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ABSTRACT

The goal to mitigate the increasing environmental impact of aviation has prompted research

into advanced solutions which enable noxious and harmful emissions to be reduced. One of

these is represented by aircraft design layouts able to achieve a decrease in aerodynamic

drag and aircraft weight, with a tremendous benefit in terms of fuel saving.

An important drawback of these configurations (e.g. high aspect ratio and lightweight wings)

is their increased flexibility and resulting large deformations, which in turn can drive the

aircraft into dangerous instabilities featuring coupling among aerodynamics, structural dynamics

and flight dynamics. The discipline addressing the interplay among these different physical

mechanisms is called aeroelasticity. Flutter is a dynamic instability in which the aeroelastic

coupling is able to produce self-sustained oscillatory motion, and is recognised as a very dangerous

and safety-critical phenomenon.

The main issues with the established approaches for predicting flutter are the sensitivity

to model uncertainties and the difficulty to reliably interpret the effect of nonlinearities on the

response of the system. In order to address these challenging aspects, in this thesis techniques

from robust control have been explored since this represents a natural setting for providing

stability guarantees in the face of uncertainties and nonlinearities, and for constructing models

featuring a good trade-off between complexity and reliability. In addition, dynamical systems

approaches are investigated because they offer a powerful framework to understand the complex

dynamics arising in aeroelastic systems and also observed experimentally.

The high-level objective of the thesis is therefore to explore novel approaches to model and

analyse aeroelastic systems subject to generic uncertainty and nonlinearities by leveraging

the advantages of the above frameworks. Linear methods are first investigated, and original

contributions are provided for: construction of Linear Fractional Transformation models; efficient

application of µ analysis to the flutter problem; and worst-case performance analysis of Linear

Time-Varying systems. In the second part of the thesis, the nonlinear response known as Limit

Cycle Oscillation and the closely related problem of determining Region of Attraction have been

addressed by proposing novel analysis methodologies which contribute to the state-of-the-art

by allowing the effect of uncertainties to be studied. The pursued reconciliation between robust

control and dynamic system approaches finally culminates in the proposal of the concept of robust

bifurcation margins, which has the potential to extend the use of µ analysis technique to the

nonlinear context.
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To Mama and Dad





ἓν οἶδα ὅτι οὐδὲν οἶδα

I neither know nor think that I know

Plato, Apology of Socrates

“But I don’t want to go among mad people” Alice remarked.

“Oh, you can’t help that,” said the Cat: “we’re all mad here. I’m mad. You’re mad.”

“How do you know I’m mad?” said Alice.

“You must be,” said the Cat, “or you wouldn’t have come here”

Lewis Carroll, Alice in Wonderland

Vien dietro a me, e lascia dir le genti:

sta come torre ferma, che non crolla

già mai la cima per soffiar di venti

Dante, Purgatorio, Canto V

E quando lui chiese “Perché “

lui gli rispose “Questo è niente

e adesso è ora che io vada”

Fabrizio De André, La cattiva strada





ACKNOWLEDGEMENTS

The first big thank you goes undoubtedly to my supervisor Andrés Marcos, for his guidance and

trust during the doctoral studies. Your continuous support and enthusiasm have created an ideal

environment to work at the ideas presented in this thesis. I have also greatly appreciated the

very inclusive attitude you have always had with your students, which has resulted invariably in

thought-provoking conversations, enjoyable socials, and numerous tastings. I am also grateful to

my co-supervisor Mark Lowenberg, for our valuable discussions on bifurcation and other (not

least important) matters, including job interviews and southern hemisphere rugby. Your calm

and joviality in all kinds of circumstances have always impressed me.

I am indebted to Pete Seiler for all that I have learned during our short but very fruitful

collaboration. Thank you also for the insightful conversations and the kind words on the work.

I would like to thank my friends and colleagues Rauno Cavallaro and Rocco Bombardieri for

making the solver CHSELL available and for the time spent working on our joint activity. Thanks

also to all the collaborators from the project FLEXOP for the many interesting discussions.

Doing a PhD is a long journey, and for that you need good travel buddies. I have had the luck

to share my work space with great colleagues. A big thank you to all the Cavemen and Farmers

that have filled our (various) offices with enthusiasm and laughs, and by doing so have made them

a better place to work. From strenuous walks around Bristol (Pedro and Tim) to legendary trips

across the ocean (Diego and Erwin), it is undeniable that we have had some good fun together. A

deserved mention also to: Kaiqiang for his wisdom; Sérgio for his irony; Robert for his memorable

Christmas cards; Henri for being an excellent ambassador of the British traditions; Dave for

being a model of athleticism.

My experience in Bristol would have not been the same without my Geezers friends Gary and

Honza. Thank you for having explored with me every corner of this exciting city, as well as many

other places around UK. Your positive attitude and curiosity for many common interests has been

a perfect mix. I am also grateful to the Ramblers and Brunel walking groups for the many hikes

with sun, rain, wind, and hail. After all, there is no such thing as bad weather, only bad clothing.

I will bring with me also the energy and passion of the volunteers at Amnesty International and

Global Justice Now, your values and dedication have been empowering.

Thank you Dimitra for having shared with me the last part of this adventure. Your strength

and determination have been inspiring, and our complicity have pushed us both towards our

great achievements. My gratitude goes finally to my parents, for having been always by my side

in a roller-coaster ride started many years ago. Who’d have thought? This is for you. Grazie.

vii





AUTHOR’S DECLARATION

I
declare that the work in this dissertation was carried out in accordance with

the requirements of the University’s Regulations and Code of Practice for

Research Degree Programmes and that it has not been submitted for any

other academic award. Except where indicated by specific reference in the text, the

work is the candidate’s own work. Work done in collaboration with, or with the

assistance of, others, is indicated as such in the introductions of Chapters 4, 5, and 7.

Any views expressed in the dissertation are those of the author.

SIGNED: .................................................... DATE: ..........................................

ix





TABLE OF CONTENTS

Page

List of Tables xv

List of Figures xvii

Nomenclature xxi

Acronyms xxvii

1 Introduction 1
1.1 Motivation and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Organisation of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Flexop H2020 project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Preliminaries 11
2.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Flutter analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Robust control theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Dynamical systems approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Fundamental aeroelastic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Physical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Typical section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Simplified aircraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.3 Joined-wing configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.4 FLEXOP demonstrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Linear Fractional Transformation modelling for robust flutter analysis 39
3.1 Mathematical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Linear Fractional Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.2 µ analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xi



TABLE OF CONTENTS

3.2 LFT modelling of aeroelastic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Model development path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2 Uncertainty description of aerodynamic operators . . . . . . . . . . . . . . . 48

3.2.3 A unified LFT modelling approach . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Coupling LFT modelling with Fluid-structure interaction solvers . . . . . . . . . . 56

3.3.1 Standard numerical LFT modelling approaches and possible improvements 56

3.3.2 A symbolic LFT-FSI modelling approach . . . . . . . . . . . . . . . . . . . . . 58

3.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Nominal and robust flutter analysis of linear systems 69
4.1 Nominal flutter analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.1 Flutter algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.2 Application to the typical section . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.3 Parametric study of body freedom flutter . . . . . . . . . . . . . . . . . . . . 73

4.2 Robust flutter analysis with µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.1 Typical section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.2 Body freedom flutter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Application of µ to uncertain high-order models . . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Nominal analysis of the joined-wing case study . . . . . . . . . . . . . . . . . 89

4.3.2 Robust flutter analysis with the symbolic LFT-FSI approach . . . . . . . . . 91

4.3.3 Optimality analysis of the worst-case perturbation . . . . . . . . . . . . . . 94

4.3.4 Reconciliation with previous results . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Worst-case analysis of finite horizon Linear Time-Varying systems 101
5.1 Mathematical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1.1 Generalities on LTV performance . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1.2 Hamiltonian dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 An algorithm for constructing worst-case disturbances on finite horizons . . . . . . 106

5.2.1 Theoretical construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.2 A numerically robust construction of worst-case disturbance . . . . . . . . 109

5.3 Gust analysis of the FLEXOP demonstrator . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.1 Manoeuvre definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.2 Finite horizon LTI vs LTV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.3 Open-loop vs. Closed-loop manoeuvres . . . . . . . . . . . . . . . . . . . . . . 116

5.3.4 Comparison with standard gust performance analysis . . . . . . . . . . . . 119

5.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Limit Cycle Oscillations in systems with uncertainties 123

xii



TABLE OF CONTENTS

6.1 Mathematical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.1.1 Describing Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.1.2 Integral Quadratic Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 Robust LCO analysis with Describing Functions and µ . . . . . . . . . . . . . . . . . 130

6.2.1 Limit Cycle Oscillations in nominal systems . . . . . . . . . . . . . . . . . . 130

6.2.2 Worst-case LCO curve with µ . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2.3 LCO amplitude tailoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.3 LCO analysis with IQC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.3.1 Posing of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.3.2 Sensitivity of results to the multipliers . . . . . . . . . . . . . . . . . . . . . . 147

6.3.3 Post-critical analysis with IQC . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7 Approaches for the estimation of the Region of Attraction 157
7.1 Mathematical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.1.2 State-of-practice in nominal ROA analysis . . . . . . . . . . . . . . . . . . . . 159

7.2 Invariant sets approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.2.1 Computation of nominal ERAs using invariant sets . . . . . . . . . . . . . . 163

7.2.2 Robust ROA with invariant sets . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.3 IQC approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.3.1 Region of attraction certificates . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.3.2 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8 Robustness from a dynamical systems perspective 195
8.1 Mathematical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.1.1 Bifurcation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.1.2 Numerical continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8.2 Computation of robust bifurcation margins based on LFT and µ . . . . . . . . . . . 199

8.2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

8.2.2 Solution via nonlinear optimisation . . . . . . . . . . . . . . . . . . . . . . . . 201

8.2.3 Continuation-based multi-start strategy . . . . . . . . . . . . . . . . . . . . . 207

8.3 Application to the typical section case study . . . . . . . . . . . . . . . . . . . . . . . 211

8.3.1 Nonlinear problem definition and bifurcation analysis . . . . . . . . . . . . 212

8.3.2 Robust margins to nonlinear flutter . . . . . . . . . . . . . . . . . . . . . . . . 215

8.3.3 Effect of control surface stiffness uncertainty . . . . . . . . . . . . . . . . . . 224

8.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

xiii



TABLE OF CONTENTS

9 Conclusions 231
9.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

9.2 Recommendations for future research . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

A Case studies data 237
A.1 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

A.2 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

A.2.1 Linear typical section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

A.2.2 Aircraft model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

A.2.3 Joined Wings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

A.3 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

A.4 Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

A.5 Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

A.6 Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

B Equilibrium-independent ROA 245
B.1 Equilibrium-independent region of attraction certificate . . . . . . . . . . . . . . . . 246

B.1.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

B.1.2 Equilibria identification and computation of inner estimates of Equilibrium-

Independent Region of attraction (EIR) . . . . . . . . . . . . . . . . . . . . . 248

B.2 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

B.2.1 System description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

B.2.2 EIR of the sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Bibliography 255

xiv



LIST OF TABLES

TABLE Page

2.1 FLEXOP demonstrator main design features [155, 226]. . . . . . . . . . . . . . . . . . . 36

4.1 Comparison of flutter results with different algorithms. . . . . . . . . . . . . . . . . . . 72

4.2 Comparison of flutter analysis of the Goland wing with literature results. . . . . . . . 74

4.3 Worst-case perturbations for LFT-1 (with uncertainty levels λEI = 0.3, λD = 0.1) at the

two frequency peaks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Worst-case perturbations for LFT-2 (with uncertainty levels λmw = 0.2, λEI = 0.1,

λD = 0.1) at the two frequency peaks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Flutter speed and corresponding perturbation matrix’s norm at each iteration of

Algorithm 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6 Tested worst-case perturbations in the optimality check. . . . . . . . . . . . . . . . . . . 95

5.1 Comparison of finite horizons LTI and LTV performance based on L2 and Euclidean

gains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 Comparison of OL and CL performance of GLTV based on L2 and Euclidean gains. . 116

6.1 Change in the tailoring variables to achieve the amplitude reduction goal. . . . . . . . 144

6.2 LFT models employed in the IQC analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3 IQC analysis of LFT 1 (only freeplay). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.4 IQC analysis of LFT 2 (only uncertainties). . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.5 IQC analysis of LFT 3 (nonlinear uncertain). . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.6 Local IQC analysis of LFT 1 and LFT 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.1 Computational statistics for the invariant sets ROA analyses. . . . . . . . . . . . . . . 169

7.2 Computational statistics for the invariant sets robust ROA analyses. . . . . . . . . . . 176

7.3 Computational statistics for the hard and soft IQCs . . . . . . . . . . . . . . . . . . . . 193

8.1 Hopf bifurcations of the nominal system for different combinations of nonlinearities

and trim states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

8.2 Robust bifurcation margins at V̄0 = 270 m
s for different combinations of nonlinearities

and trim states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

xv



LIST OF TABLES

8.3 Worst-case perturbations and margins to the onset of supercritical and subcritical

Hopf bifurcations for s5 and s6 (structural and aerodynamic uncertainties). . . . . . . 218

8.4 Worst-case perturbations and margins to the onset of supercritical and subcritical

Hopf bifurcations for s5 and s6 (uncertainty also in the nonlinear coefficients). . . . . 222

8.5 Worst-case perturbations for the onset of a subcritical Hopf bifurcation with uncer-

tainty also in Kβ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

A.1 Parameters of the linear typical section case study. . . . . . . . . . . . . . . . . . . . . . 238

A.2 Parameters for the aircraft model used in the BFF analyses. . . . . . . . . . . . . . . . 240

A.3 Perturbation matrix ∆cr
ITER# and corresponding speed Vf µ at each iteration. . . . . . . 241

A.4 Perturbation matrix ∆cr
ITER3−new and corresponding Vf µ at the final iteration of the

re-initialised cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

A.5 Parameters of the nonlinear (with freeplay) typical section case study. . . . . . . . . . 242

xvi



LIST OF FIGURES

FIGURE Page

1.1 Thematic triangle of the thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Concept map of the thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 FLEXOP consortium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Literature review chart and connections explored in the research. . . . . . . . . . . . . 12

2.2 Standard feedback configuration in robust control. . . . . . . . . . . . . . . . . . . . . . 14

2.3 Typical section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Straight wing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Simplified aircraft. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Structural model for flutter analysis of PrP250 (from [55]). . . . . . . . . . . . . . . . . 34

2.7 Schematic view of the FLEXOP demonstrator (from [155]). . . . . . . . . . . . . . . . . 36

2.8 FLEXOP demonstrator’s rendering picture. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Feedback interpretation of an LFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Realisation technique interpretation of an LFT. . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 LFT coverage of the transfer function from α to Lα for Qhh, QR g and QMS. . . . . . . 50

3.4 Schematic uncertainty description of a notional aircraft wing. . . . . . . . . . . . . . . 59

3.5 Block diagram of the symbolic modelling algorithm. . . . . . . . . . . . . . . . . . . . . 61

3.6 Block diagram of the iterative scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7 Block diagram of the worst-case optimality check algorithm. . . . . . . . . . . . . . . . 66

4.1 Poles location of the flap, pitch, and plunge modes as speed increases obtained with

the p method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Flutter analysis of the typical section with the p-k method. . . . . . . . . . . . . . . . . 74

4.3 Parametric flutter analysis for discrete values of σs (i.e. EI) and D. . . . . . . . . . . . 75

4.4 Poles location for two aircraft configurations. . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Comparison of the µ analysis based on the state-space (SS) and frequency-domain

(FD) formulations for the case of structural uncertainties. . . . . . . . . . . . . . . . . . 79

4.6 Comparison of µ algorithms for the case of structural uncertainties. . . . . . . . . . . . 80

xvii



LIST OF FIGURES

4.7 Comparison of µ analysis for the case of uncertainties only in the lag roots of the two

approximated aerodynamic operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.8 Comparison of the µ analysis for the unified (uni) and frequency-domain (FD) formu-

lations for the case of aerodynamics and structural uncertainties. . . . . . . . . . . . . 83

4.9 Poles location for the nominal aircraft model. . . . . . . . . . . . . . . . . . . . . . . . . 84

4.10 µ-based sensitivity to EI and D using LFT-1. . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.11 µ-based sensitivity to EI, D, and mw using LFT-2. . . . . . . . . . . . . . . . . . . . . . . 87

4.12 Flutter analysis of PrP250 (real and imaginary part of the first 5 modes shown). . . . 89

4.13 Layout of the PrP250 featuring a clamped flexible fuselage. . . . . . . . . . . . . . . . 90

4.14 Flutter analysis of PrP250 with elastic fuselage. . . . . . . . . . . . . . . . . . . . . . . 90

4.15 Uncertainty description for the joined-wing configuration. . . . . . . . . . . . . . . . . . 91

4.16 Results of the µ-based iterative algorithm (convergence attained at the 4th iteration). 93

4.17 µ analysis of LFTs featuring different nominal plants. The value of the peak is a

measure of the proximity of the nominal plant to the actual worst-case. . . . . . . . . . 95

4.18 µ-based sensitivity to the mass and stiffness parameters. . . . . . . . . . . . . . . . . . 97

5.1 Spectral radius of Y for the upper and lower bound cases. . . . . . . . . . . . . . . . . . 105

5.2 Worst-case L2 gain from Algorithm 5.1 vs. guaranteed γLB for different horizons T. . 109

5.3 Worst-case L2 gain from Algorithm 5.2 vs. guaranteed γLB for different horizons T. . 112

5.4 Detail of the analysed manoeuvre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5 L2 gain worst-case disturbances for az−CG (LTI vs. LTV). . . . . . . . . . . . . . . . . . 115

5.6 L2-to-Euclidean gain worst-case disturbances for az−tR (LTI vs. LTV). . . . . . . . . . 116

5.7 L2 gain worst-case disturbances for az−CG (OL vs CL). . . . . . . . . . . . . . . . . . . 117

5.8 L2 gain worst-case disturbances for az−CG (OL vs CL). Deceleration from V2 to V1. . 118

5.9 Effect of T on the L2 gain worst-case disturbances for the CL system. . . . . . . . . . 119

5.10 Set of 1-cosine gust signals for different gust length Lg. . . . . . . . . . . . . . . . . . . 120

5.11 L2 and L2-to-Euclidean gains as a function of the gust length. . . . . . . . . . . . . . . 121

6.1 Feedback representation of a nonlinear system for DF analysis. . . . . . . . . . . . . . 124

6.2 Feedback G−∆ studied in IQC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3 Augmented plant for the time-domain interpretation of IQC. . . . . . . . . . . . . . . . 129

6.4 Freeplay nonlinearity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.5 Freeplay describing function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.6 Flutter speed Vf and frequency ω f vs. quasi-linear flap stiffness KQL
β

. . . . . . . . . . 135

6.7 LCO amplitude βs

δ̄
vs. speed V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.8 µ analysis at V = 10.3 m
s and βs

δ̄
= 1.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.9 Robustness analysis of the LCO for scattered operating point. . . . . . . . . . . . . . . 138

6.10 Worst-case LCO curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.11 Objective definition for the DF and µ-based tailoring. . . . . . . . . . . . . . . . . . . . . 141

xviii



LIST OF FIGURES

6.12 µ analysis for the nominal plant identified by the square marker. . . . . . . . . . . . . 142

6.13 LCO amplitudes βs

δ̄
obtained with the proposed tailoring strategy (3 possible designs

are considered). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.14 Standard sector constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.15 Local sector constraint for LCO analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.16 Validation via simulation of the worst-case LCO curve. . . . . . . . . . . . . . . . . . . . 153

6.17 Simulated responses at two different speeds. . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.1 Comparison of the ERA of the short-period model with different algorithms. . . . . . . 169

7.2 Upper bounds of the ERA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.3 Comparison of the rERA of the short-period model with different algorithms. . . . . . 177

7.4 Upper bounds of the rERA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.5 Augmented plant for IQC-based ROA analysis. . . . . . . . . . . . . . . . . . . . . . . . 179

7.6 Relaxed sector constraint exploiting bounds on qmax. . . . . . . . . . . . . . . . . . . . . 189

7.7 Estimates of the region of attraction for different saturation levels. . . . . . . . . . . . 191

7.8 Estimates of the region of attraction for the uncertain Van der Pol oscillator. . . . . . 192

8.1 Concept of robust bifurcation margins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.2 Bifurcation diagram of the nominal system for different combinations of nonlinearities

and trim states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

8.3 Zoom on the plunge (solid) and pitch (dashed) frequencies around the linear nominal

flutter speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

8.4 Bifurcation diagram of the perturbed system s5: supercritical and subcritical LCOs. . 220

8.5 Linearised pitch (solid) and plunge (dashed) mode frequencies of the perturbed systems

as V is increased. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

8.6 Effect of uncertainty in the nonlinear coefficients on the onset of a subcritical Hopf

bifurcation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

8.7 Frequency representation of the reciprocal of the robust bifurcation margin. . . . . . . 224

8.8 Comparison of km for the cases with and without uncertainty in Kβ. . . . . . . . . . . 225

8.9 Linearised frequencies and MAC around the branch of equilibria for nominal (red)

and perturbed (black) case s6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

8.10 Periodic behaviour of the perturbed system s6 at V̄0. . . . . . . . . . . . . . . . . . . . . 228

8.11 Bifurcation diagram of the perturbed s6 for the DOFs h
b (red) and α (black). . . . . . . 228

B.1 Characterisation of the set of sinks via level sets. . . . . . . . . . . . . . . . . . . . . . . 251
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INTRODUCTION

A major challenge faced today by a more environmentally friendly aeronautical industry

is the need to sensibly reduce fuel consumption ensuring at the same time that all the

safety constraints are fulfilled. Two design solutions to pursue this goal are represented

by lightweight aircraft configurations and wing layouts featuring high aspect ratios. Indeed,

the former allows the total weight of the aircraft to be reduced and therefore save on fuel burn,

whereas the latter has the advantage of determining a smaller aerodynamic drag with a similar

benefit. The adoption of this design paradigm shift has been hindered thus far by the consequent

increase in deformation experienced by the structural parts. Among the most dangerous phenom-

ena associated with a greater flexibility, the so-called Fluid-structure interaction (FSI) problem

have received increasing attention in the aerospace community in recent years.

Aeroelasticity addresses the FSI problem by providing models and analysis methods to study

the coupling between a flexible structure and a fluid flow generating a pressure depending on its

geometry. An important phenomenon which can be investigated within the aeroelastic framework

is flutter, a self-excited dynamic instability in which aerodynamic forces acting on a flexible body

couple with its natural modes of vibration producing oscillatory motion. The level of vibration may

result in sufficiently large amplitudes to provoke failure and often it enforces strict constraints

on the design of the entire system.

Due to the complexity of flutter, a large amount of effort has been spent with the aim to

provide numerical techniques to study it. However, it is acknowledged at present that predictions

based only on the available computational approaches are not totally reliable, largely due to the

effects of nonlinearity and uncertainty not adequately captured in the analyses. Currently, this

is compensated with the requirement to satisfy conservative safety margins by design, and to

perform expensive flights test campaigns before certification. This state-of-practice guarantees
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the avoidance of flutter in commercial aircraft, but results in a process that is costly and lengthy,

let alone inefficient from a structural design perspective. In a scenario marked by increased flexi-

bility, the difficulties in predicting and characterising this phenomenon are further accentuated.

Therefore, flutter represents a potential showstopper for the development of the next generation

greener aircraft, and the investigation and proposal of novel methods for more systematic and

reliable studies are highly welcome in the community.

1.1 Motivation and objectives

Based on the research done on the topic in the last two decades, two aspects are identified as

critical for the current limitations discussed above.

The first is the sensitivity of flutter to uncertainties, which are caused for example by varia-

tions in system’s parameters or simplifying modelling hypotheses. In other words, predictions of

the conditions at which the instability takes place can substantially change depending on the level

of fidelity with which the system is modelled and its subparts are defined. Mismatches among

the predictions originate not only from lack of knowledge or simplifying assumptions, but also

from the numerous layout changes inherent to the complex and multi-objective aircraft design

process. As a result, it is desirable to develop modelling frameworks that: are able to describe the

system as a family (or collection) of several realisations; and allow analysis techniques capable of

providing guaranteed results (robust to a given dispersion of the nominal data) to be performed.

In fact, the availability of these tools provides more confidence on the validity of the results, and

thus they have the potential to relax the tight safety margins and the amount of test flights

required for flutter clearance, both helping to reduce time and cost.

The second factor is the presence of nonlinearities, in different forms (geometric, aerodynamic,

structural, and potentially also in automatic control systems in the case of aeroservoelastic

studies), in fluid-structure interaction problems. While flutter analysis commonly relies on linear

hypotheses, nonlinear aeroelasticity has received increasing attention from research and industry.

However, a clear understanding of the responses exhibited when nonlinear features are retained

in the model (and also observed experimentally) and the physical mechanisms prompting them is

far from being reached. Enhanced comprehension of the role played by nonlinearities is indeed

another fundamental step towards building confidence in the ability to predict flutter. In addition,

the interplay between uncertainties and nonlinearities in the aeroelastic scenario deserves

special focus. Their combined effect can indeed give rise to unexpected behaviours, not captured

by applying analysis approaches which address them separately.

A number of advanced modelling and analysis tools are considered in this thesis to address

the challenges discussed above. Techniques from the robust control community provide a natural

framework to investigate systems subject to generic uncertainties. For example, Linear Fractional

Transformation (LFT) models and µ (or structured singular value) analysis are well established
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for studying stability and performance of linear time-invariant systems. Another instrumental

technique for this work is represented by Integral Quadratic Constraints (IQC), which is able to

handle uncertainties and nonlinearities in a unified framework, and presents connections with

another powerful paradigm in control, namely dissipativity. Building on different theoretical

foundations, dynamical systems approaches, for example bifurcation theory and numerical contin-

uation, can help tackling similar problems. As the study of aeroelastic phenomena, particularly

with respect to novel aircraft configurations, is a multi-faceted problem, the high-level objective

of this PhD is to investigate novel approaches by leveraging the advantages of these different

frameworks and unexplored connections. An outcome of this effort would then also be the creation

of bridges among the different communities which have the potential to take part in the solution,

namely the aeroelastic, robust control and dynamical systems ones. A diagrammatic illustration

of this idea is given in Fig. 1.1, where the distinctive features of each discipline are highlighted.

ROBUST CONTROL

o Guarantees of stability and performance

o Trade-off between complexity and reliability

o Basis for development of active control

AEROELASTICITY

▪ Mathematical representation of the problem (first principles)

▪ Physical insights into the observed phenomena

▪ Identification of possible sources of uncertainty/nonlinearities

DYNAMICAL SYSTEMS

• Local and global nonlinear phenomena

• Qualitative changes in the behaviour

• Efficient numerical tools

Figure 1.1: Thematic triangle of the thesis.

The main objectives of this thesis are laid down next.

• Investigate the application of Linear Fractional Transformation and µ analysis to the

study of flutter for linear models featuring uncertainties. Previous works have partially

tackled this problem, but relevant tasks which still need consideration and are covered in

this thesis are: address modelling aspects specific to aeroelastic systems; emphasizing the

different types of information that can be inferred from the analyses; and reconciling the

results with a physical-based aeroelastic perspective.
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• Address quantitatively the effect of uncertainties on nonlinear phenomena to which aeroe-

lastic systems are typically prone. New connections between different techniques from the

robust control theory (e.g. Integral Quadratic Constraints and dissipativity) are sought in

order to reduce conservatism and extend their range of application. At the same time, the

proposed approaches should be presented in a methodological manner, and their rationale

discussed critically, in order to favour their reception in the other communities.

• Highlight complementarities and possible connections between robust control and dynami-

cal systems-based approaches for uncertain and nonlinear flutter problems. Despite sharing

similar features (e.g. focus on the effect of parameters on the dynamics; rigorous mathe-

matical foundations), there have not been many attempts yet to combine them, thus new

results on this can spark further theoretical developments and applications. Specifically, an

interesting research question tackled in this thesis is whether the tools for robustness anal-

ysis used in the context of linear systems could be extended to the analysis of bifurcations

of uncertain vector fields.

1.2 Contributions

The main contributions of this thesis are the following.

• The construction of Linear Fractional Transformation models of uncertain aeroelastic

systems is studied in Chapter 3. Two possible modelling processes are presented in detail

and their distinctive features discussed. In this way, the challenges of providing a physical-

based definition of the uncertainties, which is addressed in the remainder of the chapter,

are clearly pointed out. The proposed approaches represent the basis for development

of the models used throughout the work. Highlights of this chapter include a detailed

evaluation of aerodynamic uncertainty description strategies and a novel method to build

up uncertainty models for systems described by means of state-of-practice fluid-structure

interaction solvers, typically leading to high order models.

