when one or more parameters were varied.

This flutter solver requires the modes of the structures as an input; thus, evaluating the modal

properties of the structure at different points on the static aeroelastic response (found with

the static aeroelastic tool previusly described), it is possible to have a progressively more

refined estimate of the flutter speed. The process of running different analyses with modes

representative of the undeformed or deformed structure is the keypoint in which nonlinear

effects are introduced. The predicted flutter speed V lin
∞F is compared to the speed V SS

∞ at

whom the linearization has been performed; in the critical condition these two velocities

coincide.
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Chapter 6

Validation

Validation of the codes developed in this study is here presented. Some components or even

some full aeroelastic solvers used in the analyses have already been validated in previous

works. For example, nonlinear structural finite element code, both in the static and dynamic

versions, has been already employed in previous efforts, i.e. [19, 21, 30, 34]. Moreover, also

the DLM capability has been already described and checked in references [31].

6.1 Validation of the Aerodynamic Solvers

In this section, validation of the aerodynamic part of the solver is considered. From a pure

aerodynamic perspective, the differences between the codes concern the wake only, thus to

validate the unsteady behavior the wake is treated both as rigid or deformable.

A common validation mean, popular as the Wagner ’s test case, is usually adopted to

verify the capabilities of an unsteady aerodynamic solver since it describes the effects of the

starting vortex on the forces acting on an airfoil. There is an analytical expression [64] that

describes the evolution of the lift coefficient in respect of τ , known as reduced time, which

is the covered distance expressed in semi-chords of the airfoil, i.e. τ = 2V∞ t/c, where t

represents the time and c the chord. If CL is the lift coefficient, it holds that

CL(τ) = CL(∞)Ψ(τ)

where:

Ψ(τ) = 1− 0.165 e−0.0455τ − 0.335 e−0.3τ (6.1)

Since this testcase is a bi-dimensional one, to validate the code a wing with large aspect-ratio

is considered (AR = 30) and the evaluation of the lift coefficient is done at its mid-station.
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The simulation is run considering ∆t V∞/c = 1/8. Results are shown in Fig. 6.1, where the

lift coefficient normalized to the steady lift coefficient is plotted against the reduced time,

for both the rigid and deformable wake approaches.
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Fig. 6.1: Results of Wagner’s test case using a rigid and a deformable wake: lift coefficient

normalized to the steady lift coefficient plotted against the reduced time

It can be observed from eq.(6.1) as the Wagner function prescribes a value for the CL(0)

which is half the steady state value; the difference between the computed curve and the

classical results can be attributed to the finite acceleration rate during the first timestep (on

the opposite in the Wagner case the acceleration time is zero): the effect is to increase the

lift sharply during the transient phase and moderately later [63].

A 3D verification is then presented, because as noticed above the Wagner test is more

suitable for the response of an airfoil than of a wing, though remaining a valid way to

study the unsteadiness of the flow. In [29] it is proposed the analysis of the transient lift

of a rigid wing in constant speed forward flight. The wing has the following parameters:

unswept rectangular planform: angle of attack α=5◦; V∞=10m
s
; chord of 1m and aspect

ratio AR varying from 4 to 200 (≃∞). The discretization is prescribed with 13 spanwise

and 4 chordwise equally spaced panels; as before the timestep length is given as a function

of the ratio ∆t V∞/c: the suggested value here is 1/16. In Fig.(6.2) the variation of lift

coefficient with time is reported for both the aerodynamic capabilities. Graphics show good

agreement with the ones given in the reference (here not reported because non exactly
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Fig. 6.2: Lift coefficient variation with time for an uncambered rectangular wing (impulsive

start into a constant speed forward flight)

extrapolatable). The only difference concerns the earlier timesteps where the drop in the lift

is slightly different; this is an issue encountered also by other authors [29], which proves to

be very sensitive to the choice of the timestep. As remarked in the reference, the initial lift

loss and the length of the transient seem to decrease with a reduction in the wing aspect

ratio: this seems to suggest an influence of the trailing vortex wake in these features.

It can be observed how there are no big differences between the two wake models; this is

showed also in [29], where this test is used to validate the aerodynamic UVLM code for

nonlinear aeroelastic analyses and both the prescribed and free wake are taken into account.

6.2 Validation of the Meshless Transferring Capability

Validation of meshless capability has been first investigated starting from its basic features;

known surfaces (given by analytical equations) have been reconstructed from a set of points

scattered in the space. These cases, not reported here for brevity, give confidence just over

a part of the algorithm, since its implementation in an aeroelastic framework can introduce

new issues.

For this reason, another attempt to validate the coupling interface has been carried out.

Since Solver1 relies on IPS, a modified version of this solver has been implemented featuring
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as differences just this new algorithm for the load and displacements transferring. This

procedure rely of course on the the possibility to consider IPS just validated, proven by

its use in previous works. The Joined-Wing configuration depicted in Fig. 6.3 (the same

configuration will be study in this work) with a freestream speed of 55 m/s is considered,

and the angle of attack α, measured in the symmetric xz plane, has the evolution shown in

the same graph. The simulation starts from a steady equilibrium reached by means of static

analysis (re-start technique introduced in Cap.5). The vertical displacement of the tip of the

front wing is reported.

The results are in an excellent agreement.
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Fig. 6.3: Validation of meshless capability employing two versions of Solver1 : the original

performing IPS and a modified which made use of MLS transfer’s method

6.3 Validation of the Time-Domain Aeroelastic Codes

Capabilities

The three time-domain solvers are here validated against experimental results in a low-speed

wind tunnel which are proposed in reference [7]. The test case consists of a delta wing plate

model showing limit cycle oscillations, with a geometry detailed in the original work.

This experiment is performed numerically by the Solvers, and results are directly compared

with the reference experiment, as well as computational results reported in [32].
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6.3.1 Solver1

Numerical results obtained with Solver1 are shown in Table 6.1. To favour the compar-

isons, the first two columns report references results, where the third and forth show the

performances of Solver1 with two different values of structural damping. In [7] the value of

damping was not specified.

Attar et Al.[7]

(experimental) Demasi et Al.[32] Solver1 ζ=3% Solver1 ζ=5%

Flutter velocity 24 m/s 22,7 (ζ= 1%) 24 m/s 24,5 m/s

U̇ztip (V∞=25,5 m/s) 0,5 m/s 0,69 m/s 0,63 m/s

U̇ztip (V∞=27 m/s) 1,36 m/s 1 m/s (ζ= 5%) 1,28 m/s 1,07 m/s

LCO frequency (V∞=27 m/s) 14,5 Hz 14.92 Hz (ζ= 5%) 15,3 Hz 14,8 Hz

U̇ztip (V∞=28 m/s) 1,85 m/s 1,55 m/s (ζ= 3%) 1,5 m/s 1,3 m/s

Table 6.1: Validation of Solver1 with Delta Wing test case. U̇ztip is the maximum vertical

speed of the tip of the wing

Maximum vertical speed of the tip for LCO established at different wind speed are also

represented in Fig. 6.4.
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Fig. 6.4: Results of Delta Wing test case: experimental and Solver1. The maximum vertical

speed of the wing’s tip is plotted against the wind speed

6.3.2 Solver2

Numerical data for Solver2 are now shown in Table 6.2. Maximum vertical speed of the tip
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Attar et Al.[7]

(experimental) Demasi et Al.[32] Solver2 ζ=3% Solver2 ζ=5%

Flutter velocity 24 m/s 22,7 (ζ= 1%) 23 m/s 23,5 m/s

U̇ztip (V∞=25,5 m/s) 0,5 m/s 0,9 m/s 0,66 m/s

U̇ztip (V∞=27 m/s) 1,36 m/s 1 m/s (ζ= 5%) 1,36 m/s 1,23 m/s

LCO frequency (V∞=27 m/s) 14,5 Hz 14.92 Hz (ζ= 5%) 16 Hz 15,3 Hz

U̇ztip (V∞=28 m/s) 1,85 m/s 1,55 m/s (ζ= 3%) 1,55 m/s 1,37 m/s

Table 6.2: Validation of Solver2 with Delta Wing test case. U̇ztip is the maximum vertical

speed of the tip of the wing

for LCO established at different wind speeds is also represented in Fig. 6.5.
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Fig. 6.5: Results of Delta Wing test case: experimental and Solver2. The maximum vertical

speed of the wing’s tip is plotted against the wind speed

6.3.3 Solver3

The same process is repeated for Solver3. See Table 6.3. Maximum vertical speed of the tip

for LCO established at different wind speed are also represented in Fig. 6.6.
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Attar et Al.[7]

(experimental) Demasi et Al.[32] Solver3 ζ=3% Solver3 ζ=5%

Flutter velocity 24 m/s 22,7 (ζ= 1%) 24 m/s 24,5 m/s

U̇ztip (V∞=25,5 m/s) 0,5 m/s 0,77 m/s 0,57 m/s

U̇ztip (V∞=27 m/s) 1,36 m/s 1 m/s (ζ= 5%) 1,18 m/s 1 m/s

LCO frequency (V∞=27 m/s) 14,5 Hz 14.92 Hz (ζ= 5%) 15,6 Hz 15,1 Hz

U̇ztip (V∞=28 m/s) 1,85 m/s 1,55 m/s (ζ= 3%) 1,47 m/s 1,34 m/s

Table 6.3: Validation of Solver3 with Delta Wing test case. U̇ztip is the maximum vertical

speed of the tip of the wing
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Fig. 6.6: Results of Delta Wing test case: experimental and Solver3. The maximum vertical

speed of the wing’s tip is plotted against the wind speed
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Chapter 7

Results

7.1 Description of the Analyzed Joined-Wing Config-

urations

There are different configurations that will be analyzed in this paper. The first one, depicted

in Fig. 7.1, is a Joined-Wing (named JW70 ) in which the joint is not located at the tip of

both the wings. The thickness of the wings and the joint is 0.7 mm.

The second configuration (Fig. 7.2) is a PrandtlPlane-like [39] configuration featuring a

swept-back lower wing and a swept-forward upper wing. It is designated PrP40. For this

layout, the thickness of the wings is varied and specified case by case. Both JW70 and the

PrP40 have been chosen for reference reasons, see [19, 21, 30, 34]. The models’ dimensions

are selected to be consistent with the ones corresponding to wind-tunnel scaled models.

The last layout (Fig. 7.3) is the typical Sensorcraft [79]. The geometrical details are

taken from reference [90], a part from the thickness which has been set to 0.7mm. In this

configuration the aft wing is directly joined to the front wing, to act like a strut.

For all the layouts the adopted material is a typical Aluminium, featuring a Young’s

modulus E = 6.9·107
[

Kg
mm·s2

]
, a Poisson’s ratio ν = 0.33 and a density ρmat = 0.69·103 kg/m3.

For the aerodynamic analysis, the surface is discretized employing different (usually about

12) elements in the chordwise direction. The overall number of rectangular elements is then

between approximately 600 and 3000 for the different cases.

The density of the air is chosen to be the standard air density (ρ = 1.225 kg/m3).
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Fig. 7.1: JW70 model. The joint is located at 70% of the wing span. The thickness of the

different parts of the structure is equal to 0.7 mm
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7.2 Snap Divergence

The concept of snap divergence was first introduced in Ref.[34] and here is briefly summa-

rized. The pure structural case represented by a structure subjected to conservative forces it

is firstly considered. In that case it is possible to define a buckling load obtained via eigen-

value analysis. This investigation of the stability properties could be improved by linearizing

about a steady state equilibrium obtained with a fully nonlinear static analysis. However, it

is also possible to define (if exists for the case under investigation) the snap-buckling load as

the one corresponding to the true critical point, defined as the state in which the structural

tangent stiffness matrix KST becomes singular.

These definitions involve a precise mathematic event (singularity of a matrix). However,

nonlinear analyses may also show responses with a progressive softening (see for example

[20,30]). In some of these cases, very small load increments may lead to large displacements,

being this in practice unacceptable. It may be then too restrictive and unsafe to base the

buckling concept on the definitions above (singularity of the matrix).

These considerations can be extended to a system including aerodynamic forces, which

are non-conservative in nature. Thus it is possible to define a matrix KA, the so-called

aerodynamic tangent matrix. The system tangent matrix is now obtained by adding the

structural and aerodynamic tangent matrices:

KT = KST +KA (7.1)

Similar to the buckling evaluated with nonlinear analysis, also the divergence may be defined

as the condition in which K T is singular. In Fig. 7.4 is depicted this scenario, where V∞ is

the velocity of the free stream, a measure of the external load acting on the structure, and

U is a measure of the deformation (the vertical displacement of the tip, for example).

The post-divergence regime (B −D branches in Fig. 7.4) deserves a depth investigation

than what could be done by mean of an aeroelastic static analysis: after the snap-divergence

instability is reached, the system would naturally experience a snap and try to reach a state

on the stable post-critical branch. This sudden change is inherently a dynamic phenomenon

and thus, inertial forces and time-dependent aerodynamic effects must be taken into consid-

eration to properly model the response of the structure.

In Ref.[34] was studied the behaviour of configuration JW70 ; the results are here reported

for point P1 located at the tip of the lower wing, in Fig.7.5. A speed of 50m/s is chosen as

nominal free stream speed and the angle of attack of the undeformed configuration is set to

1◦. The static aeroelastic response is obtained by gradually increasing the speed V∞ since
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a non linear analysis is employed. It appears clearly that a snap-divergence phenomenon

occurs: an infinitesimal increment of speed at stage B would determine an impossibility

to find a static equilibrium configuration continuously adjacent to the one in B. On the
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contrary, the new equilibrium point would be C, configuration characterized by the same

flow speed of state B. The snap-divergence speed V CR
∞ is equal for this case to 34.1m/s.

Notice that, at stage B the system tangent matrix is exactly singular, thus, the instability

has a well defined mathematical characterization.

In this section the snap-divergence response will be shown from a dynamical perspective,

in particular with Solver1. This choice is dictated by the necessity to keep the aeroelastic

modelling consistent to the one used in the reference.

7.2.1 Time response on Snap divergence Occurence

The idea is to consider a steady state equilibrium slightly beneath the critical point and

increase the velocity of the flow in a quasi-static way until a greater value of the snap-

divergence speed is reached. In Fig. 7.6 the starting condition (state A, corresponding to

a free-stream speed of V∞ = 33 m/s) is shown; the flow speed is first increased to reach

V∞ = 34.3 m/s (state B), then decreased to its initial value with a law shown in the box of

the same figure, where the wind speed in respect of time is plotted. Point P1 is again used

as an indicator of the global behaviour of the structure (in Ref.[34] was shown how other

points of the structure exhibited qualitatively the same response).

It can be observed how tracking the dynamic response, as soon as the speed approaches

values close to the critical one, there is an abrupt increase in the displacement of the wing

tip. Comparing the displacements for the static and dynamic cases, it can be inferred that

the dynamic response matches closely the static one. In the inverse path, where the speed

is decreased to its initial value, similar trend is observed and the initial static equilibrium

condition is gained at the end of the transient.
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7.3 Postcritical Dynamic Aeroelastic Analysis

The aeroelastic solvers developed in the present work are used here to investigate the post-

critical dynamic aeroelastic response of the baseline configurations. In particular, the focus

is on the Limit Cycle Oscillations exhibited by Joined-Wings above the flutter speed.

7.3.1 Introduction to the Limit Cycle Oscillations

Flutter represents a critical condition for the design and optimization of aircraft structures,

since the aeroelastic system, as the speed is increased, encounters a Hopf bifurcation point

(see Sec. 4.5) and becomes dynamically unstable. This means that disturbances quickly

grow unbounded and failure is reached.

However this growth may be attenuated in certain circumstances, ending up in self-sustained

Limit Cycle Oscillations (LCOs). This response actually is not desirable since has as main

consequences a shortening of the aircraft service life (speeding up failure by fatigue) and

the risk to induce other critical instabilities making available new couplings among the flex-

ible aircraft components. This limited amplitude motion occurs if nonlinearities inherently

present in the dynamics of the system limit the exponential growth in amplitude predicted

by the linear flutter analysis. Sources of nonlinearities are: inertia (with concentrated or dis-

tributed masses in particular locations, as connecting parts between primary components),

aerodynamics (dynamic stall, flow separation, oscillating shock waves) and structures (large

deflections, material, freeplay).

As a consequence it could be argued that an accurate prediction of a such inherently

nonlinear phenomenon strongly depends on the ability to retain the meaningful nonlineari-

ties of the full system, since wrong assumptions can lead to misleading results. The present

capability considers only geometrical (structural) nonlinearities, relying on a fully linear

aerodynamic model (if exception is made for the wake that, especially when the roll up

model is considered, introduces a strong dependence on the history of the system).

This assumption is in compliance with the purpose to study configurations with low angles

of attack and in the low subsonic regime. Moreover in literature [36] it has been stated

that the most important nonlinearities in driving these kind of aeroelastic phenomena are of

structural type. An insightful example about this controversial, and in general about some

of the LCO main features, is provided by the Delta Wing configuration, often used for these

kind of analyses, as for example in the works used for the validation of the present capabili-

ties (see Sec. 6.3), where codes based on potential flow model were employed to investigate
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Limit Cycle Oscillations.

Dynamic aeroelastic analyses on a Delta Wing configuration, with a slightly different ge-

ometry than the one in [7, 32], were pursued in [47] making use of a computational tech-

nique that implicitly couples, through subiterations, a Navier-Stokes solver (based on the

Beam-Warming algorithm) to a linear structural solver. Results were compared to previous

experiments [103], showing significantly higher amplitudes in the tip response. The proposed

reason for this discrepancy was the lack in the consideration of nonlinear structural effects. A

following study [46] favourable attempted to demonstrate this hypothesis: the linear modal

structural solver was replaced by mean of a nonlinear one based on the Von Kármán plate

equations coupled both with an Euler inviscid and a fully Navier-Stokes solver. The com-

putations showed how the nonlinear structural terms played a fundamental role, decreasing

the amplitudes to values closer to the experiments.

The two different aerodynamic solvers allowed to explore viscous effects. The outcome was

that for these small deflections influence of viscosity was small, in contrast to the cases shown

in [47]. Moreover further examination of the aerodynamics clarified the role played by the

leading-edge vortex, which in the first study was the mechanism that limited the growth

of the response, acting like an aerodynamic spring producing a normal force approximately

180◦ out of phase with the motion of the wing and yielding in this way to the limit cycle

motion. Within this new framework, a well established leading-edge vortex didn’t seem to

appear until values of the dynamic pressure out of the range considered, thus proving it is

the stiffening of the wing due to the development of the membrane stresses to provide the

key mechanism by which diverging oscillations settle down to a pure harmonic response.

This case and other studies [93] seem to suggest that, when studying configuration whose

angle of attack can be considered sufficiently small, non-linear vortex flow phenomena may

be important if structural nonlinearities are neglected or weak.

In the following, dynamic aeroelastic response of the different configurations using the

three solvers is shown. The techniques adopted in the simulations are the ones described in

Cap. 5.
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7.3.2 JW70

Solver1

Fig. 7.7 shows the dynamic response of the JW70 configuration when a vanishing pertur-

bation in the angle of attack is given; in this way the stability of the static equilibrium

(fixed point) represented by the main graph is verified. The perturbation consists in a linear

increase in the angle formed by the onset flow direction and the x-axis, followed by a sym-

metric decrease to the unperturbed value (which is 1◦). The peak is reached at 0.1 seconds

and its value is αx = 1.01.
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Fig. 7.7: Solver1. Aeroelastic dynamic response of JW70 starting from steady states relative

to different velocities when a vanishing perturbation in angle of attack of the onset flow is

given. No structural damping is applied

The curves shown here have been obtained considering no structural damping. The

simulations have been carried out for different speeds (corresponding to points A, B, C, D,

E , F along the main curve). It can be observed how when the velocity is below 39, 5 m/s,

the fixed points detected through the static nonlinear analysis are stable. In particular, with

this approach, it is possible to define a small interval in which the flutter speed lies, meant
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here as the smallest speed at whom the attractor of the dynamical system doesn’t coincide

(as instead happens for points A ,B , C ,D) with the attractor of the same system studied

from a pure static perspective, i.e. the static equilibrium loses stability. For the present

case, the flutter speed falls in the interval 39, 5÷ 40 m/s.

For speed larger than flutter, an LCO is observed. The properties of the LCOs are

depicted in Fig. 7.8, making use of the state plane tool, common in the analysis of nonlinear

dynamical systems (see Sec. 4.2) and consisting in the representation of two (or more, and

in this case it is called state space) states of the system, in this case the displacement of a

point of the structure and its time derivative.
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Fig. 7.8: Time response and state plane trajectory for JW70 configuration, for different flow

speeds. Solver1 is employed. No structural damping is considered

Very interesting is the transient of system before settling to an LCO. The path described

in the state plane is quite long (compared to other responses found in literature [32]) before
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it is finally attracted from the LCO orbit; moreover, for a wind speed of V∞ = 40.5m/s it

has also an abrupt change in the oscillatory trend. It can be speculated that this behaviour

is largely due to the overconstrained nature of the Joined-Wing layout. Responses of the

other layouts will give more clues about that.