• The benefits of employing µ analysis to study the robust flutter problem are demonstrated in

Chapter 4. The results show that this framework provides something more than a binomial-

type of test on robust stability, with emphasis on: sensitivity of the instability to parameters;

insights gained from the worst-case perturbations; and frequency interpretation of the

results. These aspects are showcased with the investigations of: body freedom flutter, a

particular dynamic instability featuring the interaction between rigid-body and elastic

modes; and an unconventional aircraft layout, whose aeroelastic behaviour currently poses

challenges to their design.

• The construction of worst-case input signals verifying that a given performance is not

achieved is developed in Chapter 5 for Linear Time-Varying (LTV) systems. Capturing the
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presence of time-varying properties provides a more realistic description for aircraft (where

properties of the system might change during a manoeuvre), and crucially represents a

stepping stone to the nonlinear descriptions used later on. The technical result builds

on known optimal control facts (e.g. strict bounded real lemma) but provides an original

solution to the problem of simulating Hamiltonian dynamics. The proposed algorithm is

a powerful tool for the analysis of very flexible aircraft and an example is provided with

analyses in support of a realistic flight test scenario.

• Methodologies to study Limit Cycle Oscillation (LCO) and Region of attraction (ROA) are

developed in Chapter 6 and Chapter 7, respectively. IQC are pivotal to enable the study of

these inherently nonlinear phenomena in the presence of uncertainties, but extensions with

respect to its common use are proposed in order to overcome known limitations. Specifically,

Describing Functions are employed to provide a relaxation of standard IQC multipliers

and allow the study of post-critical behaviour (other than just stability) as well as the

formulation of the concept of worst-case LCO curve. Connections between dissipativity and

multiplier theory, recently proposed in the literature, are leveraged to develop a framework

for ROA analysis which allows generic nonlinear uncertain vector fields to be analysed.

• A possible interpretation of robustness from a dynamical systems perspective is proposed

in Chapter 8. The investigated problem consists of studying robustness to the onset of

Hopf bifurcations for polynomial vector fields, and it is solved by introducing the concept

of robust bifurcation margin km. Its definition and the underlying mathematical problem

has formal similarities with µ, thus it can be considered as a possible extension of the

structured singular value to the nonlinear context. Another contribution of this chapter is

the development of a numerical method to determine manifolds of Hopf bifurcation points

in the uncertain parameters space, which leverages the extended continuation framework

and allows more accurate estimations of km to be computed.

A concept map of the thesis is depicted in Fig. 1.2. The chapters are grouped based on the

goals and contributions, and for each block the main mathematical tools adopted are also reported.

The arrows signify the logic relationships among the research tasks with respect to the objectives

stated in Section 1.1.
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1.3. ORGANISATION OF THE THESIS

1.3 Organisation of the thesis

The thesis is organised as follows. Chapter 2 presents the literature review, an overview of

the fundamental mathematical description used in aeroelasticity and the physical systems

analysed in the work. Chapter 3 is devoted to the problem of constructing Linear Fractional

Transformation models for aeroelastic systems. Chapter 4 investigates application of robust

flutter analysis with µ. Chapter 5 develops the numerical algorithms for the computation of

worst-case signals for LTV systems on finite horizons. Chapter 6 proposes two different strategies

to study Limit Cycle Oscillations in systems subject to uncertainties. Chapter 7 is dedicated

to the problem of computing the Region of Attraction for generic nonlinear uncertain systems.

Chapter 8 proposes a framework for the computation of robustness of stable equilibria to the

onset of Hopf bifurcations. And finally, Chapter 9 concludes the thesis by summarising the

main contributions and pointing to directions for future research. In Appendix A the data for

the analysed case studies are presented in order to allow reproducibility of the results, while

Appendix B provides a self-contained technical result on the determination of the region of

attraction of uncertainty-dependent equilibria.

1.4 Publications

The work presented in this thesis has been published by the time of submission in journals (J),

peer-reviewed conferences (C) and a book chapter (B), as listed below.

Chapter 3

• [J1] Iannelli A., Marcos A., Lowenberg M. Aeroelastic modeling and stability analysis:

A robust approach to the flutter problem. International Journal of Robust and Nonlinear

Control, 28, 342–364, 2017.

• [C1] Iannelli A., Marcos A., Lowenberg, M. Comparison of Aeroelastic Modeling and Robust

Flutter Analysis of a Typical Section. IFAC Symposium on Automatic Control in Aerospace

- ACA 2016.

Chapter 4

• [J2] Iannelli A., Marcos A., Lowenberg M. Study of Flexible Aircraft Body Freedom Flutter

with Robustness Tools. Journal of Guidance, Control, and Dynamics, 41, 1083-1094, 2017.

• [C2] Iannelli A., Marcos A., Lowenberg, M. Modeling and Robust Body Freedom Flutter

Analysis of Flexible Aircraft Configurations. IEEE Multi-Conference on Systems and Control

- MSC 2016.
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• [C3] Iannelli A., Marcos A., Bombardieri R., Cavallaro R. A symbolic LFT approach for

robust flutter analysis of high-order models. IEEE European Control Conference - ECC

2019.

Chapter 5

• [J3] Iannelli A., Seiler P., Marcos A. Worst-case disturbances for Time-Varying systems

with application to flexible aircraft. Journal of Guidance, Control, and Dynamics (accepted

December 2018).

• [C4] Luspay T., Ossmann D., Wuestenhagen M., Teubl D., Baár T., Pusch M., Kier T.M.,

Waitman S., Iannelli A., Marcos A., Vanek B., Lowenberg M. Flight control design for a

highly flexible flutter demonstrator. AIAA Scitech 2019.

Chapter 6

• [J4] Iannelli A., Marcos A., Lowenberg M. Nonlinear robust approaches to study stability

and post-critical behaviour of an aeroelastic plant. IEEE Transactions on Control Systems

Technology, 27, 703–716, 2019.

• [B1] Iannelli A., Marcos A., Lowenberg M. Limit Cycle Oscillation amplitude tailoring

based on Describing Functions and µ Analysis. Advances in Aerospace Guidance, Navigation

and Control - Springer-Verlag - 2017.

• [C5] Iannelli A., Marcos A., Lowenberg M. Nonlinear flutter analysis with uncertainties

based on Describing Function and Structured Singular Value with an IQC validation.

European Conference for Aeronautics and AeroSpace Sciences - EUCASS 2017.

• [C6] Iannelli A., Marcos A., Lowenberg M. Nonlinear stability and post-critical analysis of

an uncertain plant with Describing Functions and Integral Quadratic Constraints. IEEE

Conference on Decision and Control - CDC 2017.

Chapter 7

• [J5] Iannelli A., Marcos A., Lowenberg M. Robust estimations of the region of attraction

using invariant sets. Journal of The Franklin Institute, 356, 4622-4647, 2019.

• [C7] Iannelli A., Seiler P., Marcos A. Estimating the region of attraction of uncertain

systems with Integral Quadratic Constraints. IEEE Conference on Decision and Control -

CDC 2018.

• [C8] Iannelli A., Marcos A., Lowenberg M. Estimating the region of attraction of uncertain

systems with invariant sets. IFAC Symposium on Robust Control Design - ROCOND 2018.
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• [C9] Iannelli A., Marcos A., Lowenberg M. Algorithms for the estimation of the region of

attraction with positively invariant sets. International Conference on Systems and Control -

ICSC 2018.

Chapter 8

• [C10] Iannelli A., Lowenberg M., Marcos A. An extension of the structured singular value

to nonlinear systems with application to robust flutter analysis. CEAS Specialist Conference

on Guidance, Navigation & Control - EGNC 2019.

Appendix B

• [C11] Iannelli A., Seiler P., Marcos A. An equilibrium-independent region of attraction for-

mulation for systems with uncertainty-dependent equilibria. IEEE Conference on Decision

and Control - CDC 2018.

The following papers are currently under review.

• [J] Iannelli A., Seiler P., Marcos A. Region of attraction analysis with Integral Quadratic

Constraints. Automatica.

• [J] Iannelli, A., Lowenberg M., Marcos A. Computation of bifurcation margins based on

robust control concepts. SIAM Journal on Applied Dynamical Systems.

The following articles were published during the doctoral studies but are not featured in this

dissertation.

• [C12] Iannelli A., Simplicio P., Navarro-Tapia, D., Marcos A. LFT Modeling and µ Analysis

of the Aircraft Landing Benchmark. IFAC World Congress 2017.

• [C13] Navarro-Tapia D., Simplicio P., Iannelli A., Marcos A. Robust Flare Control De-

sign Using Structured H Synthesis: a Civilian Aircraft Landing Challenge. IFAC World

Congress 2017.

• [C14] Simplicio P., Navarro-Tapia, D., Iannelli A., Marcos A. From Standard to Structured

Robust Control Design: Application to Aircraft Automatic Glide-slope Approach. IFAC

Symposium on Robust Control Design - ROCOND 2018.
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1.5 Flexop H2020 project

This PhD study is part of the FLEXOP (Flutter Free FLight Envelope eXpansion for ecOnomical

Performance improvement –www.flexop.eu) European Horizon 2020 project. The aim of the

project is to develop multidisciplinary flexible aircraft design capabilities that will increase

competitiveness in terms of aircraft development costs. This will be achieved by:

• developing aeroelastic tailoring methods and tools;

• advancing the state-of-the-art in flutter modelling, analysis and control;

• demonstrating the effectiveness of the developed methodologies with flights tests of an

affordable demonstrator.

One of the main expected outcomes is to prove in flight the successful deployment of active flutter

suppression strategies to extend the flutter-free envelope and foster the adoption of this solution

at industrial level. The consortium consists of two research centres, three universities and three

industrial partners (Fig. 1.3).

The work done during this PhD was in support of the activity in Work Package 2, dedicated

to flutter prediction and control design methods.

Figure 1.3: FLEXOP consortium.
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This chapter provides a fundamental overview of topics and models featuring the thesis.

Section 2.1 is dedicated to the literature review, while Section 2.2 presents the basic

mathematical formulation of the aeroelastic problem, serving as basis for all the analysed

models. Section 2.3 illustrates the physical systems used throughout the thesis to exemplify the

developed modelling and analysis algorithms, and it highlights their essential features.

2.1 Literature review

The literature review follows the flow of the work illustrated in Chapter 1, and aims at highlight-

ing important aspects of the different subjects dealt with in this thesis: flutter analysis (Section

2.1.1), robust control (Section 2.1.2) and dynamical systems (Section 2.1.3). In order to facilitate

readability, Fig. 2.1 sketches the main topics and shows the connections investigated in this

research.

2.1.1 Flutter analysis

The interaction among inertial, damping and elastic forces in a mechanical system is the subject

of structural dynamics. For systems such as wings, the external loading is represented by

aerodynamic forces, which depend on the geometry of the body. The study of these systems is

addressed by aeroelasticity [30], which investigates the coupled problem of a flexible structure

surrounded by a fluid flow. The analysis results provided by structural dynamics (e.g. mode

shapes, natural frequencies, response to initial conditions) change due to this coupling [111]. The

same situation arises with the load estimation [256], which is only approximately captured with

a purely aerodynamics-based approach, i.e. by considering an infinitely stiff body surrounded

11
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Flutter analysis

and current challenges

Robust control

Multiplier theory:
- m
- IQC

Dissipativity:
- Region of Attraction

Dynamical systems

Bifurcation and 
numerical continuation

Nonlinear flutter:
- Limit Cycle Oscillations

Figure 2.1: Literature review chart and connections explored in the research.

by the flow. Due to the significant effects of their coupled behaviour, it is then compulsory, when

discussing stability and performance, to consider a description of the system capturing these

close interactions.

Flutter consists of a self-sustained instability and is one of the most important phenomena

which can be investigated within the aeroelastic framework. Computational methods to predict

its occurrence have been widely investigated in the community [111, 202, 256], and to this end it

is common practice to use dedicated Fluid-structure interaction (FSI) solvers. These typically

consist of a structural solver (e.g. based on the Finite Element method) coupled with an unsteady

aerodynamic solver. The level of accuracy can vary from beam to shell models for the former

[21] and from Doublet Lattice Method (DLM) [3] to Computational Fluid Dynamics (CFD) [80]

algorithms for the latter (see [213] for a review on computational aeroelasticity).

In aeronautical industry most of the flutter analysis work relies on linear models, and

among the most established algorithms there can be listed: p method [111], k method [63], p-k

method [102], and g method [46]. The common goal is to solve a parametric eigenvalue problem

that yields the flight speed Vf and frequency ω f at which flutter occurs. These methods are

efficiently implemented in aeroelastic solvers such as Nastran [203] and ZAEROS [270]. The

p method solves the problem in the Laplace transform domain (or equivalently in the state-

space form). However, the Generalised Aerodynamic Force (GAF) matrix is typically provided

for flutter analysis purposes at discrete frequencies (e.g. by the panel method solver DLM) and

thus Rational function approximation (RFA) techniques are employed. These techniques, which

include the Roger [204] and the Minimum State [134] methods, allow the frequency-domain GAF

to be transformed into state-space models, particularly suited for aeroservoelastic applications.

12
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Aeroservoelasticity studies the interplay of aeroelastic and control design aspects, see the dedicate

survey papers [153, 176, 177] and examples of applications in [57, 175]. The other listed flutter

methods solve instead the problem directly in the frequency-domain, and thus do not require

approximations of the aerodynamic operator.

In aircraft design, the modelling and analysis of the dynamics of a vehicle are generally

addressed, at least for preliminary evaluations, considering the rigid-body and elastic dynamics

separately, on account of a wide frequency separation between the two sets of natural modes. As a

result, preliminary flutter predictions are based on restrained body models (e.g. cantilever wing),

which assume the occurrence of dynamic instabilities in a lifting surface as unrelated to the

rigid-body motion of the vehicle where it is mounted. However, this hypothesis is being questioned

by the increased trend towards an optimal structural sizing and lightweight material selection,

as well as by the conception of aircraft geometric layouts with low static stability (or statically

unstable) but compensated with full-authority control systems. The increasing coupling between

the rigid and flexible dynamics thus compels consideration of a model retaining both aeroelastic

and flight mechanics physical effects [212]. Among the first studies on the interaction between

aircraft motion and structural flexibility, the work presented in [253], which focused on high-

speed forward swept wing aircraft, is foundational. The observed detrimental coupling between

the rigid-body and the elastic dynamics of the vehicle, termed Body Freedom Flutter (BFF), was

exemplified by means of a simple low-order model and a wealth of references where a similar

problem had been investigated was provided. Recent studies [40, 154] have confirmed, using

more sophisticated models, that structural sizing aimed at achieving very light weight structures,

and thus a significant degree of flexibility, could lead to multiple flutter mechanisms. Design

features which are responsible for amplifying the interaction between rigid and elastic dynamics

have also been investigated in references [25, 190].

Despite the large amount of effort spent in understanding and modelling flutter, two important

factors make it still a very challenging phenomenon to comprehend for the designer. On the

one hand, the sensitivity of flutter to perturbations in parameter and modelling assumptions

[192] represent a critical limitation of the established techniques. Due to the consequent risk of

overestimating the stability margins of the system, this is currently compensated by the addition

of conservative safety margins to the analysis results followed by expensive flutter test campaigns.

On the other hand, the increase in the aircraft structure flexibility and the demand for a more

realistic description of the system compel to consider cases where the linear hypothesis no longer

holds [74]. In fact, the presence of nonlinearities might not only alter the predictions obtained

with linear models, but also determine inherently nonlinear phenomena. Examples of these are

the existence of limited amplitude flutter responses before the linear flutter speed and local

(instead of global) stability of the equilibrium configuration.

While existing techniques have been applied to tackle individually these two issues (see

the two references above [74, 192] and [59], where an industry oriented review on nonlinear

13



CHAPTER 2. PRELIMINARIES

methods for aircraft applications is discussed), there is interest in the aerospace community

for methodologies able to handle uncertainties and nonlinearities in a unified framework. This

motivates a deeper research in the available techniques from the robust control theory community

which has developed in the last decades different approaches to tackle these problems.

2.1.2 Robust control theory

The birth of modern robust control dates back to the late 70s, which saw the confluence of interest

in uncertainty and multivariable systems [73, 208]. The common feature of the approaches

developed within this field is to represent the system as the feedback interconnection of a

nominal (usually, but not necessarily, Linear Time-Invariant (LTI)) system (or plant) G with an

unknown operator, typically denoted by ∆ (Fig. 2.2). When the latter is set to zero, this setting

is equivalent to the standard representation in classic control of a fixed nominal system with

transfer matrix G. In general, ∆ may include uncertain linear dynamics systems, linear-time-

varying parameters, complex systems and even nonlinearities. The underlying idea is to decouple

the known (linear) and unknown (uncertain and/or nonlinear) parts, and formulate conditions

for stability or performance objectives with respect to G only. This feedback representation

is usually referred to as Linear Fractional Transformation (LFT), originally studied in [200]

and representing a cornerstone modelling paradigm for modern robust control. Its prowess in

addressing the modelling of complex aerospace uncertain systems has been demonstrated in

the last decades providing: models for the analysis of the flight control system for the X-38 crew

return vehicle [222]; Linear Parameter-Varying models for the Boeing 747 [158]; and reduced

order models for flexible aircraft [197]. In this study the LFR toolbox [156], which implements

efficient algorithms for the manipulation of LFT objects, will be employed.

Given this setting, robust control generalised results from classic control to the multivariable

case. This was, for example, the case of H∞ control [76], which extended loop shape synthesis, and

of structured singular value (or µ) [75], which provided a stability and performance robustness

indicator by extending the concept of singular value. An overview of contributions of robust

control relating to this work are discussed next.

Figure 2.2: Standard feedback configuration in robust control.
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2.1.2.1 Multipliers theory

The concept of multiplier plays an important role in robust control and allows the stability

problem of the interconnection G-∆ to be studied [264–266]. In fact, known results such as the

structured singular value [75] and Popov criterion [195] can be derived from this framework

by specializing the nature of ∆ (a structured uncertainty set in the former case and a sector

bounded nonlinearity in the latter). The multiplier is a fictitious system which is introduced in

the feedback loop with its inverse, and can thus be thought of as a loop transformation. The

reasoning behind this is that the study of the interconnection G-∆ is formulated via conditions on

the known part G of the loop only. The idea is that, by introducing multipliers in the loop, these

conditions are relaxed compared to the original G-∆ setup, and thus less conservative results can

be generally obtained. The distinctive feature of the multiplier approach is to associate a class

of uncertain operators D (e.g. sector nonlinearities) with the corresponding class of multipliers

M , based on some properties of D. Then stability is guaranteed for any uncertainty belonging

to D. The rule by which the classes M and D are associated depends on the theory used in

conjunction with the multiplier approach. For example, in passivity [64] the class of positive

nonlinearities Φ ∈ D is considered [137]. Then, the search is on multipliers M ∈ M such that

M∗Φ is also positive. In passivity the use of multipliers can be qualitatively interpreted as the

exchange of a positive and negative amount of passivity between the two paths of the feedback

loop.

Another example is represented by the Integral Quadratic Constraints (IQC) theory [170],

which build on the original work [259]. IQC allows a broad spectrum of problems concerned with

robustness of uncertain nonlinear systems to be described within a unifying framework. Even

though similar conditions to passivity are derived to solve the problem when using IQC, technical

differences in the properties required for the multipliers (e.g. causality) hold [39]. The rule in

IQC is to characterise the operator ∆ by means of frequency-domain multipliers Π which satisfy

integral quadratic constraints on the Fourier transforms of its input and output. A library of

multipliers exists for various types of operators as summarised in [251], and the original IQC

theorem [170] involves frequency-domain inequalities to test stability. However, in order to allow

the search for stability certificates to be recast into a Linear Matrix Inequalities (LMI) problem

[34, 210], state-space factorisations (Ψ, M) of Π are typically employed and a fundamental result

known as Kalman-Popov-Yakubovich (KYP) Lemma [260] is exploited. These factorisations allow

to translate the standard frequency-domain constraints into time-domain ones, and thus open up

the possibility of interpreting IQC from a time-domain perspective [211, 215].

The versatility of the framework, and its numerical formulation as an LMI favouring the adop-

tion of efficient convex Semidefinite Program (SDP) solvers [173], motivates the interest on IQC

from an application perspective. Indeed, IQC have been recently applied in the aerospace commu-

nity to study: stability of nonlinear uncertain aeroelastic systems [61]; worst-case performance of

saturated aeroelastic systems [140]; performance of re-entry vehicles [163].
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Structured singular value or µ

One of the main contribution of the family of approaches belonging to multipliers theory

is the structured singular value or µ analysis. While there is consensus on the fact that µ

was first proposed in [75], robustness tests based on singular values and diagonal scalings

were investigated in those exciting years also in [196, 209]. An important pre-existing result

is the small gain theorem [264], which gives conditions for the stability of the interconnection

G-∆ in terms of an inequality constraint involving the H∞ norms of G and ∆, where ∆ is

an unstructured uncertainty set. This result served as starting point for the development of

advanced analysis techniques that exploit further properties of ∆. Specifically, in µ analysis ∆

is a structured uncertainty set made up of constant real and complex parameters as well as

unmodelled dynamics (full blocks). The problem is formulated as the search for the smallest

perturbation matrix belonging to ∆ such that the feedback G-∆ loses stability, or, equivalently,

the associated LFT becomes singular. By using a result known as Main Loop theorem [269],

performance of the closed loop can also be studied within this setting. A known issue with µ

is that its computation is NP (nondeterministic polynomial time)-hard with either pure real or

mixed real-complex uncertainties [35], thus all µ algorithms work by searching for upper and

lower bounds. The difficulty in calculating accurate bounds is mainly related to the size of the ∆

matrix and whether it is complex, real or mixed [81]. An overview of the computational aspects is

given next.

Lower bound algorithms, which also provide the perturbation matrix capable of violating

stability (or performance) of the system, can be categorised based on the type of uncertainty

set. For pure complex problem, the standard power iteration [180], derived from the well known

algorithm to find the largest eigenvalue and associated eigenvector of a matrix, has proved to be

accurate and fast. Extensions to the mixed real/complex problem have also been proposed [262],

but they may not provide accurate results, especially in the case of purely real uncertainties.

Lower bounds for the latter have proven to be challenging both from accuracy (real µ can be

a discontinuous function of the problem data [183]) and run time perspective (many available

algorithms have a computational cost that grows exponentially with the problem size [54]).

Sometimes this is overcome by artificially introducing a small amount of complex uncertainty to

some of the uncertain real parameters [183] in order to regularise the problem and use the power

iteration efficiently, but inaccuracies may arise if a large magnitude of fictitious complexity is

needed to achieve convergence. In the last decade improvements have been achieved with different

approaches: gain-based algorithm [219]; pole migration techniques [132]; direct optimisation-

based techniques [103, 261]. A comprehensive review on µ lower bounds can be found in [206].

The computation of the upper bound is typically more reliable. The standard upper bound

from complex µ theory consists of finding scaling matrices D (named D scalings in the literature)

which minimise the maximal singular value of a given matrix [180]. This problem is convex and

can be solved in different efficient ways, but it does not distinguish between real and complex
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parameters (i.e. they are treated in the same way), thus the outcome is often poor for mixed or

real µ problems. An established algorithm to overcome this issue is based on the search of scaling

matrices D and G (named D-G scalings) satisfying the minimisation of a maximal singular

value [78]. This formulation loses convexity, but keeps favourable features: minimizing the norm

of a given matrix generally offers numerical advantages; the D scalings enter the problem as

in the standard complex upper bound; the G scalings enter in a symmetric balanced fashion

(from which derives the name of the algorithm as Balanced form). An alternative is to recast the

computation as the minimisation of a maximal generalised eigenvalue [263]. The advantage of

this alternative approach is that, since D and G enter linearly, it can be solved as a LMI and

thus it retains convexity, at the cost of a higher run time. The results presented in this thesis use

the algorithms as implemented in the Robust Control Toolbox (RCT) in MATLAB R2015b [14],

which includes all the algorithms reviewed in this section.

In the last two decades, µ-analysis has been used in aeroelasticity to quantify the sensitivity

of flutter to modelling uncertainties. The so-called robust flutter analysis aims to quantify the gap

between the prediction of the nominal stability analysis (model without uncertainties) and the

worst-case scenario when the whole set of uncertainty is contemplated. Cornerstone works are

[150] and [33], based on which applications to realistic aircraft configurations have successfully

been proposed. In [148], F/A-18 SRA aircraft robust flutter margins, with the uncertainty set

informed by extensive flight data, were computed. The outcome indicated that the envelope

was safe from aeroelastic instabilities, although the margins laid distinctly closer to the flight

envelope than previously estimated by classic (nominal) techniques. The capability of µ to predict

behaviours exhibited in flight was showcased in [22], where aeroelastic instabilities of F-16A/B in

heavy store configuration were investigated. In particular, nonlinear responses measured in flight-

test runs were predicted numerically considering parameter-dependent µ analyses with variable

mass, stiffness, damping, and Mach. In [175] an example of application to aeroservoelastic design

of an uncertain fighter aircraft with the aim to achieve robust stability and robust closed-loop

performance requirements was proposed.

2.1.2.2 Dissipativity

The notion of dissipativity [254] is paramount in systems theory and formalises the intuitive

idea that at any time the amount of energy that a stable system can supply to its environment

can not be greater that what has been absorbed. That is, a fraction of the exchanged energy

will be dissipated by the system. In the theory of dissipative systems the storage and supply

rate scalar functions are introduced. The former depends only on the states and represents

an energy function of the system, while the latter depends on the inputs and outputs and

represents the rate at which energy is absorbed by the system. A system is said dissipative if the

rate of change of the storage function along any trajectory of the system will never exceed the

supply rate for any input. The dissipativity property can be expressed as a time-domain integral
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constraint or, equivalently, as a differential (dissipation) inequality. The search for quadratic

storage functions is particularly attractive because it can be performed, in the case of (given)

quadratic supply rates, by solving an LMI [210]. An interesting feature of dissipativity is that

it generalises and allows to reinterpret important properties of linear and nonlinear systems

in a more general context by defining appropriate supply rates. This is for example the case of

Lyapunov stability, where the storage function satisfying the dissipation inequality is a possible

Lyapunov Functions (LF). The connection with Lyapunov function methods is important since

the latter have several applications in the study of nonlinear systems. Other notions that can

be retrieved from dissipativity are passivity (positive real lemma) and performance objectives

classically used in H∞ and Linear Parameter-Varying problems (bounded real lemma).

Despite their prime significance in robust control, the reconciliation between Integral Quadratic

Constraints and dissipation theory was not fully explored until recently. They feature indeed

important differences such as the formulation of the problem in frequency-domain for the former

and time-domain for the latter, and the use of distinct artificial operators (respectively, multipliers

and storage/supply functions). The crucial common ground is that in both cases the problem is

recast for computational purposes as the solution of a similar LMI (via the KYP lemma). However,

two important issues arise: first, the dissipation inequality framework requires a positive definite

storage function, which translates into an additional constraint (positive semi-definiteness of a

matrix, e.g. P º 0) not required by the IQC formulation; second, the state-space factorisation of

the IQC multipliers holds in general only for infinite-horizon time integrals (soft IQCs), whereas

the dissipativity framework requires finite-horizon time integrals (hard IQCs). These aspects

were dealt with for the first time in full generality in [215], where a particular factorisation for the

multiplier, named J-spectral, was proposed to address the aforementioned issues and by doing so

guarantee the equivalence. However, it is not always possible or practical to compute a J-spectral

factorisation, hence in [82, 193, 216] finite horizon bounds for hard IQCs were presented. This

enables the use of IQC-based descriptions of nonlinear uncertain operators in the dissipativity

framework. The link between dissipativity and IQC has been recently formalised also in [211] by

virtue of a novel (time-domain) IQC theorem.

The possibility to use multiplier approaches to study problems inherently formulated within a

dissipative setting has great potential. The former indeed is well suited to reduce the conservatism

of the analyses (in IQC this is exemplified by the possibility to enrich the description of ∆ by

considering several multipliers Π), while the latter allows to formulate a larger variety of

problems (e.g. inclusion of constraints for regional, or local, analysis). This is demonstrated by

previous works that have tried to bridge these two frameworks by focusing on specific problems:

region of attraction of saturated systems based on Integral Quadratic Separation (a concept

closely related to IQC) [191]; local performance analysis of saturated nonlinear systems with

hard IQCs [44]; robust performance for the case of structured LTI uncertainties [13].

18



2.1. LITERATURE REVIEW

Region of Attraction

An important example of analysis that can greatly benefit from the aforementioned reconcili-

ation is the study of the Region of attraction (ROA) for locally stable equilibria. While stability

for linear systems ensures convergence to the equilibrium regardless of the initial condition, for

nonlinear systems this property holds only locally and thus its knowledge is of practical interest

to guarantee their safe operation. Finding analytically the exact region of attraction might be

difficult or, depending on the complexity of the system, even impossible [88]. Several algorithms

have thus been proposed to numerically calculate inner Estimates of the ROA (ERA), which can

be broadly classified into two categories: Lyapunov methods and non-Lyapunov methods. The

former build on the invariance and contractiveness properties held by Lyapunov functions level

sets [137]. When the LF space is restricted to quadratic functions, an ERA for polynomial (or

even rational) systems is the largest ellipsoid obtained by computing the Lyapunov matrix [247],

whose calculation can be posed as a line search involving the solution of a series of LMIs. In the

general case of higher order LF, Sum of Squares (SOS) optimisation is typically employed [7].