Solver2

The same process outlined previously is now repeated using Solver2. The static response

used to start the simulation from a steady state condition is depicted in Fig. 7.9. This curve

is obtained with a static aeroelastic tool consistent with the differences exhibited by this

Solver in respect to the previous one (see discussion in Sec. 5.2). It may be well noticed

that the snap-divergence has now a more pronounced connotation than the one shown in

Fig.(7.5).
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Fig. 7.9: Solver2. Aeroelastic dynamic response of JW70 starting from steady states relative

to different velocities when a vanishing perturbation in angle of attack of the onset flow is

given. Different structural damping are considered

In the same figure and in Fig. 7.10, the dynamic responses obtained starting from dif-

ferent steady velocities and applying the above described perturbation are given. It may
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be observed how the flutter speed decreases if compared with the outcome of the above

analyses. In fact, even for structural damping ratio ζ different than zero, and speeds that

were subcritical (in term of flutter) when the case was analyzed with the Solver1, an LCO

is observed.
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Fig. 7.10: Time response and state plane trajectory for JW70 configuration, for different

flow speeds. Solver2 is employed

Solver3

Solver3 is now employed which has, among the new features, the capability to properly model

the free wake. For reasons related to the need to consistently compare the results obtained

with this Solver with the outcomes of the two other Solvers (see discussion in Sec. 5.2),

an impulsive start is given to the configuration (no re-start from the static state), and the

angle of attack is slowly increased until it reaches the sought value (in Fig. 7.11 is depicted

the time history of the nominal angle of attack). In this way it is attempted to recreate an

equivalent steady state condition to the one that would be possible to obtained with a static

solver which correctly models the wake.
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Actually when these simulations are carried out for speeds larger than the flutter one,

then the response doesn’t settle down to a stationary steady state, but an LCO is observed.

Results are summarized in Fig. 7.11. The time histories suggest that the flutter speed is

close to 38 m/s. In fact, the LCO observed at this speed has a very limited amplitude,

indicating that the state is one immediately following a Hopf’s bifurcation. With a small

increase in speed, see 38, 5 m/s, the LCO has a larger amplitude. The LCO observed at

a speed of V∞ = 38 m/s has a frequency of 10.8 Hz. The one at V∞ = 38.5 m/s has a

frequency of 10.5 Hz. With a further increment of speed, the response does not seem to have

any periodicity, suggesting a transition toward chaos. An in depth analysis is surely needed

to affirm and demonstrate this possible chaotic behaviour.

It is anyhow very interesting to notice how a relatively small variation in speed significantly

changes the kind of response.
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Fig. 7.11: Time response and state plane trajectory for JW70 configuration, for different

flow speeds. Solver3 is employed. The angle of attack is increased linearly from 0◦ to 1◦ in

0.5 seconds. No structural damping is considered
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7.3.3 PrP40

The configuration under examination is now the PrP40, where the thickness of the wings is

set to t = 1 mm.

Solver1

Fig. 7.12 shows both the aeroelastic static response, and the time evolution of the PrP40

configuration starting from an equilibrium state and experiencing a vanishing perturbation.

This disturbance consists in a linear increase of the angle formed by the onset flow direction

and the x-axis, followed by a symmetric decrease to the unperturbed value (which is 1◦), the

same used for the JW70.

The outcome of the simulations suggests that the flutter speed is in the range 58÷59 m/s.

Observing the response for speed larger than the flutter’s one, it may be noticed how it is

not settling to his final LCO with the complex pattern observed before for the JW70, in

which the oscillating motion was very slowly cutting its amplitude and shifting its mean

value before reaching the asymptotic behaviour.

This points out the importance, in addition to the overconstraining which again shows to have

its influence in the lengthening of the transient needed to reach the steady state amplitude

and mean value of the oscillation, of the specific layout of JW70 which is characterized by

a substantially different geometry of the lower wing (with a separate outer part).

Repeating the simulation with a value of the damping ratio ζ = 0.03 the critical speed

increases; however, the time response reminds the ones of the undamped system. Thus, this

cases are not shown here for brevity.

Solver2

Results obtained using Solver2 are shown in Fig. 7.14, whereas the LCOs in the state plane

diagram are given in Fig. 7.15.

An interesting direct comparison of the LCO properties at a fixed speed (59 m/s) when

choosing two different Solvers is shown in Fig. 7.16. Exploiting the geometrical follower

nature of the aerodynamic forces (taken into account with Solver2 ) seems to have a mean-

ingful effect on the amplitude of the LCO, and also on the frequency: both of them increase

by a considerable extent. Although it is always difficult to rely on intuition when studying

flutter, moreover when a nonlinear analysis is performed, the increase in amplitude can be

interpreted with the fact that the follower force tends to exacerbate the deformation.
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relative to different velocities when a vanishing perturbation in angle of attack of the onset

flow is given

Solver3

Time responses and state planes of the limit cycle oscillations found by means of the Solver3

are not reported here. The performances of this tool in predicting flutter speed (lowest LCO

speed) are analyzed in the next section.
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7.3.4 Sensorcraft

The Sensorcraft configuration is considered. The undisturbed flow forms with the x-axis an

angle of 3◦.

Solver1

The aeroelastic static response is tracked and reported in Fig. 7.17 where are represented

the vertical displacements of both point P 1, lying on the wing tip, and P 2, at the midspan

(as they are defined in Fig. 7.3). Before further proceedings, it is interesting to comment it.
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Fig. 7.17: Aeroelastic static response of Sensorcraft. Vertical displacements of points P 1

and P 2 are considered. Angle of attack is 3◦. The vanishing perturbation that is applied to

track the dynamic response is also represented

The response presents a sequence of softening and stiffening attitudes. To try to under-

stand the complex exchange of loads involved in this response, videos of the deformation

process obtained by sequences of snapshots like the ones reported in Fig. 7.17 are used. In

the first stiffening region (for wing’s tip), the deformation of the upper wing seems to pro-

duce a bending moment transmitted directly to the lower wing, such that the tip of the wing

does not experience any vertical displacement for a big range of speeds.
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Dynamic responses are presented in Fig. 7.18 for different flow velocities.
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Fig. 7.18: Time response and state plane trajectory for Sensorcraft configuration, for different

flow speeds. Solver1 is employed. No structural damping is considered

Considering at first the case V∞ = 52.5 m/s, the trajectory described by the midspan

point P 2 is the usual wave-like response. This does not hold for wing tip P 1. In fact, consid-

ering a period, during the ascending part the motion is temporary reversed and some higher

frequency oscillations of smaller amplitude establish before continuing again the ascending
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motion. This pattern in the response has been observed also when structural damping was

considered; moreover algorithmic damping (regulated as explained in Sec. 2.2.4 by the pa-

rameter ϱ∞) has been varied in order to avoid influence of high frequencies modes in the

simulation results.

If the speed is slightly increased to V∞ = 53.5 m/s, the same pattern is observed, with the

oscillation characterizing the ascending motion increasing its amplitude. It is natural then

to repeat this process for higher speeds and observe what happens. A speed of V∞ = 59 m/s

is considered, and the response is depicted in Fig. 7.19. The response settles down to the

t [s]

U [mm]zPoint P1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
18

18.2

18.4

18.6

18.8 Point P2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
60

60.5

61

61.5

62

62.5

63

U [mm]z

t [s]

V = 59 m/s
¥ V = 59 m/s

¥

Fig. 7.19: Time response for Sensorcraft configuration, for V∞ = 59 m/s. Solver1 is employed

static equilibrium point, although the speed is increased from the previous cases showing

LCOs (and so again instability would be expected). With the aid of Fig. 7.20 this strange

behaviour is shown: starting from a stable condition (V∞ = 59 m/s), the speed is slowly

decreased to V∞ = 57 m/s: the system loses its stability and an LCO is developed after the

transient.

Solver2

Use of Solver2 does not seem to give qualitatively differences from what previously observed.

What can be noticed is a small decrease of the frequency, as shown in Fig. 7.21 when

compared with the previous results.

Also the same oscillating pattern during the ascending motion is observed. In order to

better visualize this phenomenon, it is interesting to plot the snapshots of the configuration

during a period, Fig. 7.22. As it can be easily verified, the states c, d and e describe the

small oscillation during the ascending motion. Focusing then on the upper wing, it can be

observed a unique smooth wave-like pattern identified by a compression and an extension,

whereas for the outer portion of the wing this does not hold.
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Fig. 7.20: Time response for Sensorcraft configuration, when the speed is decreased from

V∞ = 59 m/s to V∞ = 57 m/s, and the angle of attack is maintained to 3◦

Solver3

Results obtained with Solver3 are presented in Fig. 7.23. The angle of attack is increased

until the same value of 3◦ is obtained.

It is interesting to observe that the high frequency oscillation pattern earlier observed

is now present in the descending portion of the LCO. The addition of a further source of

nonlinearity (represented by wake roll up) seems to influence this pattern. Again snapshots

in Fig. 7.24 are used to better visualize the response. States f , g and h describe the small

oscillation during the descending motion.

124



t [s]

U [mm]z

LCO frequency:   10.7   Hz

Point P1

U [mm]z

t [s]

Point P2

[m/s]Uz Point P1

Point P2[m/s]
zU

Uz [mm]

Uz [mm]

0 0.5 1 1.5
0

20

40

60

0 0.5 1 1.5
0

5

10

15

20

0 10 20 30 40 50 60 70
-4

-2

0

2

4

2 4 6 8 10 12 14 16 18 20

-0.8

-0.4

0

0.4

0.8

V = 53 m/s¥

z=0

Fig. 7.21: Time response and state plane trajectory for Sensorcraft configuration at a speed

V∞ = 53 m/s. Solver2 is employed. Vertical displacements of both points P 1 and P 2 are

considered
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Fig. 7.23: Time response and state plane trajectory for Sensorcraft configuration, for V∞ =

57 m/s. Solver3 is employed
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Fig. 7.24: Sequence of snapshots of the deformed configuration during one period. Solver3

is employed and V∞ = 57 m/s. The points f , g and h represent the small oscillation in the

descending motion
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7.4 Flutter evaluated with Linear and

Nonlinear Analyses

Flutter velocities of the baseline configurations (in particular here are reported results relative

to PrP40 and Sensorcraft) are here reported, in order to have a comparison among the critical

speeds sorting out from the analyses through the three time-domain solvers. The aim is in

fact to attempt a comprehension of what are the basic features whose omission can bring

to misleading results. This task is pursued through the DLM code (see discussion in Sec.

5.2), which also enables to investigate how linear and nonlinear tools may lead to notably

different flutter speed predictions.

Two configurations are here considered: PrP40 and Sensorcraft. They are thought to

be representative of different deformations scenario: the first one exhibits quite large dis-

placements and proves to be sensitive to the structural damping, while the second has small

deformations and a quite insensitiveness of the flutter speed in respect of the structural

damping (see post critical response in Sec. 7.3). In literature it is claimed [85] that DLM

analysis lacks in precision when used for cases in which wake roll-up plays an important

role, or for cases in which the structural deformation is conspicuous. This investigation will

hopefully provide enlightenment about that.

7.4.1 PrP40

The configuration PrP40 is first taken into consideration (t = 1 mm).

Results are relative to different values of structural damping ratio ζ. Flutter speeds are

51.5 m/s for the zero damping case, 52.2 m/s when ζ = 0.01, 53.7 m/s when ζ = 0.02 and

54.9 m/s when ζ = 0.03.

Discrepancy of the flutter speed evaluated for the undeformed configuration and the real

one is about 22%; in this case the discrepancy is in the nonconservative side (overprediction of

the critical condition). Actually, increasing the linearization speed enhances this mismatch,

at least for a large portion of the response. An overprediction of the divergence speed was

also found when linear analyses were performed (see [34]).

7.4.2 Sensorcraft

Here the Sensorcraft is considered. Results are shown in Fig. 7.26. The interesting property

of this configuration is the relatively smaller deformation consequences of the chosen geo-
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Fig. 7.25: Flutter speed predicted linearizing about steady state relative to different flow

speeds for PrP40. The real critical condition (nonlinear flutter) occurs when these two

speeds coincide

metric properties (this will be better characterized in next section). However, as it could be

appreciated, there is still a non-negligible overprediction of the linear tool. In fact, consider-

ing the zero-damping case, the linear prediction gives 59.1 m/s against the 51.6 m/s, with a

difference of approximately 15%. It is interesting to observe that, linearizing about a speed

other than the fundamental (zero) one but still far from the critical, the flutter prediction

instead of being more precise, may actually lead to larger errors. This was observed also for

the PrP40 case, suggesting that, evaluation done with immediate successive linearization

may give misleading trends and even more inaccurate predictions, unless the linearization

speed is close to the real critical one. These results seems to suggest the big role played by

the nonlinearities in the evaluation of aeroelastic instability of Joined-Wing configurations.
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speeds for Sensorcraft. The real critical condition (nonlinear flutter) occurs when these two
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7.5 Influence of Solver choice in the prediction

of flutter speed

In this section it is investigated the effect of the features that discern the Solvers developed in

this work on the determination of flutter speed. In-house DLM code results (reported in Sec.

7.4) are used as well as a comparison and as a further example of a different modelization

(frequency-domain) of the aeroelastic problem, studying if and why this can bring to different

results.

7.5.1 JW70

In Fig. 7.27 it is plotted the flutter speed with respect to the structural damping ratio.
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Fig. 7.27: Flutter speeds for JW70 configuration, evaluated with the different solvers and

for different values of structural damping ratio

The critical speeds evaluated with the three time-domain Solvers are obtained by consid-

ering the two successive speeds for which the response was showing and was no more showing

an LCO. In this case, the DLM predicts the highest flutter speed in respect with all the other

methods. Solver2, instead, gives the lowest. Employing correctly the lift direction can be

considered detrimental for the deformation of the structure (as speculated by mean of Fig.
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7.16), but this doesn’t automatically lead to the conclusion that it has a decreasing effect on

the prediction of the flutter speed. In fact, especially for configurations behaving nonlinearly,

the aeroelastic instability is a result of the redistribution of stiffness (particularly of changing

in stiffness ratios) and thus an increase in the overall deformation (due to follower nature of

forces) doesn’t have a clear consequence in that sense. For example, it will be shown for the

PrP40 layout that Solver2 predictions have an opposite trend respect to this layout.

Solver3, which have singularities bound to the structure and the wake free to deform and

evolve, is the most different among the adopted codes. The trend shown here, and confirmed

also in the other layouts, is an overstimation of the critical speed with respect to Solver2, the

one that more goes near to its modelization and so it is more appropriated for a comparison

to catch the effect of its new features. The wake roll up seems in this sense to have a relevant

role in increasing the critical speed, as will be later detailed.

7.5.2 PrP40

In Fig. 7.28 it is plotted the flutter speed, with respect to the structural damping ratio.

Considering the undamped case, the DLM solver finds a flutter speed of approximately
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Fig. 7.28: Flutter speeds for PrP40 configuration, evaluated with the different solvers and

for different values of structural damping ratio

51.5 m/s, whereas, Solver1 predicts a critical speed of 58.5 m/s. The relative error is in
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the order of 12%, definitely larger than the discrepancy observed for the JW70 case. The

number of natural modes, aerodynamic panels and structural elements in the analyses have

been verified to be enough to give convergent results.

Another difference from the JW70, earlier disclosed in the comments about effects of follower

forces, is the higher flutter speeds predicted by Solver2 when compared to Solver1 for nonzero

damping ratios.

However, the most relevant observation is the discrepancy of Solver3 with all the other

solvers. Since the greater improvement of this Solver lies in the wake model (especially if a

direct comparison between Solver3 with Solver2 is considered), an explanation is tempted

based on this physical argument. To isolate this effect, a pure aerodynamic analysis is

introduced, that is the problem as stated in Sec. 2.3 (without the aeroelastic coupling) is

solved and the loads acting on the rigid structure are evaluated.

The flow has an angle of attack of 5◦ and the lift coefficient evolution in time is depicted in

Fig. 7.29. In the immediate transient there is a small difference between the lift coefficient

which vanishes when evolving in time. The first result is thus that the net force acting on
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Fig. 7.29: Lift coefficient’s variation with time for PrP40 configuration for both rigid and

free wake models

the wings is not particularly affected by the wake model. In Fig. 7.30 are reported two

snapshots of the free wake evolution for this case.
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Then, the distribution of lift is considered. In Fig. 7.31 it is shown the distribution of local

free wake PrP40 (rigid) a=5°

Fig. 7.30: Wake evolution after 0,08 s

lift coefficient (lift coefficient of a chordwise rows of panels) over the wingspan at a time in

which the global lift coefficients are identical. Effects of the wake can now be appreciated.
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Fig. 7.31: Local lift coefficient span distribution for PrP40 configuration for both rigid and

free wake models at t = 0,08 s

When free wake is modeled, there is a significant decrease of the load on the outer part of
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the upper wing; on the other hand on the front wing there is an almost uniformly distributed

increase. A forward swept single wing is known to be prone to enhance divergence instability,

the opposite for the backward [15]; on pure speculative basis, the redistribution of loads

brought from the free wake model can thus be regarded as stabilizing because the upper

wing sees decreased its load, particularly at the tip where the destabilizing bending-torsion

coupling introduced by the sweep angle is stronger, and the opposite happens for the lower

wing. The same trend is found considering a different time.

To investigate the reason of such a redistribution, similar analyses were carried out on

different configurations, like the rectangular wing and the delta wing analyzed in Cap. 6.

Results, not reported here for brevity, don’t show such a big effect: maximum percentage

difference is around 1%, against 15% or 20% reached by the PrP40.

A similar predominance of wake modelization influence for a Joined-Wing configuration

respect to a standard one is in some way expected since this layout inherently provides a

deep reciprocal influence body-wake, which can thus bring to different results if different

models are adopted. It is not anyway so evident if the main cause has to be sought in the

particular PrP40 geometry (staggered and swept angle) or in general in the Joined-Wing

layout itself.

Therefore a similar aerodynamic study was repeated for an unstaggered and with zero sweep

angle PrandtlPlane-like configuration, the standard Wing Box shown in Fig.7.32.

The transient and variation of lift coefficient with time exhibits a similar behaviour to

Fig. 7.32: Standard Wing Box layout for aerodynamic investigations

the one pointed out in Fig. 7.29 and it is thus here omitted. More interesting, instead, is

the distribution of loads for this case, reported in Fig. 7.33. As can be seen, there is still
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Fig. 7.33: Local lift coefficient span distribution for Wing Box layout for both rigid and free

wake models

this changing in the distribution comparing the two cases, regarding this as a property of

the Joined-Wing configuration and not a particular case of PrP40. A similar aerodynamic

analysis of the JW70, which is showing as well a decrease in the flutter speed when Solver3

is employed instead of Solver2, confirms this trend.

A further note about the role of the wake’s model is that it can affect the induced drag

of the configuration. This was already shown in reference [13], where a free-wake modelling

was shown to predict a lower induced drag whereas the lift coefficient was not experiencing

differences.

7.5.3 Sensorcraft

In Fig. 7.34, it is plotted the flutter speed, as evaluated with the different solvers, with

respect to the structural damping ratio.

The predictions are now much closer, and the differences are negligible. This is thought to

be strictly related to the smaller deformations involved, which do not enhance the modelling

differences of the solvers.
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7.6 Bifurcations and multistability

This section shows the complicate scenario that can arise when the aeroelastic nonlinear sys-

tem represented by a Joined-Wing configuration is studied. Some of the concepts introduced

in Cap. 4 are here characterized through a practical example.

The test case adopted is the PrP40 shown in Fig. 7.2 where the thickness is now selected

to be 0.6 mm. The freestream velocity is along the x axis, i.e. the configuration has angle

of attack zero; the tools employed are Solver1 for the dynamic response and the aeroelastic

static solver (see Cap. 5).

Differently than what has been made in Sec. 7.3, the starting tool is directly the dynamic

solver. In fact there is no more the intent to verify if the equilibrium point found through

static analyses is dynamically stable. The goal here is to study what happens to the system

when, starting from the undeformed configuration where no aerodynamic forces are acting

(since angle of attack is zero), a vanishing disturbance is applied. The behaviour is expected

to depend on parameters, recalling Sec. 4.5; in this analysis the speed of the free stream is

varied, but this procedure could be employed for all the others meaningful parameters (as

thickness, joint height).

Since the perturbation is vanishing, the undeformed configuration is a fixed point of the

system for all velocities. With reference to the bifurcation diagram of Fig. 7.35, in which the

vertical displacement of the tip of the lower wing (point P1 in Fig. 7.2) has been chosen as

representative state of the system, these fixed points lie on the ordinate axis. In Fig. 7.37 the

state space of the system is reported; accordingly to the analysis of stability of dynamical

systems, this graph is a useful tool to attempt the comprehension of what is happening to

the system. Actually just two states of the system are represented, the vertical displacement

of the lower wing tip and its time derivative, thus state plane would be a better definition.

For each range of the parameter, this graph enables to detect the attractor (or attractors) of

the systems looking at the behaviour of its states (see Sec. 4.5 for a more precise discussion).

Until the speed is smaller than V sd, only the main branch (undeformed) is present. This

critical speed is associated with two saddle node bifurcations occurring on branches far from

the fundamental one. What occurs is the inception of two new stable fixed points on each of

the non-fundamental branches. That is, if the speed falls between V sd and V bf, there are five

possible equilibrium configurations ; three of them are stable. This property is demonstrated

in Fig. 7.36 by giving different vanishing perturbations in angle of attack, and observing that

after the transient the configuration can settle to the three different stationary equilibria.
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Fig. 7.35: Bifurcation diagram of the system. Solid (dashed) lines represent stable (unstable)

fixed points, full circles stand for stable limit cycle oscillations and the full complex star

stands for stable bi-cyclic periodic closed orbit

A so called tri-stability situation is in place.

Looking at Fig. 7.37, a speed in this range has been chosen, i.e. V∞ = 29.5 m/s, and

the equilibrium points are represented with small circles, full (empty) if they are stable

(unstable). When speed approaches V bf, there is a bifurcation that leads to a change in the

stability of the main branch: the undeformed configuration looses its stability. Probably

it is a transcritical bifurcation, since it seems that an exchange of stability has taken place

among the equilibrium points of the system. The state plane diagram for V∞ = 33.7 m/s,

which is in the range V bf ÷ V hb is depicted in Fig. 7.37. There is a bi-stability, being the

stable states on the branch I and II. There are also two unstable poles, the first being on

the undeformed configuration and the other one on the branch II. Responses showing this
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Fig. 7.36: Tri-stability region for V∞ = 29.5 m/s. Starting from the initial undeformed

configuration different vanishing perturbations in angle attack are given, and the response

is tracked

behaviour are represented in Fig. 7.38.