SOS are a well established technique concerned with the problem of finding a sum of squares

decomposition for a polynomial (hence guaranteeing that this is positive) possibly subject to

semialgebraic set constraints and objective functions. Their appeal derive from the connection

with convex optimisation [187], which allows their computation to be fully automated. This is

implemented in dedicated toolboxes [15, 185], which provide an helpful interface between the

user and SDP solvers [229] and by doing so has fostered the use of this optimisation technique

in various applications [48, 50, 107]. The inner estimation of ROA typically consists of enforc-

ing set containment conditions, which result in bilinear terms that can not be handled by the

aforementioned solvers. The ensuing non-convex optimisation problem can be handled with

bilinear matrix inequalities solvers [142], as shown by the authors in [233]. The most common

approach, however, consists of alternatively fixing one set of parameters and optimizing the other

with convex programs. An example is the work in [43], which analysed the complex nonlinear

behaviour of an aircraft fighter. Another approximate method to solve bilinear matrix inequalities

is the path-following approach presented in [101].

Non-Lyapunov methods have also been studied to reduce the conservatism typically associated

with the characterisation of ROA as contractive level sets. In [108] it is shown that the problem

can be theoretically formulated as an infinite-dimensional linear program, which is solved with

a hierarchy of convex finite-dimensional LMIs with asymptotically vanishing conservatism by

making use of the concept of occupation measures. In recently published works [100, 246], the

recipes for calculating ERA are expressed in terms of positively invariant sets. These approaches,

prompted by LaSalle’s theorem [137], still use Lyapunov stability concepts but relax the conditions

that must be fulfilled by the function used to define the ERA.

All the approaches above share the common feature that are either only applicable to poly-

nomial vector fields or rely on SOS techniques. As a result, a limitation holds on the types of
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nonlinearities that can be considered. An example of a more general approach is the so-called

Zubov’s method [271], which is based on a converse Lyapunov theorem and requires to solve a

partial differential equation, but this makes it difficult to be employed for practical cases. Relaxed

versions of this result have also been proposed, for example in [248] where the concept of maximal

Lyapunov function was introduced.

The case when the system is subject to uncertainties has received far less attention, with most

of the research carried out within the Lyapunov method class of approaches. A first important

distinction concerns the dependence of the sought LF on the uncertain parameters. In [241] an

algorithm restricted to systems with a specific (i.e. affine) dependence on the uncertainties is

proposed, based on parameter-independent LF. That is, a single Lyapunov function is used to

certify the local stability of a system over its entire parameter uncertainty set. In [243] improve-

ments based on a branch-and-bound algorithm were discussed to alleviate the conservatism

associated with the parameter-independent LF. Other studies considered parameter-dependent

LFs [49, 233], with the ensuing SOS-based optimisation problem featuring a substantial increase

in computational burden. Recent works [194, 245] addressed this problem by computing rational

Lyapunov functions of the states and uncertain parameters without recurring to SOS relaxations.

In [245] Finsler’s Lemma and the notion of annihilators are employed to formulate affine param-

eter dependent LMIs conditions for systems with rational vector fields. A further improvement of

this algorithm is proposed in [194] where a method based on Linear Fractional Transformations

is developed to inform the selection of the rational terms and thus allowing a more efficient

computation of the LF.

A major drawback of the approaches employed to deal with uncertain systems is that in general

they do not exploit specific properties of the uncertainties (e.g. linear time-invariant, real constant,

time-varying), hence they inherently provide conservative outcomes because the results must

hold for a larger set of uncertainties than the one actually affecting the system. This is one of the

aspects where the combined use of techniques from the robust control theory could be invaluable.

2.1.3 Dynamical systems approaches

A well established framework to study nonlinear systems depending on parameters is represented

by bifurcation theory. The term bifurcation was originally introduced by Poincaré to describe

branching of equilibria in a family of differential equations, and is used to denote qualitative

changes (e.g. loss of stability, onset of new branches) of the steady-state solutions (e.g. fixed points,

periodic orbits) when one or more parameters on which the dynamics depend are varied [99, 145].

The advantage of this approach is that complex nonlinear behaviours can be characterised,

tracked and quantitatively assessed without the need for exhaustive numerical integration.

The latter does not only feature a clear computational burden, but offers poor guarantees of

capturing all the possible responses due to the sensitivity to initial conditions, and does not

provide a comprehensive picture of the response. The main computational tool of bifurcation
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theory is numerical continuation, providing path-following algorithms allowing implicitly defined

manifolds to be computed as one or more continuation parameters are varied [27, 96]. Examples of

these algorithms are Newton-Raphson, arclength, and pseudo-arclength continuation, efficiently

implemented in freely available software, e.g., AUTO [72] and COCO [56].

Due to these appealing features, bifurcation has been extensively applied in nonlinear aeroe-

lasticity, as discussed in the dedicated monograph [69]. Note that bifurcation theory can also

cope with non-smooth vector fields [66], which is an advantageous feature considering that many

nonlinearities in this field are discontinuous (e.g. saturation, friction). See for example the work

in [68] where a method to analyse the effect of freeplay was proposed. From a dynamical systems

perspective, the flutter point coincides with a Hopf bifurcation, which arises when branches of

fixed points and periodic solutions meet. Analogously to the case of linear flutter, the analysis

is typically carried out starting from a stable equilibrium point at low speeds and increasing

the speed (used as continuation parameter) until the flutter boundary is found. At this speed,

denoted by VH , two scenarios can take place [69]. If the Hopf bifurcation is supercritical, than

for V >VH a stable Limit Cycle Oscillation (LCO) exists. Limit cycles, broadly defined as initial

condition-independent isolated periodic orbits which occur in unforced systems, can be tracked by

applying continuation. This reveals important properties of the LCO such as amplitude, period

and stability. When the bifurcation is supercritical, the phenomenon is reversible and by reducing

the speed below VH the stable branch of equilibria is recovered (benign LCO). Vice versa, if the

bifurcation is subcritical, for V <VH an unstable LCO exists which typically undergoes a periodic

fold bifurcation and thus transitions to a stable one featured by higher amplitudes. This is a far

more dangerous scenario since the system will suddenly jump to this LCO branch for V slightly

larger than VH , and the absence of oscillations cannot be recovered by simply decreasing V ,

because of hysteresis. Moreover, for a range of subcritical speeds multiple stable steady-solutions

exist and thus the branch of equilibria associated with the operational envelope of the aircraft is

only locally stable.

Limit Cycle Oscillations

The complex behaviour associated with the onset of Limit Cycle Oscillations have been

observed numerically [147, 189] and confirmed experimentally [235] in aeroelastic systems.

Therefore, effort has been put to gain a better understanding, especially with regard to the

effect of design parameters on the criticality of the Hopf bifurcation and the features of the

emanating LCO. It is indeed deemed important to take into considerations these aspects from

the preliminary design stage. The two most common approaches are represented by [59]: (i)

numerical continuation for detection of onset of Hopf bifurcations and tracking of periodic

solutions (e.g. revealing changes in period and amplitude with the bifurcation parameter);

and (ii) time-integration simulations. Alternative approaches have also been developed. The

direct method exploits the results of bifurcation analysis and provides estimates of LCO onset,

amplitude and period at a computational cost amenable to real aircraft applications [228]. The
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idea is to solve a nonlinear set of algebraic equations derived from the Hopf bifurcation conditions

to detect the flutter onset, and then a nonlinear perturbation analysis around this point is

performed to estimate properties of the LCO. The latter step can be performed in different ways,

e.g. method of multiple scales [23], centre manifold theory [255]. The advantage of these methods

is that they reduce the problem to a two-degree-of-freedom system capturing the dynamics of

the critical mode shape only, but neglects higher order nonlinear terms and thus the accuracy

tends to deteriorate far from the flutter point in the presence of strong nonlinearities. Frequency-

domain methods, of which the harmonic balance is the most established [143], are established,

too. In the harmonic balance method, the response of the nonlinear system is approximated

as a Fourier series featuring n components (where n is the order of the method), and then the

coefficients of the expansions are balanced. This leads to a set of nonlinear algebraic equations

which has also the fundamental frequency as unknown. Even though in a few cases it has

been found that a large number of harmonics were needed to correctly describe the LCO [151],

often the oscillations in the system have a dominant frequency and hence it suffices to retain

only the first harmonic in the expansion. A particular instance of first-order harmonic balance

method is the Describing Functions (DF) approach [87], which is a quasi-linearisation technique

providing an equivalent definition of frequency response for nonlinear systems. The equivalence

is established by fixing the form of the response of the system and then minimizing the mean

squared error between approximation and true output [26]. If the assumed form is a sinusoid

(with unknown amplitude and frequency), the first-order harmonic balance method is retrieved

with the additional advantage of having libraries of frequency response functions for different

nonlinearities. The DF method has been applied to nonlinear aeroelastic problems [234] and

its effectiveness supported by experimental validations of the results [52]. DF was also used to

analyse and inform redesign strategies to tackle large LCO responses of the Tornado aircraft

provoked by actuator rate limits [83].

The effect of uncertainties on LCO, as it was the case for ROA, has not received as much

attention. Most of the works have focused on the application of stochastic methods, of which

[24] presents a detailed review. A particular class of these, namely polynomial chaos expansion

methods, is used in [90] to calculate the sensitivity of the flutter speed to variations in the linear

and nonlinear coefficients of stiffness parameters of a rigid aerofoil. The method however fails

to accurately predict the post-critical behaviour and the effect on the type of Hopf bifurcation.

In the same work a strategy based on normal form [178] is also proposed, but its application to

the uncertainty case is not fully explored and only qualitative inferences are derived. In [240]

instead it is shown by means of a parametric study based on the harmonic-balance approach that

uncertainties in the natural frequencies and aerodynamic parameters have an important effect

on the LCO amplitude. In [16] the idea of using the DF method in conjunction with µ analysis to

study LCO of an uncertain aeroelastic system was discussed. This work built on [136], where the

combination of µ and DF was originally presented, and [81], where this idea was furthered.
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Robustness of bifurcations

It can be noted from the previous discussion that the most common approaches to study

robustness of the LCO do not frame the problem into the setting of bifurcation theory, unlike

the methods reviewed for the nominal case. In fact, bifurcation inherently studies the effect on

the response of changes in the system’s parameters. However, the continuation (or bifurcation)

parameters are usually equal in number to the codimension of the studied bifurcation, defined

as the smallest number of independent parameters required for its occurrence. Since the Hopf

bifurcation is of codimension-1, analyses aimed to detect its occurrence in a branch of equilibria

(and thus the onset of LCO) make use of one parameter. If a larger number of parameters is

investigated, this is typically handled by continuing one parameter at a time, while keeping the

others fixed. In other words, bifurcation allows to characterise the effect of distinct parameters

(usually known a priori to be relevant for the studied dynamics, e.g. speed in flutter analysis), but

is not particularly suited to assess robustness in the face of uncertain parameters, which generally

are not restricted in number, may vary simultaneously and have an influence on the dynamics

not known a priori. The study of robustness within a dynamical systems perspective can be

attempted by adopting singularity theory techniques (e.g. Lyapunov-Schmidt reduction) [94], as

shown by recently published research [51, 97]. The central idea is to perform a reduction of the

original dynamics to a lower dimension map, whose singularities represent transitions between

qualitatively different bifurcation diagrams. Even though it is theoretically possible to track these

singularities without computing explicitly the reduction [51], application of these techniques

to systems with a moderately complex mathematical description and with generic number of

uncertainties is not straightforward and has not been presented in the literature yet. Moreover,

this approach does not directly provide information on the distance from a given (nominally stable)

operating point to the closest bifurcation, that is, it does not provide a margin to bifurcation.

Previous works have attempted to tackle this aspect. In [71] an extension to multidimensional

parameter spaces of standard methods for codimension-1 bifurcations is proposed. The problem of

determining locally closest bifurcations is solved by introducing a normal vector to hypersurfaces

of bifurcation points, and makes use of both direct and iterative methods. While the latter is

limited to static bifurcations (i.e., saddle node, transcritical, and pitchfork), the former is in

principle applicable also to the Hopf case even if the work focuses mostly on static bifurcations.

The direct method consists of solving the full set of equations defining the bifurcation (plus

additional equations to close the problem which derives from conditions on the normal vector)

and, as also pointed out by the authors, may be too onerous from a computational viewpoint.

This approach was applied in [166] to the analysis of static bifurcations in flexible satellites,

making a number of simplifying assumptions, e.g., no dependence of the equilibrium on the

uncertainties, system with Hamiltonian dynamics. A closely related approach, which according

to the authors generalises the method from [71], is discussed in [37]. The work considers saddle-

node bifurcations only, and the computation of the smallest perturbation to bifurcation is done
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by applying the generalised reduced-gradient method. In essence, this consists of a nonlinear

optimisation strategy making use of corrector and predictor steps and solving the system of

equations defining the bifurcation. However, the issue of local minima is not addressed and the

same objection regarding the total dimension of the problem is envisaged for the Hopf bifurcation

case (not discussed in the work). The idea of using normal vectors to manifold of bifurcation

points is also present in [89] and other works from the same group [174], where the design of

robustly stable and feasible (chemical) processes is pursued.

2.2 Fundamental aeroelastic models

In the previous section, a state-of-the-art review was presented for the different topics that will

be covered in this thesis. Now, a cursory presentation of the fundamental aeroelastic models is

given as they underline the physical systems that will be studied.

The basic representation of a fluid-structure interaction problem describing the coupling

between structural deformation and aerodynamic forces in the Laplace domain is:

[
s2M̄s + sC̄s + K̄s − q∞Qhh(s)

]
η= 0, (2.1)

where q∞ = 1
2ρ∞V 2 is the dynamic pressure, ρ∞ is the air density, V is the speed, and s is

the Laplace variable. M̄s, C̄s, K̄s ∈ Rns×ns represent respectively the generalised structural

mass, damping and stiffness matrices, Qhh ∈Cns×ns is the generalised aerodynamic force (GAF)

coefficient matrix, and η ∈ Rns is the generalised coordinates vector. The system exhibits self-

sustained oscillations when (2.1) has a solution s = iω for non-trivial η, with ω denoting the

frequency. In general, the objective of flutter analysis is the determination of the smallest speed

such that this occurs, i.e. the flutter speed Vf . By introducing a reference length Lr, it is customary

in aeroelasticity to work with the dimensionless counterparts of s and ω, respectively s̄ = sLr
V and

k = ωLr
V (also named reduced frequency).

The generalised structural matrices are usually obtained with the modal decomposition

approach from their physical counterparts Ms, Cs, Ks ∈RNs×Ns , with Ns indicating the number

of structural degrees of freedom:
M̄s =ΦT MsΦ,

C̄s =ΦTCsΦ,

K̄s =ΦT KsΦ,

(2.2)

where Φ ∈RNs×ns is the matrix of ns normal modes. This matrix is obtained from the solution of

the classic eigenvalue-eigenvector free vibration problem of the structure and thus depends on

Ms and Ks. For flutter analysis purposes, it typically holds ns ∼= 20¿ Ns [202].

The physical matrices Ms, Cs, Ks are available analytically for simple systems (examples

will be given in Sec. 2.3.1), but for most systems the state-of-practice is to derive them via Finite

Element Method (FEM) [21], as will be commented on in Sec. 2.3.3.1.
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The aerodynamic forces are typically obtained for flutter analysis purposes with panel method

solvers (e.g. based on the Double Lattice Method) [3]. Given a reduced frequency k and a set of ns

normal modes, the DLM provides the GAF matrix Qhh(ik) gathering the transfer functions from

generalised displacements η to generalised aerodynamic forces. Qhh does not have an analytical

dependence on k (this is an effect of the unsteady part of the aerodynamic loads) and is only

available at discrete values. Further details on the DLM will be provided in Sec. 2.3.3.2.

To set up a state-space formulation of (2.1), which is generally required for aeroservoelastic

applications, an analytical dependency of Qhh on the Laplace variable s is needed. Standard

rational function approximation strategies propose a general two-part approximation model

based on the distinction between quasi-steady and unsteady (or lag) contributions [202]:

Qhh(ik)≈ΓQS(s̄)+Γlag(s̄). (2.3)

Crucially, Γlag captures the memory effect of the wake, which results in a phase shift and

magnitude change with respect to the instantaneous aerodynamic loads (given by ΓQS). This is

also referred to as time lag effect.

In this thesis two of the most established algorithms are considered: the Roger [204] and the

Minimum State [134] methods, which provide respectively the approximate operators QR g and

QMS. They propose an identical expression for ΓQS:

ΓQS(s̄)= A2 s̄2 + A1 s̄+ A0, (2.4)

where A2, A1 and A0 are real coefficient matrices modelling respectively the acceleration, speed

and displacement contributions to the instantaneous force.

Roger proposed the following expression for the unsteady part:

Γlag−R g(s̄)=
Nl∑

L=1

s̄
s̄+γL

AL+2, (2.5)

where Nl is the number of lag terms. The partial fractions inside the summation are the so-called

lag terms and represent high-pass filters with the lag roots γi, selected by the user, as cross-over

frequencies. These are usually taken in the range [0.1,1] which, due to the normalisation, is

a valid choice irrespective of the particular system considered. The selection of the range can

then be improved after a first flutter calculation by placing some of the lags around the reduced

flutter frequency. The real coefficient matrices A i, with i = 0, ..., Nl +2, are found using a linear

least-square technique for a term-by-term fitting of the aerodynamic operator. The resulting

state-space equation includes aerodynamic lag states xa equal in number to Nl multiplied by the

number of generalised coordinates, i.e. na = Nl ns.

The Minimum State (MS) method tries to improve the efficiency with respect to Roger method

in terms of number of augmented states per given accuracy of the approximation. There is no clear

quantification of this advantage, but it has been stated [131] that the number of aerodynamic

states required by MS is usually, in realistic aircraft application, 6-8 times smaller than with the
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application of the Roger method for the same level of model accuracy. The proposed expression

for the unsteady part is:

Γlag−MS = D̄


1

s̄+γ1
... 0

...
. . .

...

0 ... 1
s̄+γNl

 Ēs̄. (2.6)

The coefficients of the matrices D̄ and Ē are iteratively determined through a nonlinear least

square since (2.6) is bilinear in these two unknowns, while the matrices defining ΓQS (see Eq. 2.4)

are obtained imposing the constraint of matching the aerodynamic operator at k=0 as well as at

another reduced frequency (typically chosen in the range of expected reduced flutter frequencies).

Note that the number of augmented states na is now equal to the number of roots, i.e. na = Nl .

Equations (2.5)-(2.6) show the difference in the expression of Γlag for these approximations,

and in particular in the role played by the lag roots γi. In Roger method there is a one-to-one

correspondence between the Nl gains of the high-pass filters (i.e. the coefficients of AL+2 for

L = 1, ..., Nl) and their cross-over frequencies γL, whereas in the MS method there is a coupling

between the various gains and roots as a consequence of the compact expression of Γlag−MS. The

impact that the differences in the expression of Γlag have on uncertainty modelling and robust

flutter analysis will be investigated respectively in Sec. 3.2.2 and Sec. 4.2.1.

Both RFA methods lead formally to the same shorthand state matrix:

ẋ =
[

ẋs

ẋa

]
=A x =

[
χss χsa

χas χaa

][
xs

xa

]
, (2.7)

where the vector of system’s states x = [xs; xa] is composed of the structural states xs = [η; η̇] and

the aerodynamic lag states xa. The state-matrix A has been partitioned as: χss quasi-steady

aeroelastic matrix, χsa coupling term of lag terms on quasi-steady equilibrium, χas coupling

term of structural states on lag terms dynamics, and χaa pure lag terms dynamics matrix. Their

specific expressions depend on the RFA method adopted and are reported next for both methods:

χss−R g = χss−MS =
[

0 I

−M−1K −M−1C

]
,

χsa−R g =
[

0 ... 0

q∞M−1 A3 ... q∞M−1 ANl+2

]
, χsa−MS =

[
0

q∞M−1D̄

]
,

χas−R g =
[

0 I
]

, χas−MS =
[

0 Ē
]

,

χaa−R g =


− V

Lr
γ1Ins 0 0

0
. . . 0

0 0 − V
Lr
γNl Ins

 , χaa−MS =


− V

Lr
γ1 0 0

0
. . . 0

0 0 − V
Lr
γNl

 ,

(2.8)
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where M, C, and K are respectively the aeroelastic inertial, damping, and stiffness matrices:

M = M̄s − 1
2
ρ∞L2

r A2,

C = C̄s − 1
2
ρ∞LrV A1,

K = K̄s − 1
2
ρ∞V 2 A0.

(2.9)

The difference in number of states between the two RFA methods can be appreciated from Eq.

(2.8) by observing the two expressions for χaa, which show that, for each lag term, the Roger

method increases the size of A of ns states (number of generalised coordinates).

2.3 Physical systems

The previous section has provided a background on the essential aspects of generic aeroelastic

models, while here this description is specialised to the physical systems considered throughout

the thesis.

A good comprehension of the physical mechanisms underlying flutter, and of the role of the

main parameters in prompting it, is deemed important in order to efficiently develop robust

modelling and analysis techniques. For this reason, an incremental approach has been taken in

this work and different aeroelastic systems, distinguished by an increasing level of sophistication

but all featuring various degrees of similarities with state-of-practice models, will be considered

and are listed in the following:

• Typical section (Section 2.3.1): rigid aerofoil with lumped springs and unsteady aerodynam-

ics.

• Simplified aircraft (Section 2.3.2): aircraft model with the aim to investigate interaction

between rigid-body and structural dynamics.

• Joined-wing aircraft configuration (Section 2.3.3): unconventional system layout described

by a state-of-practice fluid-structure interaction solver.

• FLEXOP demonstrator (Section 2.3.4): family of reduced order LTI models obtained lin-

earising the original high-fidelity model at different flight speeds.

Essential features are discussed below.

2.3.1 Typical section

The typical section model was introduced in the early stages of aeroelasticity to investigate

phenomena such as flutter [30]. Its validity was assessed to quantitatively study the dynamics

of an unswept wing when the properties are taken at a station 70-75% from the centreline.
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Despite its simplicity, see Fig. 2.3, it captures essential aeroelastic effects in a simple model

representation.
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Figure 2.3: Typical section.

From the structural side, it basically consists of a rigid aerofoil with lumped springs simulat-

ing the 3 degrees of freedom (DOFs) of the section: plunge h, pitch α and control surface rotation

(or flap) β –there are simpler typical section modes that remove the latter DOF. The positions

of the elastic axis (EA), centre of gravity (CG) and aerodynamic centre (AC) are also marked.

The main parameters in the model are: Kh, Kα and Kβ –respectively the bending, torsional and

control surface stiffnesses; half chord distance b (used as reference length Lr); dimensionless

distances a, c from the mid-chord to respectively the elastic axis and the hinge location, and xα
and xβ, which are dimensionless distances from flexural axis to aerofoil centre of gravity and

from hinge location to control surface centre of gravity (Sα and Sβ are the counterparts with

dimension). The inertial characteristics of the system are given by: the wing mass per unit span

mw, the moment of inertia of the section about the elastic axis Iα, and the moment of inertia of

the control surface about the hinge Iβ. If structural damping is considered, this can be expressed

specifying the damping ratios for each DOF, which are then applied as modal damping (see Sec.

2.3.3.1 for more details).

Based on these parameters, the physical structural mass Ms and stiffness Ks matrices are

defined as:

Ms = mwb2


1 xα xβ
xα r2

α r2
β
+ xβ(c−a)

xβ r2
β
+ xβ(c−a) r2

β

 , Ks =


Kh 0 0

0 Kα 0

0 0 Kβ

 , (2.10)
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where rα =
√

Iα
mwb2 and rβ =

√
Iβ

mwb2 are respectively the dimensionless radius of gyration of

the section and of the control surface. Due to the low dimension of the problem, no modal

decomposition is applied and (2.1) can be directly expressed in terms of physical coordinates

(rather than generalised).

The adopted unsteady aerodynamic model is the one from Theodorsen [239], based on the

assumption of a thin aerofoil moving with small harmonic oscillations in a potential and incom-

pressible flow. The expression for the GAF Qhh is:

Qhh =
(
Mnc s̄2 + (

Bnc +C(s̄)R1 ·S2
)
s̄+Knc +C(s̄)R1 ·S1

)
, (2.11)

where Mnc, Bnc, Knc, R1, S1 and S2 are real coefficients matrices. The first three are respectively

inertial, damping and stiffness noncirculatory terms while the others are damping and stiffness

circulatory terms, all depending on the dimensionless distances a and c. See Appendix A.2.1 for

the expression of all the operators in (2.11). The complex scalar C(s̄) is the Theodorsen function,

originated by the ratio of modified Bessel functions of order 0 and 1, and thus an analytical

dependence on s̄ is not available.

Note that Qhh in (2.11) is the transfer matrix from the physical DOFs to the aerodynamic

forces as shown next:

Fe =


Lh

Lα

Lβ

= q∞Qhh


h
b

α

β

 , (2.12)

where Fe is the vector of aerodynamic loads acting on the typical section’s DOF caused by the

elastic deformation. Due to the motion assumptions underlying Theodorsen theory, the expression

in (2.11) has to be evaluated at s̄=ik. Note that such a description of the aerodynamic forces is

pertinent to analyse flutter, which is defined as a condition of neutral stability of the system, i.e.

pure harmonic motion. This explains why this theory, despite being generalised to an arbitrary

aerofoil motion in [214], has represented a paradigm for more improved models aimed at flutter

analysis. For example the DLM always works in the framework of potential theory and harmonic

motion of the body and provides an expression of the GAF at discrete frequencies, as it is the case

in (2.11).

In view of the formal similarities with the template of generic aeroelastic model evaluated in

Sec. 2.3, the typical section is deemed a valid starting point for investigations on modelling of un-

certainties in the aeroelastic operators. Moreover, different sources of nonlinearities can be easily

added and thus this system will be employed for both linear and nonlinear analyses throughout

the thesis. Specifically, two different case studies from the literature will be considered:

• the linear case study from [134] will be used for the nominal and robust flutter analyses in

Chapter 4; this will also form the basis for an augmented system including polynomial non-

linearities in the stiffness terms which will serve as an example for the robust bifurcation

margins in Chapter 8;
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• the case study from [234], featuring freeplay nonlinearity in the control surface degree of

freedom, will be used for the nominal and robust LCO analyses in Chapter 6.

2.3.2 Simplified aircraft

The premise of the so-called restrained body models (e.g. cantilever wing) is the assumption

that the occurrence of flutter in a lifting surface is unrelated to the rigid-body motion of the

aircraft where it is mounted, but this hypothesis has been challenged by modern trends in aircraft

design [25, 253].

With the aim to capture the basic features of the interaction of the wing flexibility with

the motion of the aircraft, a modelling strategy to augment the typical section with rigid-body

effects was developed during this research and is briefly presented here. This was published in

[118, 125], and took reference [212], which provides a comprehensive study on the subject, as

inspiration.

First, a simplified wing configuration (see Fig. 2.4) with mean aerodynamic chord c̄ (used as

reference length Lr) and span L, featuring large aspect ratio, small sweep angle and spanwise

characteristics varying smoothly, is considered. Experimental studies (see [30] and references

therein) have confirmed that the dynamics of such a wing can be described as an equivalent

typical section by properly choosing structural and aerodynamic properties. The geometry and

inertial characteristics used to define the structural mass matrix Ms in (2.10) are selected to

match the corresponding properties of the wing at a span station about 70% distant from the

aircraft centreline. A similar rationale is adopted for the aerodynamics, with the GAF matrix

defined in (2.11) specialised to the geometry at the prescribed wing station. Note that the 2D flow

assumption is in line with the aforementioned properties assumed for the wing (which allow 3D

effects to be neglected).

Figure 2.4: Straight wing.

As for the structural stiffness matrix Ks, an equivalence in terms of the first bending ωh and

torsional ωα natural frequencies of a cantilever beam (at zero speed, i.e. V = 0) is imposed. To

this end, structural properties commonly used to characterise the wing elasticity, such as bending

stiffness EI and torsional stiffness GJ, are introduced. Then, an equivalence [18] between the
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typical section (Kh, Kα) and the wing stiffness parameters (EI, GJ) is established:

ωh =
(
0.597

2π
L

)2
√

EI
mw

=
√

Kh

mw
,

ωα = π

L

√
GJ
Iα

=
√

Kα

Iα
.

(2.13)

The considered aircraft geometry is a conventional wing-fuselage-tail configuration, with

new parameters introduced for the aircraft properties. Geometry parameters include the tail’s

leading-edge distance from the nose D, span L t and mean chord ct (St=L tct is the resulting tail

surface). The inertia quantities considered are: tail mt and wing mw mass ratios, payload mass

mP , total aircraft mass m, and the aircraft pitch moment of inertia I yy (similarly composed of

tail inertia I yyt , wing inertia I yyw , and payload inertia I yyP ). A proposed simplification, commonly

accepted for studies concerned with aeroelastic stability only [190], is to consider the fuselage

and tail as rigid, which means that all the elasticity is assumed concentrated in the wing. Finally,

aerodynamic properties such as wing and tail lift effectiveness coefficients Cw
Lα

and Ct
Lα

are also

specified. The sketch of a notional aircraft is depicted in Fig. 2.5.

Figure 2.5: Simplified aircraft.

Only the longitudinal dynamics is retained for the aircraft motion, resulting in three ad-

ditional states: the vehicle angle of attack ᾱ, the pitch angle θ̄ and its pitch rate q̄ . This is

the short period approximation, which for conventional aircraft involves rapid heave and pitch

oscillations at almost constant translational speed. Surge velocity is neglected since, as discussed

in [212], the phugoid mode does not typically experience coupling with the elastic modes of the

wing. The shorthand description of the longitudinal dynamics for level flight is given in the

frequency-domain by:
(mV −Zr

˙̄α)s−Zr
ᾱ −(Zr

q̄ +mV ) 0

−(Mr
˙̄αs+Mr

ᾱ) I yys−Mr
q̄ 0

0 1 −s



ᾱ(s)

q̄(s)

θ̄(s)

=


0

0

0

 . (2.14)

where the aerodynamic stability derivatives Zr
ᾱ, Zr

˙̄α, Zr
q̄, Mr

ᾱ, Mr
˙̄α, Mr

q̄ have been introduced (see

Appendix A.2.2 for details). The characteristic equation associated with (2.14) is a third order
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polynomial with one pole at the origin and the remaining second-order polynomial expressing the

short-period approximation properties:

ω2
SP ≈

Mr
q̄

I yy

Zr
ᾱ

mV −Zr
˙̄α
− Mr

ᾱ

I yy

mV +Zr
q̄

mV −Zr
˙̄α
,

2ζSPωSP ≈−
(

Mr
q̄

I yy
+ Zr

ᾱ

mV −Zr
˙̄α
+

Mr
˙̄α

I yy

mV +Zr
q̄

mV −Zr
˙̄α

)
.

(2.15)

The evaluation of the aerodynamic stability derivatives is standard and can be performed

(Appendix A.2.2) using a first-order approximation and the assumption of quasi-steady flow [212].

Important quantities that influence the flight mechanics properties are X̄ t
AC, X̄ w

AC, X̄AC, and

X̄CG , the dimensionless distances from the aircraft nose to respectively the tail, wing, and aircraft

aerodynamic centre and the aircraft centre of gravity.

The final task is to determine the coupling terms between elastic and rigid states. Crucial

aspects to address are: how the wing deformation affects the aerodynamic forces generated by the

vehicle, and how the motion of the vehicle contributes to change the loads acting on the structure.

To this purpose, the expression of the local angle of attack is written as αloc =α0 +α+ ḣ
V , where

α0 is the rigid-body angle of attack of the section, related through the twist to ᾱ. The dependence

of the wing lift coefficient Cw
L on the wing deformation can be derived as follows:

 Cw
L = Cw

Lα
(α0 +α+ ḣ

V )

Cw
L = Cw,R

L +Cw,E
L

⇒
Cw,R

L = Cw
Lα
α0,

Cw,E
L = Cw

Lα

(
α+ ḣ

V

)
,

(2.16)

where Cw
Lα

is the wing lift effectiveness, Cw,R
L is the rigid wing lift coefficient (accounted for in the

aerodynamic derivatives, see Eq. A.4) and Cw,E
L its elastic counterpart. This leads to the definition

of the aeroelastic stability derivatives Zr
α and Zr

ḣ
, and, following the same line of reasoning, Mr

α

and Mr
ḣ

are obtained given the geometry of the wing and the relative position of centre of gravity

and aerodynamic centres.

The aircraft motion in turn influences the loads acting on the wing and thus its dynamics.

Specifically, a change in angle of attack ᾱ and pitch rate q̄ causes elastic terms containing ḣ
b

and α to generate further loads on the structure. If a quasi-steady flow is considered, then the

procedure follows the one outlined in (2.16). More interestingly, when unsteadiness is retained

(and this would be consistent with the other aerodynamic terms featuring the elastic equilibrium),

the relation between displacements and forces can be represented with the Theodorsen model. In

particular, it is possible to write the loads on the wing due to the rigid motion Fr as:

Fr = q∞QhhRxr, (2.17)

where xr = [ᾱ; θ̄; q̄] and the formal similarity with Eq. (2.12) is apparent. In fact, the difference is

given by the transformation matrix R which allows the typical section DOFs to be expressed in

terms of xr. This defines the remaining aeroelastic stability derivatives Ze
ᾱ, Ze

q̄, Me
ᾱ, Me

q̄.
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A shorthand expression for the coupled system in the frequency-domain is given by:[
s2

[
Mrr Mrs

Msr Mss

]
+ s

[
Crr Crs

Csr Css

]
+

[
Krr Krs

Ksr(s̄) Kss(s̄)

]][
xr(s)

η(s)

]
=

[
0

0

]
, (2.18)

where the subscripts r and s refer to the rigid-body and structural DOFs. Note that setting

the cross-coupling terms (rs and sr) to zero amounts to consider separately the short-period

approximation of the aircraft (governed by the rr terms) and the restrained wing aeroelastic

problem (described by the ss terms). A state-space description akin to Eq. (2.7) is also available

when an RFA for the matrices Ksr and Kss is computed:
ẋr

ẋs

ẋa

=


χrr χrs χra

χsr χss χsa

χar χas χaa




xr

xs

xa

 . (2.19)

The proposed simplified aircraft model provides an analytical description of the interaction

between elastic and rigid modes. This will enable on the one hand a better understanding of the

dynamics arising because of the coupling, and on the other a profitable application of robust flutter

analysis since the meaningful physical parameters are all clearly identifiable. The considered

case study, analysed in Chapter 4, will consist of the Goland wing [93] for the wing properties

and a scaled version of the benchmark aircraft in [190] for the flight mechanics properties.

2.3.3 Joined-wing configuration

In order to exemplify the application of robust modelling and analysis strategies to systems

described with state-of-practice FSI solvers, a joined-wing aircraft configuration is considered.

Among unconventional configurations, Joined Wings have prospective advantages in terms for

example of increased efficiency and reduction noise and emissions [41]. These unconventional

aircraft configurations are known to exhibit complex aeroelastic behaviours, thus they represent

a challenging test bed for the presented strategies. The general concept behind joined-wings

configurations is to have two interconnected wings which form an overconstrained system. Among

these, PrandtlPlanes [41] are layouts characterised by two wings having approximately the same

wingspan, joined at their tips through a vertical wing. The driving reason for arranging the

lifting system in such a way is the reduction of induced drag, as first shown by Prandtl. However,

according to the literature, other relevant benefits (in terms of structures, flight mechanics and

engine integration) may be gained [85].

The PrandtlPlane selected as case study was originally analysed in [55]. The configuration,

denominated PrandtlPlane 250 (PrP250), is a 250 passenger mid-long range aircraft with a

maximum take off weight of 230 tons, and was designed by considering a multidisciplinary

approach. A view of the finite element structural model is given in Fig. 2.6.

The mathematical model used to study flutter of the wing in Fig. 2.6 is formally identical

to that in Eqs. (2.1)-(2.7). The structural and aerodynamics operators are obtained in this
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Figure 2.6: Structural model for flutter analysis of PrP250 (from [55]).

case through a dedicated fluid-structure interaction solver, namely CSHELL, a proprietary

software developed by the authors of references [40, 60]. The modules used in the work are the

computational solid dynamics one, relying on the FEM approach, and the aerodynamic one, using

the DLM [3]. These are briefly described next.

2.3.3.1 Structural matrices with Finite Element methods

The elasticity of the wing is modelled with beam finite elements derived by the Euler-Bernoulli

formulation [21]. The FEM matrices Ms and Ks are obtained through the procedure of matrix

assembly starting from the structural operators at element level (i.e. single beam) and connecting

them based on the geometry and properties of the system. As an example of this procedure, the

elastic stiffness matrix is considered next. The matrix Ks is obtained from the corresponding

beam element matrices Ke as follows:

Ks =
∑
e

RT
e Ke Re, (2.20)

where Re is the rotation matrix relating the local nodal displacements (element’s level) and the

global ones (expressed in the global reference system), and the
∑

e operation is adopted in its

general meaning of assembly over all the finite elements [21].

The stiffness element matrix Ke is specific to the finite element and physical contributions

considered. For example, in a beam element the bending contribution KeB to Ke is obtained

evaluating the integral:

KeB =
∫ l

0
EI(x)BT

k Bk dx, (2.21)

where the integrand is a function of the local properties of the beam, namely: E the material

Young’s modulus of the beam, I its moment of inertia, l the beam length and Bk a kinematic

matrix relating the element strain to the nodal displacements. The adopted shape functions and
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kinematic assumptions specialise the above integral to the selected beam formulation. Other

contributions to Ke such as axial stiffness can be similarly taken into account starting from a

characterisation of the local beam properties.

Note finally that in [55] no structural damping was considered, thus it will be assumed null

here. However, the physical and generalised damping matrices can be easily obtained from the

damping ratios ζ associated with each structural mode, e.g. derived from logarithmic decrement

calculations after dedicated ground vibration tests. The damping matrix in the generalised

coordinates space is thus given by:

C̄s = diag
(
2mg,1ωn,1ζ1, ...,2mg,iωn,iζi, ...,2mg,nsωn,nsζns

)
, (2.22)

where mg,i and ωn,i are respectively modal mass and natural frequency of mode i obtained by

the free vibration problem of the structure. The transformation from generalised to physical

coordinates enables finally to obtain the physical damping matrix Cs:

Cs =Φ−T C̄sΦ
−1. (2.23)

2.3.3.2 Aerodynamic operator with DLM

The evaluation of unsteady aerodynamic forces is performed using a DLM solver developed by the

authors of reference [60]. This provides, at a fixed reduced frequency k, the transfer matrix from

generalised displacements to generalised aerodynamic forces. The fundament for its derivation is

the linearised formulation of the oscillatory lifting surface theory, relating the normal velocity

(downwash) w̄ at the surface to the pressure difference p̄ across the surface. The singular integral

equation providing this relationship is:

w̄(s1, s2)= 1
8π

−
∫

S
K̃(s1,ξ, s2,σ;k, M) p̄(ξ,σ)dξdσ, (2.24)

where s1 and s2 are orthogonal coordinates on the surface S, M is the Mach number and K̃ is

the Kernel expression which, for an aerodynamic surface discretised with rectangular panels, is

provided by the DLM. Since the GAF represents a transfer matrix between generalised quantities,

K̃ depends on the structural modes Φ, which are provided as input to the DLM code. As a result,

variations in the structural parameters do have an effect on the calculation of Qhh.

The numerical solution of (2.24) leads to the following expression for the downwash (at the

aerodynamic collocation points):

w̄i =
np∑
j=1

D̄ i j p̄ j, (2.25)

where np is the number of aerodynamic panels and D̄ i j comes from the discretisation of the

integral in (2.24). The generic coefficient i j of the GAF matrix, representing the aerodynamic

force generated by the structural mode j and projected onto mode i, is given by:

Qhh,i j =
1

q∞

np∑
k=1
∆Skw̄(i)

k p̄( j)
k ; i, j = 1, ...,ns, (2.26)
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where ∆Sk is the surface of the kth considered panel.

2.3.4 FLEXOP demonstrator

The demonstrator designed within the FLEXOP project is briefly described in this section. The

goal of the demonstrator is to validate through flight tests the modelling, analysis, and design

strategies developed within the project [155, 226, 257] to achieve active flutter suppression

solutions. Fig. 2.7 shows a schematic representation of the demonstrator developed by the

consortium, where the control effectors and sensors for closed-loop control are highlighted.

Specifically, 8 control surfaces, 4 for each wing (R right and L left), are available. As for the

sensors, accelerometers at 3 stations across each wing and one in the centre of gravity of the

aircraft are also indicated with black rectangles. Table 2.1 reports the main design features of

the aircraft and open loop flutter properties.

ail-L4 ail-R4
ail-L3 ail-R3

ail-L2 ail-R2

ail-L1 ail-R1

CG

Figure 2.7: Schematic view of the FLEXOP demonstrator (from [155]).

Table 2.1: FLEXOP demonstrator main design features [155, 226].

Wingspan 7m
Aspect ratio 20

Takeoff Mass 55 kg
Flutter speed 52 m

s
Flutter frequency 38 rad

s

The aircraft was modelled by other partners of the project (specifically, the authors of [167,

257]) with an FSI solver featuring a linear aeroelastic module (based on beam FEM and DLM

solvers) coupled with the nonlinear rigid-body dynamics. Roger approach was employed to build
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up an RFA of the aerodynamic operator and provide a nonlinear high-fidelity Simulink model of

the system for time-domain simulations.

Starting from this input from the partners, the model has been trimmed and linearised

at different speeds leading to a family of high-order (1000+ states) LTI systems. This set was

initially reduced to approximately 500 states with modal truncation and further reduced to a size

of 38 states with balanced truncation to preserve a certain degree of fidelity in the input/output

channels (the MATLAB function balred was used for this purpose) [92]. Accuracy among the

various reduced order models was finally checked by means of standard indicators, e.g. spectrum

of the state-matrices, Bode plots.

This case study will be used in Chapter 5 to exemplify the application of the worst-case LTV

analysis framework to a notional flight test manoeuvre.

Figure 2.8: FLEXOP demonstrator’s rendering picture.
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3
LINEAR FRACTIONAL TRANSFORMATION MODELLING

FOR ROBUST FLUTTER ANALYSIS

This chapter deals with the construction of Linear Fractional Transformation (LFT) models

of uncertain aeroelastic systems, a paramount step in order to obtain accurate and reliable

results when robust control analysis and design techniques are applied to the flutter

problem. Previous works have partially investigated this problem [22, 33, 150, 197], but specific

features of aeroelastic systems and inherent complexities associated with their modelling within

the LFT framework have still to be addressed. Specifically, a physical based rationale to select the

uncertainties and systematic methods to represent them as LFTs which are effective regardless

of the fidelity used to model the system, are still lacking in the community and have driven the

research presented here.

After reviewing the fundamental background, the two contributions of the chapter are

presented. Section 3.2 examines LFT features peculiar to aeroelastic problems (such as the

possibility to employ either a frequency-domain or a state-space formulation) and the modelling

of aerodynamic uncertainties. Section 3.3 discusses common issues connected with the application

of the LFT paradigm to high-order models and will propose an original solution. The reasoning

behind the developed modelling and analysis methodology is to merge fluid-structure interaction

and LFT modelling steps, reconciling by doing so the state-of-practice and the state-of-art in

flutter analysis.

Note that most of the analysis approaches featured in the thesis leverage a description of

the uncertain system as LFT, hence the modelling approaches discussed in this chapter are not

only relevant to µ analysis. The latter is however introduced here because on the one hand, it

provides the reader with a tangible application of the LFT paradigm; on the other, µ analysis will

be employed in some of the algorithms discussed in Section 3.3, and its presentation will make
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easier their understanding.

Publications1: [117, 122] Section 3.2; [116] Section 3.3.

3.1 Mathematical background

3.1.1 Linear Fractional Transformation

Linear Fractional Transformation is an instrumental tool in robust control theory for analysis

and design of uncertain system [156, 269]. The central idea is to represent the original system in

terms of nominal and uncertain components given by matrices. To this end, the unknown part

(represented by ∆) is pulled out of the system, so that the problem appears as a nominal system,

also referred to as plant, subject to an artificial feedback (recall the standard starting point in

robust control, Fig. 2.2).

Let M ∈C(p1+p2)×(q1+q2) be a complex matrix partitioned as:

M =
[

M11 M12

M21 M22

]
, (3.1)

and let ∆ ∈ Cq1×p1 . The upper LFT of M with respect to ∆ (there is an equivalent lower LFT

representation) is defined as the map:

Fu :Cq1×p1 −→Cp2×q2 ,

Fu(M,∆)= M22 +M21∆(I −M11∆)−1M12.
(3.2)

A crucial feature apparent in (3.2) is that the LFT is well posed if and only if the inverse of

(I −M11∆) exists. Otherwise, Fu(M,∆) is said to be singular.

The set ∆ is used in robust control to isolate the unknown components from the nominal

(typically linear) part. An example is the structured uncertainty set, here denoted by ∆u, gathering

parametric (δi and δ j) and dynamic (∆Dk ) uncertainties:

∆u = diag
(
δi Idi ,δ j Id j ,∆Dk

)
,

i = 1, ...,nR ; j = 1, ...,nC; k = 1, ...,nD .
(3.3)

The uncertainties associated with the nR real scalars δi, nC complex scalars δ j and nD un-

structured (or full) complex blocks ∆Dk are listed in diagonal format. The identity matrices of

dimension di and d j take into account the fact that scalar uncertainties are generally repeated in

∆u when the LFT of the system is built up. Typically the uncertainties are normalised by scaling

M such that Fu(M,0)= M22 coincides with the nominal system (i.e. the uncertain parameters

are set at their nominal values) and the bound on the maximum singular value of ∆u, namely

σ̄(∆u)≤ 1, holds when uncertainties take values in the allowed interval.

1Material published during the PhD which relates to the content of this chapter.
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To exemplify how the expression in (3.2) can be derived from a given uncertainty description,

consider two general representations for an uncertain parameter d:

d = d0 +λdδd, (3.4a)

d = d0(1+λdδd), (3.4b)

with λd indicating the uncertainty level with respect to a nominal value d0 and δd ∈ [−1,1]

representing the normalised uncertain parameter. Eqs. (3.4a)-(3.4b) are referred to as additive

and multiplicative uncertainty, respectively. In both cases, δd = 0 corresponds to the nominal

value of d, while δd =±1 are perturbations at the extreme of the uncertainty range. At a matrix

level, the operator D affected by additive uncertainties can thus be expressed as (note that an

analogous representation holds for multiplicative uncertainties):

D = D0 +VD∆DWD , (3.5)

where D0 is the nominal operator and VD and WD are scaling matrices. Eq. (3.5) is a particular

instance of LFT map in the case when there is no rational dependence on the uncertainty set

(recall Eq. 3.2 with M11=0). In the general case when the dependence of D on the uncertain

parameters is rational, (3.5) assumes an equivalent expression to (3.2). Therefore, operators

subject to parametric uncertainties are LFTs themselves. This feature is helpful in the LFT

building process since a fundamental property [269] is that interconnections of LFTs are again

LFTs, thus for example it is possible to cascade, add, and invert them resulting always in

an LFT. In addition to helping in the construction of LFT models, this property also helps to

separate modelling specific details of the system under consideration and to ease the algebraic

manipulations [146]. An example will be provided later in this section.

The construction of LFT models can be efficiently performed by means of available toolboxes

which directly provide the partitioned matrix M for the defined set ∆. In this thesis the LFR

toolbox developed by ONERA [156] will be employed, which allows the uncertainty set to be

defined by writing the uncertain parameters in symbolic form. In order to minimise the number

of repetitions in ∆, different reduction techniques can be adopted such as Horner factorisation or

tree decomposition [20, 160, 249].

The LFT representation of an uncertain system can be interpreted in terms of the feedback

interconnection in Fig. 3.1. If M is taken as a transfer matrix, Fu(M,∆u) represents the closed-

loop transfer matrix from input u to output y when the nominal system M22 is subject to the

structured perturbation ∆u. The signals w and v close the feedback loop with the uncertain block,

and the matrices M11, M12 and M21 define how the perturbation affects the nominal system.

Note that M11 determines the well-posedness of the LFT (3.2), and it is, within this analogy, the

transfer matrix seen by the perturbation block ∆u.

Another way of looking at the LFT paradigm is as realisation technique [156, 269]. This

viewpoint is discussed here since it will be beneficial for a deeper understanding of the LFT
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Figure 3.1: Feedback interpretation of an LFT.

framework and for its usage in Chapter 8 in the context of robust bifurcation margins.

Let us consider a nominal Linear Time-Invariant (LTI) system defined by its state-space repre-

sentation (A ,B,C ,D) or equivalently by its transfer matrix G:ẋ =A x+Bv,

y=C x+Dv,
(3.6a)

G(s)=D+C
(
sInx −A

)−1
B. (3.6b)

Given the formal equivalence between (3.6b) and (3.2), it can be inferred that LFT generalises

the realisation of transfer matrices into state-space representations to the case of rational

multivariate matrices. An important fact can then be highlighted. The poles of the LTI (3.6)

are typically found with eigenvalue analysis of A . Equivalently, the system has a given pole

ν if (sInx −A )−1 is singular for s = ν. Note that this latter condition can be formulated as the

singularity of the LFT Fu(Mν,∆ν) with:

Mν =
[
A B

C D

]
; ∆ν = 1

s
Inx . (3.7)

This follows immediately from the fact that:

Fu(Mν,∆ν)=D+C
1
s

Inx (Inx −
1
s
A )−1B =D+C (sInx −A )−1B, (3.8)

where the diagonal structure of ∆ν and the fact that 1
s 6= 0 have been exploited. Here ∆ν can be

seen as an instance of the set ∆ associated with the realisation of (A ,B,C ,D). The subscript

ν is used to emphasise this particular interpretation of LFT (connected with the fact that the

underlying linear system features a certain pole ν).

Consider now the case when the LTI system is subject to uncertainties. The set ∆ will then

consist of two blocks: ∆u containing the structured perturbations, and ∆ν = 1
s Inx . The coefficient

matrix M is partitioned correspondingly, as depicted in Fig. 3.2 and reported below:

M =


A A12 B

A21 A22 B1

C C1 D

 , ∆= diag(∆ν,∆u). (3.9)
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M now features the blocks from Mν and other matrices describing the effect of the uncertainties

on the state-matrices. Crucially, neutral stability of the uncertain system is equivalent to the

singularity of Fu(M,∆) for s = iω and uncertainties in the set ∆u.

Figure 3.2: Realisation technique interpretation of an LFT.

Finally, it is helpful, by virtue of the interconnection property pointed out before, to visualise

an LFT featured by distinct ∆-blocks as an interconnections of LFTs. For the LFT in (3.9) it thus

holds:

Fu(M,∆)=Fu(Fu(M,∆ν),∆u). (3.10)

3.1.2 µ analysis

The µ analysis technique leverages the key features of LFT modelling to address the Robust

Stability (RS) analysis of LTI systems in the face of structured uncertainties. The structured

singular value is a matrix function denoted by µ∆(M) and several equivalent definitions are

available in the literature [75, 180, 269]. Let us start with a definition that encompasses the

aspects discussed in the end of the previous section. Specifically, the LFT defined in (3.10)

featuring the block ∆= diag(∆u,∆ν) is considered and a first definition follows:

µ∆(M)=
[

min
∆u,∆ν

(κ : Fu(Fu(M,∆ν),κ∆u) is singular; σ̄(∆u)≤ 1)
]−1

, (3.11)

where κ is a real positive scalar, and µ∆(M) = 0 if the minimisation problem has no solution.

The subscript remarks the dependence on the uncertainty set, in addition to the matrix M, and

will be omitted in the following when clear from the context. Let us assume, as often done in

practice, that ∆ν is realised by fixing s (typically s = iω for a given frequency ω), and thus ∆=∆u.

Then, the problem defined in (3.11) consists of finding the structured uncertainty matrix with

the smallest maximum singular value such that the uncertain LTI system has a pair of purely
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imaginary eigenvalues ±iω. This reasoning leads to the standard definition of structured singular

value µ:

µ(M11)=
[
min
∆u

(κ : det(I −κM11∆u)= 0; σ̄(∆u)≤ 1)
]−1

, (3.12)

where M11, which is a function of ω, is the submatrix of M (3.2) involved in the well-posedness

condition. µ(M11) provides a robust stability test for an uncertain LTI. For each frequency ω, if

µ(M11)≥ 1 a candidate perturbation matrix (i.e. within the allowed range) exists that violates

the well-posedness of Fu(M,∆). In essence, the uncertain state-matrix A has the eigenvalues

s =±iω for a combination of the uncertainties. On the contrary, if µ(M11) < 1 then there is no

perturbation matrix inside the set ∆ such that the Fu(M,∆) is ill-posed and thus the system is

robust stable within the range of uncertainties considered.

For numerical reasons, µ is typically evaluated on a discretised frequency range, that is, the

∆ν block is fixed as discussed before on a grid of given frequencies ω and (3.12) is solved. This

has the drawback of possibly missing critical frequencies and thus underestimating the value

of µ. However, newly developed algorithms using Hamiltonian-based techniques (i.e. SMART

library [205] and Robust Control Toolbox from MATLAB R2016b) can also guarantee the validity

of results over a continuum range of frequencies.

It is known that µ is an NP-hard problem with either pure real or mixed real-complex

uncertainties [35], thus upper and lower bounds are computed. The upper bound µUB gives the

maximum size perturbation σ̄(∆UB)= 1
µUB

for which RS is guaranteed, whereas the lower bound

µLB defines a minimum size perturbation σ̄(∆LB)= 1
µLB

for which RS is guaranteed to be violated.

Along with this information, the lower bound also provides the matrix ∆LB =∆cr determining

singularity of the LFT. If the bounds are close in magnitude, then ∆LB is the worst-case matrix,

that is, the perturbation with the smallest magnitude leading to neutral stability.

It is remarked finally that µ analysis can also be used to analyse robust performance. Achiev-

ing a desired nominal performance is typically formulated as the requirement that the H∞
norm of a certain transfer matrix G fulfils a given frequency domain template Ψ(ω). That is, the

following inequality is satisfied:

σ̄(G( jω))<Ψ(ω), ∀ω. (3.13)

By scaling of G, this is expressed without loss of generality as:

σ̄(G( jω))< 1, ∀ω. (3.14)

If the system represented by G is subject to uncertainty described in ∆u, robust performance can

be tested by considering ∆= diag(∆u,∆p). The block ∆p ∈Cq2×p2 is a full-complex (i.e. unstruc-

tured) perturbation matrix closing the lower loop in Fig. 3.1 by connecting the signals y and u.

This fictitious block doesn’t reflect any physical perturbation of the plant and is introduced in

order to apply a result known as Main Loop theorem [269]. Let us denote by Fu(M,∆) the LFT
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representation of the uncertain transfer matrix G and by µ(M) the following:

µ(M)=
[

min
∆=diag(∆u;∆p)

(
κ : det(I −κM∆)= 0; σ̄(∆)≤ 1

)]−1
. (3.15)

The Main Loop theorem then ensures that the condition µ∆(M)< 1 is a test for robust performance.

More precisely, for all the perturbation matrices ∆u with ‖∆u‖∞ ≤ 1
β

it holds [269]:

‖Fu(M,∆)‖∞ <β if and only if µ(M)<β. (3.16)

Note that M is now employed in the test (3.15) instead of the submatrix M11 used for RS (3.12).

3.2 LFT modelling of aeroelastic systems

The aim of this section is to address specific aspects of the application of LFT modelling to

aeroelastic systems. The starting point is the mathematical model describing the interaction

of elastic and aerodynamic forces, which was discussed for a generic system in Sec. 2.2. In

that section two formulations for the dynamic equilibrium of the system were presented: Eq.

(2.1) in the frequency-domain and Eq. (2.7) in state-space (and their relation with the adopted

aerodynamic operator was also discussed). While nominal flutter analysis with either of them

typically leads to similar predictions (see results in Sec. 4.1), for robust analysis purposes the

different formulations have two important consequences. Firstly, the LFT model development

path, interpreted here as the process followed to build up LFT models starting from the definition

of the nominal system and the uncertainty set, changes. Secondly, the aerodynamic uncertainty

captured by the LFT depends on the expression adopted for the Generalised Aerodynamic

Force (GAF) matrix, whether the original frequency-dependent or its approximation, and thus on

the starting point. These elements have prompted the investigations presented next.

3.2.1 Model development path

3.2.1.1 Frequency-domain approach

The construction of the LFT associated with a frequency-domain representation follows the

strategy originally presented in [33]. The objective is to recast the aeroelastic system as in Fig.

3.1, where the interpretation of LFT as a transfer matrix was discussed. If a fictitious input force

u ∈Cns acting on the system is introduced, Eq. (2.1) can be rewritten at s = iω as:

[−ω2M̄s + iωC̄s + K̄s − q∞Qhh(ik)
]
η= u. (3.17)

When the operators in the equation above are subject to uncertainties in the set ∆u, the dynamics

can be conveniently described in terms of the transfer matrix from input u to output y = η. In
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other words, the objective is to recast (3.17) in the format:

w =∆uv,

v = M11w+M12u,

η= M21w+M22u.