Increasing the speed, in branch II it is encountered an Hopf bifurcation; this critical speed

is V hb. This bifurcation pertains to the loosing of stability of a stationary equilibrium, which

ends up in periodic oscillations. On the contrary, the properties of the fixed points on the

other branches do not change as again can be argued from Fig. 7.37 when range V hb ÷ V fb

is considered.
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Fig. 7.37: State spaces for the different meaningful speed ranges. Equilibrium points are

represented with small circles, full (empty) if they are stable (unstable)

Thus, as it is shown for a speed V∞ = 34.0 m/s, different perturbations lead to the

response shown in Fig. 7.39.

The largest distinguishing speed found in this analysis is V fb, for which a flip bifurcation

(also called period doubling) occurs. For speeds slightly larger than V fb, considering that

branch I has still stable fixed points, there is again a bi-stability region, similar to the

one encountered in the previous range but of different type because on branch II a clear

bifurcation took place. This is shown also in Fig. 7.40; the close orbit described after period

doubling occurrence is here assessed to as bi-cyclic periodic orbit.
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Fig. 7.38: Bi-stability region for V∞ = 33.7 m/s. The system can settle down to both the

static equilibrium points on branches I and II

As discussed in Sec. 4.5.3, periodic solutions, as for example the ones sorting out from a

Hopf bifurcation, can lose stability, giving rise to different kind of phenomena. In this exam-

ple it seems that the periodic orbits characterizing branch II in the range V hb÷ V fb become

unstable through a period doubling. It has been stated that to correctly mathematical assess

a flip-bifurcation occurrence the eigenvalues of the so called Monodromy Matrix (known also

as Floquet characteristic multipliers) [94, 104] have to be studied. This was not pursued in

this study; instead, period doubling was assessed noticing that, immediately after V fb, the

period of the orbit was exactly doubling compared to the one of the limit cycle oscillation

established at a speed slightly lower than that critical speed. Fig. 7.41 clearly shows this

event.
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Fig. 7.39: Bi-stability region for V∞ = 34 m/s. Either the static solution on branch I or the

limit cycle oscillation are approached after a transient

To correctly describe how topologically changes the dynamic behaviour of a system,

its response as a whole, i.e. looking simultaneously at the response of all its states in

the state space, should be considered. For obvious reasons, when the dimension of the

system enormously increases, as in this example, this is not more possible; anyway a better

perspective is attempted in Fig. 7.42 where are plotted various combinations of the state

plane starting from three degrees of freedom, the vertical displacements of points P1, P2 and

P3 (shown in Fig. 7.2).

When speed is further increased, the response associated with the branch detached from
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Fig. 7.40: Bi-stability region for V∞ = 35 m/s. Either the stationary equilibrium points on

branch I or the bi-cyclical closed orbit characterizing now branch II are approached after a

transient

the period doubling bifurcation seems to have a chaotical response, as shown in Fig. 7.43.

Even though in depth analyses are needed to confirm this conclusion, it has been noticed [86]

that the period doubling bifurcation often triggers the transition to chaos; this has been found

also in experimental studies, for example on electric circuits [110] and chemical reactions [61].

The bifurcation diagram shown in Fig.7.35 has been obtained, for what concerns solid and

dashed lines representing stable and unstable fixed points, making use of the continuation

capability of the nonlinear static tool (see Sec. 5.2). Considering for example Fig. 7.36,

three distinct configurations sort out of the dynamic simulations. The first one corresponds
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Fig. 7.41: Time responses for a speed higher than V fb. They are compared to a subcritical

one to assess the doubling of the period

to the undeformed condition; the other two, giving rise to branch I and II, can be considered

starting points for a static analysis, in a reverse perspective if strategies employed in 7.3 are

recalled.

In this way, starting for example from the two saddle nodes depicted in Fig.7.35 and in-

creasing the load (that by mean of the load level parameter employed in this analysis has a

straight relation with the velocity of the flow) it is possible to find the neighbours stationary

points and so on to build the entire curve. Care, of course, has to be paid in the choice of

the parameters governing arc-length scheme since the accuracy of the reproduced diagram

mostly rely on the ability to track the effective behaviour of the system, which is not a trivial

task considering its multistability nature.
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Fig. 7.42: State planes for points P1, P2, P3. Differences in the response topology with

respect to the one shown by a stable LCO orbit can be appreciated
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Chapter 8

Aerodynamic Tangent Matrix for

the Unsteady Panel Method

In this section it is shown a methodology to obtain the aerodynamic tangent matrix, also

called aerodynamic Jacobian, when an Unsteady Panel Method (UPM) is employed as aero-

dynamic solver. The role played by the aerodynamic tangent matrix in order to solve the

dynamic equation with a Newton method has been pointed out in Sec. 2.2.3. The present ef-

fort is thought to provide a tool for future aeroelastic studies involving the UPM for analyses

on wing box models.

8.1 Problem Statement

Recalling the definition of aerodynamic tangent matrix given in Sec. 2.2.3, it follows

Kaero =
∂F S

aero

∂uS
g

(8.1)

where F S
aero represents the aerodynamic loads and uS

g is the array with the global generalized

displacements (translations and rotations) of the nodes obtained from the FE discretization.

It is further assumed that the aerodynamic loads do not depend on the rotational degrees

of freedom, thus the derivatives are just in respect to the translations uS. In Cap. 3 two

methods to transfer the information from the aerodynamic to the structural mesh were pre-

sented, thus in the following uS and F S
aero can be substituted with uA and F aero.

An explicit dependence of the external forces acting on the panels from the boundary dis-

placements (vertices of the panels) is sought, in order to be able to perform the sought deriva-

tives. This task can be pursued using the strategies of the sensitivity analysis employed in
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the last decades in aerodynamic optimization, where the derivatives of aerodynamic quanti-

ties (like lift and drag, typically depending on both geometry and flow) with respect to some

parametrization of the geometry are needed [60]. The concept of gradient-based optimization

has similarities with the present goal: given a vector I of objective functions and a vector v

of design variables which parametrize the problem, the aim is to evaluate ∂I
∂v . The principle

methods of sensitivity evaluation, apart from the obvious one consisting in the application of

finite differences which though suffers of drawbacks on both the computational and accuracy

point of view, can be divided into two broad categories [91] whose efficiency depend on the

number of cost functions nI and the number of variables nv: direct and adjoint approach.

It will be given here only a brief survey of the implicit gradient approach, which can be

regarded as a simplified version of the adjoint approach [60].

Considering the flow about an aerodynamic body, the continuous governing equation R

is a function of the flow-field variables (indicated as w) and the physical location of the

boundary (represented by the function X)

R = R (w,X) = 0 (8.2)

The properties that define the cost function depends as well on w and X such that

I = I (w,X) (8.3)

Thus a change in the cost function I can be expressed as

δI =
∂I

∂w
δw +

∂I

∂X
δX (8.4)

A discrete approach is pursued, that is both the variables w and the shape X are defined in

a finite number of points and so they have to be thought as arrays containing their values in

the points arising from the discretization. The discrete governing equations of the flow field

which express validity of eq.(8.2) in each node have in matrix form this expression

R = R (w,X) = 0 (8.5)

In order to eliminate δw from eq.(8.4), the governing equations of the flow field are used as

constraints. From eq.(8.5) it holds

δR =
∂R

∂w
δw +

∂R

∂X
δX = 0 (8.6)

which enables to determine δw and insert the result in eq.(8.4).
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8.2 Application to the Unsteady Panel Method

This procedure can be followed to evaluate the aerodynamic tangent matrix, in the sense that

though no optimization process is performed here, the aim is as well to evaluate derivatives of

functions with respect to variables of the problem. F aero can thus be interpreted as the cost

function, while the boundary X is coincident with the design variables uA (displacement of

the vertices of the panels). For what concerns the flow-field variables, the governing equation

for an unsteady panel method enforces the Dirichlet boundary condition of non penetration

in the control points and have this expression

R = ABN · µ+AW · µW −B · σ = 0 (8.7)

where µ represents the strength of doublets singularities, ABN and AW are the relative

Aerodynamic Influence Coefficients matrices for the body-near wake and for the far wake

respectively; σ represents the strength of sources singularities and B is the relative Aerody-

namic Influence Coefficients matrix.

The unknown strength of the sources is known from the geometry (being related to the

normal component of the free-stream) so the doublet strengths µ it’s a possible choice for

the flow-field variables w. Eq.(8.5) can thus be re-written as

R
(
µ,uA

)
= 0 (8.8)

which enables to give a straight expression of eq.(8.6)

δR =ABNδµ+ µ
∂ABN

∂uA
δuA + µ

∂AW

∂uA
δuA+

−σ ∂B

∂uA
δuA −B

∂σ

∂uA
δuA = 0

(8.9)

From eq.(8.9) can be then evaluated the term
∂µ
∂uA as follows

∂µ

∂uA
=
[
ABN

]−1
(
σ
∂B

∂uA
+B

∂σ

∂uA
− µ

∂ABN

∂uA
− µ

∂AW

∂uA

)
(8.10)

Having in mind the aim to reduce as much as possible the computational cost of the entire

procedure (since the evaluation of the tangent matrix will be probably required at each

timestep of the dynamic simulation), it can be inferred that the last term is neglectable (as

its physical meaning is the variation in the induction of a panel of the wake if a node in the

body is perturbed) leading to the final expression for eq.(8.10)

∂µ

∂uA
≃
[
ABN

]−1
(
σ
∂B

∂uA
+B · ∂σ

∂uA
− µ

∂ABN

∂uA

)
(8.11)
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The aerodynamic load F j
aero acting over panel j can be written as

F j
aero

(
µ,uA

)
= pj (µ)Sj

(
uA
)
nj

(
uA
)

(8.12)

where pj, Sj and nj are respectively the pressure, the area and the normal vector of each

panel j; the explicit dependence of the loads from the variables of the problem has been

indicated. Eq.(8.4) specialized for this case leads to

δF j
aero =

(
∂pj
∂µk

Sjnj

)
δµk +

(
pj
∂Sj

∂ul

nj

)
δuA

l +

(
pjSj

∂nj

∂uA
l

)
δuA

l (8.13)

where, using the results of eq.(8.11), the relation

δµk =
∂δµk

∂uA
l

δuA
l (8.14)

can be employed. In this way the final expression for eq.(8.13) is

δF j
aero =

(
∂pj
∂µk

∂µk

∂uA
l

Sjnj

)
δuA

l +

(
pj
∂Sj

∂ul

nj

)
δuA

l +

(
pjSj

∂nj

∂uA
l

)
δuA

l (8.15)

8.3 Evaluation of the single terms

In order to give an operative form of the aerodynamic tangent matrix, the single terms in

eq.(8.15) are stressed out. It consists of four main contributions:
(

∂µ
∂uA

)
kl

= ∂µk

∂uA
l

which

can be regarded as the sensitivity of doublet strength in respect to the boundary displace-

ments;
(

∂p
∂µ

)
jk

=
∂pj
∂µk

which is the sensitivity of pressure in respect to doublet strength;(
∂S
∂uA

)
kl

= ∂Sk

∂uA
l
which is the variation of panel surface with respect to boundary displace-

ments;
(

∂n
∂uA

)
kl,1

=
∂nx

k

∂uA
l
,
(

∂n
∂uA

)
kl,2

=
∂ny

k

∂uA
l
and

(
∂n
∂uA

)
kl,3

=
∂nz

k

∂uA
l
which is the variation of the

normal direction of the panel (in its three directions) with respect to boundary displacements.

8.3.1 Sensitivity of doublet strength in respect to displacements

The term
∂µ
∂uA is here investigated, recalling its definition from eq.(8.11). In reference [62]

is provided a detailed treatise of the formulas that have to be used in order to evaluate the

two involved influence matrices (ABN and B).

First the body-near wake Aerodynamic Influence Coefficients matrix ABN is considered.

The generic entry of this matrix Cjk represents the perturbation potential induced by the

uniform unit doublet distribution on the panel k (emitting panel) over the control point
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of panel j (receiving panel). The in-house panel method capability is organized such that

the coordinates of the center of the receiving panel j (receiving point) are transformed from

the global to the reference system local with the emitting panel k (which lies in a plane

perpendicular to the local z-axis) in order to use the correct formulas for the induction (as

the induction of a doublet depends on its orientation and so in this way formulas valid for a

doublet aligned with the z-direction can be adopted). In Fig.8.1 is depicted the quadrilateral

doublet element and the two previously defined reference systems: (X,Y,Z) is the global one

(in which the perturbation δuA is considered); (l,m,n) is the reference system local with the

emitting panel. The coordinates of the 4 vertices of the emitting panel and of the center of

Fig. 8.1: Quadrilateral doublet element

the receiving panel, all expressed in the local reference (l,m,n), are indicated respectively with

(x1,y1,0), (x2,y2,0), (x3,y3,0), (x4,y4,0) and (x,y,z). In this treatise, just the main equations

are reported since the amount of mathematical relations involved in the whole procedure is

quite big; the interested reader is referred to Appendix C for the complete list of equations

and variables adopted in the algorithm.

The generic entry of the matrix ABN can be evaluated applying the equation that gives

the perturbation potential (for a unitary doublet strength)

ΦD = − 1

4π

{
tan−1

[
zx21(F1r2 −G1r1)

z2x2
21r1r2 + F1G1

]
+ tan−1

[
zx32(F2r3 −G2r2)

z2x2
32r2r3 + F2G2

]
tan−1

[
zx43(F3r4 −G3r3)

z2x2
43r3r4 + F3G3

]
+ tan−1

[
zx14(F4r1 −G4r4)

z2x2
14r4r1 + F4G4

]} (8.16)

The constants involved in this calculation are reported in Appendix C. When z → 0 and

the receiving and emitting panel do not coincide ΦD = 1
2
, otherwise ΦD = 0.
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For improved computational efficiency, when the receiving point is far from the center of

the emitting panel, the influence of the quadrilateral element with area A can be approxi-

mated by a point doublet (far-field approximation)

ΦD =
S

4π

z√
(x2 + y2 + z2)3

(8.17)

The last contribution to this matrix comes from the near wake (the first row of wake panels

shed from the trailing edge of the body). There is a relation between the doublet strength

of the wake panel l (µw,l) and the body surface doublet strengths at the trailing edge (µUte,l

and µLte,l for the upper and lower correspondent trailing edge panels, respectively). Infact

in order to satisfy the Kutta linear condition it has to be

µw,l = µUte,l − µLte,l (8.18)

Consequently the contribution of the panel l of the near wake to the boundary equation of

element j can be written as

Cjlµw,l = Cjl(µUte,l − µLte,l) (8.19)

This means that in order to include this contribution within the strength of the doublets

of the body (thus eliminating the strengths of the near wake doublets as unknowns of the

problem), it’s enough to express the influence of the panels of the first row of the wake on

the generic j point in terms of the contribution of the two correspondent shedding panels

at the trailing edge; this can be simply made modifying the influence term of the receiving

point j when the emitting panel is on the trailing edge of the body. The final coefficients

ABN
jk of the matrix can thus be written as

ABN
jk = Cjk if panel k is not at the trailing edge

ABN
jk = Cjk + Cjl if k = Ute,l

ABN
jk = Cjk − Cjl if k = Lte,l

(8.20)

Now that the matrix ABN has been completely defined, it’s possible to evaluate the term
∂ABN

∂u (apex A is omitted for clarity). The variation δu will produce two different effects

depending if the perturbed vertex is thought as belonging to the receiving or the emitting

panel.

The former case is first considered. If k is the ID of the panel where the perturbed

vertex (that will have a global ID i while its local ID can just be 1,2,3 or 4 as illustrated in
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Fig.8.1) is located, this first case consists in the building of row
∂ABN

k,c

∂ui
with c = 1, ..., Npan

where Npan is the number of aerodynamic panels. Of course ui is a vector since point i

has three degrees of freedom which can be perturbed, i.e. there are ui,x, ui,y and ui,z; here
∂

∂ui
is used to stay more general and ui has to be read as the displacement of point i in

the selected direction. The generical term
∂ABN

k,b

∂ui
(where b is the ID of the emitting panel)

can be obtained considering eqs.(8.16) and (8.17). Since these relations are expressed in the

local reference system, it’s useful to consider first a perturbation of the 3 components of

the receiving point which respectively leads to (x,y,z) → (x+δx,y,z), (x,y,z) → (x,y+δy,z),

(x,y,z) → (x,y,z+δz). In case of validity of eq.(8.17), the derivatives of the perturbation

velocity potential are easy to evaluate and are given by

∂ΦD

∂x
= − S

4π

3zx

d5

∂ΦD

∂y
= − S

4π

3zy

d5

∂ΦD

∂z
=

S

4π

d2 − 3z2

d5

(8.21)

where d=
√

x2 + y2 + z2 is the distance between the centers of the two panels (the origin

of the local reference coincides with the center of the emitting panel). The derivatives of

eq.(8.16) with respect to the same variables are presented in Appendix C.

After the derivatives ∂ΦD

∂x
,∂Φ

D

∂y
and ∂ΦD

∂z
are evaluated, the term

∂ABN
k,b

∂ui
can be obtained. In

order to do that, it is first observed that ∂
∂ui

= ∂
∂si

where si is the coordinate of point i (i.e.

it’s identical to derive in respect to displacement or coordinate of the perturbed point);

the evaluation of the derivative of the potential in respect of the displacement in global

coordinate can be performed making use of the chain rule

∂ΦD

∂ui

=
∂ΦD

∂si
=

1

4

(
∂ΦD

∂x

∂x

∂si
+

∂ΦD

∂y

∂y

∂si
+

∂ΦD

∂z

∂z

∂si

)
(8.22)

where everything is multiplied by 1
4
because the receiving point is in the center of the panel

(it’s not coincident with the vertices being perturbed, which thus have an influence weighted

by this factor). The terms ∂x
∂s
, ∂y

∂s
and ∂z

∂s
can be evaluated through the matrix GLb which

enables to shift the coordinates of the perturbed point i from the Global to the Local reference

system of the emitting panel k. Defining l,m,n the unit vectors of this system, the following

holds  x

y

z


i

=

 lx ly lz

mx my mz

nx ny nz


k  sx

sy

sz


i

(8.23)
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Therefore, if for example it is performed the evaluation of the term
∂ABN

k,b

∂u20,x
(point 20 belonging

to panel k is perturbed in the direction x), from eq.(8.22) it follows

∂ABN
k,b

∂u20,x

=
1

4

(
∂ΦD

∂x
lx +

∂ΦD

∂y
mx +

∂ΦD

∂z
nx

)
(8.24)

Of course other auxiliaries reference systems can be employed, as for example is the case

for the in-house code, where body reference systems are contemplated for analyses involving

more then a single body; in this cases if l,m,n describes the local reference system in the

body frame (and not in the global one as previously assumed), GLb has not the expression

in eq.(8.23) since an additional transformation is needed to shift from the body reference to

the global one. Therefore if body and global systems are not coincident, this difference must

be contemplated.

Last effort to completely carry out this first case is due to the near wake; recalling

eq.(8.20), when b is a trailing edge panel the term
∂ABN

k,b

∂ui
has to contain two terms: the first,

the standard one, due to variation of Ckb; the second one due to ±Ckl (+ or - depending

on the upper or lower position of panel b) which can be obtained in the way just shown, of

course considering now the induction of the wake panel l (and not of the body panel b) on

point k.

Now it is considered the case of perturbed vertex belonging to the the emitting panel,

that is the column
∂ABN

c,k

∂ui
with c = 1, ..., Npan is built. The generical term b of

∂ABN
b,k

∂ui
(where b is

now the ID of the receiving panel) can be obtained always considering eqs.(8.16) and (8.17)

but now the variation concerns one of the 4 vertices of the panel and thus the derivatives

are made with respect to their coordinates. As an example, here is reported the case when

eq.(8.17) is applicable

∂ΦD

∂x1

=
∂S

∂x1

z

4πd3

∂ΦD

∂x2

=
∂S

∂x2

z

4πd3

∂ΦD

∂x3

=
∂S

∂x3

z

4πd3

∂ΦD

∂x4

=
∂S

∂x4

z

4πd3

∂ΦD

∂y1
=

∂S

∂y1

z

4πd3

∂ΦD

∂y2
=

∂S

∂y2

z

4πd3

∂ΦD

∂y3
=

∂S

∂y3

z

4πd3

∂ΦD

∂y4
=

∂S

∂y4

z

4πd3

Again the chain rule is applied to evaluate the derivative in respect to the global displacement;

if for example the local ID of vertex i is 2, it reads

∂ΦD

∂ui

=
∂ΦD

∂x2

∂x2

∂si
+

∂ΦD

∂y2

∂y2
∂si

(8.25)
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where now the terms ∂x2

∂si
and ∂y2

∂si
can be evaluated through the matrix GLk which enables

to shift the coordinates of the perturbed vertex i from the Global to the Local reference

system of the emitting panel k. Defining as before l,m,n the unit vectors of this system,

the following holds  x1

y1

0


i

=

 lx ly lz

mx my mz

nx ny nz


k  sx

sy

sz


i

(8.26)

Therefore, when it is performed the evaluation of term
∂ABN

b,k

∂u6,z
(point 6 is perturbed in the

direction z), it’s first necessary to define which is its local ID (in order to establish which of

the local derivatives have to be considered); assuming point 6 is the local vertex 2 of panel

k, the first contribution to this term can be expressed as

∂ABN
b,6

∂u6,z

← ∂ΦD

∂x2

lz +
∂ΦD

∂y2
mz (8.27)

Eqs.(8.16) and (8.17) represent the influence of a doublet (distribution or point) with normal

z in the reference system where the influence is evaluated; when the perturbation concerns

the vertex of the emitting panel, as is the case now considered, the local system exhibits a

change in its orientation (being the unit vectors l and m by their definition on the doublet

plane). To take this into account, it can be noticed that the resulting effect is a change in

the matrix GLk which enables to shift the coordinates of the receiving point of panel b from

the Global to the Local reference system of the inducing panel k, affecting the terms x, y

and z in eqs.(8.16) and (8.17). Simplifying, in the relation x

y

z


b

=

 lx ly lz

mx my mz

nx ny nz


k  sx

sy

sz


b

(8.28)

used to find the local coordinates (x, y, z)b of the receiving point from the global ones

(sx, sy, sz)
b, the unit vectors l,m,n have changed and so a further variation is exhibited

by the term ABN
b,k . This thus implies that there is a variation of the local position of the

receiving point of panel b and so again the derivatives ∂ΦD

∂x
,∂Φ

D

∂y
and ∂ΦD

∂z
are performed. As

before it holds
∂ΦD

∂ui

=
∂ΦD

∂si
=

∂ΦD

∂x

∂x

∂si
+

∂ΦD

∂y

∂y

∂si
+

∂ΦD

∂z

∂z

∂si
(8.29)

However now ∂x
∂si

, ∂y
∂si

and ∂z
∂si

have a different meaning: coordinates (x, y, z) are not changing

because their global coordinates have been moved, but because the rotation matrix has
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changed. To stress out these derivatives, eq.(8.28) is considered and the derivatives of the

terms of the rotation matrix with respect to the global coordinate of the perturbed vertex

is performed
∂x

∂si
=

∂lx
∂si

sbx +
∂ly
∂si

sby +
∂lz
∂si

sbz

∂y

∂si
=

∂mx

∂si
sbx +

∂my

∂si
sby +

∂mz

∂si
sbz

∂z

∂si
=

∂nx

∂si
sbx +

∂ny

∂si
sby +

∂nz

∂si
sbz

(8.30)

Moreover, in eq.(8.28) also the vector (sx, sy, sz)
b exhibits a changing. This happens since

the local frame where the receiving point has to be projected has the origin in the center of

the emitting panel; (sx, sy, sz)
b is then created subtracting the coordinates of the center of

the emitting panel P k to the coordinates of the receiving point P b

sb = P b − P k (8.31)

A perturbation of a vertex of panel k surely affects the position of its center, i.e. the vector

P k=(P k
1 ,P

k
2 ,P

k
3 ), leading to

∂P k
j

∂si
=

1

4
δij (8.32)

where δij is the Kronecker delta. In eq.(8.32) it has been assumed that global and body

reference coincides; if this is not true, eq.(8.32) it is valid for a perturbation of the vertices

described in the body frame and the chain rule has to be used to express the derivatives with

respect to global coordinates (this is not shown here to not further complicate the treatise).

The final expression for the term
∂ABN

b,6

∂u6,z
is then

∂ABN
b,6

∂u6,z

=
∂ΦD

∂x2

lz +
∂ΦD

∂y2
mz +

∂ΦD

∂x

(
∂lx
∂sz,6

sbx +
∂ly
∂sz,6

sby +
∂lz
∂sz,6

sbz −
1

4
lz

)
+

+
∂ΦD

∂y

(
∂mx

∂sz,6
sbx +

∂my

∂sz,6
sby +

∂mz

∂sz,6
sbz −

1

4
mz

)
+

+
∂ΦD

∂z

(
∂nx

∂sz,6
sbx +

∂ny

∂sz,6
sby +

∂nz

∂sz,6
sbz −

1

4
nz

) (8.33)

In Appendix can be found the derivatives involved in eq.(8.33). In this case the near-

wake gives no contribution since as stated by eq.(8.20), the wake provides just an inducing

coefficients, being not induced from the body’s panels, thus its influence coefficient it is not

affected if an emitting body panel changes its coordinates.

The algorithm shown to build ∂ABN

∂u would lead to a three-dimensional array, because

for each perturbed displacement u (again for each displacement, each direction has to be
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separately considered), there is a square matrix ∂ABN

∂u
with dimensions Npan ×Npan. Since

in eq.(8.11) it is stated that the required quantity is ∂ABN

∂u µ an not ∂ABN

∂u itself, it is better for

storage reasons to directly perform during the calculation the product ∂ABN

∂u µ which leads,

for each vertex perturbation, to a one dimensional array with Npan elements. Calling again k

the panel whose vertices are perturbed, when first case is examined (perturbed vertex belongs

to the receiving panel) this consists in multiplying
∂ABN

k,b

∂u
µb for each considered emitting panel

b ; in the second case
∂ABN

b,k

∂u
µk is evaluated, and so on for each perturbation δu.

∂ABN

∂u · µ can thus finally be assembled leading to the required matrix Npan × 3Nvert where

Nvert is the number of vertices of the aerodynamic grid.

Now the Aerodynamic Influence Coefficients matrix B for the source distribution is

considered. The generical entry of this matrix Bjk represents the perturbation potential

influence coefficient for a constant unitary source distribution on the panel k (emitting panel)

over the control point of panel j (receiving panel). In analogy with what said about source

induction, the coordinates of the receiving point j are transformed from the global to the

reference system local with the emitting panel k in order to correctly define the influence

(as it will be shortly highlight, a part of the source induction is related to the doublet one

and so it is recommended to express everything in the same frame). As a consequence, the

same nomenclature is used to call the local frame and the points defined within it (Fig.8.1).

The generical entry for the matrix B can be evaluated applying the equation that gives the

perturbation potential ΦS (for a unitary source strength)

ΦS = − 1

4π

[
(x− x1)y21 − (y − y1)x21

d12
log

(
r1 + r2 + d12
r1 + r2 − d12

)
+

+
(x− x2)y32 − (y − y2)x32

d23
log

(
r3 + r2 + d23
r3 + r2 − d23

)
+

+
(x− x3)y43 − (y − y3)x43

d34
log

(
r3 + r4 + d34
r3 + r4 − d34

)
+

+
(x− x4)y14 − (y − y4)x14

d41
log

(
r4 + r1 + d41
r4 + r1 − d41

)]
− zΦD

(8.34)

where ΦD is the potential of a constant doublet distribution described in eq.(8.16). The

far-field approximation, consisting in the approximation of a quadrilateral element with a

point source, leads to

ΦS =
S

4π
√

x2 + y2 + z2
(8.35)

Having defined matrix B, the evaluation of the term ∂B
∂u closely follows the steps used for
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∂ABN

∂u . The derivatives of the potential when the perturbed vertex belongs to the receiving

panel are now given by (when eq.(8.35) is assumed valid)

∂ΦS

∂x
= − S

4π

(x− x0)

d3

∂ΦS

∂y
= − S

4π

(y − y0)

d3

∂ΦS

∂z
= − S

4π

z

d3

(8.36)

while when the perturbed vertex belongs to the emitting panel it is

∂ΦS

∂x1

=
∂S

∂x1

1

4πd

∂ΦS

∂x2

=
∂S

∂x2

1

4πd

∂ΦS

∂x3

=
∂S

∂x3

1

4πd

∂ΦS

∂x4

=
∂S

∂x4

1

4πd

∂ΦS

∂y1
=

∂S

∂y1

1

4πd

∂ΦS

∂y2
=

∂S

∂y2

1

4πd

∂ΦS

∂y3
=

∂S

∂y3

1

4πd

∂ΦS

∂y4
=

∂S

∂y4

1

4πd

(8.37)

The same algorithm performed for ∂ABN

∂u µ finally leads to ∂B
∂u σ.

The last contribution to
∂µ
∂u , recalling eq.(8.11), is given by ∂σ

∂u . By definition, the

strength of the source of the general panel k, named σk, is given by

σk = −(V wind − V trasc,k) · nk (8.38)

In eq.(8.38) V wind is the speed of the free stream, V trasc,k is the speed of the control point

of panel k due to the motion of the body q where it is located (for example a rotating blade)

and is given by

V trasc,k = V tr,q +Ωq · sk (8.39)

where V tr,q and Ωq describe the motion of body q in the global reference system and sk

contains the global coordinates of the center of the panel; nk is the unity vector normal to

the panel, expressed now in the global reference system (to be consistent with the definition

of V wind and V trasc,k). When a vertex i of panel k is perturbed, two are the effects in terms

of variation of σk: the normal direction changes, giving a contribution related to ∂nk

∂ui
; it is

different the position of the point where V trasc,k is considered (sk → sk + δu).

The first contribution, named
(

∂σk

∂ui

)
1
, is first considered; in Appendix C the derivatives

of n with respect to the global coordinates of the panel have been performed in order to be
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able to calculate eq.(8.33) and here they can be re-used, leading to(
∂σk

∂ui

)
1

= −(V wind − V trasc,k) ·
∂nk

∂ui

= −(V wind − V trasc,k) ·
(
BGq · ∂nk

∂ui

)
(8.40)

To show an example, it is assumed a variation of component y of vertex 15 of panel 10 (which

belongs to body 1)

∂σ10

∂u15,y 1

=− (V wind,x − V trasc,x,10)
∂n10,x

∂u15,y

− (V wind,y − V trasc,y,10)
∂n10,y

∂u15,y

+

− (V wind,z − V trasc,z,10)
∂n10,z

∂u15,y

(8.41)

and so on for all the other possible perturbations.

The second contribution, named
(

∂σk

∂ui

)
2
, is now considered; from eq.(8.39) it can be

inferred that
∂V trasc,k

∂ui

= Ωq ·
∂sk
∂ui

(8.42)

sk is the vector with the coordinates of the center of the panel (sk,x,sk,y,sk,z); making use

of eq.(8.32) to perform the derivatives of the coordinates of the center in respect to those

of the vertices (which should be done using the chain rule if body and global frames don’t

coincide) and recalling eq.(8.38) it holds(
∂σk

∂ui

)
2

=
∂V trasc,k

∂ui

· nk (8.43)

Finally the term ∂σk

∂ui
is computed

∂σk

∂ui

=

(
∂σk

∂ui

)
1

+

(
∂σk

∂ui

)
2

= −(V wind − V trasc,k) ·
∂nk

∂ui

+
∂V trasc,k

∂ui

· nk (8.44)

The algorithm employed to build ∂σ
∂u leads to a matrix Npan× 3Nvert (each coordinate of

each vertex has a column where the variation of the σ of the panel is put in its row); to avoid

this expensive and useless storing passage, the final matrix B ∂σ
∂u with dimensions Npan ×

3Nvert is directly built while the effect of perturbed vertex i on its panel k is investigated(
B · ∂σ

∂u

)
ki

= Bkk
∂σk

∂ui

(8.45)
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8.3.2 Sensitivity of pressure in respect to doublet strength

The sensitivity of the pressure acting on the panel in respect to the doublet strength, indi-

cated as
∂p
∂µ , is here investigated. The starting point is the Bernoulli theorem which enables

to calculate the pressure when a potential flow is studied. In its general form, when an

unsteady flow is considered, it states

k∞ +
1

2
ρV 2

∞ = k +
1

2
ρV 2 + ρ

∂ϕ

∂t
(8.46)

where ρ is the density of the flow (uniform for the hypothesis underlying this model), p∞

and V∞ are reference values of pressure and velocity (undisturbed flow), p and V are the

local pressure and speed and ϕ is the perturbation velocity potential. The speed vector V

can be expressed as

V = V ∞ + v (8.47)

where V ∞ is the free-stream (undisturbed) velocity and v is the perturbation velocity;

therefore by definition of ϕ, V can also be expressed as

V = V ∞ +∇ϕ (8.48)

Eq.(8.46) can thus be rearranged in the following way

∆p = p− p∞ =− 1

2
ρ (|∇ϕ+ V ∞|)2 +

1

2
ρV 2

∞ − ρ
∂ϕ

∂t

=− 1

2
ρ|∇ϕ|2 − ρV ∞ · ∇ϕ− ρ

∂ϕ

∂t

(8.49)

In the collocation points (centers of the panel body), where eq.(8.49) is evaluated , it holds

ϕ = µ (8.50)

Making use of this, the sought derivative can be written as

∂∆pk
∂µi

=− 1

2
ρ
∂|∇ϕk|2

∂µi

− ρ
∂ (V ∞ · ∇ϕk)

∂µi

− ρ
∂
(
∂ϕk

∂t

)
∂µi

=− 1

2
ρ
∂|∇µk|2

∂µi

− ρ
∂ (V ∞ · ∇µk)

∂µi

− ρ
∂
(
∂µk

∂t

)
∂µi

=− ρ∇µk ·
∂∇µk

∂µi

− ρV ∞ ·
∂∇µk

∂µi

− ρ
∂
(
∂µk

∂t

)
∂µi

(8.51)

From eq.(8.51) can be noticed that to evaluate the sensitivity it is enough to calculate
∂
(

∂µk
∂t

)
∂µi

and ∂∇µk

∂µi
.
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The term
∂
(

∂µk
∂t

)
∂µi

can be performed making use for convenience of a first order finite

difference scheme
∂µk

∂t
=

µT
k − µT−∆T

k

∆T
(8.52)

leading to
∂
(
∂µk

∂t

)
∂µi

=
1

∆T
δki (8.53)

The first contribute thus is non zero just when the variation concerns the doublet of the

considered panel k (diagonal term). The term ∂∇µk

∂µi
is constructed using a spatial finite

difference scheme for

∇µk =

(
∂µk

∂x
,
∂µk

∂y

)
(8.54)

where the derivatives are performed with respect to the local reference system (that’s why

it doesn’t appear the z derivative). In Appendix C the different schemes used are presented:

they vary from a first to a second order, centered forward and backward, depending on the

number of neighbours at disposal for the control point k. Here an example is reported for

the centered second order scheme just to give an idea of the strategy; in Fig.(8.2) b,c,d,e are

the neighbours of k along the two local directions.

Fig. 8.2: Centered 2nd order scheme for finite difference discretization of ∇µk

∂µk

∂x
=

(
µc − µk

kc
kb+

µk − µb

kb
kc

)
1

bc

∂µk

∂y
=

(
µd − µk

kd
ek +

µk − µe

ek
kd

)
1

de

(8.55)

kc, kb, kc, ek, ce, bc are the distances among the correspondent panels. From eq.(8.55) it
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follows
∂∇µk

∂µk

=

[(
−kb

kc
+

kc

kb

)
1

bc
;

(
−ek

kd
+

kd

ek

)
1

de

]
∂∇µk

∂µb

=

[
−kc

kb

1

bc
; 0

]
∂∇µk

∂µd

=

[
kb

kc

1

bc
; 0

]
∂∇µk

∂µc

=

[
0;

ek

kd

1

de

]
∂∇µk

∂µe

=

[
0;−kd

ek

1

de

]
(8.56)

Eqs.(8.56) and (8.53) permits to calculate eq.(8.51), that is how varies the pressure on panel

k when the intensity of the doublet i changes; in the most general case maximum 5 terms

can influence the pressure, i.e. the square matrix
∂p
∂µ with dimension Npan×Npan in its k-row

can just have five non-zero terms. Depending on the number of neighbours, this number can

reduce as other scheme than the one shown in Fig.(8.2) are employed.

8.3.3 Sensitivity of area in respect to displacements

The term ∂S
∂u represents the variation of the surface of panel when one of its vertices is

moved. This contribution can easily be provided by calculations made previously to allow

the definition of terms ∂ABN

∂u and ∂B
∂u . In fact, as explained in more detail in Appendix C, in

the definition of the properties of the panel a mean plane is assumed (since the quadrilaterals

are not planar in general); starting from the four corner points, the two diagonals d1 and

d2 are first defined; the half modulus of their vector product (which leads to the normal

vector n) represents the area of the mean plane. Thus the derivatives of this modulus,

just calculated to correctly asses the contributions related to the far-field approximation

(eqs.(8.36) and (8.37) for example), are the sought sensitivities. Defining N k the vector

normal to panel k

N k = d1,k × d1,k

it follows
∂Sk

∂ui

=
1

2

∂|N k|
∂ui

(8.57)
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8.3.4 Sensitivity of normal direction in respect to displacements

The term ∂n
∂u represents the variation in the direction of the unity vector n normal to the

panel k when one of its vertices are moved. This contribution can be performed by calcula-

tions made previously to allow the definition of terms ∂ABN

∂u and ∂B
∂u when the contribution

due to the changing in the orientation of the plane following the doublet was considered

eq.(8.30).
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Chapter 9

Conclusions

In the present work nonlinear aeroelastic response of Joined-Wings has been investigated,

with focus on the development of solvers for the detection of postcritical dynamic phenomena.

Tools employed ranged from pure aerodynamic, to static and dynamic, frequency-domain

(flutter eigenvalues) and time-domain. The aerodynamic solver relied upon the hypothesis of

potential flow, consistently with the considered conditions of small angles of attack, attached

flow and subsonic speeds. For the structure was employed a geometrically nonlinear finite

element based on the linear membrane constant strain triangle (CST) and the flat plate

discrete Kirchoff triangle (DKT).

In order to keep the computational cost of the nonlinear analysis under practical limits,

three different time-domain codes with increasing accuracy have been considered. In this

way, an attempt to earn confidence in the basic aeroelastic features to retain was pursued. In

particular different coupling algorithms (Infinite Plate Spline and Moving Least Square shape

functions), way of distributing the aerodynamic singularities (on an undeformable reference

plane or attached to the body during the deformation process) and wake modelization (rigid

or free) were considered.

The main results gained by this work are here briefly summarized

� a dynamic characterization of the snap-divergence concept was achieved. Its occurrence

was first found in a previous work and examinated by means of an aeroelastic static

analysis. The question was then to assess its existence by mean of a dynamic study.

Results showed that the static predictions were correct, and the characteristic snap

was observed

� flutter analysis undergone with a linear frequency-domain tool was compared to a
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nonlinear one, obtained as a sequence of linearizations performed about deformed con-

figurations. It was found that the linear tools were giving nonconservative predictions.

Discrepancies, ranging from 25% to 15%, were observed also for the less deformed

configuration (Sensorcraft-like)

� the impact of different modelling of the aeroelastic problem on flutter speed was as-

sessed for time-domain solvers. Comparisons with the above frequency-domain capa-

bility were also given. It was shown that solvers implementing different assumptions

may lead to considerably different results.

� dynamic postcritical regime was explored and limit cycle oscillations were found. For

some combinations of solvers and layouts, the response evolution to the LCO showed

unusual trends: phase-space trajectories took time to resemble the final periodic orbit,

being the transient relatively long. Moreover, for the Sensorcraft-like configuration, at

certain speeds the LCO was showing within a period different patterns between the

outer and inner parts of the wing system.

� the complex scenario arising from the aeroelastic response of a Joined-Wing became

evident when different kind of perturbations were given to the system. Multistabil-

ity and different bifurcations (stationary and relative to periodic orbits), along with

transition to chaos, were detected.

When the use of the tools gave different results, a physical interpretation of the possible

reasons was attempted. In particular the free-wake modelling proved to increase the flutter

speed (at least for the configurations under examination) and this was put in relation with

a redistribution of lift over the span which has stabilizing effect. Other differences in the

prediction were harder to be motivated. For example the follower nature of the aerodynamic

loads in direction (contemplated only in Solver 2 and Solver 3 ) showed an influence on

the detection of flutter speed. The updating at each timestep of the actual direction of

the external load can be considered detrimental for the deformation of the structure (and

results agreed with that), but this doesn’t automatically lead to the conclusion that it has a

decreasing effect on the prediction of the critical speed. In fact, especially for configurations

behaving nonlinearly, the aeroelastic instability is a result of the redistribution of stiffness

and thus the increase in the deformation (due to follower nature of forces) can be favourable

in that sense.

A contribution that this study aims to give is also represented by the extended trea-

tise of theory and implementation of the aeroelastic solvers. This has been accomplished
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describing problems inherent to the time discretization of the dynamic equation and pre-

senting in detail the aeroelastic coupling. For example emphasis has been placed on the

different contributions giving rise to the aerodynamic unsteady forces and on the investiga-

tions of different interface algorithms, examining possible advantages and drawbacks of two

significantly different approaches.

The investigations performed in this work merged in the article “Phenomenology of Non-

linear Aeroelastic Responses of Highly Deformable Joined-wings Configurations” presented

at the 55th AIAA/ASMe/ASCE/AHS/SC Structures, Structural Dynamics, and Materials

Conference at National Harbor, Maryland.

Future improvements can concern different aspects.

While here conceptual investigations on wind-tunnel-like models are pursued, analyses can

be carried out within the same framework on realistic aircraft, i.e. inertial and stiffness

distributions are assessed considering operative conditions, as well as sizing dimensions.

New sources of nonlinearity can be added to the system, as for example free-play of control

surfaces. In literature it has been shown that this feature has a great influence in the

aeroelastic response of the wing, leading to a big variety of ways the system can loose its

stability.

The wing box can be employed instead of shells to model the structure; this would allow to

use a panel method as aerodynamic code, which takes into account the influence of thickness

in the evaluation of the pressure acting on the wing. In this perspective can be considered

the evaluation of the aerodynamic tangent matrix described in Cap.8.

The aeroelastic problem can be generalized considering the flight dynamic (“free flying”

configuration): the wing is no more clamped to the fuselage and the dynamic of the aircraft

as a whole with its own degrees of freedom coupled with the deformation of the lifting

surfaces is studied.
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Appendix A

Infinite Plate Spline Interface

Algorithm

The mathematical procedure to establish the interface algorithm between aerodynamic and

structural field using the Infinite Plate Spline method is reported in this section.