(3.18)

This allows to retrieve the feedback equations in Fig. 3.1, and in turn provides the partitioned

matrix M, which completely defines the LFT together with the associated uncertainty set. The

first step of this modelling process consists of explicitly defining the uncertainties in the operators

M̄s, C̄s, K̄s, and Qhh. This can be achieved by applying at operator level the additive description

in (3.5):

M̄s = M̄s0 +VM∆MWM , (3.19a)

C̄s = C̄s0 +VC∆CWC, (3.19b)

K̄s = K̄s0 +VK∆KWK , (3.19c)

Qhh =Qhh0 +VQ∆QWQ . (3.19d)

Eq. (3.19) can be substituted back in (3.17) leading to:

M22(ω)−1η=V∆uWη+u, (3.20)

where ∆, V and W gather the corresponding matrices in (3.19), that is ∆u = diag(∆M ,∆C,∆K ,∆Q),

V = [VM VC VK VQ], and W = [WM ;WC;WK ;WQ], and:

M22(ω)=
[
−ω2M̄s0 + iωC̄s0 + K̄s0 − q∞Qhh0(ik)

]−1
. (3.21)

Note that M22 is the frequency response of the nominal system (as expected by definition of LFT).

The frequency dependency of M22 is dropped from now on for ease of notation, unless unclear

from the context.

Eq. (3.20) can be finally recast in the sought template of Fig. 3.1 by defining v = Wη and

exploiting the fact that by definition w =∆uv:

v =WM22V w+WM22u,

η= M22V w+M22u.
(3.22)

The last equation provides the desired partition of M. Indeed, given a frequency ω, it holds:

M11 =WM22V , (3.23a)

M12 =WM22, (3.23b)

M21 = M22V , (3.23c)

M22 =
[
−ω2M̄s0 + iωC̄s0 + K̄s0 − q∞Qhh0(ik)

]−1
. (3.23d)
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The partitioned matrix M is thus available as a function of ω. In particular M11 (3.23a), which

is by definition the transfer matrix seen by the perturbation block, can be employed in (3.12) to

assess the robust stability of the system.

It is stressed that usually the dependence on ω is confined to M22. However, this formulation

allows to employ generic (i.e. not necessarily analytic) frequency-dependent uncertainty descrip-

tions by defining the matrices V and W at each (discrete) ω. This can be particularly useful for

the GAF matrix, which is inherently frequency-dependent, but can be advantageously used also

for other purposes (e.g. neglected dynamics at higher frequencies due to modal truncation).

3.2.1.2 State-space approach

The construction of the LFT associated with a state-space representation takes its clue from the

other interpretation of LFT discussed in Sec. 3.1.1, and its features are assessed next. Recall the

LFT of a generic uncertain state-space model Fu(M,∆) defined in (3.9) and pictorially depicted in

Fig. 3.2. The expression for the partitioned matrix M can be derived starting from the aeroelastic

state-space model in Eq. (2.7) by defining the dependence of the matrices χss, χsa, χas, and χaa on

the uncertainties. This can be done, for example, by applying the uncertainty additive description

to the operators in (2.8). Crucially, while for the structural operators this leads to the same

uncertainty description used for the frequency-domain approach (that is, Eqs. 3.19a-3.19c), the

aerodynamic operator is now described by the Rational function approximation (RFA) matrices

(Eq. 2.3). Therefore, only uncertainties in ΓQS and Γlag can be considered. This is a first important

difference that will be further discussed in Sec. 3.2.2.

Once the dependence of the matrices in (2.8) on the uncertainties is defined, M can be obtained

from standard LFT toolboxes and thus Fu(M,∆), which in this formulation has an equivalent

representation as Fu(Fu(M,∆ν),∆u) through the interconnection property, becomes available. If

the goal is to obtain the frequency response of Fu(Fu(M,∆ν),∆u) on a grid of frequencies, this can

be achieved by realizing the block ∆ν (between the channels ẋ and x in Fig. 3.2) at s = iω. At this

point, the LFT recovers the standard transfer matrix form and, since the µ analysis technique

is typically computed on a grid of frequencies, this is the standard modelling process for linear

robust analysis purposes. However, the availability of state-space LFT models (that is, in the form

Fu(Fu(M,∆ν),∆u)) has the advantage of allowing for other robust control applications. Examples

are: µ analysis over a continuous range of frequencies using Hamiltonian-based techniques [205];

Integral Quadratic Constraints analysis [170]; and advanced robust synthesis techniques (e.g.

structured H∞ control [9]).

To better emphasise this aspect, let us consider the transfer matrix M11 (employed to assess

the robust stability of the system). In this formulation, M11 is an LFT formed by the terms in the
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upper left block of the coefficient matrix (3.9), that is:

M11(s)=A22 + 1
s
A21(Inx −

1
s
A )−1A12 =A22 +A21(sInx −A )−1A12,

=Fu(M11ν,∆ν), M11ν =
[

A A12

A21 A22

]
, ∆ν = 1

s
Inx .

(3.24)

The partitioned matrix M11ν consists of the nominal state-matrix A and the blocks A12, A21,

and A22 which arise from the uncertainty modelling of the state-space operators. As pointed

out before, the matrix M11 is pivotal in the application of µ for robust analysis, and (3.24)

provides its analytical dependence on s. It is interesting to draw a comparison between the

expression of M11 in the two formulations, namely Eqs. (3.23a) and (3.24). They both feature

a dependence on the frequency response of the nominal plant, which is (sInx −A )−1 for the

latter and M22 for the former case. The frequency responses are then pre-post multiplied by

non-square scaling matrices, V and W in Eq. (3.23) and A12, A21 and A22 in Eq. (3.24), describing

the effect of the perturbations on the system. Note however that the processes by which the

two sets of scaling matrices are obtained, and their resulting meaning, are different. Firstly,

in the state-space approach these must have a rational dependence on the frequency, whereas

in the frequency-domain one they were allowed to be defined independently at each discrete

frequency. Secondly, if aerodynamics uncertainties are considered, the scaling matrices describe

perturbations in inherently different operators. These aspects, formally demonstrated in this

section by explicitly showing the derivation of the LFT models starting from the two possible

mathematical descriptions, are preparatory for the discussion in the next section.

3.2.2 Uncertainty description of aerodynamic operators

The aerodynamic operator, giving a relation between (generalised) elastic displacements and

the corresponding generated loads, is one of the most relevant features of aeroelastic modelling,

and standard expressions were discussed in Sec. 2.3. The original GAF matrix Qhh is typically

provided for flutter analysis purposes by a panel method-based solver and is available at discrete

(reduced) frequencies. When the problem needs to be recast in state-space, approximate operators

are used. In this work, Roger QR g and Minimum State QMS approximations are employed, which

were both shown to feature a general two-part approximation model based on quasi-steady and

lag physical contributions (Eq. 2.3).

Uncertainty in the aerodynamic operator can be ascribed to different causes: limits of va-

lidity of the physical assumptions underlying the model (e.g. potential flow for panel method

solvers); mismatch of the analytical results with experimental results or other more sophisticated

computational tools (e.g. computational fluid dynamics); numerical approximations inherent to

the adopted method (e.g. calculation of Qhh on a discrete set of frequencies); and rational fitting

of the approximate operators to name but a few. The objective of this section is to investigate
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methodologies to capture these sources of uncertainties within the LFT development paths

discussed in Sec. 3.2.1.

In order to provide numerical examples, the Qhh matrix is based on the Theodorsen theory

applied to the typical section system described in Sec. 2.3.1 with the geometrical properties from

the case study in [134] (Appendix A.2.1). RFA approximations are performed in the range of

reduced frequency k ∈ [0.01;1] by selecting for Roger and Minimum State methods respectively 4

and 6 lag terms equally spaced between 0.1 and 0.7.

3.2.2.1 Reconciliation of different aerodynamic LFT descriptions

Let us denote by Fu(Q•,∆a) (where • is any of {hh,R g, Ms}) the aerodynamic LFT capturing

uncertainty in one of the available aerodynamic operators. For example, the LFT Fu(Qhh,∆hh),

with ∆hh = diag(δQhh,12 ,δQhh,21 ,δQhh,22), describes the effect of uncertainties in the coefficients

Qhh,12, Qhh,21 and Qhh,22 of the original GAF matrix. These are, recall (2.12), the three transfer

functions between pitch α and lift Lh, plunge h and pitching moment Lα, and pitch α and pitching

moment Lα. The uncertainty is defined such that the value of each uncertain transfer function

ranges in the disc of the complex plane centred at the nominal value with uncertainty radius

equal to 10% of its magnitude. This can be expressed with the additive uncertainty description

for complex uncertainties, as exemplified next by the case for Qhh,12:

Qhh,12 =Qhh0,12 +Qhh0,12λQhh,12δQhh,12 ,

δQhh,12 ∈C,
∣∣δQhh,12

∣∣≤ 1, λQhh,12 = 0.1.
(3.25)

The application of (3.25) to all the uncertain transfer functions lead to the definition of the

weighting matrices VQ and WQ in (3.19d). Note that these weights have an arbitrary, that is not

necessarily rational, dependence on frequency since they are a function of the nominal GAF Qhh0

(whose dependence on k was commented on earlier).

The LFTs Fu(QR g,∆R g) and Fu(QMS,∆MS) describe respectively the transfer matrices QR g

and QMS when uncertainties in the quasi-steady part of the approximation ΓQS are considered,

whereas Γlag is for now kept at the nominal value. Recalling the definition from (2.4), this means

that the matrices A2, A1 and A0 are perturbed. Specifically, the same three transfer functions

and uncertainty range as above will be considered (note however that A0,21 is always null for

physical reasons, since it represents the steady contribution of h).

The resulting LFTs are defined by the uncertain blocks below:

∆
3,C
hh = diag(δQhh,12 ,δQhh,21 ,δQhh,22), (3.26a)

∆
8,R
R g =∆8,R

Ms = diag(δA0,12 ,δA0,21 ,δA0,22 ,δA1,12 ,δA1,21 ,δA1,22 ,δA2,12 ,δA2,21 ,δA2,22), (3.26b)

where the size of the ∆ blocks and the type of uncertainties (real R or complex C) is recalled in

the superscripts. Fig. 3.3 shows the comparison of the LFT coverage for the transfer function

between pitch α and pitching moment Lα. This is obtained by evaluating the aerodynamic LFTs
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at random values of the uncertainty block. Magnitude and phase Bode plots are then presented

for the three cases (hh, R g and MS) as a function of k. The coloured area can be interpreted as

the family of transfer functions originated by the provided uncertainty description. In the case of

the approximated operators Fu(QR g,∆R g) and Fu(QMS,∆MS), i.e. centre and right plot-columns,

the families are almost identical, while the phase plot of Fu(Qhh,∆hh) in the left plot-column

appears to cover a larger area.

Figure 3.3: LFT coverage of the transfer function from α to Lα for Qhh, QR g and QMS.

It is important to reflect on the fact that a comparison between the LFT associated with the

frequency-domain operator (Qhh) and the two LFTs originating from the rational approximations

(QR g and QMS) is not straightforward. Even when the same transfer functions are perturbed, the

uncertainty description is different both in terms of captured features (for Qhh the whole transfer

function is involved, while in the latter two only the quasi-steady part) and in terms of number of

uncertainties (see Eq. 3.26). Thus, no clear correspondence from one description to another exists

in general. However, Fig. 3.3 provides physical insight into the variability captured by the LFTs.

For instance, it suggests that taking into account perturbations in the quasi-steady contribution

via Fu(QR g,∆R g) and Fu(QMS,∆MS) provides similar results to Fu(Qhh,∆hh) for the magnitude,

whereas a narrower coverage of the phase diagram is registered. This is in accordance with

physical understanding, since uncertainties in Qhh will capture the whole mechanism underlying

the generation of aerodynamic loads, whereas those in the quasi-steady part of the approximate

operators only account for specific effects. Notably, the mismatch is mostly confined to the phase
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response and this can be explained by noticing that only the quasi-steady part ΓQS of QR g and

QMS is subject to uncertainties. Recall indeed that Γlag is used in RFA operators to reproduce,

by means of high-pass filters, the unsteady effect consisting of a magnitude decrease and, most

importantly, a phase shift with respect to the quasi-steady aerodynamic loads. Note also that the

phase shift generated by a high-pass filter at a fixed frequency is dependent only on its cross-over

frequency and is unrelated to the gain a:

H(s̄)= as̄
s̄+γ , s̄ = ik,

H(ik)= a ik
ik+γ = ak2 + iakγ

k2 +γ2 , arg(H)= tan−1(
γ

k
).

(3.27)

This shows that perturbations in Γlag, and in particular in the lag roots γi, allow variations

in the phase response to be taken into account, and thus inaccuracies in the estimation of the

unsteady part of the loads to be captured. Moreover, (3.27) provides a quantitative indication of

the effect on the frequency response of uncertain lag roots, and thus, it can be used to calibrate

the amount of uncertainty in them based on experimental or numerical data describing the

expected aerodynamic behaviour in terms of load generation. It is interesting to observe for

example that the lag root effect in phase shifting highly depends on the reduced frequency k,

and thus a weight function of the frequency is envisaged to properly model this uncertainty. In

conclusion, the scenario in Fig. 3.3 is ascribed to the fact that only uncertainties in ΓQS were

considered and thus the observed mismatch would be reduced by introducing perturbations in

Γlag in accordance with the rationale discussed above.

Motivated by this, in [122] further analyses of the type shown in Fig. 3.3 were performed

considering lag uncertainty. Firstly, it was concluded that the two LFTs Fu(QR g,∆R g) and

Fu(QMS,∆MS) with the same uncertainty level in the lag roots lead to considerably different

coverage. This was somehow expected since the definition of Γlag−R g and Γlag−MS is different, as

stressed in the comments below Eq. (2.6). Secondly, all the aerodynamic transfer functions are

perturbed as a result of introducing uncertainty in Γlag. In fact, by looking at the approximation

formula (Eqs. 2.5-2.6) it can be inferred that each high-pass filter influences all the terms in the

transfer matrix. This is in contrast to what happens for Fu(Qhh,∆hh), where the uncertainty is

specified directly in each term of the transfer function and thus only the corresponding frequency

responses are affected. In summary, when adopting RFA operators the introduction of uncertainty

in the lag terms can be physically motivated by the interest in capturing particular features (e.g.

phase shift), but this automatically implies perturbing all the transfer functions. Moreover, it is

not clear in principle how to define the range of variations of the cross-over frequencies since this

might depend, for example, on the approximation algorithm.

Prompted by these findings, a general approach is proposed to correlate LFTs of different

aerodynamic operators (possibly affecting different transfer functions). The worst-case H∞ norm

of the aerodynamic operator in the face of the allowed perturbations is assumed as metric. Then,

the aerodynamic worst-case gain γQ associated with an aerodynamic LFT Fu(Q,∆Q) for a given
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bound on the H∞ norm $ of the uncertainty matrix ∆Q is defined:

γQ(Fu(Q,∆Q),$)= max
‖∆Q‖∞≤$

‖Fu(Q,∆Q)‖∞. (3.28)

Once $ is fixed, γQ is a term of comparison among different uncertainty descriptions. The problem

in (3.28) is in the form of a worst-case performance test and there exist available algorithms

to solve it [179], which frame the numerical problem as a µ calculation. In practice, γQ can be

easily computed with the command wcgain of the Robust Control Toolbox in MATLAB [14] once

Fu(Q,∆Q) and $ are provided. Note that there is a crucial difference between the normalisation

of the set associated with the LFT (typically σ̄(∆Q)≤ 1) and the constraint involving $. The former

is performed in the LFT construction stage by scaling the partitioned matrix Q and is without

loss of generality, while the latter defines the allowed variation in the worst-case problem and

has a direct impact on the achieved performance (larger $ will determine worse performance).

Let us consider a given reference aerodynamic LFT Fu(Qr,∆r) and a tested LFT Fu(Qt,∆t).

The objective is to determine an uncertainty level for the parameters of the tested LFT such that

∆t maps Qt in a similar family to Fu(Qr,∆r). An algorithm is proposed next to address this task.

Algorithm 3.1. Mapping tested LFT into reference LFT

Outputs: The uncertainty levels vector Λ= [λ1; ...;λi; ...;λnp ] associated with the additive uncer-

tainty description of the np parameters of ∆t.

Inputs: Fu(Qr,∆r) (normalised such that σ̄(∆r) ≤ 1) and Fu(Qt,∆t); a first guess Λ0; positive

tolerance parameter ε; $ (default value 1).

0. Compute γQ
r using (3.28), Fu(Qr,∆r), and $; set δγ = 2ε and Set Λ=Λ0.

While |δγ| > ε do

1. Normalise Fu(Qt,∆t) such that σ̄(∆t)≤ 1 using Λ.

2. Compute γQ
t using (3.28), Fu(Qt,∆t), and $.

3. Evaluate δγ =
(
γ

Q
r −γQ

t

γ
Q
r

)
.

4. Update the uncertainty vector Λ← (1+δγ)Λ.

return Λ

Remark 3.1. Algorithm 3.1 is iterative, and different options can be tuned to improve the

accuracy of the outcome. For example, the proposed rule in Step 4 does simply update the vector of

uncertainty levels Λ by uniform scaling. Alternatively, based on the understanding of the role of

the uncertain parameters, a vector of weights Λw ∈Rnp can be selected and the update rule defined

as Λ0 ← (1+δγΛw)∗Λ, with ∗ indicating the component-wise product.
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Note also that different values for $ can be used. Based on the analyses performed in support

of the work, this option has a very small influence on the final Λ. Certainly, the algorithm will

provide different values of γQ depending on $ (because the worst-case performance depends on the

allowed variation of the uncertainties), but the same vector of uncertainty levels Λ is obtained.

The objective of Algorithm 3.1 is to inform the selection of the number and/or type of uncertain

parameters and their uncertainty range in order to cover a family of given (reference) frequency

responses. Even though the method has been originally devised to calibrate the amount of

uncertainty in a tested LFT such that it generates a similar coverage (in the sense described in

Fig. 3.3) to a reference one, its application is quite general.

For example, it could be applied to address the problem of defining the uncertainty in the lag

terms of two LFTs derived by different rational approximations. This latter goal was pursued

in [122] where a satisfactory overlapping between the two families of transfer functions was

achieved by applying Algorithm 3.1 to redefine the uncertainty levels of the lag terms in the

LFT relative to the Minimum State method based on the given LFT corresponding to the Roger

method. A comparison in terms of robust flutter predictions will be discussed in Sec. 4.2.1.

Alternatively, the reference family can consist of experimental data or high fidelity numerical

simulations for which a frequency-domain characterisation is available. In case of nonlinear

simulations, this characterisation can be obtained by linearising the response about the studied

operating points [162]. The objective would be then to tailor the uncertainty description (in terms

of uncertain parameters and corresponding ranges defined in Λ) such that the reference results

lie within the uncertainty set defined by the tested LFT. In this case, γQ
r is provided in Step 0 by

the supremum over the frequencies of the maximum singular value of the reference frequency

responses.

Remark 3.2. Algorithm 3.1 belongs to the class of control-oriented model validation schemes [225],

where the goal is to assess whether the proposed model can generate a given set of input/output

data. Relevant to this work, in [144] a frequency-domain test was developed to validate (or

invalidate) the description provided by an LFT model. The problem is recast, through the inverse

LFT theorem, as a µ-test associated with a conveniently derived LFT function of the tested model

and the input/output data. The difference here is that the worst-case H∞ norm is used as metric,

based on the assumption that it is relevant to characterise uncertainty in the aeroelastic operators

used for robust flutter analysis (the adoption of H∞ control strategies to tackle the active flutter

suppression problem [238] is another example of this reasoning).

3.2.3 A unified LFT modelling approach

In the previous subsection qualitative (based on the visualisation of the LFT coverage) and

quantitative (Algorithm 3.1) strategies have been proposed to relate LFT models of different aero-

dynamic operators. However, as emphasised therein, there are intrinsic difficulties in reconciling
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the aerodynamic uncertainty description made within the frequency-domain framework with the

one derived from a state-space formulation. In fact, the latter only allows uncertainties to be ap-

plied to the building blocks of the approximated operators. This means that the uncertainties can

be introduced in the quasi-steady part (not capturing the phase frequency response variability)

or in the lag terms of the unsteady part (but this affects the full transfer matrix and not only

specific transfer functions as it is often desired).

In addition to that, it is not clear which of the two development paths discussed in Sec.

3.2.1 is preferable, since each has different advantages. For example, adopting the uncertainty

description allowed by the frequency-domain framework can help taking into account physical

considerations in the aerodynamic uncertainty definition. For instance, if a lack of accuracy, based

on the evidence of experimental results or high-fidelity simulations, is detected in specific loads

generation mechanisms (e.g. from control surface rotation to pitch moment on the section), this

could be captured directly with the additive description in (3.19d). Also, the coefficients of Qhh

are complex and so are the associated uncertainties, with notable improvement on the accuracy

and computation time of the µ analysis. It is indeed often desired to recast the problem such

that it consists of a mixed-perturbation matrix formed by real and complex uncertainties with

physical meaning to regularise the µ lower bound computation [183]. Another aspect is that in

this case the weighting matrices defining the range of variation of the uncertainties can have

any type of dependence on the frequency (recall the discussion on V and W), which enhances the

uncertainty description options available to the analyst.

While these aspects would tend to favour the frequency-domain formulation, a clear advantage

of the state-space approach is that this is the setting where other tasks in addition to linear robust

flutter analysis are framed. For example, robust control design for flutter suppression and/or

on-line robust predictions during flight tests. Indeed, these tasks have only been demonstrated

using the state-space approach [149, 238], since well-consolidated algorithms dictated which

framework had to be employed. Advanced robust analysis techniques such as Integral Quadratic

Constraints also relies on state-space models [133], even though frequency-domain formulations

have also started to emerge [61]. It would then be preferable, and more practical, to apply

µ analysis directly to the same models used for the aforementioned tasks (e.g. investigating

robustness of the closed-loop synthesised with state-space models).

The interest for a unified framework which keeps the advantages of both the approaches is

hence natural, and its formulation is the goal of this section. To this end, recall the definitions of

the sub-matrix M11, given for each of the two formulations in respectively (3.23a) and (3.24). Their

formal equivalence, already noted, suggests that the only restriction in providing an aerodynamic

uncertainty description for the state-space formulation akin to what is done in the frequency-

domain lies in the scaling matrices. In particular, they must have a rational dependence on

the frequency in the state-space approach, leading to the analytic expression in (3.24), whereas

they are built at each frequency point in (3.23), and so are allowed to freely vary with ω, in the
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frequency-domain approach. To provide a unified formulation, it is leveraged the fact that, due

to the algorithmic implementation, the µ test (3.12) considers a grid of the analysed frequency

range. As a result, the proposed expression for M11 is:

M11(s, s̄)=A22(s̄)+A21(s̄)(sInx −A )−1A12(s̄). (3.29)

Note the formal similarity with (3.24), with the important difference that A22, A21, and A12

depend on the dimensionless Laplace variable s̄, and thus M11 does not have anymore an LFT

representation. However, the nominal plant is represented as in (3.24) by A , i.e. the state-space

model is used as basis for modelling.

The task of obtaining the scaling matrices in (3.29) is illustrated next. The uncertainty

description associated with the structural parameters is unaffected and follows either of the

approaches outlined in Sec. 3.2.1. For the aerodynamic uncertainties, it is observed that only

the aeroelastic stiffness matrix K , defined in (2.9), is involved. Recall from Sec. 2.3 indeed that

the GAF matrix provides a relation between displacements (but not speeds or accelerations) and

loads. This matrix can thus be written as:

K = Ks − 1
2
ρ∞V 2 A0 −VQ(s̄)∆QWQ(s̄). (3.30)

The nominal part of the aeroelastic stiffness matrix (i.e. the first two terms in the right hand

side) is given by the state-space model, while the uncertainty part follows the frequency-domain

formulation in (3.19d). This representation at operator level provides, at LFT level, the expression

for M11 in (3.29).

Summing up, at each frequency of the chosen grid the expression of the uncertain state-matrix

is defined by making use of (3.30) for the aerodynamic part and the standard procedures for the

other contributions. The calculation of M11 can then be performed and, by sweeping the analysed

frequency range, the frequency-response input for the µ calculation is provided. The proposed

strategy, which will be validated with the analyses shown in Sec. 4.2.1, can be interpreted as a

particular application of unmodelled dynamics uncertainty [269].

Remark 3.3. Once M11(s, s̄) has been computed at discrete frequencies using Eqs. (3.29)-(3.30),

a rational approximation can be performed if an expression of M11 as LFT is sought (this is not

strictly necessary for the application of µ analysis but it has other benefits already discussed).

This is a common task in robust control, and could be addressed for example with the curve

fitting techniques used in µ-synthesis to realise minimum phase D(s) and G(s) scalings from

frequency-domain data D(iω) and G(iω) [181]. This aspect has not been tested in detail in this

work, but it represents a potential direction to develop in future applications.
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3.3 Coupling LFT modelling with Fluid-structure interaction
solvers

Section 3.2 has investigated the main steps required to build LFT models of aeroelastic systems

from the two standard starting points, namely frequency-domain and state-space. Since this

distinction mainly lies in the choice for the aerodynamic operator, the relative issues were amply

discussed, whereas no emphasis was put on the modelling of the structural operators. That

is, an uncertainty description in the form of Eqs. (3.19a-3.19c) was assumed to be available.

Recall from the discussion in Sec. 2.3.3 that for real aeronautical applications these operators are

typically obtained with high-fidelity Finite Element Method (FEM) solvers and thus practical

issues might arise. Among these, the increase in the size of the problem can be identified as one

of the most compelling. A solution consists of applying a modal decomposition to the original

high dimensional problem and considering only a reduced set of modes for robust modelling

and analysis (modal truncation). Unfortunately, with this approach the connection between the

uncertain parameters defined in the reduced model and the physical sources of uncertainties

is lost. In fact, the latter are well detectable in the fluid-structure interaction solver where the

high-order matrices are assembled, but their reconciliation with the uncertain parameters in

the LFTs is not straightforward. Even though this is a paramount aspect to profitably make

use of the uncertain models, it has not received yet full consideration by the community. This

section will address these aspects by reviewing standard approaches in the literature, based on

numerical interpolation of LFT models, and proposing possible improvements to them (Section

3.3.1). These considerations pave the way for the proposal of a novel symbolic approach directly

integrating the LFT step into the Fluid-structure interaction (FSI) solver, so called LFT-FSI

modelling strategy (Section 3.3.2).

3.3.1 Standard numerical LFT modelling approaches and possible
improvements

The LFT modelling of high-order systems is typically accomplished via numerical approaches.

They are based on evaluating the model at scattered values of the parameters in the uncertainty

set, followed by a model-order reduction (possibly after having linearised it, if the system is non-

linear) to obtain lower-size LTI representations. The family of LTI systems is then interpolated so

that a polynomial description is obtained. Finally, algorithms which allow polynomial expressions

to be recast into LFTs are applied [20, 156, 160].

This approach has been applied already to aeroelastic systems in the last two decades, with

examples discussed next. In [244] a systematic approach to perform these sequential operations

was presented. It was claimed that standard modal truncation cannot be employed as reduction

technique because numerical and modal consistency problems can be encountered. Consistency

among the reduced LTIs is highly desirable for the accuracy of the resulting interpolation (e.g.
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it guarantees regular modal trajectories and frequency responses with respect to the uncertain

parameters), but it is no straightforward to achieve with the standard procedure. A possible

remedy was discussed in [197], where advanced model reduction strategies, specifically tailored

to allow the LFT nature of the final representation to be exploited in the interpolation step, were

employed. In both cases [197, 244], the accuracy of the LFT was only validated by comparing

eigenvalues and frequency-domain indicators (e.g. Bode plots), but no µ flutter analysis was

pursued. Thus, there was no validation of the results in terms of worst-case perturbations and

resulting flutter speeds with respect to the original high-order system.

This type of validation was addressed in [22], which showed that the robust predictions were able

to aid in the comprehension of phenomena observed during flight. However, only a small number

of uncertainties was considered and there was no mention of systematic approaches to deal with

broader uncertainty sets. Thus, it is deemed relevant to propose improvements on the existing

numerical LFT-modelling methodologies in order to tackle the restrictions and limitations noted

above.

Let us start by considering the case of perturbations in the structural operators only, since

this is the main focus here. Once the corresponding uncertainty set is defined (for conciseness, this

will be denoted simply by ∆ henceforth), an appropriate number of samples npts must be selected.

A good initial guess is represented by the vertices of the set, i.e. all the possible combinations of

the extreme values of the uncertainties. For cases with a large number of uncertainties this will

be prohibitively large, i.e. npts=2nδ where nδ is the number of independent parameters in ∆. In

these cases it might be necessary to perform a sensitivity analysis and apply as well engineering

judgement to reduce the number of samples.

For each sample, the FEM solver is run and the generalised modal operators M̄s, C̄s, and K̄s

are evaluated. This leads to a family of matrices M̄s(∆), C̄s(∆), and K̄s(∆) which are interpolated

to find polynomial approximations. This step can be performed, for example, by means of the

APRICOT library [207] of the SMAC toolbox [28]. This library offers a wealth of routines to

perform the polynomial interpolation more efficiently than the classically employed least-square

method, e.g. the routine olsapprox implements an orthogonal least-square method that allows

obtaining a multivariate sparse polynomial approximation for the coefficients of the matrices.

Sparsity is a highly advantageous feature since it alleviates the issue of data overfitting and it

has the benefit to minimise the size of the resulting LFT. Finally, the polynomial modal matrices

are converted into LFTs, hence an uncertainty description akin to Eqs. (3.19a-3.19c) is available,

and either of the LFT development paths discussed in Sec. 3.2.1 can be followed to build up the

aeroelastic LFT model.

An important feature of the proposed improvement is the application of the interpolation

separately to the modal operators (i.e. M̄s, C̄s, and K̄s) instead of directly to the state-matrix

A . This is referred here as modal-oriented approach, to stress that the LFT transformation is

applied to the distinct modal operators, rather than to the final state-matrix [197]. This helps

57



CHAPTER 3. LFT MODELLING FOR ROBUST FLUTTER ANALYSIS

reducing the size of the final LFT, as well as achieving the other benefits enumerated next.

First, it is apparent that this strategy holds for both the frequency-domain and state-space

formulations, whereas the standard approach would only apply to the latter. Since it interpolates

directly modal quantities, this algorithm automatically provides state vector consistency among

the different interpolated operators, which in previous applications proved to require an additional

step [244]. Indeed the modal content is discerned with this approach at the structural operator

level and not at the aeroelastic one (Eq. 2.7) where the coupling with aerodynamics makes it more

difficult. A further advantage is that it is possible to generate different LFTs, each characterised

by a fixed number of modes ns,u affected by uncertainties (with ns,u ≤ ns, where ns is the number

of modes retained in the modal decomposition). This allows the minimum number of modes where

uncertainties have to be introduced to obtain a valid flutter analysis result to be identified. By

doing so, a lower size aeroelastic LFT model to be employed in subsequent extensive robust

analyses can be provided. Moreover, by considering cases featuring different ns,u, the analyst can

gain insights into the instabilities affecting the system.

With respect to the case of aerodynamic uncertainties, the aspects discussed in Sec. 3.2.2 can

be adopted in this context, too. It is important to note that an additional source of uncertainty,

distinctive of high-fidelity models, is the variation in structural parameters. Indeed, recall from

Sec. 2.3.3.2 that the GAF matrix Qhh depends, through the Kernel K̃ (Eq. 2.24), on the structural

modes Φ. In principle, this can be taken into account similarly to what is done for the structural

operators, i.e. generating a polynomial interpolation of Qhh at a fixed reduced frequency. However,

this could be computationally demanding depending on the number of frequencies analysed.

Alternative solutions exist. A frequency-domain characterisation of the uncertainty can be

estimated and captured as unmodelled dynamics [135]. This characterisation could also be used

to inform a more refined uncertainty description of the affected transfer functions in Qhh, which

could then be implemented with the unified approach from Sec. 3.2.3. Algorithm 3.1 can also

be employed with the goal to define uncertainties in the aerodynamic LFT able to map a set of

aerodynamic data obtained perturbing the structural parameters.

3.3.2 A symbolic LFT-FSI modelling approach

The uncertainty modelling approach discussed in Sec. 3.3.1 is regarded as the state-of-practice

when analysing complex systems with the LFT paradigm, but some drawbacks can be observed

in relation with: i) accuracy of the LFT as a result of the polynomial interpolation, ii) uncertainty

descriptions allowed, and iii) computational efficiency.

Because it relies on a polynomial interpolation, the accuracy of the numerical LFT depends on

the uncertainty set considered. To exemplify this aspect, consider Fig. 3.4 where the subdivision

in N stations of a notional aircraft wing is depicted. These can be interpreted as the areas of the

wing where perturbations on the mass and stiffness parameters’ nominal values are expected,

and so their influence on flutter must be ascertained. Alternatively, each of these regions can be
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thought of as the variable space of the structural parameters that can be exploited to obtain by

design an improved aeroelastic behaviour, and thus a better understanding of their influence on

flutter is valued. From both perspectives, it is then natural to aim at considering a description

characterised by, with reference to Fig. 3.4, large N (i.e. refined stations grid) and localised

parameters (e.g. a small concentrated mass δMi in a wing station).

Figure 3.4: Schematic uncertainty description of a notional aircraft wing.

This uncertainty description might prove to be challenging when the numerical LFT approach

is pursued. The selection of a large number of uncertain parameters as well as of very localised un-

certainties (e.g. small nominal values and/or uncertainty ranges) might hamper the effectiveness

of the LFT modelling and the µ analysis algorithms. The ensuing interpolation can indeed: be

inaccurate (e.g. small variations in localised uncertainties might not be well captured; or a large

number of uncertainties might force to consider a coarse parametric grid); lead to intractable

LFTs (due to the ∆-block size); or be computationally intensive (due to the large number of

samples to be computed with the FSI solver). This is indirectly confirmed by examples from the

literature [22, 197, 244], where a maximum of three parameters were considered, all representing

large quantities (e.g. extreme filling levels of the fuel tanks). As for the computational aspects, in

addition to what was said before, note that the numerical LFT approach must be performed anew

for any change in the model, and this could be costly depending on the density of the parametric

grid and the algorithm employed to perform the polynomial interpolation. The aforementioned

aspects prompted the research for alternative LFT modelling strategies, driven by the aim to

preserve a close connection between physical source of uncertainties and LFT parameters.

3.3.2.1 Symbolic modelling algorithm

The fundamental idea behind the proposed strategy is to perform the LFT modelling task at FSI

solver level. By this, it is meant that the uncertain parameters are introduced in the solver when

the high-fidelity operators are assembled as described in Sec. 2.3.3.1. The approach proposed

here is tailored to structural operators obtained via FEM solvers, but the acronym FSI is used

to emphasise the general idea underlying the approach and the fact that other modules (e.g.

Doublet Lattice Method) are also indirectly involved.
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The steps entailed by this algorithm are listed in Algorithm 3.2, and illustrated in the flow

chart of Fig. 3.5.

Algorithm 3.2. Symbolic LFT-FSI modelling algorithm’s pseudocode

Outputs: aeroelastic LFT Fu(M,∆).

Inputs: nominal model, uncertainty set ∆, modal matrix Φ, aerodynamic operator (based on Φ).

1. Step-S1. Define symbolic parameters associated with the elements in ∆.

2. Step-S2. Assemble the symbolic physical matrix inside the structural solver.

3. Step-S3. Compute the symbolic modal matrices via modal truncation using Φ.

4. Step-S4. Build an LFT representation of the symbolic modal matrices.

5. Step-S5. Build the aeroelastic LFT with either the state-space or frequency-domain formula-

tions.

To exemplify the main features of the approach, let us consider the structural mass matrix

MB j of the beam j which will contribute to the structural matrix Ms (see also the Example box in

Fig. 3.5):

MB j =
[

Mtt Mtr

Mtr Mrr

]
,

Mtt = F1(L j,m j, Iz j , I yj ),

Mtr = F2(L j,m j, Iz j , I yj ),

Mrr = F3(L j,m j, Iz j , I yj ),

(3.31)

where the subscripts t and r refer to translational and rotational DOFs. The parameters L j, m j,

Iz j and I yj are respectively the beam length, mass and moments of inertia, while F1, F2 and F3

are generic matrix functions. When some of these properties are considered uncertain and thus

the functions are not evaluated at the corresponding nominal values, the local physical operator

MB j is a matrix function of the uncertainties. If the parameters are defined as symbolic objects

(Step-S1), then MB j (∆(δ j−•)) where • =L,m, Iz, I y, is a symbolic operator that will contribute to

the physical mass matrix, itself a symbolic operator Ms(∆) (Step-S2). This step is general and

can be applied to other contributions to the mass operator (e.g. concentrated masses) and to other

operators (e.g. stiffness).

Once the symbolic physical matrices are obtained with the procedure outlined before, a modal

truncation is performed (Step-S3):

M̄s(∆)=Φ>Ms(∆)Φ,

C̄s(∆)=Φ>Cs(∆)Φ,

K̄s(∆)=Φ>Ks(∆)Φ,

(3.32)

where ∆ indicates the uncertainty set gathering the symbolic parameters. Note that this relation-

ship is formally identical to the standard modal truncation used in aeroelastic analysis (Eq. 2.2),

with the notable difference that the physical matrices are now expressed as symbolic objects.
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Figure 3.5: Block diagram of the symbolic modelling algorithm.

Given the symbolic modal matrices M̄s, C̄s and K̄s obtained from Eq. (3.32), it is possible to

apply standard LFT algorithms [156] which allow polynomial matrices to be recast as an LFT. In

this way, the modal LFTs Fu(M̄s, ∆), Fu(C̄s,∆), Fu(K̄s,∆) are obtained (Step-S4). The final step

consists of building up the aeroelastic LFT (Step-S5), which can be done by following either the

state-space or frequency-domain development path.

The implementation of the LFT modelling inside the FSI solver deserves mention. If the FSI

solver is available in MATLAB, as it was the case in the research carried out here, the uncertain

physical parameters can be defined as symbolic objects in Step-S1 by means of the Symbolic Math

toolbox [164]. This allows to work in Step-S2 and Step-S3 with symbolic objects and then, by

means of the LFR toolbox [156], convert them into LFTs (Step-S4) which can then be efficiently

handled as LFR objects throughout Step-S5. However, the method discussed in this section can

in principle be applied also when the FSI solvers are implemented using other coding languages,

thus the implementation aspects should not be regarded as a limitation. For example, in [105] the

FORTRAN-based library SLICOT has been interfaced with the symbolic computational language

MAPLE to provide computationally efficient framework for LFT modelling.

3.3.2.2 Modal bases selection

A crucial aspect to be captured is the effect of the uncertainties on the modal matrix Φ. Indeed,

the latter in turn modifies both structural and aerodynamic operators, as marked by the two

arrows in Fig. 3.5. First, it should be noted that many of the approaches to structural uncertainty
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descriptions assume for the robust analyses a fixed modal base (typically the one corresponding to

the nominal system) [22, 33, 150, 175]. This is an approximation and potentially a source of error

in the predictions since Φ is altered when there are structural uncertainties in ∆, and different

possible solutions have been investigated in the community. In [45] a first-order dependence of

the structural modes on the uncertain parameters based on the application of perturbation theory

[201] was proposed. This strategy is appealing since it allows the modal matrix to be expressed

analytically as a function of the uncertainties, i.e. Φ(∆). However, it also presents important

drawbacks as observed in [106], where different approaches to tackle the modal bases selection

were discussed. The perturbed modal base approach is deemed therein the most computationally

expensive among them due to the resulting LFT size, and the linear modal shapes variation

hypothesis is shown to be erroneous, even for relatively simple wing geometry layouts, as the

structural uncertainties ranges increase. Higher order Taylor expansions can be considered [86],

but the overall LFT size grows significantly, making the ensuing analyses numerically intractable

or compromising their accuracy. An interesting idea discussed in [106] consists of updating the

modal base with the worst-case perturbations obtained by µ. This represents the premise of the

approach taken in this work.

Note first that, when the operation in Eq. (3.32) is performed, the symbolic modal matrices are

generally full. This is a source of error related to the fixed modal base assumption, because due

to eigenvectors properties, the modal mass and stiffness matrices are always diagonal. That is,

regardless of the specific perturbation matrix affecting the system, the perturbed modal matrices

will be diagonal. By exploiting the embedding of the LFT modelling in the FSI solver and the

adoption of a modal-oriented approach, this inaccuracy can be eliminated a priori by retaining

only the diagonal terms of the matrices (Step S-3 in Fig. 3.5):

M̄s(∆)≡ diag(Φ>Ms(∆)Φ),

C̄s(∆)≡ diag(Φ>Cs(∆)Φ),

K̄s(∆)≡ diag(Φ>Ks(∆)Φ).

(3.33)

While this modification of Step-S3 allows to mitigate and confine the error in the symbolic

modal matrices to the diagonal terms, the fixed modal base assumption can still lead to wrong

predictions. For example, the effect of perturbations in Φ on the aerodynamic operator must still

be addressed.

Prompted by these observations, an iterative algorithm is formulated with the aim to deter-

mine (if it exists) a worst-case perturbation ∆̂cr, associated with the LFT built with Algorithm

3.2. The attribute worst-case is used to emphasise that the matrix ∆̂cr represents the smallest

combination of uncertain parameters that makes the system flutter at a user-provided speed Vµ
(smaller than the nominal flutter speed Vf ). However, it will be discussed later (Sec. 3.3.2.3) that,

due to the non-convexity of the underlying optimisation problem, it cannot be mathematically

guaranteed that smaller perturbations such that Vµ becomes the flutter speed do not exist. It is

important to note that Algorithm 3.2 is tailored for LFT models employed for µ analysis purposes,
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because it requires the availability of a worst-case perturbation matrix. When the LFT models

are built up for other applications than linear robust stability analysis, Algorithm 3.2 can still

be applied together with the improvements obtained with Eq. (3.33). The following pseudocode

details the steps of the iterative scheme, which is schematically illustrated in Fig. 3.6.

Algorithm 3.3. Iterative algorithm for finding a worst-case perturbation

Outputs: a worst-case perturbation ∆̂cr such that Vµ is the flutter speed.

Inputs: speed Vµ smaller than the nominal flutter speed Vf , symbolic physical matrices (Ms(∆),

Cs(∆), Ks(∆)), nominal modal matrix Φ0, tolerance εV , Vf µ = 0.

While |Vµ−Vf µ| ≥ εV do

1. Φ←Φ0.

2. Step-A1. Using Φ, update the aerodynamic operator and apply Algorithm 3.2 from Step-S3

to generate an aeroelastic LFT.

3. Step-A2. Compute µ using the aeroelastic LFT from Step-A1.

4. Step-A3. Extract ∆cr (associated with the highest peak of µ) and compute Vf µ (flutter speed

of the perturbed system) in the FSI solver.

5. (optional) Check optimality of the worst-case perturbation.

6. Step-A4. Compute Φcr from ∆cr.

7. Φ0 ←Φcr,

return ∆̂cr

The algorithm requires as input the symbolic physical matrices Ms(∆), Cs(∆), and Ks(∆) from

Step-S2 of Algorithm 3.2, which are held fixed throughout the iterations. The process is then

started by initializing Φ with the nominal modal matrix Φ0. This allows the aeroelastic LFT to be

built (Step-A1) and a standard µ analysis to be performed (Step-A2). The perturbation matrix ∆cr

corresponding to the highest peak of the lower bound µLB is extracted, and the associated flutter

speed Vf µ can be calculated with the FSI solver once the predicted perturbations in the uncertain

parameters have been applied (Step-A3). The evaluation of Vf µ in Step-A3 is standard and can

be performed for example with one of the algorithms for nominal flutter analysis discussed in Sec.

4.1. If the difference between Vf µ and the expected perturbed flutter speed Vµ is greater than a

given tolerance εV , the modal base is updated with the matrix Φcr corresponding to ∆cr (Step-A4)

and a new iteration is performed until convergence. It is stressed the difference between ∆cr and

∆̂cr. The former is provided by the µ-lower bound computation at a generic iteration and, due

to the modal base error, will not correspond in general to a flutter speed equal to Vµ in the FSI
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Figure 3.6: Block diagram of the iterative scheme.

solver. The latter instead determines a flutter speed Vf µ ≈Vµ within given tolerance and thus is

a worst-case perturbation.

To interpret the rationale underlying the analysis algorithm from an LFT perspective, let us

indicate the uncertain aeroelastic description achieved at Step-S5 of the modelling algorithm as:

Fu(M,∆)= M22(∆)+M21(∆)∆(I −M11(∆)∆)−1M12(∆). (3.34)

Eq. (3.34) reflects the fact that it is not possible to express the effect of the uncertainties on

Φ in the standard linear fractional fashion. Crucially, when compared to the definition of LFT

given in Eq. (3.2), the ∆ block affects here also the partitioned matrix M. In order to find the

worst-case perturbation such that (I −M11(∆)∆) is singular, the iterative scheme outlined in Fig.

3.6 proceeds by updating the matrix M with the value of ∆ given at the last iteration, that is:

Fu(M,∆)≈ M22(∆cr)+M21(∆cr)∆(I −M11(∆cr)∆)−1M12(∆cr), (3.35)

where in the first iteration ∆cr = 0 (corresponding to the nominal modal matrix Φ0) is employed.

3.3.2.3 Global optimum checks

It is important to stress that Algorithm 3.3 is based on the calculation of the lower bound of µ,

which is the result of a non-convex optimisation problem [206]. It is also well known that for

LFTs of large dimension and/or many parameters, the µLB might be conservative (i.e. distant

from the upper bound). This trend can be ameliorated with recently developed µ solvers [205]

which compute the upper µUB and lower µLB bounds together, ensuring they hold values within

a certain tolerance. The algorithms provided in [205] have been used in this work to assess the

accuracy of the bounds, but they are computationally demanding and thus, at least for the LFTs

used here, it is not practical to embed them in the proposed iterative cycle. In addition, the
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schematisation of the problem in Eqs. (3.34)-(3.35) clearly shows that the solved optimisation

problem is highly non-convex.

For all these reasons, convergence to the global optimum of the solution found with the

iterative algorithm cannot be mathematically guaranteed (hence ∆̂cr has been termed a worst-

case perturbation matrix). In other words, even if the converged ∆̂cr leads to a flutter speed equal

(within the prescribed tolerance) to Vµ, there could be another one ∆̂cr
glob with σ̄(∆̂cr

glob)< σ̄(∆̂cr).

Therefore, strategies to qualitatively check the optimality of the lower bound at each iteration

(namely, between Step-A3 and Step-A4) are beneficial.

First, the directionality of the worst-case at each iteration is monitored. This entails observing

the sign change for each of the uncertain parameters between two consecutive iterations. If

this remains the same, it is reasonable even though not rigorous, to argue that the worst-case

perturbation for that parameter is detected. For those parameters whose sign (or magnitude)

changes, it is advisable to perform a flutter sensitivity analysis, since the sign’s discontinuity

could be ascribed to the small importance of that parameter for the instability. Examples of

µ-based sensitivity analysis will be illustrated in Sec. 4.2.2.

A second strategy, which complements the previous assessments, is represented by Algorithm

3.4, schematically depicted in Fig. 3.7. This builds on the idea of testing with µ multiple LFTs

having different nominal systems, and it can be applied in principle at each iteration (in practice,

a trade-off with computational efficiency will arise).

Algorithm 3.4. Check on the optimality of the predicted worst-case

Outputs: µUB-based assessment of the optimality of the worst-case.

Inputs: critical perturbation ∆cr (from Step-A3 of Algorithm 3.3).

1. Step-C1. Define Nc tested perturbation matrices ∆t
i (i = 1, ..., Nc).

2. Step-C2. Compute the modal matrices Φt
i associated with ∆t

i.

3. Step-C3. Use Φt
i to build Nc tested aeroelastic LFTs, each centred at ∆t

i (i.e. the parameters

in ∆t
i are the nominal values for the uncertainties).

4. Step-C4. Compute µUB for each LFT generated at the previous step.

5. Step-C5. Compare the peaks µi
UB of the curves and assess the optimality of ∆cr.

The algorithm takes as input the perturbation matrix ∆cr computed at Step-A3 of a generic

iteration of Algorithm 3.3 and aims at assessing its optimality (meant here as proximity to the

actual worst-case). First, Nc potential worst-case perturbations ∆t
i (with i = 1, ..., Nc) having

all the same magnitude, as measured by σ̄(∆t), are defined (Step-C1). These definitions can be

informed: by the previously discussed tests on the ∆cr at different iterations (e.g. modifying the

values of those parameters that have shown sign change behaviour), by available insights into

certain critical parameters (e.g. from sensitivity analysis) or by considering opposite perturbations
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for some of the parameters, e.g. ∆t
i = −∆cr if the sign of all parameters is changed. Note that

the idea of testing far away from the current best is a known strategy in applied optimisation.

For example, in [171] a hybrid algorithm was proposed which crosses an evolutionary (global)

optimiser with a local one, initialising the latter with either the best candidate in the population

or those far away from the current best, depending on the improvement of the cost function. In

this thesis, the population is represented by the set of selected ∆t
i and the same idea of exploiting

domain knowledge is employed to define it.

In Step-C2 the modal matricesΦt
i corresponding to each∆t

i are computed in the FSI solver, and

subsequently Nc aeroelastic LFTs centred at each of the worst-case candidates are constructed

(Step-C3). It is stressed that each LFT is computed using the modal basis relative to Φt
i, and not

the modal basis used in the µ analysis at Step-A2 of the considered iteration. Then, µ analysis is

applied to each of these ad-hoc created LFTs (Step-C4). It is recommended to focus on the upper

bounds µUB since this can be computed with convex programs. The peaks µi
UB of each curve are

employed as a measure of the proximity of the perturbed system i to the actual worst-case of

the problem (Step-C5). Specifically, perturbations associated with larger µi
UB point at worse-case

directions.

Perturbation  ∆𝑐𝑟

Generation of 
LFTs centred at Δ𝑖

𝑡

Comparison 
of the m𝑼𝑩

Selection of 
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m analysis 
for each LFT
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𝑡
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𝜔

Δ1
𝑡 = Δ𝑐𝑟 , … ,
Δ𝑖
𝑡, … , Δ𝑁𝑐

𝑡

Figure 3.7: Block diagram of the worst-case optimality check algorithm.

Application of all the algorithms discussed in this section will be presented in Section 4.3.
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3.4 Chapter summary

In this chapter the construction of LFT models of uncertain aeroelastic systems has been investi-

gated.

The two possible LFT modelling processes for aeroelastic plants (one based on a frequency-

domain formulation and the other on a state-space one) were presented, together with a discussion

on their advantages and limitations, in Section 3.2. Since the main differences between them

arise due to the aerodynamic operator, its uncertainty definition has been discussed by focus-

ing on the different options available, i.e. the original frequency-dependent or its state-space

approximations. Intrinsic difficulties in reconciling the aerodynamic uncertainty descriptions

have been exemplified and motivated in terms of the different physical mechanisms that are

captured. Contributions of these investigations are: an algorithm reconciling LFTs capturing

different uncertainties; a unified modelling approach retaining most of the advantages of the

existing ones.

Following on this discussion, focus was put in Section 3.3 on the development of LFT for

aeroelastic systems described by means of state-of-practice fluid-structure interaction solvers,

typically leading to high order models. After reviewing the current strategies and highlighting

some of their limitations, a novel symbolic LFT-FSI algorithm was presented, which allows the

uncertainty modelling to be performed in parallel with the assembly of the structural operators

within the FSI solvers. The advantages of this approach range from an enhanced flexibility in

the parameters selection (very localized uncertainties can be captured) to a direct connection

between uncertainties in the LFT model and physical quantities in the high-order model. The

main critical aspect is the handling of the modal matrix, whose dependency on the uncertainties

is not easy to capture. For general purpose LFTs, mitigating strategies are proposed based on

the modal-oriented approach taken to introduce uncertainties. For LFT models employed for µ

analysis only, an iterative algorithm is devised to inform the update of the modal matrix based

on the worst-case uncertainties and to allow robustness at a fixed (nominally stable) speed to be

assessed. Aspects concerning global optimality of the results are also addressed.

This chapter has also two other goals. First, the whole discussion aims to provide better

insight into the robust-oriented aeroelastic modelling problem, and thus a detailed presentation

has been favoured in pursuit of establishing a common ground between the robust control and

the aeroelastic communities. Second, the LFT paradigm is the modelling pillar of this thesis and

thus the chapter is preparatory for the analysis approaches developed in the remainder of the

thesis in that it establishes the framework where they will be formulated.

The application of the methods and algorithms is presented in Chapter 4. This is done to fa-

cilitate comprehension by decoupling the research and development activity from the application

one.
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4
NOMINAL AND ROBUST FLUTTER ANALYSIS OF LINEAR SYSTEMS

F lutter is a parameter-dependent problem, since as a parameter of the model is varied

the stability properties of the system change. In this chapter the focus will be on linear

(time-invariant) analysis methods for predicting this dynamic aeroelastic instability. In

nominal approaches the model is specified at a known condition and thus the analysis does not

assess the effects of perturbations. The problem is typically solved in this case by tracking the

eigenvalues at different speeds V . The result is the definition of a speed Vf , called flutter speed,

such that for all the speeds below it the system is stable. This choice has practical reasons, since

typically the speed is representative of the operational conditions of the system, but, in order to

gain further insights into its aeroelastic behaviour, parametric analyses can also be performed.

Nominal analyses are the focus of Section 4.1, where a background on this subject will be provided

and exemplification with two case studies will be discussed.

Robust flutter analysis deals instead with predictions when the aeroelastic system is subject

to uncertainties. An important question is whether at a fixed subcritical speed (i.e. lower than

the nominal flutter speed Vf ) the system is stable in the face of the modelled perturbations.

The remaining two sections of the chapter will address this task by employing the LFT-based

modelling framework described in Chapter 3 in conjunction with the µ analysis technique. In

particular, Section 4.2 considers how the nominal analyses performed in Section 4.1 are altered

by the presence of uncertainties and what type of insight into the unstable mechanisms can

be provided by the µ-LFT framework. Section 4.3 applies the latter to a joined-wing aircraft

configuration and will show the application of the modelling strategies tailored to high-order

models and developed in Section 3.3. The latter activity was performed during a research

collaboration with Dr. Rauno Cavallaro and Rocco Bombardieri from Universidad Carlos III de

Madrid, who shared their aeroelastic expertise and made available the FSI solver. Specifically,
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the author devised and carried out autonomously all the analyses presented in Section 4.3.2.

Publications1: [118, 125] Section 4.2; [116] Section 4.3.

4.1 Nominal flutter analysis

4.1.1 Flutter algorithms

State-space analysis (p method)
This approach consists of evaluating the spectrum of the state-matrix A (given by Eq. 2.7 for

a generic aeroelastic system) starting from a very low value of the speed V where the system

is known to be stable. A crossing of the imaginary axis by one of the eigenvalues detects the

occurrence of flutter instability. This methodology is essentially equivalent to what is known

in the literature as p method [111], although here the adopted mathematical framework is the

state-space domain (and not the Laplace domain). If the aerodynamic forces, as it is typical for

flutter analysis purposes, are modelled with an unsteady formulation, an RFA method must

be adopted. In this thesis Roger and Minimum State methods, introduced in Sec. 2.2, will be

employed.

In flutter analysis it is often desirable to associate the eigenpair (eigenvalue and eigenvector)

with the corresponding aeroelastic mode (e.g. torsion) in order to get insight into the dynamics

underlying flutter and possibly devise solutions to postpone its onset. However, this is not a

straightforward task since: the eigenmodes of the state-matrix can drastically change from one

speed to another; the presence of augmented states xa (due to the RFA) complicate the system

spectrum; and often a merging of the frequencies is observed close to the instability, thus using

the eigenvalues magnitude as metric to establish the correspondence eigenpair-mode could be

inconclusive.

The Modal assurance criteria (MAC) [4] addresses the modes tracking problem by quantifying

the linearity between two mode shapes, and is for this reason a very useful tool in flutter

analysis [62]. Very briefly, a reference mode φr and a tested mode φt are compared in order to

assess their similarity (in a linear combination sense). The mathematical definition of MAC

follows:

MAC(φr,φt)=
|φ∗

rφt|2(
φ∗

rφr
)(
φ∗

t φt
) . (4.1)

The output of this comparison is a scalar number between 0 and 1: two identical modal vectors

yield a unity value, two orthogonal modal vectors yield a zero value and in between there is a

certain degree of similarity between the reference and the tested modes.

The procedure adopted in this work consists of starting the analysis at a low speed such that

the aeroelastic modes to be tracked are distinct and well detectable, e.g. based on a comparison

1Material published during the PhD which relates to the content of this chapter.
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with the free-vibration analysis of the system. These modes are then numbered and will rep-

resent the basis of reference modes for the first speed. At this speed an eigenvalue analysis is

performed and the tested eigenpairs are associated with the physical modes using (4.1) and the

aforementioned reference modes. The latter is then updated accordingly and a new eigenvalue

analysis, together with the associated tracking of the modes, can be performed at the next speed.