Considering a plate that extends to infinity in both directions, deforms just normal to

its plane and has bending stiffness only, the governing equation is

D11
∂4w

∂x4
+ 2 (D12 + 2D66)

∂4w

∂x2∂y2
+D22

∂4w

∂y4
= p (A.1)

where p is the applied pressure. Assuming isotropic material, the following relations are

valid:

D11 =
Eh3

12 (1− υ2)

D12 = υD11 =
υEh3

12 (1− υ2)

D22 = D11 =
Eh3

12 (1− υ2)

D66 =
1− υ

2
D11 =

1− υ

2

Eh3

12 (1− υ2)

(A.2)

Substituting these into eq.(A.1), it holds:

Eh3

12 (1− υ2)

[
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4

]
= p (A.3)

Calling D = Eh3

12(1−υ2)
and assuming that there is a radial symmetry which means that only
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derivatives with respect to r are not zero, eq.(A.3) assumes the form

D
1

r

d

dr

(
r
d

dr

[
1

r

d

dr

(
r
dw

dr

)])
= p (A.4)

Dividing by D both sides of the equation, multiplying by r and separating the variables,

eq.(A.4) becomes:

d

(
r
d

dr

[
1

r

d

dr

(
r
dw

dr

)])
=

rp dr

D
(A.5)

As the purpose is to find the displacement field produced by the load applied in the generical

structural node, a concentrated force P is considered in the origin (r = 0). Multiplying and

dividing the right hand side of eq.(A.5) by 2π, it is:

d

(
r
d

dr

[
1

r

d

dr

(
r
dw

dr

)])
=

2πrp dr

2πD
(A.6)

Actually there’s no applied pressure p acting over the plate except for the presence of the

concentrated load at r = 0, so if eq.(A.6) is integrated it can be inferred that the only

non-zero contribution of the integral on the r.h.s. is very close to the origin and that

lim
ϵ→0

∫ ϵ

0

2πpr dr = P

with these arguments, it is possible to write

r
d

dr

[
1

r

d

dr

(
r
dw

dr

)]
=

P

2πD
(A.7)

Separating the variables and integrating, eq.(A.7) can be solved giving

w =
P

2πD

(
1

2

(
1

2
r2 ln r − 1

4
r2
)
− 1

8
r2
)
+ C1

r2

4
+ C2 ln r + C3 (A.8)

that with some algebra takes to:

w =
P

16πD
r2 ln r2 +

(
C1

4
− P

8πD

)
r2 + C2 ln r + C3 (A.9)

where C1, C2 and C3 are arbitrary constants. In order to not have a singularity when r → 0,

the constant C2 has to be zero. Defining
(
C1

4
− P

8πD

)
= B and C3 = A, eq.(A.9) becomes

w (r) =
P

16πD
r2 ln r2 +Br2 + A (A.10)
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which express the displacement field of an infinite thin plate provoked by the concentrated

load P ; if N concentrated loads are applied, by the superimposition of eq.(A.10) it is possible

to obtain the deflection as

w (x, y) =
N∑
i=1

(
Pi

16πD
r2i ln r

2
i +Bir

2
i + Ai

)
(A.11)

where

r2i = (x− xi)
2 + (y − yi)

2 = x2 − 2xxi + x2
i + y2 − 2yyi + y2i (A.12)

expresses the square distance between the point where the load is applied (xi,yi) and the

point where the deflection is evaluated (x,y).

In order to avoid oscillations, the condition that at infinity the radial lines from loaded

points appear to be straight lines is imposed. This requirement can be satisfied forcing all

terms that go to infinity with higher order than the linear one to be zero. Eq.(A.11) can be

written, posing Fi =
Pi

16πD
, as:

w =
N∑
i=1

(
Fi

[
(x− xi)

2 + (y − yi)
2] ln [(x− xi)

2 + (y − yi)
2]+

+Bi

[
(x− xi)

2 + (y − yi)
2]+ Ai

) (A.13)

that using polar coordinates (x = r cosϑ, y = r sinϑ), becomes:

w (r, ϑ) =
N∑
i=1

Fir
2 ln
[
r2 − 2r (xi cosϑ+ yi sinϑ) + x2

i + y2i
]
+

−
N∑
i=1

2rFi (xi cosϑ+ yi sinϑ) ln
[
r2 − 2r (xi cosϑ+ yi sinϑ) + x2

i + y2i
]
+

+
N∑
i=1

Fi

(
x2
i + y2i

)
ln
[
r2 − 2r (xi cosϑ+ yi sinϑ) + x2

i + y2i
]
+

+
N∑
i=1

Bi

[
r2 − 2r (xi cosϑ+ yi sinϑ) + x2

i + y2i
]
+

N∑
i=1

Ai

(A.14)

To give an expression of the the displacement w (r, ϑ) for large values of r (r → ∞), this

observation is made

ln
(
r2 − 2r (xi cosϑ+ yi sinϑ) + x2

i + y2i
)
≈ ln r2 − 2

r
(xi cosϑ+ yi sinϑ) +

x2
i + y2i
r2

(A.15)
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which allows to conclude that, for large values of r, the displacement is

w (r, ϑ) = r2 ln r2
N∑
i=1

Fi + r2
N∑
i=1

Bi − 2r ln r2
N∑
i=1

Fi (xi cosϑ+ yi sinϑ)+

+ ln r2
N∑
i=1

Fi

(
x2
i + y2i

)
− 2r

N∑
i=1

(xi cosϑ+ yi sinϑ) (Bi + Fi) + ...

(A.16)

The deletion of higher order terms (order r2 ln r2, r ln r2 and r2) than the linear one, in order

to satisfy the earlier prescription of avoiding oscillations, is accomplished imposing that

N∑
i=1

Fi = 0

N∑
i=1

Fixi = 0

N∑
i=1

Fiyi = 0

N∑
i=1

Bi = 0

(A.17)

Finally an expression of eq.(A.13) which satisfy eq.(A.17) can be written as

w (x, y) =
N∑
i=1

[
Ai +Bi

(
x2
i + y2i

)]
+ x

(
−2

N∑
i=1

Bixi

)
+

+y

(
−2

N∑
i=1

Biyi

)
+

N∑
i=1

Fir
2
i ln r

2
i

(A.18)

or

w (x, y) = a0 + a1x+ a2y +
N∑
i=1

Fir
2
i ln r

2
i (A.19)

where these definitions have been given

a0 =
N∑
i=1

[
Ai +Bi

(
x2
i + y2i

)]
a1 = −2

N∑
i=1

Bixi

a2 = −2
N∑
i=1

Biyi

(A.20)
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Eq.(A.19) shows how using IPS it’s possible to evaluate the displacement of a point along

the normal direction to the local plane where it is lying, i.e. its Zi loc coordinate, once

its position through the local coordinates xi loc and yi loc is given and the coefficients in

eq.(A.20) are evaluated. In order to provide a relation between the degrees of freedom of the

structural nodes and their derivatives with the analogous aerodynamic quantities, eq.(A.19)

can be applied to the ith structural node

Zi loc (xi loc, yi loc) = a0 + a1xi loc + a2yi loc +
N∑
j=1

FjKij (A.21)

where N is the number of structural nodes lying in the same plane of point i (consequently

belonging to the same spline’s plane) and the matrix K has been introduced, defined as

Kij = (rij loc)
2 ln(rij loc)

2 (A.22)

with

(rij loc)
2 = (xi loc − xj loc)

2 + (yi loc − yj loc)
2 (A.23)

and

(rij loc)
2 ln(rij loc)

2 = 0 if i = j (A.24)

Remembering that the conditions in eq.(A.17) have to be satisfied, eq.(A.21) can be rewritten

in matrix form in this way

0

0

0

Z1 loc

Z2 loc

Z3 loc

...

ZN loc



=



0 0 0 1 1 1 ... 1

0 0 0 x1 loc x2 loc x3 loc ... xN loc

0 0 0 y1 loc y2 loc y3 loc ... yN loc

1 x1 loc y1 loc 0 K12 K13 ... K1N

1 x2 loc y2 loc K21 0 K23 ... K2N

1 x3 loc y3 loc K31 K32 0 ... K3N

... ... ... ... ... ... ... ...

1 xN loc yN loc KN1 KN2 KN3 ... 0





a0

a1

a2

F1

F2

F3

...

FN



(A.25)
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Setting

Z loc =
[
0 0 0 Z1 loc Z2 loc Z3 loc ... ZN loc

]T
F =

[
a0 a1 a2 F1 F2 F3 ... FN

]T

R =


1 1 1 ... 1

x1 loc x2 loc x3 loc ... xN loc

y1 loc y2 loc y3 loc ... yN loc

 K =



0 K12 K13 ... K1N

K21 0 K23 ... K2N

K31 K32 0 ... K3N

... ... ... ... ...

KN1 KN2 KN3 ... 0


(A.26)

Eq.(A.21) can be written as

Z loc =

 0 R

R K

F (A.27)

or, defining

G =

 0 R

R K

 (A.28)

as

Z loc = GF (A.29)

In eq.(A.29) F is the array of fictitious concentrated loads acting at the known set of points

which enable to rebuild the deflection associated with the local vertical displacements stored

in Z loc. Since G is a known matrix once the set of points and the geometry has been fixed,

eq.(A.29) can be advantageously used to get an expression of the unknown array with a

matrix inversion

F = G−1Z loc (A.30)

Now the coefficients that have to be used for the spline interpolation are known and eq.(A.19)

can be used for whatever set of points. In order to avoid the time consuming task of updating

the vector F at each timestep, the assumption that during the deformation process the

original local coordinates xi loc and yi loc of the generical point i do not change has to be

made, i.e. the vertical projection is always corresponding (or at least in good approximation)

to the initial position of the structural point considered. If this hypothesis fail, G changes

during the simulation and eq.(A.30) has to be continuously evaluated.
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The expression of the aerodynamic loads is given starting from the boundary condition

applied on the control points of the aerodynamic mesh; the involved quantities are thus

related to the derivative of the vertical displacement
dZloc

dxS
with respect to the xS axis (local

x direction of the plate, assumed parallel to the free stream direction), the speed Żloc and

the acceleration Z̈loc of this set of points. In order to carry out this task, let at first indicate

with Xi loc and Yi loc the local coordinates of the i
th control point; the coordinate Zi loc of this

point can be calculated using eq.(A.19)

Zi loc (Xi loc,Yi loc) = a0 + a1Xi loc + a2Yi loc +
N∑
j=1

FjKij (A.31)

where N is always the number of structural nodes because these are the points where the

fictitious concentrated forces are applied; on the other hand now it’s used Kij instead of Kij

in order to show that also the control points are involved in the calculation of such matrix,

with

Kij = (Rij loc)
2 ln(Rij loc)

2 (A.32)

and
(Rij loc)

2 = (Xi loc − xj loc)
2 + (Yi loc − yj loc)

2

(Rij loc)
2 = 0 if i = j

(A.33)

For eq.(A.31) a similar matrix representation of eq.(A.29) can be given, such that

Z loc = CF (A.34)

where C has a similar expression of G but with the difference about Kij just stressed out and

Z loc is the array containing the local vertical displacements of control poins; substituting in

it eq.(A.30), it is finally

Z loc = CG−1Z loc (A.35)

that enables the transfer of the information about velocity and acceleration between structure

and aerodynamic mesh, since for the fixed expression (earlier motivated) of the spline’s

matrices G and C, it holds

Ż loc = HŻ loc

Z̈ loc = HZ̈ loc

(A.36)

where H = CG−1 is the interface matrix for the displacement field.

In order to calculate the derivative of the vertical displacement is necessary to differentiate

the spline equation specialized for the control points, shown in eq.(A.31), respect to xS, that
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is the generical term Kij has to be derived with respect to the local x direction; in matrix

form, it is



dZ1 loc

dxS

dZ2 loc

dxS

dZ3 loc

dxS

...

dZN loc

dxS


=



0 1 0
dK11

dxS

dK12

dxS

dK13

dxS
...

dKS
1N

dxS

0 1 0
dK21

dxS

dK22

dxS

dK23

dxS
...

dKS
2N

dxS

0 1 0
dK31

dxS

dK32

dxS

dK33

dxS
...

dKS
3N

dxS

... ... ... ... ... ... ... ...

0 1 0
dKN1

dxS

dKN2

dxS

dKN3

dxS
...

dKNN

dxS





a0

a1

a2

F1

F2

F3

...

FNn



(A.37)

Using eqs.(A.32) and (A.33) it holds

Kij =
[
(Xi loc − xj loc)

2 + (Yi loc − yj loc)
2] ln [(Xi loc − xj loc)

2 + (Yi loc − yj loc)
2] (A.38)

Differentiating the previous relation (this operation has to be done replacing the coordinates

Xi loc and Yi loc with the generic coordinates xS and yS and differentiating with respect to xS)

and calculating the derivatives in the local coordinates of the ith control point, the generical

term of eq.(A.37) is as follows:

dKij

dxS
= 2 (Xi loc − xj loc)

{
ln
[
(Xi loc − xj loc)

2 + (Yi loc − yj loc)
2]+ 1

}
(A.39)

or
dKij

dxS
= 2 (Xi loc − xj loc)

[
ln(Rij loc)

2 + 1
]

(A.40)

where if the jth structural point is exactly coincident with the ith control point then
dKij

dxS
= 0.

Finally, a relation similar to eq.(A.34) is obtained

dZ loc

dxS
= DF (A.41)

which finally takes to the relation sought

dZ loc

dxS
= HDZ loc (A.42)

where HD = DG−1 is the interface matrix for the spatial derivative displacement field.

181



Once the rotation matrices are built to shift from the local reference system of the

spline to the global coordinate system (this choice can be performed considering the wing

as piecewise-planar and assuming a local reference for every section that has a different nor-

mal), eqs.(A.36) and (A.42) allow to completely define the aerodynamic loads providing the

sought interface matrices.

The last step to completely define the present interface algorithm for the aerodynamic-

structural coupling is the transfer of the aerodynamic load applied in the aerodynamic mesh

(load point) to the structural nodes. After each load point has been associated with a

structural element through an algorithm that can determine whether a point (the load point

in this case) is inside a triangle or not, the goal is to find the nodal forces equivalent to the

given concentrated load applied in an internal point P , as depicted in Fig.A.1. The problem

Fig. A.1: Applied load in a triangular element

can be solved imposing that the work done by the external force is equal to the work done by

the nodal forces of the element. In order to do that it’s necessary to express the displacement

in the point where the load is applied as a combination of the nodal displacements, i.e. some

shape functions have to be chosen. A reference coordinate system is adopted, such that

the axes xE and yE are on the plane of the element and the axis zE is perpendicular to

it. The shape functions relative to the nodes 1,2 and 3 of the triangle m are indicated

respectively as hm
1

(
xE, yE

)
, hm

2

(
xE, yE

)
and hm

3

(
xE, yE

)
. By definition of shape functions,

the virtual displacement at point P
(
xE
P , y

E
P

)
can be calculated as combination of the above

shape functions:

δuP = hm
1

(
xE
P , y

E
P

)
δu1 + hm

2

(
xE
P , y

E
P

)
δu2 + hm

3

(
xE
P , y

E
P

)
δu3

δvP = hm
1

(
xE
P , y

E
P

)
δv1 + hm

2

(
xE
P , y

E
P

)
δv2 + hm

3

(
xE
P , y

E
P

)
δv3

δwP = hm
1

(
xE
P , y

E
P

)
δw1 + hm

2

(
xE
P , y

E
P

)
δw2 + hm

3

(
xE
P , y

E
P

)
δw3

(A.43)
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Imposing that the work done by the external force is the same as the work done by the nodal

forces, it can be written that

Lk
xEδuP = Lm

1xEδu1 + Lm
2xEδu2 + Lm

3xEδu3

Lk
yEδvP = Lm

1 yEδv1 + Lm
2 yEδv2 + Lm

3 yEδv3

Lk
zEδwP = Lm

1 zEδw1 + Lm
2 zEδw2 + Lm

3 zEδw3

(A.44)

where Lk
xE , L

k
yE and Lk

zE are the components (in the coordinate system represented by xE,

yE and zE) of the vector Lk with the force acting on the load point k, while Lm
1xE , L

m
1 yE and

Lm
1 zE are the components of the nodal force relative to the node 1 of the element m and so

forth. From eq.(A.44) it can be deduced for the node 1, using eq.(A.43), that
Lm

1xE

Lm
1 yE

Lm
1 zE

 = hm
1

(
xE
P , y

E
P

)
·


Lk

xE

Lk
yE

Lk
zE

 (A.45)

and similarly, for nodes 2 and 3:
Lm
2xE

Lm
2 yE

Lm
2 zE

 = hm
2

(
xE
P , y

E
P

)
·


Lk
xE

Lk
yE

Lk
zE




Lm
3xE

Lm
3 yE

Lm
3 zE

 = hm
3

(
xE
P , y

E
P

)
·


Lk
xE

Lk
yE

Lk
zE

 (A.46)

It can be demonstrated [9] that the area coordinates defined by the triangle m and the load

point k allow to define the coefficients of the shape functions for a constant strain triangle,

and so it holds
hm
1

(
xE, yE

)
= 1

2S

(
a1 + b1x

E + c1y
E
)

hm
2

(
xE, yE

)
= 1

2S

(
a2 + b2x

E + c2y
E
)

hm
3

(
xE, yE

)
= 1

2S

(
a3 + b1x

E + c3y
E
) (A.47)

where
2S = xE

1 y
E
2 + xE

2 y
E
3 + xE

3 y
E
1 − yE1 x

E
2 − yE2 x

E
3 − yE3 x

E
1

a1 = xE
2 y

E
3 − xE

3 y
E
2

a2 = xE
3 y

E
1 − xE

1 y
E
3

a3 = xE
1 y

E
2 − xE

2 y
E
1

b1 = yE2 − yE3

b2 = yE3 − yE1

b3 = yE1 − yE2

c1 = xE
3 − xE

2

c2 = xE
1 − xE

3

c3 = xE
2 − xE

1

(A.48)
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Including this choice in eqs.(A.45) and (A.46) it can be seen that the translational and

rotational equilibriums on the element are satisfied, and so the load equivalence is obtained.

The sought result is summarized in a vectorial form

Lm
1 = hm

1

(
xE
P , y

E
P

)
Lk

Lm
2 = hm

2

(
xE
P , y

E
P

)
Lk

Lm
3 = hm

3

(
xE
P , y

E
P

)
Lk

(A.49)

which show how the transfer of the load from load points to the vertices of the triangle

considered can be easily performed.
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Appendix B

Moving Least Square (Meshless)

Interface Algorithm

The procedure of constructing shape functions using Moving Least Square approximation and

the way to apply them in order to obtain the coupling between aerodynamic and structural

field with the desired properties is here presented.

The values of the function û(x) on a set of nodes {η1,η2, ...,ηn̂} are obtained from its

values û(ξ1),û(ξ2),...,û(ξn̂) on scattered centers (or sources) {ξ1, ξ2, ..., ξn̂} without deriving
an analytical expression. This extrapolation is denoted by ûh(η) and is built as a sum of m̂

basis functions p̂i(η)

ûh(η) =
m̂∑
i=1

p̂i(η) a
ξ
i (η) = p̂(η) · aξ(η) (B.1)

where ai are the unknown coefficients of the basis functions which depend on the point η

where the value is sought; the vector p̂ of basis functions consists often of monomials of

the lowest order such to form polynomial basis with minimum completeness but particular

functions can be added to reproduce a particular behaviour of the variables investigated. In

the present study linear and quadratic polynomials are adopted:

p̂ = {1, x, y, z}

p̂ = {1, x, y, z, x2, xy, y2, yz, z2, zx}
(B.2)

The m̂ coefficients ai describing (as shown in eq.(B.1)) the function in the point η are

obtained minimizing the weighted residual functional (a weighted discrete L2 norm) J(η)

J(η) =
n̂∑

i=1

W (η − ξi) [ũ(ξi,η)− û(ξi)]
2 (B.3)
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where

ũ(ξi,η) = p̂(ξi) · a(η) (B.4)

is the approximated value of the the field function in the generical center of the set ξ obtained

by means of the same extrapolation process pointed out in eq.(B.1). A useful matrix form

of eq.(B.3) can be given as follow:

J(η) = (P̂ a(η)− û) ·
(
W (P̂ a(η)− û)

)
(B.5)

where the following vectors and matrices are introduced:

û = {û(ξ1), û(ξ2), ..., û(ξn̂)}

P̂ =


p̂1(ξ1) p̂2(ξ1) ... p̂m̂(ξ1)

p̂1(ξ2) p̂2(ξ2) ... p̂m̂(ξ2)

... ... ... ...

p̂1(ξn̂) p̂2(ξn̂) ... p̂m̂(ξn̂)

 (B.6)

W =


W (η − ξ1) 0 ... 0

0 W (η − ξ2) ... 0

... ... ... ...

0 0 ... W (η − ξn̂))

 (B.7)

Solving the minimization problem
∂J(η)

∂a
= 0 (B.8)

an expression for the coefficient vector a(η) is obtained

a(η) = Â−1B̂ û (B.9)

where Â is called the moment matrix and is given by

Â = P̂ T W P̂ (B.10)

and B̂ is given by

B̂ = P̂ T W (B.11)

It is now possible to give a definitive expression of eq.(B.1) as:

ûh(η) =
n̂∑

i=1

Φi(η) ûi (B.12)
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where Φi(η) is the coefficient of the MLS shape function of node η corresponding to the

center i, which is given by

Φi(η) =
m̂∑
j=1

p̂j(η)
[
Â−1B̂

]
ji

(B.13)

Eq.(B.12) can also be written in the following matrix form, suitable for applications to the

aeroelastic model

ûh(η) = Φ(η) · û (B.14)

where Φ(η) is the array containing the coefficients of the MLS shape function of node η.

The Radial Basis Functions (RBF) that can be adopted for the three-dimensional cases

[112] are

W 0(r) = (1− r)2 C0

W 2(r) = (1− r)4(4 r + 1) C2

W 4(r) = (1− r)6(
35

3
r2 +

18

3
r + 1) C4

W 6(r) = (1− r)8(32 r3 + 25 r2 + 8r + 1) C6

(B.15)

where r represents the Euclidean distance between the two considered points. The degree

of smoothness Cn of the RBF bounds the maximum number of continuous derivatives of

the approximant function ûh, as can be argued from the expression of the shape functions

in eq.(B.13). Usually the weight functions in eq.(B.15) are written using as independent

variable r/δ instead of r, where δ is a scaling factor that allows one to change the function

support for different centers, making more appropriate the determination of the local support

dimension in those cases where there is a great variation in the data density or when it is

requested to exactly enforce structural constraints on the aerodynamic mesh.

The final issue is the conservation of energy [95]. To present the problem and its solution

in the most general way, the following coupling conditions are considered

σs n = −pn+ σf n

ηs = ηf

η̇s = η̇f or
∂η̇s

∂n
=

∂η̇f

∂n

(B.16)

where ηs denotes the structural boundary position, ηf is the aerodynamic counterpart, p

is the pressure, σs and σf are respectively the structure stress tensor and the fluid viscous

stress tensor, and n is the normal vector to either a newly defined virtual interface surface or

the surface of the fluid. The first relation expresses the dynamic equilibrium between stresses
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on the two fields, whereas the others are kinematic compatibility conditions on displacement

and speed; for the latter one, just the normal component can be used if an inviscid flows is

considered (wall tangency condition). As these conditions are valid for continuous systems

and the two fields are discretized to solve the problem, conservation properties have to be

assured: the change of energy in the fluid-structure system need to be equal to the energy

supplied by external forces. In the following it is demonstrated how this property can be

retained enforcing the coupling conditions in a weak sense through the use of Virtual Work.

Calling δηf and δηs the admissible displacements for the two respective fields, the relation

between nodal quantities (i and j are respectively the generical aerodynamic and structural

node) is

δηf
i =

js∑
j=1

Φj(η
f
i ) δη

s
j (B.17)

where if and jf are respectively the number of aerodynamic and structural nodes considered.

The resulting virtual displacement of the aerodynamic surface Γf is obtained assuming Ni

base functions belonging to the aerodynamic field discretization space corresponding to the

if nodes of the same surface; in this way, the following relation holds

δηf =

if∑
i=1

Ni

js∑
j=1

Φj(η
f
i ) δη

s
j (B.18)

The virtual work of the aerodynamic load is equal to

δW f =

∫
Γf

(−pn+ σfn) · δηf dΓ (B.19)

Calling f j the load on the structural node j induced by the fluid, the virtual work of the

forces acting on the structure is

δW s =

js∑
j=1

f j δη
s
j (B.20)

Imposing equivalence of the virtual works and rearranging eq.(B.19) through eq.(B.17) and

eq.(B.18) the following holds

f j =
if∑
i=1

F i Φj(η
f
i ) (B.21)

where Fi is given by

F i =

∫
Γf

(−pn+ σfn)Ni dΓ (B.22)
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Consider now f (F ) to be the matrix whose rows are the forces evaluated at the generic

aerodynamic (structural) j-th (i-th) node, f j ( F i). Thus eq.(B.21) may be written in the

matrix form:

f = ΨT F (B.23)

beingΨ the interpolation matrix that matches the two displacement’s fields, i.e., Ψij=Φj(η
f
i ).

Eq.(B.23) shows the sought result: to ensure the balance of the energy exchanged between

fluid and structure, the loads on the structural nodes f have to be evaluated multiplying

the loads F on the aerodynamic grid by the transpose of the interpolation matrix.
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Appendix C

Aerodynamic Tangent Matrix (UPM)

In this section are reported in details all the formulas used in the evaluation of the various

terms of the aerodynamic tangent matrix for an Unsteady Panel Method. Refer to Cap.8

for the nomenclature and the problem statement.

C.1 Sensitivity of doublet strength in respect to dis-

placements

In this first part the term ∂ABN

∂u is considered. The equation that gives the perturbation

potential for a unitary doublet strength is

ΦD = − 1

4π

{
tan−1

[
zx21(F1r2 −G1r1)

z2x2
21r1r2 + F1G1

]
+ tan−1

[
zx32(F2r3 −G2r2)

z2x2
32r2r3 + F2G2

]
tan−1

[
zx43(F3r4 −G3r3)

z2x2
43r3r4 + F3G3

]
+ tan−1

[
zx14(F4r1 −G4r4)

z2x2
14r4r1 + F4G4

]} (C.1)

When the receiving point is far from the center of the emitting panel and thus the far-field

approximation is possible, the influence of the quadrilateral element with area S can be

approximated by a point doublet (far-field approximation)

ΦD =
S

4π

z√
(x2 + y2 + z2)3

(C.2)
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Constants adopted in the definitions of the potential and its derivatives are reported in the

following.

x21 = (x2 − x1)

x32 = (x3 − x2)

x43 = (x4 − x3)

x14 = (x1 − x4)

y21 = (y2 − y1)

y32 = (y3 − y2)

y43 = (y4 − y3)

y14 = (y1 − y4)

d12 =
√

x2
21 + y221

d23 =
√

x2
32 + y232

d34 =
√

x2
43 + y243

d41 =
√

x2
14 + y214

m12 =
y21
x21

m23 =
y32
x32

m34 =
y43
x43

m41 =
y14
x14

r1 =
√
(x− x1)2 + (y − y1)2 + z2

r2 =
√
(x− x2)2 + (y − y2)2 + z2

r3 =
√
(x− x3)2 + (y − y3)2 + z2

r4 =
√
(x− x4)2 + (y − y4)2 + z2

e1 = (x− x1)
2 + z2

e2 = (x− x2)
2 + z2

e3 = (x− x3)
2 + z2

e4 = (x− x4)
2 + z2

h1 = (x− x1)(y − y1)

h2 = (x− x2)(y − y2)

h3 = (x− x3)(y − y3)

h4 = (x− x4)(y − y4)

F1 = y21e1 − x21h1

F2 = y32e2 − x32h2

F3 = y43e3 − x43h3

F4 = y14e4 − x14h4

G1 = y21e2 − x21h2

G2 = y32e3 − x32h3

G3 = y43e4 − x43h4

G4 = y14e1 − x14h1

(C.3)

The case of perturbed vertex thought as belonging to the receiving panel is first presented.

The derivatives of the potential ΦD with respect to the coordinates of the receiving point

when eq.(C.2) is valid are given by

∂ΦD

∂x
= − S

4π

3zx

d5

∂ΦD

∂y
= − S

4π

3zy

d5

∂ΦD

∂z
=

S

4π

d2 − 3z2

d5

(C.4)
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where d=
√
x2 + y2 + z2 is the distance between the centers of the two panels. The derivatives

in the general case (close-field) are given by

∂ΦD

∂x
= − 1

4π

{
zx21(F

x
1 r2 + F1r

x
2 −Gx

1r1 −G1r
x
1)(z

2x2
21r1r2 + F1G1)

(z2x2
21r1r2 + F1G1)2 + [zx21(F1r2 −G1r1)]2

+

−zx21(F1r2 −G1r1)[z
2x2

21(r
x
1r2 + r1r

x
2) + F x

1 G1 + F1G
x
1 ]

(z2x2
21r1r2 + F1G1)2 + [zx21(F1r2 −G1r1)]2

+

+
zx32(F

x
2 r3 + F2r

x
3 −Gx

2r2 −G2r
x
2)(z

2x2
32r3r2 + F2G2)

(z2x2
32r3r2 + F2G2)2 + [zx32(F2r3 −G2r2)]2

+

−zx32(F2r3 −G2r2)[z
2x2

32(r
x
2r3 + r2r

x
3) + F x

2 G2 + F2G
x
2 ]

(z2x2
32r3r2 + F2G2)2 + [zx32(F2r3 −G2r2)]2

+

+
zx43(F

x
3 r4 + F3r

x
4 −Gx

3r3 −G3r
x
3)(z

2x2
43r3r4 + F3G3)

(z2x2
43r3r4 + F3G3)2 + [zx43(F3r4 −G3r3)]2

+

−zx43(F3r4 −G3r3)[z
2x2

43(r
x
3r4 + r3r

x
4) + F x

3 G3 + F3G
x
3 ]

(z2x2
43r3r4 + F3G3)2 + [zx43(F3r4 −G3r3)]2

+

+
zx14(F

x
4 r1 + F4r

x
1 −Gx

4r4 −G4r
x
4)(z

2x2
14r3r4 + F4G4)

(z2x2
14r1r4 + F4G4)2 + [zx14(F4r1 −G4r4)]2

+

−zx14(F4r1 −G4r4)[z
2x2

14(r
x
4r1 + r4r

x
1) + F x

4 G4 + F4G
x
4 ]

(z2x2
14r1r4 + F4G4)2 + [zx14(F4r1 −G4r4)]2

}

(C.5)

∂ΦD

∂y
= − 1

4π

{
zx21(F

y
1 r2 + F1r

y
2 −Gy

1r1 −G1r
y
1)(z

2x2
21r1r2 + F1G1)

(z2x2
21r1r2 + F1G1)2 + [zx21(F1r2 −G1r1)]2

+

−zx21(F1r2 −G1r1)[z
2x2

21(r
y
1r2 + r1r

y
2) + F y

1G1 + F1G
y
1]

(z2x2
21r1r2 + F1G1)2 + [zx21(F1r2 −G1r1)]2

+

+
zx32(F

y
2 r3 + F2r

y
3 −Gy

2r2 −G2r
y
2)(z

2x2
32r3r2 + F2G2)

(z2x2
32r3r2 + F2G2)2 + [zx32(F2r3 −G2r2)]2

+

−zx32(F2r3 −G2r2)[z
2x2

32(r
y
2r3 + r2r

y
3) + F y

2G2 + F2G
y
2]

(z2x2
32r3r2 + F2G2)2 + [zx32(F2r3 −G2r2)]2

+

+
zx43(F

y
3 r4 + F3r

y
4 −Gy

3r3 −G3r
y
3)(z

2x2
43r3r4 + F3G3)

(z2x2
43r3r4 + F3G3)2 + [zx43(F3r4 −G3r3)]2

+

−zx43(F3r4 −G3r3)[z
2x2

43(r
y
3r4 + r3r

y
4) + F y

3G3 + F3G
y
3]

(z2x2
43r3r4 + F3G3)2 + [zx43(F3r4 −G3r3)]2

+

+
zx14(F

y
4 r1 + F4r

y
1 −Gy

4r4 −G4r
y
4)(z

2x2
14r3r4 + F4G4)

(z2x2
14r1r4 + F4G4)2 + [zx14(F4r1 −G4r4)]2

+

−zx14(F4r1 −G4r4)[z
2x2

14(r
y
4r1 + r4r

y
1) + F y

4G4 + F4G
y
4]

(z2x2
14r1r4 + F4G4)2 + [zx14(F4r1 −G4r4)]2

}

(C.6)
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∂ΦD

∂z
= − 1

4π

{
x21(F1r2 −G1r1) + zx21(F

z
1 r2 + F1r

z
2 −Gz

1r1 −G1r
z
1)(z

2x2
21r1r2 + F1G1)

(z2x2
21r1r2 + F1G1)2 + [zx21(F1r2 −G1r1)]2

+

−zx21(F1r2 −G1r1)[2zx
2
21r1r2 + z2x2

21(r
z
1r2 + r1r

z
2) + F z

1G1 + F1G
z
1]

(z2x2
21r1r2 + F1G1)2 + [zx21(F1r2 −G1r1)]2

+

+
x32(F2r3 −G2r2) + zx32(F

z
2 r3 + F2r

z
3 −Gz

2r2 −G2r
z
2)(z

2x2
32r3r2 + F2G2)

(z2x2
32r3r2 + F2G2)2 + [zx32(F2r3 −G2r2)]2

+

−zx32(F2r3 −G2r2)[2zx
2
32r3r2 + z2x2

32(r
z
2r3 + r2r

z
3) + F z

2G2 + F2G
z
2]

(z2x2
32r3r2 + F2G2)2 + [zx32(F2r3 −G2r2)]2

+

+
x43(F3r4 −G3r3) + zx43(F

z
3 r4 + F3r

z
4 −Gz

3r3 −G3r
z
3)(z

2x2
43r3r4 + F3G3)

(z2x2
43r3r4 + F3G3)2 + [zx43(F3r4 −G3r3)]2

+

−zx43(F3r4 −G3r3)[2zx
2
43r3r4 + z2x2

43(r
z
3r4 + r3r

z
4) + F z

3G3 + F3G
z
3]

(z2x2
43r3r4 + F3G3)2 + [zx43(F3r4 −G3r3)]2

+

+
x14(F4r1 −G4r4) + zx14(F

z
4 r1 + F4r

z
1 −Gz

4r4 −G4r
z
4)(z

2x2
14r3r4 + F4G4)

(z2x2
14r1r4 + F4G4)2 + [zx14(F4r1 −G4r4)]2

+

−zx14(F4r1 −G4r4)[2zx
2
14r1r4 + z2x2

14(r
z
4r1 + r4r

z
1) + F z

4G4 + F4G
z
4]

(z2x2
14r1r4 + F4G4)2 + [zx14(F4r1 −G4r4)]2

}
(C.7)
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Where the following quantities are defined

rx1 =
∂r1
∂x

=
(x− x1)√

(x− x1)2 + (y − y1)2 + z2

rx2 =
∂r2
∂x

=
(x− x2)√

(x− x2)2 + (y − y2)2 + z2

rx3 =
∂r3
∂x

=
(x− x3)√

(x− x3)2 + (y − y3)2 + z2

rx4 =
∂r4
∂x

=
(x− x4)√

(x− x4)2 + (y − y4)2 + z2

F x
1 =

∂F1

∂x
= 2y21(x− x1)− x21(y − y1)

F x
2 =

∂F2

∂x
= 2y32(x− x2)− x32(y − y2)

F x
3 =

∂F3

∂x
= 2y43(x− x3)− x43(y − y3)

F x
4 =

∂F4

∂x
= 2y14(x− x4)− x14(y − y4)

Gx
1 =

∂G1

∂x
= 2y21(x− x2)− x21(y − y2)

Gx
2 =

∂G2

∂x
= 2y32(x− x3)− x32(y − y3)

Gx
3 =

∂G3

∂x
= 2y43(x− x4)− x43(y − y4)

Gx
4 =

∂G4

∂x
= 2y14(x− x1)− x14(y − y1)

ry1 =
∂r1
∂y

=
(y − y1)√

(y − y1)2 + (y − y1)2 + z2

ry2 =
∂r2
∂y

=
(y − y2)√

(y − y2)2 + (y − y2)2 + z2

ry3 =
∂r3
∂y

=
(y − y3)√

(y − y3)2 + (y − y3)2 + z2

ry4 =
∂r4
∂y

=
(y − y4)√

(y − y4)2 + (y − y4)2 + z2

F y
1 =

∂F1

∂y
= −x21(x− x1)

F y
2 =

∂F2

∂y
= −x32(x− x2)

F y
3 =

∂F3

∂y
= −x43(x− x3)

F y
4 =

∂F4

∂y
= −x14(x− x4)

Gy
1 =

∂G1

∂y
= −x21(x− x2)

Gy
2 =

∂G2

∂y
= −x32(x− x3)

Gy
3 =

∂G3

∂y
= −x43(x− x4)

Gy
4 =

∂G4

∂y
= −x14(x− x1)

rz1 =
∂r1
∂z

=
(z − z1)√

(z − z1)2 + (y − y1)2 + z2

rz2 =
∂r2
∂z

=
(z − z2)√

(z − z2)2 + (y − y2)2 + z2

rz3 =
∂r3
∂z

=
(z − z3)√

(z − z3)2 + (y − y3)2 + z2

rz4 =
∂r4
∂z

=
(z − z4)√

(z − z4)2 + (y − y4)2 + z2

F z
1 =

∂F1

∂z
= 2xy21

F z
2 =

∂F2

∂z
= 2zy32

F z
3 =

∂F3

∂z
= 2zy43

F z
4 =

∂F4

∂z
= 2zy14

Gz
1 =

∂G1

∂z
= F z

1

Gz
2 =

∂G2

∂z
= F z

2

Gz
3 =

∂G3

∂z
= F z

3

Gz
4 =

∂G4

∂z
= F z

4
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The case of perturbed vertex thought as belonging to the emitting panel is here taken in

consideration. In case of validity of eq.(C.2), the derivatives of the perturbation potential

are
∂ΦD

∂x1

=
∂S

∂x1

z

4πd3

∂ΦD

∂x2

=
∂S

∂x2

z

4πd3

∂ΦD

∂x3

=
∂S

∂x3

z

4πd3

∂ΦD

∂x4

=
∂S

∂x4

z

4πd3

∂ΦD

∂y1
=

∂S

∂y1

z

4πd3

∂ΦD

∂y2
=

∂S

∂y2

z

4πd3

∂ΦD

∂y3
=

∂S

∂y3

z

4πd3

∂ΦD

∂y4
=

∂S

∂y4

z

4πd3

The derivatives of eq.(C.1) with respect to the same variables are here presented

∂ΦD

∂x1

= − 1

4π

{
[−z(F1r2 −G1r1) + zx21(F

x1
1 r2 −Gx1

1 r1 −G1r
x1
1 )](z2x2

21r1r2 + F1G1)

(z2x2
21r1r2 + F1G1)2 + [zx21(F1r2 −G1r1)]2

−zx21(F1r2 −G1r1)[−2x21z
2r1r2 + z2x2

21r
x1
1 r2 + F x1

1 G1 + F1G
x1
1 ]

(z2x2
21r1r2 + F1G1)2 + [zx21(F1r2 −G1r1)]2

+

+
[z(F4r1 −G4r4) + zx14(F

x1
4 r1 + F4r

x1
1 −Gx1

4 r4](z
2x2

14r1r4 + F4G4)

(z2x2
14r1r4 + F4G4)2 + [zx14(F4r1 −G4r4)]2

+

−zx14(F4r1 −G4r4)[2x14z
2r1r4 + z2x2

14r
x1
1 r4 + F x1

4 G4 + F4G
x1
4 ]

(z2x2
14r1r4 + F4G4)2 + [zx14(F4r1 −G4r4)]2

}
∂ΦD

∂x2

= − 1

4π

{
[z(F1r2 −G1r1) + zx21(F

x2
1 r2 + F1r

x2
2 −Gx2

1 r1)](z
2x2

21r1r2 + F1G1)

(z2x2
21r1r2 + F1G1)2 + [zx21(F1r2 −G1r1)]2

−zx21(F1r2 −G1r1)[2x21z
2r1r2 + z2x2

21r1r
x2
2 + F x2

1 G1 + F1G
x2
1 ]

(z2x2
21r1r2 + F1G1)2 + [zx21(F1r2 −G1r1)]2

+

+
[−z(F2r3 −G2r2) + zx32(F

x2
2 r3 −Gx2

2 r2 −G2r
x2
2 ](z2x2

32r2r3 + F2G2)

(z2x2
32r2r3 + F2G2)2 + [zx32(F2r3 −G2r3)]2

+

−zx32(F2r3 −G2r2)[−2x32z
2r3r2 + z2x2

32r
x2
2 r3 + F x2

2 G2 + F2G
x2
2 ]

(z2x2
32r2r3 + F2G2)2 + [zx32(F2r3 −G2r3)]2

}
∂ΦD

∂x3

= − 1

4π

{
[−z(F3r4 −G3r3) + zx43(F

x3
3 r4 −Gx3

3 r3 −G3r
x3
3 )](z2x2

43r3r4 + F3G3)

(z2x2
43r3r4 + F3G3)2 + [zx43(F3r4 −G3r3)]2

−zx43(F3r4 −G3r3)[−2x43z
2r3r4 + z2x2

43r4r
x3
3 + F x3

3 G3 + F3G
x3
3 ]

(z2x2
43r3r4 + F3G3)2 + [zx43(F3r4 −G3r3)]2

+

+
[z(F2r3 −G2r2) + zx32(F

x3
2 r3 + F2r

x3
3 −Gx3

2 r2](z
2x2

32r2r3 + F2G2)

(z2x2
32r2r3 + F2G2)2 + [zx32(F2r3 −G2r3)]2

+

−zx32(F2r3 −G2r2)[2x32z
2r3r2 + z2x2

32r
x3
3 r2 + F x3

2 G2 + F2G
x3
2 ]

(z2x2
32r2r3 + F2G2)2 + [zx32(F2r3 −G2r3)]2

}
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∂ΦD

∂x4

= − 1

4π

{
[z(F3r4 −G3r3) + zx43(F

x4
3 r4 + F3r

x4
4 −Gx4

3 r3)](z
2x2

43r3r4 + F3G3)

(z2x2
43r3r4 + F3G3)2 + [zx43(F3r4 −G3r3)]2

−zx43(F3r4 −G3r3)[2x43z
2r3r4 + z2x2

43r
x4
4 r3 + F x4

3 G3 + F3G
x4
3 ]

(z2x2
43r3r4 + F3G3)2 + [zx43(F3r4 −G3r3)]2

+

+
[−z(F4r1 −G4r4) + zx14(F

x4
4 r1 −Gx4

4 r4 −G4r
x4
4 ](z2x2

14r1r4 + F4G4)

(z2x2
14r1r4 + F4G4)2 + [zx14(F4r1 −G4r4)]2

+

−zx14(F4r1 −G4r4)[−2x14z
2r1r4 + z2x2

14r
x4
4 r1 + F x4

4 G4 + F4G
x4
4 ]

(z2x2
14r1r4 + F4G4)2 + [zx14(F4r1 −G4r4)]2

}
∂ΦD

∂y1
= − 1

4π

{
[zx21(F

x1
1 r2 −Gy1

1 r1 −G1r
x1
1 )](z2x2

21r1r2 + F1G1)

(z2x2
21r1r2 + F1G1)2 + [zx21(F1r2 −G1r1)]2

−zx21(F1r2 −G1r1)[z
2x2

21r
y1
1 r2 + F y1

1 G1 + F1G
y1
1 ]

(z2x2
21r1r2 + F1G1)2 + [zx21(F1r2 −G1r1)]2

+

+
[zx14(F

y1
4 r1 + F4r

y1
1 −Gy1

4 r4](z
2x2

14r1r4 + F4G4)

(z2x2
14r1r4 + F4G4)2 + [zx14(F4r1 −G4r4)]2

+

−zx14(F4r1 −G4r4)[z
2x2

14r
y1
1 r4 + F y1

4 G4 + F4G
y1
4 ]

(z2x2
14r1r4 + F4G4)2 + [zx14(F4r1 −G4r4)]2

}
∂ΦD

∂y2
= − 1

4π

{
[zx21(F

x2
1 r2 + F1r

y2
2 −Gy2

1 r1)](z
2x2

21r1r2 + F1G1)