Frequency-domain analysis (p-k method)
The starting point for the p-k method, originally proposed in [102], is (2.1). The problem is first

recast as follows: [
p2 V 2

L2 M̄s + p
V
L

C̄s + K̄s − q∞Qhh(ik)
]
η= T(p)η= 0, (4.2)

where p is traditionally used in this method to denote the dimensionless Laplace variable s̄, L is a

reference length and T is the aeroelastic frequency response matrix. The objective is to determine,

at a given V , the values of the flutter roots p such that (4.2) has a solution with non-trivial η,

i.e. the determinant of T is null. The complexity arises due to Qhh, which is provided by the

Doublet Lattice Method (DLM) solver at discrete values of the reduced frequency k (equal to

ℑ(p)). Therefore, solutions are found iteratively in the form of:

p = γk± ik = Lr

V
s, (4.3)

where γ is the rate of decay of the particular mode, i.e. a measure of its damping. An important

feature of the formulation can be noticed: structural contributions are not treated as harmonic (p

is not purely imaginary) as it is done for the aerodynamic term. The rationale for this approach is

that for sinusoidal motions with slowly increasing or decreasing amplitude (i.e. small rate of decay

γ), aerodynamics based on harmonic motion with constant amplitude are a good approximation.

Note that in the k method, which is an alternative flutter algorithm based also on the solution of

(4.2), the real part of p is assumed null and an artificial unknown damping term proportional to

K̄s through a coefficient g is added. This term can be interpreted as the damping required for the

existence of harmonic motion, hence flutter occurs for solutions with g = 0. This means that at Vf

the k and p-k methods usually converge to the same value, whereas for V <Vf the p-k method is

claimed to provide a better estimation of the true damping of the system (as the damping in the

k method is purely a numerical artifice with no physical meaning). This is one of the advantages

of the p-k method and the reason why it is employed in this thesis.

A possible iteration algorithm for computing the flutter roots of (4.2) is the Regula Falsi

method [102], which provides the iterate p2 given two initial guesses p0 and p1:

p2 = (p1det(T0)− p0det(T1))
det(T0)−det(T1)

, (4.4)

where det(T0) and det(T1) are respectively the determinant of T(p0) and T(p1).

71



CHAPTER 4. NOMINAL AND ROBUST FLUTTER ANALYSIS OF LINEAR SYSTEMS

In order to initialise the algorithm, one approach is to select the natural frequency ωn

corresponding to the mode of interest. Two possible guesses for the roots are then:

p j
0 = 0+ i

ωnLr

V
= ik j

0,

p j
1 =−0.01k j

0 + ik j
0.

(4.5)

The first analysed speed should be sufficiently small such that ωn is reasonably close to the

frequency of the aeroelastic mode at that speed. Eq. (4.4) is then iterated until a specified degree

of convergence is attained. This procedure can be repeated for all the speeds in the considered

range by initializing p0 and p1 with the result at the previous speed. The calculation can then

be performed for all the aeroelastic modes of interest providing the sought frequency-damping-

velocity diagram.

Note that in the p-k method the task of tracking modes is made easier by the fact that the

algorithm inherently focuses on distinct eigenvalues (across all the speeds), and is initialised

with the frequencies associated with the different modes. However, the merging of the frequencies

across flutter can still prevent from clearly associating each eigenvalue p with a physical mode,

and in these cases MAC can be advantageously employed.

4.1.2 Application to the typical section

The typical section case study from [134] is considered here to provide a first example of applica-

tion of nominal flutter analysis. The system was described in Sec. 2.3.1, and its structural and

aerodynamic properties are reported in Appendix A.2.1.

In Table 4.1 the results obtained with the different approaches are summarised. No substan-

tial mismatches are found in the nominal flutter speeds and frequencies predicted.

Table 4.1: Comparison of flutter results with different algorithms.

Model Flutter velocity [ m
s ] Flutter frequency [ rad

s ]

State Space - Roger 302.7 70.06

State Space - Minimum State 302.5 70.37

Frequency-domain p-k 301.8 70.37

Baseline [134] 303.3 70.69

For the p method, the terms Γlag−R g and Γlag−MS of the RFA approximations used 4 and

6 lag roots equally spaced between 0.1 and 0.7, respectively. Since they provided almost indis-

tinguishable results, in Fig. 4.1 only the case relative to the Minimum State approximation is

displayed. The analysis starts at a low speed (V=60 m
s identified in the figure with a square

marker) and tracks the eigenvalues of the three elastic modes (plunge, pitch, and flap) employing
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the MAC criterion. Similarly to what was also reported in [134], the system exhibits a violent

plunge-pitch flutter at Vf ≈ 303 m
s , featured by a merging of the frequencies just before the

instability occurs (this is also confirmed by Fig. 4.2(b) which shows the frequency plot obtained

with the p-k method). The location of the poles at the subcritical speed V= 270 m
s is highlighted

with an asterisk, and ω f indicates the frequency at flutter speed for the unstable mode. This

flutter, due to the close interaction of the first two modes, is often referred to as binary flutter.
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Figure 4.1: Poles location of the flap, pitch, and plunge modes as speed increases obtained with
the p method.

In Fig. 4.2 the results obtained with the p-k method are displayed by means of the frequency-

damping-velocity diagram. Fig. 4.2(a) shows the rate of decay of the modes as speed increases,

which clearly allows to detect the onset of flutter (recall from its definition in Eq. 4.3 that γ has

the same sign of the real part of the eigenvalue). Flutter speed, highlighted with the vertical line,

is distinguished by the pitch mode damping crossing the zero line. This calculation leads to a

flutter speed of approximately 302 m
s at a reduced frequency of 0.24 (corresponding to 70.4 rad

s ).

Fig. 4.2(b) shows the natural frequencies where the merging of the frequencies of plunge and

pitch mode around flutter is visible.

4.1.3 Parametric study of body freedom flutter

The analyses shown in Sec. 4.1.2 give a prediction on the occurrence of flutter considering a

restrained model, that is, assuming it unrelated to the rigid-body motion of the vehicle on which

the aerodynamic body is mounted. In this section the so-called Body Freedom Flutter (BFF),

originating from the strong coupling between rigid-body and elastic modes of the aircraft, will be

investigated using the simplified aircraft model presented in Sec. 2.3.2.

First, the capability of the wing equivalence discussed in Sec. 2.3.2 to predict flutter onset
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Figure 4.2: Flutter analysis of the typical section with the p-k method.

of wing geometries of the type depicted in Fig. 2.4 is validated against the Goland wing, a well-

known benchmark problem in the literature [93] (see Appendix A.2.2). This system consists of

a uniform rectangular wing with constant structural and inertial properties along the span. In

Table 4.2 a comparison of the results obtained in this work (applying the p-k method) with others

from the literature is shown. There is a satisfactory matching with another 2D approximation of

the straight wing model [32], while the discrepancies with an aeroelastic model comprising 3D

effects [93] remain below 3% in terms of Vf . It is also important to remark here that, although

the aspect ratio of the Goland wing is not very high (approximately 14), the employed model is

still able to adequately capture its flutter behaviour. This can be ascribed to the simple geometry

of the wing (null sweep angle, uniform geometrical properties) which reduces 3D aerodynamic

effects.

Table 4.2: Comparison of flutter analysis of the Goland wing with literature results.

Flutter velocity [ m
s ] Flutter frequency [ rad

s ]

Present work 141.1 73.2

2D approximation [32] 141.2 72.5

Original reference [93] 137.2 70.7

The Goland wing case study is used to define the wing properties of the simplified aircraft

model. Note that EI is assumed to represent an aeroelastic design variable reflecting the tendency

towards a lightweight-oriented structural sizing and thus is given by EI=σsEIG with EIG set at

the value for the Goland wing and σs, referred to as the bending stiffness factor, taking values
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from 0.05 (maximum bending flexibility) to 1 (maximum bending rigidity). The other free design

parameter is the distance from the nose to the tail leading edge D, assumed to vary in a range

between 5m and 10m, complying with static stability requirements. The variability in the flight

mechanics parameter D is used to reflect the trend towards highly manoeuvrable aircraft (with

low static stability margins) that, together with the aforementioned increased flexibility of the

wings, challenges the hypothesis of independence of rigid and elastic dynamics. Note also that

low values of the tail volume VHT have been shown to exacerbate the interaction between the

rigid-body short period and the wing first bending mode [25]. This parameter is defined as:

VHT = (X̄ t
AC − X̄CG)

St

S
. (4.6)

Recall that X̄ t
AC and X̄CG are the dimensionless distances from the aircraft nose to the tail

aerodynamic centre and the aircraft centre of gravity, respectively. Once the lifting surfaces sizes

and inertial properties are fixed, VHT is a function of D. In fact, D directly influences the value of

X̄ t
AC which is known to have great effect on the aerodynamic stability derivatives. All the other

parameters defining the geometrical and inertial properties of the aircraft layout are obtained by

scaling the values from [190], which examines a similar aircraft layout, through the Goland wing

mass ratio and span as the reference mass and length (details are provided in Appendix A.2.2).

Following a parametric analysis approach, Fig. 4.3 shows the flutter speed Vf evaluated on a

grid of values for the design parameters EI (equivalently σs) and D. Three values of the bending

stiffness factor σs (marked by vertical lines) are highlighted and will be discussed subsequently.
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Figure 4.3: Parametric flutter analysis for discrete values of σs (i.e. EI) and D.

The first apparent feature is that the tendency for instability is more pronounced as the

bending ωh and torsional ωα frequencies get closer. This behaviour is familiar to aeroelasti-

cians [111, 256], and is due to the fact that the two modes become more coupled. This is seen in
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Fig. 4.3 from the slope of the restrained wing (solid line), which reveals an increase of Vf as σs

(equivalently EI) is reduced. Indeed, a decrease in EI implies an analogous trend in the bending

frequency, as expressed by Eq. (2.13). Since the torsional stiffness is kept constant, a decrease in

σs can hence be interpreted as a reduction in the ratio ωh
ωα

between the first bending and torsional

natural frequencies.

The flutter velocities obtained when rigid-elastic interactions are included (curves D=[5,6,8,10]

m in Fig. 4.3) maintain the above trend but only for as long as the tail volume of the vehicle

does not become critical to the stability. In fact, there is a range of bending flexibility of the wing

(0.15<σs<1) where VHT proves to have a negligible influence on flutter occurrence, and thus the

BFF model predicts only a relatively small decrease in flutter speed with respect to the restrained

model (up to 3%). As the bending flexibility increases (σs<0.15), the interaction between the

short-period and the bending mode becomes significant, leading to an abrupt decrease of flutter

speed. Therefore, tail volume is confirmed to play a crucial twofold role: it prompts rigid-elastic

coupling (in that it changes the σs threshold at which the leap occurs) and it determines (for a

fixed value of σs) the magnitude of the change in the Vf value itself. In particular, Fig. 4.3 shows

that a lower D (i.e. lower VHT ) anticipates the transition to the BFF mechanism and determines

a lower flutter speed than for the scenario with greater VHT , confirming its role discussed earlier.

The behaviour detected in Fig. 4.3 can be better clarified observing the trend of the eigenvalues,

obtained with the p-k method and reproduced in Fig. 4.4, for two aircraft configurations. Tail

distance D is for both cases equal to 5 m, while the bending stiffness parameter σs is equal to 0.6

for case A and to 0.12 for case B (these two cases are highlighted in Fig. 4.3 with vertical dashed

lines). Therefore, they each belong to one of the two stability regions identified before.
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Figure 4.4: Poles location for two aircraft configurations.

In Fig. 4.4 the modes’ branches are identified (and labeled) according to their genesis of pure
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rigid-body or pure elastic modes. However, it is fair to remark that all the modes experience

coupling due to the aerodynamics (bending and torsion) and to motion (short period and bending),

and hence this labeling is only a naming convention for ease of explanation. For the first aircraft

configuration, depicted in Fig. 4.4(a), the eigenvalues of the system exhibit a pattern qualitatively

similar to the one shown in Fig. 4.1 for the typical section case study, indicating a restrained body

flutter. In fact, the flutter mechanism does not involve coupling with rigid motion and it is the

torsional mode which goes unstable at Vf =146.7 m
s and ω f =75.3 rad

s (high frequency instability).

The short-period eigenvalue follows the pattern known for the pure rigid-body case (with a

frequency increasing almost linearly with speed), and thus proves to be almost unperturbed

by the wing deformation. However, when bending flexibility becomes more prominent (case B

shown in Fig. 4.4b) two distinctive flutter mechanisms can be observed. The first imaginary axis

crossing takes place at a speed Vf 1=150.3 m
s and at a frequency ω f 1=12.3 rad

s . This low-frequency

instability is the result of the interaction between the short-period and the bending mode (that is,

the Body Freedom Flutter). The second crossing takes place at Vf 2=162.8 m
s at a higher frequency

(ω f 2=69.3 rad
s ), and is dominated by the torsion instability already encountered in the other

configuration.

In conclusion, the trend depicted in Fig. 4.3 is motivated by a change in the mode first reaching

the flutter condition, which for the curves D=[5,6,8] m (in the range of low bending stiffness, i.e.

the left side of Fig. 4.3) is the rigid-elastic coupled mode, while in the other cases it is still the

torsional mode (as clearly demonstrated in Fig. 4.4).

The above results confirm that the model presented in Sec. 2.3.2 is able to capture known

physical effects of the BFF problem. Specifically, the use of standard nominal flutter methods

can show the detrimental effect on stability of two important parameters and provides a charac-

terisation of the multiple instabilities affecting the system by tracking the eigenvalues as the

speed is varied (Fig. 4.4). The procedure implies a gridding of the parameter space and therefore

it does not provide theoretical guarantees on the worst-case results, for example in terms of the

lowest flutter speed among the possible combinations of D and EI. Moreover, when dealing with

a larger number of variables, a parametric study such as the one performed here is expected to

become difficult to interpret and computationally onerous. As the sizing required to ensure a

flutter free behaviour of very flexible aircraft is inherently multidisciplinary, it is envisaged the

opportunity to leverage the robustness modelling framework from Chapter 3 to propose analyses

approaches that address some of the aforementioned issues.

4.2 Robust flutter analysis with µ

In this section robust flutter analysis with µ-LFT is applied to the two case studies analysed in

the previous section. First, the typical section is considered and some of the modelling aspects

discussed in Sec. 3.2.1 are demonstrated. Then, application to the simplified aircraft model
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is investigated with the aim to showcase which additional insights can be provided by this

framework.

4.2.1 Typical section

The nominal analyses in Sec. 4.1.2 have shown the occurrence of a binary flutter at approxima-

tively Vf = 303 m
s and ω f = 70.5 rad

s . A value of the speed V equal to 270 m
s , for which the system

was shown to be nominally stable (recall the asterisk in Fig. 4.1), is then selected for all the

following analyses.

4.2.1.1 Structural uncertainties only

First, the case with only uncertainties in the coefficients of the structural mass Ms and stiffness

Ks matrices is considered. The uncertainty definition consists of a range of variation of 10%

from the nominal value for Ms,11, Ms,22, Ks,22 and of 5% for Ms,12 and Ks,11 (the numbers in the

subscript denote the element of the matrix that is considered, e.g. Ks,11 = Kh defined in Eq. 2.10).

First, a multiplicative uncertainty description (3.4b) is applied to the five parameters, leading

to the definition of the uncertainty levels λMs,11 = λMs,22 = λKs,22 = 0.1 and λMs,12 = λKs,11 = 0.05.

Then, the two LFT development paths discussed in Sec. 3.2.1 are applied, and in both cases the

uncertainty set associated with the LFT results in:

∆
6,R
s = diag

(
δMs,11 ,δMs,12 I2,δMs,22 ,δKs,11 ,δKs,22

)
. (4.7)

where the size of the ∆ block and the type of uncertainties (here only real R) is recalled in the

superscript. Since only structural parameters affect the uncertainty blocks, no mismatch in

principle is expected when adopting either the state-space (SS) or the frequency-domain (FD)

LFT formulation. In Fig. 4.5 the upper (UB) and lower (LB) µ bound results obtained with both

approaches are shown. The observable matching can be considered a validation of the two model

development paths detailed in Sec. 3.2.1.

The estimation of µ given by the algorithms is also very accurate since the values of the

bounds are in close agreement, meaning that the actual value of µ is well predicted. In particular,

it can be concluded from the peak in the plot (≈ 1.38) that the system is flutter free for structural

uncertainties up to approximately 73% (≈ 1
1.38 ) of the assumed range of variation. Robust analyses

carried out with µ gives also a frequency perspective on the results. This is an important feature

enriching the content of the prediction with something more than a simple binomial-type of output

(either the system is robustly stable or not within the defined uncertainty set). In particular it

shows the peak frequency at which instability occurs, how much it is modified compared to the

nominal case, and when multiple instabilities exist it also provides insight into the different

mechanisms taking place. In this example, only one instability is detected and the peak frequency

is at about 72 rad
s . This frequency is slightly greater than the nominal flutter frequency ω f and

the difference can probably be ascribed to the perturbed values in the structural parameters
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Figure 4.5: Comparison of the µ analysis based on the state-space (SS) and frequency-domain
(FD) formulations for the case of structural uncertainties.

and to a different wind speed (270 m
s instead of the flutter speed 303 m

s ) which causes a different

aerodynamic contribution to the system’s frequencies. As can be observed in Figure 4.2(b), pitch

frequency (responsible for the instability) is indeed higher at speeds lower than Vf .

The lower bound calculation also allows the worst-case perturbation matrix ∆cr
s corresponding

to the peak in Fig. 4.5 to be extracted:

∆cr
s =diag

(
δcr

Ms,11
,δcr

Ms,12
I2,δcr

Ms,22
,δcr

Ks,11
,δcr

Ks,22

)
,

=diag(−0.7245,0.7245I2,0.711,0.6460,−0.7213).
(4.8)

Note that, due to the fact that upper and lower bounds almost perfectly overlap around the

peak, this is the smallest matrix satisfying the determinant condition related to the ill-posedness

of the LFT (3.12). To further highlight the insights µ is able to provide when supported by an

adequate system understanding, the worst parameter combination reported in (4.8) is further

interpreted. From examining the signs and values of the above worst-case combination, it is noted

that the structural parameters have opposite perturbations if grouped according to the affected

degrees of freedom (matrix subscripts 11 for the plunge, and 22 for the pitch). Specifically, the

plunge equilibrium sees a reduction in Ms,11 and an increase in Ks,11, while the pitch equilibrium

sees an increase in Ms,22 and a reduction in Ks,22. From a free-vibration analysis point of view,

this corresponds to getting the plunge and pitch natural frequencies closer, which is a trend

known to be detrimental to flutter stability (also commented on in Sec. 4.1.3 with reference to the

restrained wing flutter). Thus, µ analysis predicts quantitatively the reduction of stability margin

in the face of the uncertainties, and also points out the mechanism underlying the worst-case

flutter onset. This kind of supplementary information may be in general of great utility to inform
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passive design actions or sketch out active control strategies for flutter suppression.

Numerical aspects related to the usage of µ analysis for robust flutter calculations are briefly

discussed next. For the upper bound, the default option of the Robust Control Toolbox (RCT) is

the Balanced form algorithm [78] which will be compared against the Linear Matrix Inequalities

(LMI)-based solver [263] (employed in the results of Fig. 4.5). As for the lower bound calculation,

default options depend on the nature of the problem. If at least one of the uncertainty blocks

is complex, the default algorithm is based on the Standard Power Iteration (SPI) [182], which

provides the highest accuracy but only for pure complex problems. In fact, convergence issues

may be encountered for real-mixed problems and, in particular, for pure real uncertainties, such

as the present one. In this case, the default is a recent algorithm [219] based on a worst-case gain

calculation, namely the Gain-Based Algorithm (GBA), which was used also in Fig. 4.5.

In order to provide a measure of the performance of the aforementioned algorithms for

this case study, Fig. 4.6 shows a comparison of the results obtained with the different options

(reported in brackets in the legend) of the mussv routine of the RCT. These are all polynomial-

time algorithms, with the Balanced and SPI generally providing faster calculations. In particular,

for this case the µ bounds were evaluated at one frequency point in about 0.1s with the Balanced

and SPI methods, whereas GBA and LMI-based approach yielded approximately an order of

magnitude slower calculations.
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Figure 4.6: Comparison of µ algorithms for the case of structural uncertainties.

A first observation inferred from Fig. 4.6 is that the LMI-based solver outperforms the default

one in the calculation of the upper bound since it achieves lower predictions for all the frequencies.

The plot also confirms that the SPI method has poor accuracy in providing a lower bound for this

kind of problem, irrespective of the number of times the calculation is randomly reinitialised

(defined by the integer following option m). On the other hand, the GBA ensures a very accurate
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prediction, which is barely affected by the maximum number of internal iterations (specified by

the integer following g according to the rule 10+10g) or algorithm reinitialisations. Interestingly,

the GBA makes use of the result of the upper bound calculation to update the search [219], and

indeed a small sensitivity to the employed upper bound algorithm (specified by a or f in the

brackets) can be noticed. From the enlargement it can be seen that employing GBA in conjunction

with a faster upper bound calculation (option f ) leads to a lower bound perfectly matching the

upper bound in the peak area. On the other hand when this is used with the more accurate upper

bound (option a), it provides slightly smaller bounds. This numerical aspect could be attributed

to the fact that the use of a greater (i.e. faster) upper bound leads, at each GBA iteration, to a

larger guess of µLB and this may determine a greater final value of the lower bound when the

iteration is stopped (see [219] for details on the iterations entailed by the GBA algorithm). This

has been confirmed also when a higher number of iterations (e.g. a-g20 or a-g6m3) was employed.

It is important to remark, however, that these discrepancies are very small and the option g

guarantees a very accurate lower bound for this problem regardless of the selection of auxiliary

options.

The numerical analysis shown in Fig. 4.6 considers only a benchmark case and thus it is not

meant to be a detailed numerical assessment of the available algorithms (see for example [206]).

The purpose is instead to highlight the influence of the nature of the parameters in ∆ (crucially, a

real µ problem is considered here) and to illustrate the rationale that informed the selection of

the algorithms in the remainder of the chapter.

4.2.1.2 Structural and aerodynamic uncertainties

Robustness of the system when the aerodynamics part is affected by uncertainties is addressed

next. First, the state-space formulation is used and uncertainties in all the lag roots of the un-

steady part of the approximate operators are considered. Two aeroelastic LFTs, built respectively

with Roger and Minimum State methods (and indicated by subscripts R g and MS respectively),

are available and are defined by the following uncertainty sets:

∆
12,R
R g = diag

(
δγ1 I3,δγ2 I3,δγ3 I3,δγ4 I3

)
,

∆
6,R
MS = diag

(
δγ1 ,δγ2 ,δγ3 ,δγ4 ,δγ5 ,δγ6

)
.

(4.9)

The discussion in Sec. 3.2.2.1 pointed out that when the same range of variation holds for the lag

terms of the two RFA operators, the frequency response families are markedly different and, in

an attempt to reconcile the two maps, Algorithm 3.1 was proposed. It is thus expected to observe

also a similar discrepancy in the robust stability margins. Fig. 4.7 shows the results for three

different cases: Rg and MS where an uncertainty of 10% in the lag terms is considered for all

the parameters listed in (4.9); and MS scaled where the uncertainty range ΛMS of the lag roots

for the Minimum State approximation is determined with Algorithm 3.1 by using Fu(QR g,∆R g)

as reference LFT. It is apparent that while the predictions associated with Rg and MS are far
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apart, the difference in peak value between MS scaled and Rg falls below 30%. It is restated

here that Algorithm 3.1 does not allow the two uncertainty definitions to be reconciled exactly,

due to the inherent differences in the definition of Γlag−Roger and Γlag−MS (assessed in Sec. 2.2).

However, it is deemed a useful tool to inform the definition of uncertainty levels in an LFT to

map a reference LFT or data dispersion.
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Figure 4.7: Comparison of µ analysis for the case of uncertainties only in the lag roots of the two
approximated aerodynamic operators.

Finally, as a validation of the unified approach presented in Sec. 3.2.3, the scenario with

uncertainties in both the structural (mass and stiffness matrices) and aerodynamic operators is

analysed. The uncertainty description consists of the set in (4.7) for the structural part and that

discussed in (3.26a) for the aerodynamic one. Recall that the latter are complex uncertainties

(referred to three transfer functions of the GAF Qhh) and range in the disc of the complex plane

centred at the nominal values and have radii equal to 10% of their magnitudes. Starting from this

parameter definition, two aeroelastic LFTs have been constructed: FD is based on the frequency-

domain formulation (Sec. 3.2.1.1); while the LFT termed uni follows the rationale of the unified

strategy, which works entirely with state-space models except for the aerodynamic perturbation

terms (allowed to be referred to the original operator Qhh). The same mixed real (R)-complex (C)

uncertainty set is obtained for both the LFTs (regardless of the approach):

∆6,R−3,C = diag
(
∆

6,R
s ,∆3,C

hh

)
,

= diag
(
δMs,11 ,δMs,12 I2,δMs,22 ,δKs,11 ,δKs,22 ,δQhh,12 ,δQhh,21 ,δQhh,22

)
.

(4.10)

Fig. 4.8 presents a comparison of the two µ plots (for clarity only µUB is reported since this is very

close to µLB) which showcases an almost perfect match of the results. In making a comparison,
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it should be considered that the nominal plant is defined by two different models and thus this

could generate a slight mismatch in the predictions.
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formulations for the case of aerodynamics and structural uncertainties.

4.2.2 Body freedom flutter

For the investigations of the body freedom flutter instability with robustness tools LFT models

are built up using the frequency-domain approach –thus starting from (2.18). Based on the

previous discussions, three important design variables are identified: wing bending stiffness EI,

tail distance D, and wing mass ratio mw. The first two parameters and their role in the BFF

were addressed in the nominal analysis section. The wing mass is also a fundamental parameter

of the flexible aircraft dynamics, since it significantly influences the rigid-body equilibrium: it

alters the vehicle inertia properties (assumed to scale up with the wing weight) as well as the CG

location (with important effects on the short-period properties). In addition, the restrained wing

flutter itself is known to be highly dependent on the inertial contribution and thus an uncertainty

affecting the structural mass matrix has substantial repercussions.

The reason to capture these parameters in an LFT fashion is therefore twofold. On the one

hand, their values (especially EI and mw) are only known within a certain tolerance until the

final design stage. On the other hand, they are key design variables selected during the conceptual

design stage, typically characterised by different concurrent requirements, and hence additional

insights are invaluable at that stage. In addition to these three parameters, perturbations in

the same aerodynamic transfer functions captured in ∆hh (4.10) are considered to allow for

inaccuracies in the aerodynamic model and potential violations of its underlying hypotheses (e.g.
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the fact that 3D effects are not necessarily negligible). The radius of the disc in the complex plane

where these uncertainties range is here 3% of their magnitude.

As a result of this discussion, 2 different LFT models (namely LFT-1 and LFT-2) defined by

the following uncertainty sets are considered:

∆
8,R−3,C
1 = diag

(
δD I7,δEI ,δQhh,12 ,δQhh,21 ,δQhh,22

)
, (4.11a)

∆
18,R−3,C
2 = diag

(
δmw I10,δD I7,δEI ,δQhh,12 ,δQhh,21 ,δQhh,22

)
. (4.11b)

Both LFTs capture the variability in aerodynamics, bending stiffness, and tail distance, but

LFT-2 also that in the mass ratio δmw .

The nominal values for EI and D are EI = 0.15EIG (i.e. σs = 0.15, marked with a vertical

dashed-dotted line in Fig. 4.3) and D = 6m. It is worth noticing that the corresponding point in

Fig. 4.3 is located close to the boundary between the two discussed stability regions. In particular,

this configuration features (for the specified value of D) one of the highest flutter speeds, lying at

the same time close to the abrupt leap in the flutter curve. From a flutter design perspective, this

layout can be regarded as optimal in that it attains the highest flutter speed given a prescribed

margin from BFF occurrence, thus it is of interest to look at its robustness.

In order to further characterise the flutter behaviour of this nominal plant, Fig. 4.9 shows the

poles root locus highlighting speeds and frequencies for the instabilities taking place. The system

exhibits both the low frequency (Body Freedom Flutter at ω1) and high frequency (restrained

wing flutter at ω2) instabilities. Note that in comparison to Fig. 4.4(b), the restrained wing flutter

is the first to be encountered (i.e. corresponding to the lowest speed) at Vf 2 = 162 m
s and ω f 2

= 69.7 rad
s , while the BFF occurs at a speed Vf 1 = 175 m

s and a frequency ω f 1 = 14.7 rad
s . The

sub-critical speed V= 150 m
s will then be considered in the following robust analyses.
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4.2.2.1 Results for LFT Model 1

The first goal in using LFT-1 is to show the capability of µ analysis to infer similar conclusions

to those drawn via the standard parametric study. This is done by assessing the role played by

EI and D in the robust stability calculation, i.e. a type of robust parametric sensitivity analysis

performed within the µ analysis framework. Once a condition is defined (for RS this is the

determinant condition in 3.12 such that the LFT is ill-posed), µ highlights the relevance of the

parameters captured as uncertainties. Although more advanced µ sensitivity analyses can be

employed using the skew-µ concept [81, 161], this task is assessed here considering two different

uncertainty levels for EI and D. The idea underlying this test is that, for each uncertainty, the

increase of the peak value of the µ plot as its range of variation is enlarged is directly related to

the sensitivity of the instability to that parameter. Specifically, variations of 10% and 30% with

respect to the parameters’ nominal values will be considered here. This can be easily done by

defining different values for the parameters λD and λEI used for the multiplicative uncertainty

description (3.4b).