(z2x2
21r1r2 + F1G1)2 + [zx21(F1r2 −G1r1)]2

−zx21(F1r2 −G1r1)[z
2x2

21r1r
y2
2 + F y2

1 G1 + F1G
y2
1 ]

(z2x2
21r1r2 + F1G1)2 + [zx21(F1r2 −G1r1)]2

+

+
[zx32(F

y2
2 r3 −Gy2

2 r2 −G2r
y2
2 ](z2x2

32r2r3 + F2G2)

(z2x2
32r2r3 + F2G2)2 + [zx32(F2r3 −G2r3)]2

+

−zx32(F2r3 −G2r2)[z
2x2

32r
y2
2 r3 + F y2

2 G2 + F2G
y2
2 ]

(z2x2
32r2r3 + F2G2)2 + [zx32(F2r3 −G2r3)]2

}
∂ΦD

∂y3
= − 1

4π

{
[zx43(F

x3
3 r4 −Gy3

3 r3 −G3r
y3
3 )](z2x2

43r3r4 + F3G3)

(z2x2
43r3r4 + F3G3)2 + [zx43(F3r4 −G3r3)]2

−zx43(F3r4 −G3r3)[z
2x2

43r4r
y3
3 + F y3

3 G3 + F3G
y3
3 ]

(z2x2
43r3r4 + F3G3)2 + [zx43(F3r4 −G3r3)]2

+

+
[zx32(F

y3
2 r3 + F2r

y3
3 −Gy3

2 r2](z
2x2

32r2r3 + F2G2)

(z2x2
32r2r3 + F2G2)2 + [zx32(F2r3 −G2r3)]2

+

−zx32(F2r3 −G2r2)[z
2x2

32r
y3
3 r2 + F y3

2 G2 + F2G
y3
2 ]

(z2x2
32r2r3 + F2G2)2 + [zx32(F2r3 −G2r3)]2

}
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∂ΦD

∂y4
= − 1

4π

{
[zx43(F

x4
3 r4 + F3r

y4
4 −Gy4

3 r3)](z
2x2

43r3r4 + F3G3)

(z2x2
43r3r4 + F3G3)2 + [zx43(F3r4 −G3r3)]2

−zx43(F3r4 −G3r3)[z
2x2

43r
y4
4 r3 + F y4

3 G3 + F3G
y4
3 ]

(z2x2
43r3r4 + F3G3)2 + [zx43(F3r4 −G3r3)]2

+

+
[zx14(F

y4
4 r1 −Gy4

4 r4 −G4r
y4
4 ](z2x2

14r1r4 + F4G4)

(z2x2
14r1r4 + F4G4)2 + [zx14(F4r1 −G4r4)]2

+

−zx14(F4r1 −G4r4)[z
2x2

14r
y4
4 r1 + F y4

4 G4 + F4G
y4
4 ]

(z2x2
14r1r4 + F4G4)2 + [zx14(F4r1 −G4r4)]2

}
Where the following quantities are defined

Gx1
1 =

∂G1

∂x1

= h2

F x1
4 =

∂F4

∂x1

= −h4

Gx4
4 =

∂G4

∂x3

= h1

F x4
3 =

∂F3

∂x3

= −h3

Gx2
2 =

∂G2

∂x2

= h3

F x2
1 =

∂F1

∂x2

= −h1

Gx3
3 =

∂G3

∂x3

= h4

F x3
2 =

∂F2

∂x3

= −h2

Gy3
3 =

∂G3

∂y3
= −e4

F y3
2 =

∂F2

∂y3
= e2

Gy2
1 =

∂G1

∂y2
= e2 + x21(x− x2)

F y2
2 =

∂F2

∂y2
= −e2 + x32(x− x2)

rx1
1 =

∂r1
∂x1

= − (x− x1)√
(x− x1)2 + (y − y1)2 + z2

rx2
2 =

∂r2
∂x2

= − (x− x2)√
(x− x2)2 + (y − y2)2 + z2

F x1
1 =

∂F1

∂x1

= −2(x− x1)y21 + h1 + x21(y − y1)

Gx2
1 =

∂G1

∂x2

= −2(x− x2)y21 − h2 + x21(y − y1)

Gx1
4 =

∂G4

∂x1

= −2(x− x1)y14 − h1 + x14(y − y1)

F x2
2 =

∂F2

∂x2

= −2(x− x2)(y32 + h2 + x32(y − y2)

rx3
3 =

∂r3
∂x3

= − (x− x3)√
(x− x3)2 + (y − y3)2 + z2

rx4
4 =

∂r4
∂x4

= − (x− x4)√
(x− x4)2 + (y − y4)2 + z2

F x3
3 =

∂F3

∂x3

= −2(x− x3)y43 + h3 + y43(y − y3)

Gx3
2 =

∂G2

∂x3

= −2(x− x3)y32 − h3 + x32(y − y3)

F x4
4 =

∂F4

∂x3

= −2(x− x4)y14 + h4 + x14(y − y4)

Gx4
3 =

∂G3

∂x3

= −2(x− x4)y43 − h4 + x43(y − y4)
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F y1
1 =

∂F1

∂y1
= −e1 + x21(x− x1)

Gy1
1 =

∂G1

∂y1
= −e2

F y1
4 =

∂F4

∂y1
= e4

Gy1
4 =

∂G4

∂y1
= e1 + (x− x1)x14

Gy2
2 =

∂G2

∂y2
= −e3

F y2
1 =

∂F1

∂y2
= e1

Gy4
4 =

∂G4

∂y4
= −e1

F y4
3 =

∂F3

∂y4
= e3

ry33 =
∂r3
∂y3

= − (y − y3)√
(x− x3)2 + (y − y3)2 + z2

ry44 =
∂r4
∂y4

= − (y − y4)√
(x− x4)2 + (y − y4)2 + z2

F y3
3 =

∂F3

∂y3
= −e3 + x43(x− x3)

Gy3
2 =

∂G2

∂y3
= e3 + (x− x3)x32

F y4
4 =

∂F4

∂y4
= −e3 + x14(x− x4)

ry11 =
∂r1
∂y1

= − (y − y1)√
(x− x1)2 + (y − y1)2 + z2

ry22 =
∂r2
∂y2

= − (y − y2)√
(x− x2)2 + (y − y2)2 + z2

Gy4
3 =

∂G3

∂y4
= e4 + x43(x− x4)

As shown in eq.(8.33), here for clarity recalled,

∂A∗BN
b,6

∂u6,z

=
∂ΦD

∂x2

lz +
∂ΦD

∂y2
mz +

∂ΦD

∂x

(
∂lx
∂sz,6

sbx +
∂ly
∂sz,6

sby +
∂lz
∂sz,6

sbz −
1

4

)
+

+
∂ΦD

∂y

(
∂mx

∂sz,6
sbx +

∂my

∂sz,6
sby +

∂mz

∂sz,6
sbz −

1

4

)
+

+
∂ΦD

∂z

(
∂nx

∂sz,6
sbx +

∂ny

∂sz,6
sby +

∂nz

∂sz,6
sbz −

1

4

) (C.8)

to correctly assess the contribution
∂ABN

b,k

∂ui
(where b is the ID of the receiving point and k

is the the perturbed vertex belonging to the emitting panel) the derivatives of the matrix

GLk which enables to shift the coordinates of the receiving point from the Global to the

Local reference system of the emitting panel in respect with the global coordinates of the

perturbed vertex are needed.

In order to visualize the three unit vectors l,m and n, Fig.C.1 is presented. Starting from

the four corner points, the two diagonals d1 and d2 are first defined. The vector product

of this diagonals (normalized by its modulus) gives the unity vector n normal to the mean

plane of the quadrilateral (as the quadrilaterals are not planar in general, the singularity

distributions are thought to be distributed on an average flat panel)

n =
d1 × d2

|d1 ∧ d2|
(C.9)
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Fig. C.1: Local reference system defined by unit vectors l,m,n

The order of the corner gives the direction of the normal; thus to be consistent with the sign

given to the perturbation potential in eqs.(8.16),(8.17),(8.34) and (8.35) d1 runs from point

1 to point 3 and d2 runs from point 2 to point 4. The area of the panel moreover is given by

S =
|d1 ∧ d2|

2
(C.10)

The control point where the boundary condition is imposed coincides with the center of the

panel C, defined as the mean of the four corner points

C =
1

4

4∑
i=1

Ri (C.11)

The origin of the local coordinate system is coincident with C and the unity vector is directed

from it to the mid-point of the edge lying between vertices 3 and 4

m =

R3+R4
2

−C∣∣∣∣R3+R4
2

−C

∣∣∣∣ (C.12)

Finally the other vector lying in the mean plane is given by

l = m× n (C.13)

In order to perform the derivatives in respect with the global coordinates of the 4 vertices of
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the panel, the previous variables are defined in the global reference (x,y,z) of Fig.C.1

d13 = (d13x, d13y, d13z) = (x3 − x1, y3 − y1, z3 − z1)

d24 = (d24x, d24y, d24z) = (x4 − x2, y4 − y2, z4 − z2)

n = (nx, ny, nz) =
1

n
(d13yd24z − d13zd24y, d24xd13z − d13xd24z, d13xd24y − d13yd24x)

n = |d1 ∧ d2| =
√
(d13yd24z − d13zd24y)2 + (d24xd13z − d13xd24z)2 + (d13xd24y − d13yd24x)2

C = (Cx, Cy, Cz) =

(
x1 + x2 + x3 + x4

4
,
y1 + y2 + y3 + y4

4
,
z1 + z2 + z3 + z4

4

)
R3 +R4

2
=

(
x3 + x4

2
,
y3 + y4

2
,
z3 + z4

2

)
m = (mx,my,mz) =

1

m

(
x3 + x4 − x1 − x2

4
,
y3 + y4 − y1 − y2

4
,
z3 + z4 − z1 − z2

4

)
m =

1

4

√
(x3 + x4 − x1 − x2)2 + (y3 + y4 − y1 − y2)2 + (z3 + z4 − z1 − z2)2

l = (lx, ly, lz) = (mynz −mzny, nxmz −mxnz,mxny −mynx)

(C.14)

Following the definitions of eq.(C.14) it’s now possible to perform the required derivatives.

It’s here reminded that the following represent the derivatives in respect of the global co-

ordinates of the unit vectors defined in the body reference system (that depending on the

200



particular case can be different from the global one). Firstly the unit vector n is considered

∂nx

∂x1

= −nx1

n2
nx

∂ny

∂x1

=
d24zn− nx1ny

n2

∂nz

∂x1

=
−d24yn− nx1nz

n2

∂nx

∂x2

= −nx2

n2
nx

∂ny

∂x2

=
−d13zn− nx2ny

n2

∂nz

∂x2

=
d13yn− nx2nz

n2

∂nx

∂x3

= −∂nx

∂x1

∂ny

∂x3

= −∂ny

∂x1

∂nz

∂x3

= −∂nz

∂x1

∂nx

∂x4

= −∂nx

∂x2

∂ny

∂x4

= −∂ny

∂x2

∂nz

∂x4

= −∂nz

∂x2

∂nx

∂z1
=

d24yn− nz1nx

n2

∂ny

∂z1
=
−d24xn− nz1ny

n2

∂nz

∂z1
= −nz1

n2
nz

∂nx

∂z2
=
−d13yn− nz2nx

n2

∂ny

∂z2
=

d13xn− nz2ny

n2

∂nz

∂z2
= −nz2

n2
nz

∂nx

∂y1
=
−d24zn− ny1nx

n2

∂ny

∂y1
= −ny1

n2
ny

∂nz

∂y1
=

d24xn− ny1nz

n2

∂nx

∂y2
=

d13zn− ny2nx

n2

∂ny

∂y2
= −−n

y2

n2
ny

∂nz

∂y2
=
−d13xn− ny2nz

n2

∂nx

∂y3
= −∂nx

∂y1
∂ny

∂y3
= −∂ny

∂y1
∂nz

∂y3
= −∂nz

∂y1
∂nx

∂y4
= −∂nx

∂y2
∂ny

∂y4
= −∂ny

∂y2
∂nz

∂y4
= −∂nz

∂y2
∂nx

∂z3
= −∂nx

∂z1
∂ny

∂z3
= −∂ny

∂z1
∂nz

∂z3
= −∂nz

∂z1
∂nx

∂z4
= −∂nx

∂z2
∂ny

∂z4
= −∂ny

∂z2
∂nz

∂z4
= −∂nz

∂z2
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where the following quantities have been defined

nx1 =
∂n

∂x1

=
d24zny − d24ynz

n
= − ∂n

∂x3

nx2 =
∂n

∂x2

=
−d13zny + d13ynz

n
= − ∂n

∂x4

ny1 =
∂n

∂y1
=
−d24znx + d24xnz

n
= − ∂n

∂y3

ny2 =
∂n

∂y2
=

d13znx − d13xnz

n
= − ∂n

∂y4

nz1 =
∂n

∂z1
=
−d13ynx + d13xny

n
= − ∂n

∂z3

nz2 =
∂n

∂z2
=

d24ynx − d24xny

n
= − ∂n

∂z4

This relations, representing the derivatives of the modulus of the vector product of the

diagonals of the panel, are also useful in the evaluation of the derivatives of the area S when

far-field equations are used (see eq.C.10).
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Derivatives of unit vector m are now listed

∂mx

∂x1

= −
1
4
+mxm

x1

m
=

∂mx

∂x2

∂my

∂x1

= −mym
x1

m
=

∂my

∂x2

∂mz

∂x1

= −mzm
x1

m
=

∂mz

∂x2

∂mx

∂x3

= −∂mx

∂x1

=
∂mx

∂x4

∂my

∂x3

= −∂my

∂x1

=
∂my

∂x4

∂mz

∂x3

= −∂mz

∂x1

=
∂mz

∂x4

∂mx

∂z1
= −mxm

z1

m
=

∂my

∂z2
∂my

∂z1
= −mym

z1

m
=

∂my

∂z2
∂mz

∂z1
= −

1
4
+mzm

z1

m
=

∂mz

∂z2
∂mx

∂y1
= −mxm

y1

m
=

∂my

∂y2

∂my

∂y1
= −

1
4
+mym

y1

m
=

∂my

∂y2
∂mz

∂y1
= −mzm

y1

m
=

∂mz

∂y2
∂mx

∂y3
= −∂mx

∂y1
=

∂mx

∂y4
∂my

∂y3
= −∂my

∂y1
=

∂my

∂y4
∂mz

∂y3
= −∂mz

∂y1
=

∂mz

∂y4
∂mx

∂z3
= −∂mx

∂z1
=

∂mx

∂z4
∂my

∂z3
= −∂my

∂z1
=

∂my

∂z4
∂mz

∂z3
= −∂mz

∂z1
=

∂mz

∂z4
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where

mx1 =
∂m

∂x1

= −1

4
mx

my1 =
∂m

∂y1
= −1

4
my

mz1 =
∂m

∂z1
= −1

4
mz

For the derivatives of unit vector l it holds

∂lx
∂x1

=
∂my

∂x1

nz +my
∂nz

∂x1

− ∂mz

∂x1

ny −
∂ny

∂x1

mz

∂ly
∂x1

=
∂nx

∂x1

mz + nx
∂mz

∂x1

− ∂mx

∂x1

nz −
∂nz

∂x1

mx

∂lz
∂x1

=
∂mx

∂x1

ny +mx
∂ny

∂x1

− ∂my

∂x1

nx −
∂nx

∂x1

my

∂lx
∂x2

=
∂my

∂x2

nz +my
∂nz

∂x2

− ∂mz

∂x2

ny −
∂ny

∂x2

mz

∂ly
∂x2

=
∂nx

∂x2

mz + nx
∂mz

∂x2

− ∂mx

∂x2

nz −
∂nz

∂x2

mx

∂lz
∂x2

=
∂mx

∂x2

ny +mx
∂ny

∂x2

− ∂my

∂x2

nx −
∂nx

∂x2

my

∂lx
∂x3

=
∂my

∂x3

nz +my
∂nz

∂x3

− ∂mz

∂x3

ny −
∂ny

∂x3

mz

∂ly
∂x3

=
∂nx

∂x3

mz + nx
∂mz

∂x3

− ∂mx

∂x3

nz −
∂nz

∂x3

mx

∂lz
∂x3

=
∂mx

∂x3

ny +mx
∂ny

∂x3

− ∂my

∂x3

nx −
∂nx

∂x3

my

∂lx
∂x4

=
∂my

∂x4

nz +my
∂nz

∂x4

− ∂mz

∂x4

ny −
∂ny

∂x4

mz

∂ly
∂x4

=
∂nx

∂x4

mz + nx
∂mz

∂x4

− ∂mx

∂x4

nz −
∂nz

∂x4

mx

∂lz
∂x4

=
∂mx

∂x4

ny +mx
∂ny

∂x4

− ∂my

∂x4

nx −
∂nx

∂x4

my
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∂lx
∂y1

=
∂my

∂x1

nz +my
∂nz

∂y1
− ∂mz

∂y1
ny −

∂ny

∂y1
mz

∂ly
∂y1

=
∂nx

∂y1
mz + nx

∂mz

∂y1
− ∂mx

∂y1
nz −

∂nz

∂y1
mx

∂lz
∂y1

=
∂mx

∂y1
ny +mx

∂ny

∂y1
− ∂my

∂y1
nx −

∂nx

∂y1
my

∂lx
∂y2

=
∂my

∂y2
nz +my

∂nz

∂y2
− ∂mz

∂y2
ny −

∂ny

∂y2
mz

∂ly
∂y2

=
∂nx

∂y2
mz + nx

∂mz

∂y2
− ∂mx

∂y2
nz −

∂nz

∂y2
mx

∂lz
∂y2

=
∂mx

∂y2
ny +mx

∂ny

∂y2
− ∂my

∂y2
nx −

∂nx

∂y2
my

∂lx
∂y3

=
∂my

∂y3
nz +my

∂nz

∂y3
− ∂mz

∂y3
ny −

∂ny

∂y3
mz

∂ly
∂y3

=
∂nx

∂y3
mz + nx

∂mz

∂y3
− ∂mx

∂y3
nz −

∂nz

∂y3
mx

∂lz
∂y3

=
∂mx

∂y3
ny +mx

∂ny

∂y3
− ∂my

∂y3
nx −

∂nx

∂y3
my

∂lx
∂y4

=
∂my

∂y4
nz +my

∂nz

∂y4
− ∂mz

∂y4
ny −

∂ny

∂y4
mz

∂ly
∂y4

=
∂nx

∂y4
mz + nx

∂mz

∂y4
− ∂mx

∂y4
nz −

∂nz

∂y4
mx

∂lz
∂y4

=
∂mx

∂y4
ny +mx

∂ny

∂y4
− ∂my

∂y4
nx −

∂nx

∂y4
my
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∂lx
∂z1

=
∂my

∂x1

nz +my
∂nz

∂z1
− ∂mz

∂z1
ny −

∂ny

∂z1
mz

∂ly
∂z1

=
∂nx

∂z1
mz + nx

∂mz

∂z1
− ∂mx

∂z1
nz −

∂nz

∂z1
mx

∂lz
∂z1

=
∂mx

∂z1
ny +mx

∂ny

∂z1
− ∂my

∂z1
nx −

∂nx

∂z1
my

∂lx
∂z2

=
∂my

∂z2
nz +my

∂nz

∂z2
− ∂mz

∂z2
ny −

∂ny

∂z2
mz

∂ly
∂z2

=
∂nx

∂z2
mz + nx

∂mz

∂z2
− ∂mx

∂z2
nz −

∂nz

∂z2
mx

∂lz
∂z2

=
∂mx

∂z2
ny +mx

∂ny

∂z2
− ∂my

∂z2
nx −

∂nx

∂z2
my

∂lx
∂z3

=
∂my

∂z3
nz +my

∂nz

∂z3
− ∂mz

∂z3
ny −

∂ny

∂z3
mz

∂ly
∂z3

=
∂nx

∂z3
mz + nx

∂mz

∂z3
− ∂mx

∂z3
nz −

∂nz

∂z3
mx

∂lz
∂z3

=
∂mx

∂z3
ny +mx

∂ny

∂z3
− ∂my

∂z3
nx −

∂nx

∂z3
my

∂lx
∂z4

=
∂my

∂z4
nz +my

∂nz

∂z4
− ∂mz

∂z4
ny −

∂ny

∂z4
mz

∂ly
∂z4

=
∂nx

∂z4
mz + nx

∂mz

∂z4
− ∂mx

∂z4
nz −

∂nz

∂z4
mx

∂lz
∂z4

=
∂mx

∂z4
ny +mx

∂ny

∂z4
− ∂my

∂z4
nx −

∂nx

∂z4
my

Now ∂B
∂u ·σ is considered. The equation that gives the perturbation potential for a source

distribution of unitary strength is

ΦS = − 1

4π

[
(x− x1)y21 − (y − y1)x21

d12
log

(
r1 + r2 + d12
r1 + r2 − d12

)
+

+
(x− x2)y32 − (y − y2)x32

d23
log

(
r3 + r2 + d23
r3 + r2 − d23

)
+

+
(x− x3)y43 − (y − y3)x43

d34
log

(
r3 + r4 + d34
r3 + r4 − d34

)
+

+
(x− x4)y14 − (y − y4)x14

d41
log

(
r4 + r1 + d41
r4 + r1 − d41

)]
− zΦD

(C.15)

When the receiving point is far from the center of the receiving panel (x0,y0,0) and thus the

far-field approximation is possible, the influence of the quadrilateral element with area S can
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be approximated by a point source

ΦS =
S

4π
√

x2 + y2 + z2
(C.16)

The constants here adopted are the same of eq.(C.3).

The case of perturbed vertex thought as belonging to the receiving panel is first presented.

The derivatives of the potential ΦS with respect to the coordinates of the receiving point

when eq.(C.16) is valid are given by

∂ΦS

∂x
= − S

4π

(x− x0)

d3

∂ΦS

∂y
= − S

4π

(y − y0)

d3

∂ΦS

∂z
= − S

4π

z

d3

(C.17)

The derivatives in the general case (close-field) are given by

∂ΦS

∂x
=

1

4π

{
y21
d12

log
r1 + r2 + d12
r1 + r2 − d12

− 2[(x− x1)y21 − (y − y1)x21](r
x
1 + rx2)

(r1 + r2 + d12)(r1 + r2 − d12)
+

+
y32
d23

log
r3 + r2 + d23
r3 + r2 − d23

− 2[(x− x2)y32 − (y − y2)x32](r
x
2 + rx3)

(r3 + r2 + d23)(r3 + r2 − d23)

+
y43
d34

log
r3 + r4 + d34
r3 + r4 − d34

− 2[(x− x3)y43 − (y − y3)x43](r
x
4 + rx3)

(r3 + r4 + d34)(r3 + r4 − d34)

+
y14
d41

log
r1 + r4 + d41
r1 + r4 − d41

− 2[(x− x4)y14 − (y − y4)x14](r
x
4 + rx1)

(r1 + r4 + d41)(r1 + r4 − d41)

}
+

−z∂Φ
D

∂x

∂ΦS

∂y
= − 1

4π

{
x21

d12
log

r1 + r2 + d12
r1 + r2 − d12

+
2[(x− x1)y21 − (y − y1)x21](r

y
1 + ry2)

(r1 + r2 + d12)(r1 + r2 − d12)
+

+
x32

d23
log

r3 + r2 + d23
r3 + r2 − d23

+
2[(x− x2)y32 − (y − y2)x32](r

y
2 + ry3)

(r3 + r2 + d23)(r3 + r2 − d23)

+
x43

d34
log

r3 + r4 + d34
r3 + r4 − d34

+
2[(x− x3)y43 − (y − y3)x43](r

y
4 + ry3)

(r3 + r4 + d34)(r3 + r4 − d34)

+
x14

d41
log

r1 + r4 + d41
r1 + r4 − d41

+
2[(x− x4)y14 − (y − y4)x14](r

y
4 + ry1)

(r1 + r4 + d41)(r1 + r4 − d41)

}
+

−z∂Φ
D

∂y
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∂ΦS

∂z
= − 1

2π

{
[(x− x1)y21 − (y − y1)x21](r

z
1 + rz2)

(r1 + r2 + d12)(r1 + r2 − d12)
+

[(x− x2)y32 − (y − y2)x32](r
z
2 + rz3)

(r3 + r2 + d23)(r3 + r2 − d23)
+

+
[(x− x3)y43 − (y − y3)x43](r

z
4 + rz3)

(r3 + r4 + d34)(r3 + r4 − d34)
+

[(x− x4)y14 − (y − y4)x14](r
z
4 + rz1)

(r1 + r4 + d41)(r1 + r4 − d41)

}
+

−ΦD − z
∂ΦD

∂z
The case of perturbed vertex thought as belonging to the emitting panel is now considered.

In case of validity of eq.(C.16), the derivatives of the perturbation potential are

∂ΦS

∂x1

=
∂S

∂x1

1

4πd

∂ΦS

∂x2

=
∂S

∂x2

1

4πd

∂ΦS

∂x3

=
∂S

∂x3

1

4πd

∂ΦS

∂x4

=
∂S

∂x4

1

4πd

∂ΦS

∂y1
=

∂S

∂y1

1

4πd

∂ΦS

∂y2
=

∂S

∂y2

1

4πd

∂ΦS

∂y3
=

∂S

∂y3

1

4πd

∂ΦS

∂y4
=

∂S

∂y4

1

4πd

For the general case when just close-field relations are adopted, the derivatives with respect

to the x coordinates are

∂ΦS

∂x1

=− 1

4π

{
[−y21 + (y − y1)]d12 − [(x− x1)y21 − (y − y1)x21]d

x1
12

d212
log

(
r1 + r2 + d12
r1 + r2 − d12

)
+

+
[y21(x− x1)− (y − y1)x21][(r

x1
1 + dx1

12)(r1 + r2 − d12)− (rx1
1 − dx1

12)(r1 + r2 + d12)]

d12(r1 + r2 + d12)(r1 + r2 − d12)
+

+
−(y − y4)d41 − [(x− x4)y14 − (y − y4)x14]d

x1
41

d241
log

(
r1 + r4 + d41
r1 + r4 − d41

)
+

+
[y14(x− x4)− (y − y4)x14][(r

x1
1 + dx1

41)(r1 + r4 − d41)− (rx1
1 − dx1

41)(r1 + r4 + d41)]

d41(r1 + r4 + d41)(r1 + r4 − d41)

}
+

− z
∂ΦD

∂x1

∂ΦS

∂x2

=− 1

4π

{
−(y − y1)d12 − [(x− x1)y21 − (y − y1)x21]d

x2
12

d212
log

(
r1 + r2 + d12
r1 + r2 − d12

)
+

+
[y21(x− x1)− (y − y1)x21][(r

x2
2 + dx2

12)(r1 + r2 − d12)− (rx2
2 − dx2

12)(r1 + r2 + d12)]

d12(r1 + r2 + d12)(r1 + r2 − d12)
+

+
[−y32 + (y − y2)]d23 − [(x− x2)y32 − (y − y2)x32]d

x2
23

d223
log

(
r3 + r2 + d23
r3 + r2 − d23

)
+

+
[y32(x− x2)− (y − y2)x32][(r

x2
2 + dx2

23)(r2 + r3 − d23)− (rx2
2 − dx2

23)(r2 + r3 + d23)]

d23(r2 + r3 + d23)(r2 + r3 − d23)

}
+

− z
∂ΦD

∂x2
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∂ΦS

∂x3

=− 1

4π

{
−(y − y2)d23 − [(x− x2)y32 − (y − y2)x32]d

x3
23

d223
log

(
r3 + r2 + d23
r3 + r2 − d23

)
+

+
[y32(x− x2)− (y − y2)x32][(r

x3
3 + dx3

23)(r2 + r3 − d23)− (rx3
3 − dx3

23)(r2 + r3 + d23)]

d23(r2 + r3 + d23)(r2 + r3 − d23)
+

+
[−y43 + (y − y3)]d34 − [(x− x3)y43 − (y − y3)x43]d

x3
34

d234
log

(
r3 + r4 + d34
r3 + r4 − d34

)
+

+
[y43(x− x3)− (y − y3)x43][(r

x3
3 + dx3

34)(r4 + r3 − d34)− (rx3
3 − dx3

34)(r4 + r3 + d34)]

d34(r4 + r3 + d34)(r4 + r3 − d34)

}
+

− z
∂ΦD

∂x3

∂ΦS

∂x4

=− 1

4π

{
−(y − y3)d34 − [(x− x3)y43 − (y − y3)x43]d

x4
34

d234
log

(
r3 + r4 + d34
r3 + r4 − d34

)
+

+
[y43(x− x3)− (y − y3)x43][(r

x4
4 + dx4

34)(r4 + r3 − d34)− (rx4
4 − dx4

34)(r4 + r3 + d34)]

d34(r4 + r3 + d34)(r4 + r3 − d34)
+

+
[−y14 + (y − y4)]d41 − [(x− x4)y14 − (y − y4)x14]d

x4
41

d241
log

(
r1 + r4 + d41
r1 + r4 − d41

)
+

+
[y14(x− x4)− (y − y4)x14][(r

x4
4 + dx4

41)(r4 + r1 − d41)− (rx4
4 − dx4

41)(r4 + r1 + d41)]

d41(r4 + r1 + d41)(r4 + r1 − d41)

}
+

− z
∂ΦD

∂x4

The derivatives with respect to the y coordinates are

∂ΦS

∂y1
=− 1

4π

{
[x21 − (x− x1)]d12 − [(x− x1)y21 − (y − y1)x21]d

y1
12

d212
log

(
r1 + r2 + d12
r1 + r2 − d12

)
+

+
[y21(x− x1)− (y − y1)x21][(r

y1
1 + dy112)(r1 + r2 − d12)− (ry11 − dy112)(r1 + r2 + d12)]

d12(r1 + r2 + d12)(r1 + r2 − d12)
+

+
(x− x4)d41 − [(x− x4)y14 − (y − y4)x14]d

y1
41

d241
log

(
r1 + r4 + d41
r1 + r4 − d41

)
+

+
[y14(x− x4)− (y − y4)x14][(r

y1
1 + dy141)(r1 + r4 − d41)− (ry11 − dy141)(r1 + r4 + d41)]

d41(r1 + r4 + d41)(r1 + r4 − d41)

}
+

− z
∂ΦD

∂y1
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∂ΦS

∂y2
=− 1

4π

{
(x− x1)d12 − [(x− x1)y21 − (y − y1)x21]d

y2
12

d212
log

(
r1 + r2 + d12
r1 + r2 − d12

)
+

+
[y21(x− x1)− (y − y1)x21][(r

y2
2 + dy212)(r1 + r2 − d12)− (ry22 − dy212)(r1 + r2 + d12)]

d12(r1 + r2 + d12)(r1 + r2 − d12)
+

+
[−x32 + (x− x2)]d23 − [(x− x2)y32 − (y − y2)x32]d

y2
23

d223
log

(
r3 + r2 + d23
r3 + r2 − d23

)
+

+
[y32(x− x2)− (y − y2)x32][(r

y2
2 + dy223)(r2 + r3 − d23)− (ry22 − dy223)(r2 + r3 + d23)]

d23(r2 + r3 + d23)(r2 + r3 − d23)

}
+

− z
∂ΦD

∂y2

∂ΦS

∂y3
=− 1

4π

{
(x− x2)d23 − [(x− x2)y32 − (y − y2)x32]d

y3
23

d223
log

(
r3 + r2 + d23
r3 + r2 − d23

)
+

+
[y32(x− x2)− (y − y2)x32][(r

y3
3 + dy323)(r2 + r3 − d23)− (ry33 − dy323)(r2 + r3 + d23)]

d23(r2 + r3 + d23)(r2 + r3 − d23)
+

+
[x43 + (x− x3)]d34 − [(x− x3)y43 − (y − y3)x43]d

y3
34

d234
log

(
r3 + r4 + d34
r3 + r4 − d34

)
+

+
[y43(x− x3)− (y − y3)x43][(r

y3
3 + dy334)(r4 + r3 − d34)− (ry33 − dy334)(r4 + r3 + d34)]

d34(r4 + r3 + d34)(r4 + r3 − d34)

}
+

− z
∂ΦD

∂y3

∂ΦS

∂y4
=− 1

4π

{
−(x− x3)d34 − [(x− x3)y43 − (y − y3)x43]d

y4
34

d234
log

(
r3 + r4 + d34
r3 + r4 − d34

)
+

+
[y43(x− x3)− (y − y3)x43][(r

y4
4 + dy434)(r4 + r3 − d34)− (ry44 − dy434)(r4 + r3 + d34)]

d34(r4 + r3 + d34)(r4 + r3 − d34)
+

+
[x14 − (x− x4)]d41 − [(x− x4)y14 − (y − y4)x14]d

y4
41

d241
log

(
r1 + r4 + d41
r1 + r4 − d41

)
+

+
[x14(y − y4)− (y − y4)x14][(r

y4
4 + dy441)(r4 + r1 − d41)− (ry44 − dy441)(r4 + r1 + d41)]

d41(r4 + r1 + d41)(r4 + r1 − d41)

}
+

− z
∂ΦD

∂y4
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The following constants have been defined

dx1
12 =

∂d12
∂x1

= − x21√
x2
21 + y221

dx1
41 =

∂d41
∂x1

= − x14√
x2
14 + y214

dx2
12 =

∂d12
∂x2

= −dx1
12

dx2
23 =

∂d23
∂x2

= − x32√
x2
32 + y232

dx3
23 =

∂d23
∂x3

= −dx2
23

dx3
34 =

∂d34
∂x3

= − x43√
x2
43 + y243

dx4
34 =

∂d34
∂x4

= −dx3
34

dx4
41 =

∂d41
∂x4

= −dx1
41

dy112 =
∂d12
∂y1

= − y21√
x2
21 + y221

dy141 =
∂d41
∂y1

= − y14√
x2
14 + y214

dy212 =
∂d12
∂y2

= −dy112

dy223 =
∂d23
∂y2

= − y32√
x2
32 + y232

dy323 =
∂d23
∂y3

= −dy223

dy334 =
∂d34
∂y3

= − y43√
x2
43 + y243

dy434 =
∂d34
∂y4

= −dy334

dy441 =
∂d41
∂y4

= −dy141

C.2 Sensitivity of pressure in respect

to doublet strength

The term
(

∂p
∂µ

)
, where

(
∂pk
∂µ i

)
representing the variation of pressure on panel k when the

intensity of the doublet i changes, can be performed starting from the Bernoulli theorem for

the unsteady case, which leads to

∆p = p− p∞ =− 1

2
ρ (|∇ϕ+ ρV ∞|)2 − ρ

∂ϕ

∂t

=− 1

2
ρ|∇ϕ|2 − ρV ∞ · ∇ϕ− ρ

∂ϕ

∂t

(C.18)

Since in the collocation points of the body it holds

ϕ = µ (C.19)

eq.(C.18), applied to panel k, can be derivated with respect to µi

∂∆pk
∂µi

=− 1

2
ρ
∂|∇ϕk|2

∂µi

− ρ
∂ (V ∞ · ∇ϕk)

∂µi

− ρ
∂
(
∂ϕk

∂t

)
∂µi

=− 1

2
ρ∇µk ·

∂∇µk

∂µi

− ρV ∞ ·
∂∇µk

∂µi

− ρ
∂
(
∂µk

∂t

)
∂µi

(C.20)
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The term
∂
(

∂µk
∂t

)
∂µi

is evaluated discretizing the time derivative with a first order backward

finite difference scheme
∂µk

∂t
=

µT
k − µT−∆T

k

∆T
(C.21)

leading to
∂
(
∂µk

∂t

)
∂µi

=
1

∆T
δki (C.22)

The term ∂∇µk

∂µi
is constructed using a finite difference scheme for

∇µk =

(
∂µk

∂x
,
∂µk

∂y

)
(C.23)

In eq.(C.23) it is not reported the derivative with respect to z because the gradient is

performed along the local directions and therefore, when considering a variation along the

direction perpendicular to the doublet plane, it is not more true that ϕ = µ. The notation
∂µk

∂z
would not be consistent with the rest of the treatise. This, however, is not a big deal

because it holds
∂ϕk

∂z
= −σk (C.24)

and thus this derivative does not give a contribution in eq.(C.20). The schemes adopted

vary depending on the position of panel k, since it doesn’t always have the same number of

neighbours in the specified direction. In Fig.(C.2) are presented the different possible cases.

In the following l is assumed as direction of derivation (local x axis); of course same strategy

is applied for direction m.

Fig. C.2: Schemes for finite difference discretization of ∇µk

212



In the following equations kc, kb, kc, ek, ce, bc are the distances among the correspondent

panels. Scheme 1 is centered 2nd order and is used whenever panel k has a neighbour on

both sides.
∂µk

∂x
=

(
µc − µk

kc
kb+

µk − µb

kb
kc

)
1

bc
(C.25)

Scheme 2 is forward 2nd order and is used when panel k has no neighbour on left side but

two on the other

∂µk

∂x
=− 2ab

[
−µb − µk

kb2
+

(
µb − µk

kb
bc+

µc − µb

bc
kb

)
1

kc · kb

]
+

+

(
µb − µk

kb
bc+

µc − µb

bc
kb

)
1

kc

(C.26)

Scheme 3 is back 2nd order and is used when panel k has no neighbour on right side but two

on the other

∂µk

∂x
=2ab

[
−µb − µk

bc2
+

(
µb − µc

cb
kb+

µk − µb

kb
bc

)
1

kc · bc

]
+

(
µb − µc

bc
kb+

µk − µb

kb
bc

)
1

kc

(C.27)

Scheme 4 is forward 1st order and is used when panel k has no neighbour on left side and

just on the other
∂µk

∂x
=

µb − µk

kb
(C.28)

Scheme 5 is backword 1st order and is used when panel k has no neighbour on right side and

just on the other
∂µk

∂x
=

µk − µb

kb
(C.29)

The square matrix
(

∂p
∂µ

)
with dimension Npan ·Npan can finally be evaluated. When assem-

bling its k-row
(

∂p
∂µ

)
k,:
, an algorithm provide the case under investigation and one of the

previously equation is used. Depending on the scheme, this row will have a different number

of non-zero elements: the diagonal term is always present (with both contributions from

eq.(C.22) and from eq.(C.23)), while the extra-diagonal terms will vary from 2 to 4.

213



Bibliography

[1] Vision 2020: Strategic research agenda, October 2002.

[2] E. Albano and W.P. Rodden. A doublet lattice method for calculating lift distribu-

tions on oscillating surfaces in subsonic flows. American Institute of Aeronautics and

Astronautics, 7:279–285, 1968.

[3] Eugene L. Allgower and Kurt Georg. Continuation and path following. Acta Numerica,

2:1–64, 1993.

[4] T. D. AlMomani, S. C. Vigmostad, and L. A. Alzube. A sharp-interface fluid-structure

interaction algorithm for modeling red blood cells. Jordan Journal of Mechanical &

Industrial Engineering, 6(2):193 – 198, 2012.

[5] S. Ananthan, J. G. Leishman, and M. Ramasamy. The role of filament stretching in

the free-vortex modeling of rotor wakes. 58th Annual Forum and Technology Display

of the american Helicopter Society International, Montreal, Canada, 11-13 June 2002.

[6] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y.

Wu. An optimal algorithm for approximate nearest neighbor searching fixed dimen-

sions. J. ACM, 45(6):891–923, November 1998.

[7] Peter J. Attar, Earl H. Dowell, and J.R. White. Modeling the lco of a delta wing using

a high fidelity structural model. volume 3, pages 1986 – 2000, 2004.

[8] J. C. A. Barata and M. S. Hussein. The moore-penrose pseudoinverse. a tutorial review

of the theory. 2011.

[9] K. J. Bathe. Finite element procedures. 1996. Prentice Hall, Englewood Cliffs, NJ,

USA.

214



[10] Olivier A. Bauchau and YuriG. Nikishkov. An implicit transition matrix approach to

stability analysis of flexible multi-body systems. Multibody System Dynamics, 5(3):279–

301, 2001.

[11] T. Belytschko, W.K. Liu, and B. Moran. Nonlinear finite elements for continua and

structures. Wiley, 2000.

[12] T. Belytschko and D. F. Schoeberle. On the unconditional stability of an implicit

algorithm for nonlinear structural dynamics. Journal of Applied Mechanics, 42(4):865–

869, 1975.

[13] G. Bernardini. Problematiche Aerodinamiche Relative alla Progettazione di Configu-

razioni Innovative. PhD thesis, Politecnico di Milano, Nov 1999.

[14] J.J. Bertin and M.L. Smith. Aerodynamics for engineers. Prentice-Hall, 1979.

[15] R.L. Bisplinghoff and H. Ashley. Principles of Aeroelasticity. Dover Phoenix Editions.

Dover Publications, 2002.

[16] Michael P. Brenner, Shang-You Tee, David A. Weitz, and Boris I. Shraiman. A model

for velocity fluctuations in sedimentation. Journal of Fluid Mechanics, 501:71–104,

2004.

[17] R.L. Campbell and E.G. Paterson. Fluid structure interaction analysis of flexible

turbomachinery. Journal of Fluids and Structures, 27(8):1376 – 1391, 2011.

[18] J. Carr. Applications of Centre Manifold Theory. Number v. 35 in Applied Mathe-

matical Sciences Series. Springer-Verlag, 1981.

[19] Rauno Cavallaro, Luciano Demasi, and Federica Bertuccelli. Risks of linear design

of Joined Wings: a nonlinear dynamic perspective in the presence of follower forces.

Number AIAA 2013-1558. 54rd AIAA/ASME/ASCE/AHS/ASC Structures, Struc-

tural Dynamics, and Materials Conference, Boston, Massachusetts, American Institute

of Aeronautics and Astronautics, 8-11 April 2013.

[20] Rauno Cavallaro, Luciano Demasi, and Andrea Passariello. Nonlinear analysis of

PrandtlPlane Joined Wings - part ii: Effects of anisotropy. Number AIAA 2012-1462.

53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials

Conference, Honolulu, Hawaii, 23-26 April 2012.

215



[21] Rauno Cavallaro, Luciano Demasi, and Andrea Passariello. Nonlinear analysis of

PrandtlPlane Joined Wings: Effects of anisotropy. AIAA Journal, 2014. In press.

[22] Juan Raul Cebral and Rainald Lohner. Conservative load projection and tracking for

fluid-structure problems. AIAA Journal, Vol. 35(No. 4):pp. 687–692, 1997.

[23] George Celniker and Dave Gossard. Deformable curve and surface finite-elements for

free-form shape design. SIGGRAPH Comput. Graph., 25(4):257–266, July 1991.

[24] J. R. Chambers. Innovation in Flight: Research of the NASA Langley Research Center

on Revolutionary Advanced Concepts for Aeronautics. Number 39 in Monograph in

Aerospace History. NASA, November 2005. NASA SP 2005-4539.

[25] J. Chung and G. M. Hulbert. A time integration algorithm for structural dynamics with

improved numerical dissipation: The generalized-alpha method. Journal of Applied

Mechanics, 60(2):371–375, 1993.

[26] Vittorio Cipolla and Aldo Frediani. Design of solar powered unmanned biplanes for

hale missions. In Giuseppe Buttazzo and Aldo Frediani, editors, Variational Analy-

sis and Aerospace Engineering: Mathematical Challenges for Aerospace Design, vol-

ume 66 of Springer Optimization and Its Applications, pages 141–177. Springer US,

2012. 10.1007/978-1-4614-2435-2 7.

[27] P. Collet and J.P. Eckmann. Iterated Maps on the Interval as Dynamical Systems.
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