Fig. 4.10 shows the µ results for the four different combinations (RC1-#) of the uncertainty

levels λD and λEI . Since the upper and lower bounds are close in each case, for the sake of clarity

only the upper bounds are reported. Before discussing the results, the significance of the four

range cases (RC1-#) is assessed on the basis of the results of the parametric analysis (Fig. 4.3)

and the nominal parameters used for these analyses (EI = σsEIG , with σs = 0.15, and D = 6m):

• RC1-A & RC1-B: the plant is expected to be robustly stable because when EI varies within

10% of its nominal value (i.e., 0.135<σs < 0.165) the flutter speed is always above 150 m
s ;

• RC1-C & RC1-D: BFF is expected to occur at lower speeds than 150 m
s because the rigid-

elastic coupling could be magnified for certain allowed combinations of σs and D.

All the analyses show two distinct peaks in the µ plot, one at a low frequency ω1 ≈ 10 rad
s

(related to the BFF mechanism) and another at a high frequency ω2 ≈ 70 rad
s (related to the

torsion-bending coupling). The values of these peaks for each case are also highlighted in a

dedicated table inset in Fig. 4.10. When the first uncertainty level RC1-A is considered (solid

line), µ is smaller than 1 for the whole frequency range, indicating that the system is robustly

stable in the face of the allowed uncertainties. The values of the peaks are respectively 0.58

at ω1 and 0.62 at ω2. When the tail distance uncertainty level is tripled in RC1-B (red dashed

line), there is a greater increase in the low frequency peak (0.74) than in the high-one (0.63).

This suggests that the BFF instability is more sensitive to variations on D. When the wing

bending stiffness is tripled in RC1-C (blue dotted line), the system RS undergoes a remarkable

degradation. In particular the low frequency peak (1.37) is highly affected indicating that with

the present uncertainty level the stability of the system is violated for the selected sub-critical

speed of 150 m
s . Recalling from Fig. 4.9 that the nominal tests indicated the torsional-bending

(Vf 2 = 162.8 m
s , ω f 2 = 69.7 rad

s ) to be the first to achieve instability with respect to the BFF (Vf 1
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Figure 4.10: µ-based sensitivity to EI and D using LFT-1.

= 175 m
s , ω f 1 = 14.7 rad

s ), now the reversal is seen in Fig. 4.11. That is, the instability predicted

in the face of uncertainties is the one that was deemed less critical according to the nominal

analyses in Fig. 4.9. Finally, the scenario when both the parameters vary with a triple uncertainty

level in RC1-D (cyan dash-dot line) results in an even more critical robustness degradation for

the BFF (1.7), whereas the high frequency instability is almost unchanged (0.72).

The observed trends provide another perspective on the discussion concerning Fig. 4.3,and

point at similar conclusions. In particular, it is confirmed that both parameters are more critical

for the BFF instability (than for the restrained one) and that in addition the tail distance D

barely affects the torsional-bending coupling (high frequency instability) which reconciles with

physical understanding. Another interesting aspect that can be deduced from these results is that

the effect of D on BFF is not magnified when the stiffness uncertainty level is enlarged (given

that the system is flexible enough to be susceptible to BFF). This is inferred from a comparison

between the relative increase, almost the same, in the peaks between the uncertainty level cases

(from 0.58 to 0.74 for RC1-A to RC1-B, and from 1.37 to 1.7 for RC1-C to RC1-D). In other words,

the bending stiffness is highly detrimental, as often mentioned in the literature, but it does not

further exacerbate the influence of D (which was not so obvious prior to the µ analyses). This

aspect is well connected with the curves for D = {5,6,8} m in Fig. 4.3, which have the same slope

(i.e. they are parallel) in the BFF region –indicating that the relative drop in flutter speed (that

is, from curve to curve) is irrespective of the value of EI.

In addition to the findings from Fig. 4.10, the µLB calculation provides the smallest critical

perturbation matrix able to determine flutter at the pre-fixed nominally stable speed V= 150 m
s .

In Table 4.3 the values of ∆cr
1 matrices obtained at the two peak frequencies for the case RC1-C
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are reported. It is apparent that for the first peak the instability is triggered by a reduction of

both EI and D (negative values for δEI and δD), and this is in accordance with what happens in

Fig. 4.3 within the region where BFF is prominent. The examination of the second peak (∆cr
1

∣∣
ω2

)

reveals that a positive perturbation δEI is detrimental for the restrained flutter mechanism.

This is in agreement with the previously commented fact that this type of instability is more

pronounced as the bending stiffness is increased and thus bending and torsional frequencies

become closer.

Table 4.3: Worst-case perturbations for LFT-1 (with uncertainty levels λEI = 0.3, λD = 0.1) at the
two frequency peaks.

∆cr
1 δD δEI δQhh,12 δQhh,21 δQhh,22

∆cr
1

∣∣
ω1

-0.7622 -0.7622 -0.35-0.65i 0.37 + 0.64i -0.67 + 0.31i

∆cr
1

∣∣
ω2

-1.4156 1.4156 1.32 + 0.50i 1.1 - 0.9i -0.72 + 1.21i

4.2.2.2 Results for LFT Model 2

This second LFT model augments the previous one with an additional uncertainty, namely the

wing mass ratio mw (4.11b). The sensitivity of the system’s instabilities to this new parameter

is studied following the same process as before. Fig. 4.11 shows the µ analyses, now with three

different uncertainty range combinations: RC2-A, RC2-B and RC2-C (see the inset in the figure).
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Figure 4.11: µ-based sensitivity to EI, D, and mw using LFT-2.
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As before, two frequency regions are observed each representing a different type of system

instability. A comparison between the peak values for the case RC1-A in Fig. 4.10 and for the

case RC2-A (solid line) here reveals that the variation in mass is detrimental, particularly for

the low frequency instability. The peak corresponding to the high frequency is also affected, but

less markedly. The other two uncertainty level cases analysed in Fig. 4.11 extend to the wing

mass ratio the observations made before for the tail distance and the bending stiffness uncertain

parameters. From further assessment of Fig. 4.11, it can be concluded that the mw parameter

is critical since the BFF mode (associated with ω1) changes from stable to unstable between

RC2-A and RC2-B (i.e. when λmw varies from 0.1 to 0.2), while a similar result was not observed

in Fig. 4.10 for the other parameters until their scaling level was three times higher. Note also

that the closest instability mechanism to the nominal plant is also for LFT-2 the rigid-elastic one.

As before, the critical perturbations are inspected and given in Table 4.4, where the results are

relative to the uncertainty level combinations corresponding to the case RC2-B.

Table 4.4: Worst-case perturbations for LFT-2 (with uncertainty levels λmw = 0.2, λEI = 0.1,
λD = 0.1) at the two frequency peaks.

∆cr
2 δmw δD δEI δQhh,12 δQhh,21 δQhh,22

∆cr
2

∣∣
ω1

-0.87 -0.87 -0.87 -0.35 - 0.8i 0.33 + 0.8i -0.83 + 0.25i

∆cr
2

∣∣
ω2

1.37 -1.37 1.37 1.20 + 0.65i 1.14 - 0.75i -0.67 + 1.2i

For the BFF instability, ∆cr
2

∣∣
ω1

confirms the trend in Table 4.3 for tail distance and bending

stiffness, and indicates that this instability is exacerbated by a decrease in mass. As for the

torsion-bending coupling instability, ∆cr
2

∣∣
ω2

reveals that this is favoured by an increase in wing

mass. While this last effect can be understood by focusing only on the interaction between the

two elastic modes (similar to what was done in Table 4.3 for ∆cr
1

∣∣
ω2

), the interpretation of the

negative mass perturbation for the BFF instability is more difficult. Nonetheless, the fact that a

reduction in wing mass makes the aircraft more prone to BFF reconciles with known features

in the literature, as it was the case before for D and EI. In fact, this was ascribed in [154] to

the effect that a lower vehicle pitch inertia I yy had in increasing the short period frequency ωSP

and thus pushing it closer to the wing bending lowest frequency. The robust flutter framework

presented in here allows this aspect to be ascertained from a worst-case perspective, and paves

the way for analysis campaigns where additional relevant parameters can be included.

In the interest of compactness of presentation they are not reported here but further tests

were performed, and published in [125], in order to gain a better understanding on the unstable

mechanisms detected by Table 4.4. The main finding, aided by the use of the MAC indicator, was

that the wing mass parameter is responsible for a coalescence between the first bending and

short-period vibration modes. That is, a merging of the eigenmodes, in addition to that classically
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expected of the frequencies, takes place at the onset of instability. This aspect is in accordance

with previous works, such as that of reference [25], which stressed that the BFF instability is

exacerbated by parameters which able to adversely modify the mode shapes of the aircraft.

4.3 Application of µ to uncertain high-order models

In this section an application of the strategies developed in Sec. 3.3 for studying uncertain

high-order models is illustrated using the joined-wing aircraft system described in Sec. 2.3.3.

Algorithm 3.2 is employed to build an LFT model capturing uncertainties in the physical stiffness

and mass parameters defined in the FEM model. Then, Algorithm 3.3 is applied to compute the

worst-case perturbation matrix determining flutter at a given (nominally stable) speed and thus

to assess robustness.

4.3.1 Nominal analysis of the joined-wing case study

The flutter behaviour of the PrP250 configuration without uncertainties is investigated first.

The analyses are carried out with the FSI solver CSHELL 2 (featuring a p method based on

the Roger approximation of the Qhh matrix), and then validated with the commercial software

NASTRAN [203], considering only the first 10 structural modes (ns=10). Results of the flutter

analysis are shown in Fig. 4.12 in terms of imaginary and real parts of the poles as speed is

increased. It is seen on the right plot that mode I becomes unstable (indicated in the figure as

flutter point) at approximately Vf = 297 m
s due to the coalescence of the frequencies of the first

two bending modes (see left plot) before flutter occurs.
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Figure 4.12: Flutter analysis of PrP250 (real and imaginary part of the first 5 modes shown).

2CSHELL is a proprietary software developed by the authors of [40, 60].
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Next, the wing model is connected with an elastic fuselage (clamped in the system centre of

gravity –see Fig. 4.13). This new model aims at considering the effect of the fuselage elasticity

(and so the mutual movement and pitching of the two wings roots) on the aeroelastic behaviour

of the system and is an evolution of the one used in [40] where only concentrated inertial effects

were retained. Lumped masses have been placed along its length to simulate distribute inertial

effects of structures, systems, and payload. The fuselage is connected to the front wing root and

the rudder with rigid links.

Rigid Links

Lumped
Masses

front-fuselage
point

fin-root
pointConfiguration

CoG

Fuselage
CoG

Figure 4.13: Layout of the PrP250 featuring a clamped flexible fuselage.

Fig. 4.14 shows the results of flutter analysis. The coalescence of the first two elastic modes,

observed already in Fig. 4.12, is still present, resulting in an instability of mode I at a similar

speed as before. However, now flutter onset is caused by mode III which becomes unstable at

approximately Vf = 270 m
s .
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Figure 4.14: Flutter analysis of PrP250 with elastic fuselage.

The robust flutter analysis will only consider the model without elastic fuselage (Fig. 4.12),
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because results are available in the literature for this case study only. However, the effect of an

elastic fuselage on the flutter of PrP250 is preparatory for the discussion at the end of the next

section.

4.3.2 Robust flutter analysis with the symbolic LFT-FSI approach

Uncertainties for the stiffness and mass distribution along the wing are selected following the

rationale of uncertainty distribution sketched in Fig. 3.4. These are depicted in Fig. 4.15.
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Figure 4.15: Uncertainty description for the joined-wing configuration.

The FEM model has 54 beam elements (Fig. 2.6). For each beam, the bending stiffness

parameter EIz is considered as an uncertain parameter. To allow for continuity among the

elements, 27 reference stations (shown and numbered in Fig. 4.15a) are defined by pairing

consecutive beams, and the uncertainties are perturbed in the same way if they belong to the

same station. Therefore, the stiffness uncertainty description consists of 27 uncertainties (i.e.

δEIz j
with j=1, ..., 27), each allowed to vary within 10% of its nominal value. As for the mass,
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the 36 fuel masses m f gathered in the model, and visualised in Fig. 4.15(b), are all assumed

uncertain (i.e. δm fk
with k=1, ..., 36) and allowed to vary within 10% of their nominal values.

The symbolic LFT approach described in Algorithm 3.2 is then applied. Given the above

uncertainty definitions (representing Step-S1), it is possible to obtain the symbolic physical

matrices (Step-S2) and then assemble the symbolic modal matrices (Step-S3) using the nominal

modal matrix Φ0. With the modal operators M̄s and K̄s expressed as a function of the uncertain

parameters, it is now possible to build an aeroelastic LFT, characterised by the uncertainty block:

∆
630,R
M−K = diag(δEIz1

I10, ...,δEIz27
I10,δm f1

I10, ...,δm f36
I10). (4.12)

Despite the adoption of LFT order reduction techniques [146], the size of the LFT in (4.12) is

such that it cannot be used for µ calculation at this stage. The very high dimension of 630 is

ascribed to two main reasons: the large number of real parameters (63) captured in the LFT, and

the presence of uncertainties in all the structural modes (ns = 10).

The large number of uncertain parameters initially considered was done deliberately to

showcase the modelling capabilities (especially when compared to the numerical LFT approach).

This also allows to demonstrate the ease of extracting reduced LFT models for specific analyses

(such as focusing on fuel mass in certain areas of the wing or to independently analyse the effect

of stiffness versus mass) once an initial large LFT has been built up.

In order to lower the size, firstly a reduced number of parameters is selected based on their

contribution to the coefficients of the modal matrices (this can be done in Step-S4 because the

modal matrices are available as polynomials in the uncertainties). As a result of this polynomial

reduction process, the number of parameters in the LFTs decreases to 20 for the stiffness and 25

for the mass.

Afterwards, the selection of the number of modes ns,u subject to uncertainties is considered.

The nominal analyses pointed out that flutter is prompted by the coalescence of the first and

second bending modes. Therefore a small number of modes ns,u ≤ ns might be sufficient to capture

the effect of the uncertainties on flutter. This assumption was confirmed by carrying out analyses

for different values of ns,u where a convergence of the predictions for ns,u ≥ 5 was observed

and hence ns,u = 5 is considered. It is stressed that this strategy for reducing the LFT size is

distinctive of the modal-oriented modelling approach proposed here. A reduced-order LFT with a

size of 225, and gathering in total 45 different real parameters, is finally obtained.

The analysis Algorithm 3.3 from Sec. 3.3.2.2 is then applied. This will detect a worst-case

perturbation that makes the aeroelastic system flutter at the selected subcritical speed Vµ.

Specifically, Vµ = 285 m
s is chosen considering the flutter behaviour of the nominal configuration

(Vf = 297 m
s from Fig. 4.12). Fig. 4.16 shows in the main plot only the µ upper (UB) and lower

(LB) bounds corresponding to the first iteration (ITER1) of the algorithm, while in the inset the

different iterations for the low frequency peak are given.

Note that two peaks are clearly observed, a lower frequency one, taking place at approximately

ω1=7.2 rad
s and associated with the coalesced modes I-II, and a higher frequency one. As prescribed
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Figure 4.16: Results of the µ-based iterative algorithm (convergence attained at the 4th iteration).

by the algorithm, the perturbation matrix extracted from the highest peak of the lower bound is

used, and hence the instability related to modes I-II will be studied here. The same procedure

could be applied to another point of the frequency grid by simply carrying out the iterations with

respect to the corresponding perturbation matrix.

In the inset of Fig. 4.16 the upper bounds at all the other analysis algorithm’s iterations

(ITER#) are reported. For clarity, the lower bounds are not plotted since the relative gap between

bounds for each iteration is similar to the one at ITER1. Table A.3 in Appendix A shows the

entries of the perturbation matrices ∆cr
ITER# and the corresponding flutter speed Vf µ (calculated

by CSHELL) at each iteration. For conciseness, Table 4.5 reports only the norm of the perturbation

matrices and Vf µ at each iteration.

Table 4.5: Flutter speed and corresponding perturbation matrix’s norm at each iteration of
Algorithm 3.3.

ITER Vf µ
m
s σ̄(∆cr)

1 288.4 0.98

2 287.4 1.23

3 285.9 1.41

4 285.24 1.47

The algorithm achieves in 4 iterations a value of Vf µ=285.2 m
s which is within 0.15% of the

selected Vµ=285 m
s . At each iteration #, the magnitude of ∆cr

ITER# increases (this was already

noticeable in Fig. 4.16 since smaller µUB indicates larger norm of the perturbation matrix). The
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change in magnitude of ∆cr
ITER# can be explained by the importance of the perturbations in the

modal base Φ, not captured in the initial LFT representation (build up with the unperturbed base

Φ0) and taken into account with the iterative strategy (recall its interpretation given in Eq. 3.35).

It is also important to observe (from Table A.3) that the perturbations show approximately the

same directionality from one iteration to the other (e.g. positive/negative trends of the uncertain

parameters). This qualitatively supports the accuracy of the predicted ∆̂cr, and more generally

indicates that worst-case regions are correctly detected (further comments on this will be given

in the next section). When this pattern is observed, robustness properties such as robust flutter

sensitivity (for example. the one carried out for the BFF case study in Sec. 4.2.2) can be inferred

afterwards based on analyses which use the nominal modal matrix Φ0.

It is also important to consider the frequency content of the information provided by µ, which

in this case showed the presence of two distinct peaks. Recall indeed that the nominal flutter

analyses only detected the presence of the modes I-II flutter (Fig. 4.12), while it was necessary to

augment the model with an elastic fuselage (Fig. 4.14) to find that the mode III could become also

critical for flutter. As seen in Fig. 4.16, robust analysis anticipates this for the analysed model

(which does not include an elastic fuselage) when variations of particular stiffness and mass

parameters are allowed in the system. Indeed, the higher frequency peak in Fig. 4.16 occurs at a

frequency very close to that of mode III in Fig. 4.14 (approximately 13 rad
s ). The insights provided

by the frequency perspective on µ, already highlighted in the robust BFF analyses earlier in this

chapter, are deemed an important feature and an advantage of the proposed robust modelling

analysis framework.

4.3.3 Optimality analysis of the worst-case perturbation

Uncertain parameters requiring subsequent detailed analysis were identified by looking, in

the perturbation matrices ∆cr
ITER# (Table A.3 in Appendix A), at changes in the direction of the

perturbations within successive iterative steps. Specifically, EIz5 and m f21 were found to exhibit

a non-uniform pattern. The former has an almost null perturbation in ∆cr
ITER1 but then becomes

positive for the other iterations, whereas m f21 changes sign at the second iteration. By performing

a µ sensitivity analysis, it was concluded that the parameter EIz5 has small importance for

flutter, whereas m f21 (a rear wing tip mass) proved to be relevant for the instability.

Algorithm 3.4 is applied to investigate the observed pattern of m f21 , and in order to do so the

tested perturbation matrices ∆t
i must be selected (Step-C1 of the algorithm). Table 4.6 reports

the definition for the 5 tested LFTs, along with the resulting µUB. The LFTs are centred at: the

perturbation matrix ∆cr
ITER1 found in the first iteration (i.e. first row in Table A.3), this LFT is

termed 1-1; the opposite of ∆cr
ITER1 (case 1-2); ∆cr

ITER2 (case 2-1); the opposite of ∆cr
ITER2 (case

2-2); ∆cr
ITER2 but considering opposite perturbation in the tip mass m f21 (i.e. positive instead of

the negative predicted at this iteration) (case 2-3).

Fig. 4.17 shows the results which, for a better visualisation, feature reversed axes with
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Table 4.6: Tested worst-case perturbations in the optimality check.

case ITER ∆t
i µUB

1-1 1 ∆cr
ITER1 4.4

1-2 1 −∆cr
ITER1 0.53

2-1 2 ∆cr
ITER2 6.3

2-2 2 −∆cr
ITER2 0.44

2-3 2 ∆cr
ITER2, δm f ,21 =−δcr

m f ,21
9

respect to the usual convention, i.e. µUB plotted on the x-axis and ω on the y-axis. For comparison

purposes, the curves from Fig. 4.16 for iteration 1 (ITER1) and iteration 2 (ITER2) are presented

as solid lines with cross and square markers respectively.
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Figure 4.17: µ analysis of LFTs featuring different nominal plants. The value of the peak is a
measure of the proximity of the nominal plant to the actual worst-case.

Let us first consider the curves relative to the first iteration, that is 1-1 (blue dash-dot line)

and 1-2 (blue dotted line). The dash-dot line has a higher peak than the one featured by ITER 1,

whereas the dotted line has the smallest (among these 3). This, along with the noticeable sharp

peak of the dash-dot curve, suggests that ∆cr
ITER1 points at a worst-case direction for the system.

It is stressed that Algorithm 3.4 builds each LFT based on the modal base Φ associated with the

tested worst-case perturbation (Step-C3). Therefore, even when an actual perturbation matrix

predicted by µ (e.g. 1-1) is tested, the corresponding nominal plant is not neutrally stable because

that worst-case matrix was computed with respect to an LFT built up with a different modal base
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Φ. Thus, µ peak is not infinitely large and the procedure is numerically reliable, as confirmed

next.

The analyses performed with respect to the results from the second iteration are then

considered, i.e. 2-1 (black dash-dot line), 2-2 (red dotted line), and 2-3 (magenta dashed line).

A first remark is that 2-1 exceeds 1-1, meaning that as the algorithm proceeds, it converges to

the worst-case of the system (i.e. ∆cr
ITER2 is a better estimation of ∆̂cr than ∆cr

ITER1). Another

important aspect is inferred by comparing the magenta (2-3) and black (2-1) curves. The former

has a greater peak than the latter, that is, the µUB algorithm detects case 2-3 as a closer worst-

case of the system than 2-1. In other words, the worst perturbation for m f21 is the positive one

(as initially predicted in the first iteration). Interestingly, the peak of µ is not infinitely large

for 2-1 (in fact, there exists another LFT with larger peak), which shows that the algorithm

is numerically well-posed and is able to capture the effect of updating the modal base on the

global optimum. Similar evidences on the role of parameter m f21 were obtained by applying these

analyses at ITER 3.

Prompted by these findings, the iterative cycle was restarted at ITER 2 with the perturbation

matrix ∆cr
ITER2 but enforcing a positive perturbation in m f21 . Inspired by hybrid strategies

common in applied optimisation [171], the idea is to initialise the (non-convex) algorithm with

the best candidate in the population (represented by the three tested ∆t
i) according to the cost

function, which is here the peak of µ in the plots of Fig. 4.17. The new iterative cycle only

requires 3 iterations to converge, and Table A.4 reports the perturbation matrix ∆cr
ITER3−new

and the corresponding flutter speed at the last iteration. It is noted that σ̄(∆cr
ITER3−new)∼= 1.34,

whereas before it was σ̄(∆cr
ITER4)∼= 1.47 (from Table 4.5), i.e. the perturbation identified thanks to

Algorithm 3.4 has indeed a smaller norm. These analyses confirm that the proposed heuristics to

check the correctness of the worst-case matrix can provide a helpful tool to monitor the accuracy

of the results.

4.3.4 Reconciliation with previous results

The connection of the results obtained by means of the µ-LFT framework with other findings

from the literature are discussed here. In [70] a detailed study of the flutter behaviour of the

PrP250 configuration was performed. In an attempt to increase the flutter speed, sensitivity of

the instability of modes I-II was studied via standard parametric approach. Specifically, trend

studies concerning bending stiffness (achieved by changing the skin thickness) and fuel masses

at the tips of the wing were investigated. An important outcome of the study was that adding fuel

tanks at the tip of the rear wing was highly detrimental for flutter, whereas placing masses at the

tip of the front wing enhanced flutter performance. By looking at the worst-case perturbation in

Table A.4, it can be noted that the latter aspect is confirmed by the analyses performed with µ. A

decrease in the front tip masses m f19 and m f20 can be observed, whereas the other masses (and in

particular the rear tip ones m f22 , and m f23 ) have a positive perturbation. The worst-case direction
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for the rear tip mass m f21 was addressed by means of the global optimum check, confirming a

detrimental effect when this is positive.

For what regards the stiffness parameters, the study in [70] found that increasing the skin

thickness on both rear and front wings allowed to raise flutter velocity. To better assess this, a

robust sensitivity analysis which follows the approach described in Sec. 4.2.2 is performed. As

before, the task is addressed by considering two different uncertainty levels, namely 10% and 20%.

For each uncertainty (in full generality, both stiffness and mass parameters will be considered), a

µ calculation is performed where the selected parameter has a 20% of variation, while all the

others vary within 10% of their nominal values. The distance of the peak of each curve from that

obtained with all parameters ranging within 10% is a measure of the sensitivity of the considered

instability to that parameter. Fig. 4.18 shows all the curves involved in the sensitivity calculation.

The solid red one (λ= 0.1) corresponds to the analysis with all parameters’ range set at 10% (this

indeed coincides with the curve ITER 1 (UB) in Fig. 4.16). The dashed black curves are obtained

by perturbing one by one the uncertainty level of the stiffness parameters, whereas the grey

dotted ones consider the mass parameters. Note finally that this study is performed keeping the

modal base fixed at the nominal value Φ0.
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Figure 4.18: µ-based sensitivity to the mass and stiffness parameters.

The stiffness parameters are then sorted according to the sensitivity revealed by Fig. 4.18.

The ten most critical parameters belong to 4 distinct areas (see the numbering in Fig. 4.15(a)):

front tip (EIz9-EIz10), rear root (EIz23-EIz22-EIz24), rear tip (EIz18-EIz17), and front root (EIz2-

EIz3-EIz1). Note also that all these parameters feature a negative worst-case perturbation in

Table A.4, in accordance with the findings in [70] where opposite trends were suggested in order

to increase the flutter speed.

When the same analysis process was applied to the mass parameters, it was revealed that the

most sensitive fuel masses are those located at the tip of the wings, which is the area considered
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for the parametric analyses in [70]. The reconciliation with the results obtained in this section is

indeed an important confirmation of the validity of the LFT approach presented in Sec. 3.3.2, and

it shows that this methodology can be employed for assessments and investigations of complex

aeroelastic systems.

4.4 Chapter summary

In this chapter linear flutter analysis have been applied to nominal and uncertain case studies

featuring increasing complexity.

Two among the most established numerical methods (p and p-k) for nominal flutter analysis

have been illustrated and then applied to the typical section and simplified aircraft systems. The

former has been analysed keeping fixed all the parameters except the speed, which is increased

until a condition of neutral stability, that is flutter, is reached. The tendency of the aircraft model

to undergo BFF has been investigated instead via a parametric analysis applied to two relevant

parameters (bending stiffness and tail volume). The results confirm that the proposed simplified

model captures in a concise representation the basic features of the coupling between rigid and

elastic modes and aids in understanding the fundamental mechanisms.

In order to address the study of flutter for systems subject to uncertainties, in a second stage

the LFT modelling and µ analysis are applied. It is first shown using the typical section how this

framework can be employed to assess robustness at a fixed subcritical speed. An important point

raised by the analyses is that the obtained prediction is something more than a binomial test

on robust stability, as it also provides a wealth of information to the analyst. This message is

further emphasised with the application to the simplified aircraft model, where the possibility

to perform µ-based sensitivity is exemplified. This allows results previously obtained with the

parametric approach to be retrieved in a more systematic manner and with analytical guarantees,

and enables further characteristics of the two observed instabilities (BFF and wing flutter) when

the effect of additional parameters is sought to be inferred.

The robust framework is finally applied to study the effect of distributed mass and stiffness

uncertainties on the flutter performance of an unconventional joined-wing configuration. The

proposed LFT-FSI modelling and analysis paradigm developed in the previous chapter is success-

fully employed to determine worst-case perturbations that makes the system flutter at a given

nominally stable speed. The predictions are validated in the high-fidelity FSI solver, and show

good agreement with previous findings from the literature.

An important outcome of these investigations is that the study of complex systems, possibly

experiencing different adverse interactions (e.g. between aeroelastic deformation of the restrained

wing and rigid body motion of the aircraft in the BFF; among different modes of deformation

and non-intuitive aerodynamics loads distributions in the Joined Wings) can greatly benefit from

the joint use of conventional (nominal) strategies and robustness approaches. Indeed, the former
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are fundamental in providing an overall understanding of the system and appropriate starting

point for more systematic investigations over a larger parameter space. On the other hand, the

information provided by an adequate modelling and robust analysis methodology is relevant for

the design of modern flexible aircraft configurations, since this is inherently multidisciplinary. In

a conceptual design stage, when typically a large number of concurrent requirements are taken

into account, the µ-LFT framework could supply invaluable understanding of the system. The

analyses in this chapter, for example, have pointed out trade-offs in wing stiffness, mass and

aircraft flight mechanics properties that could represent passive means to mitigate the onset

of dynamic aeroelastic instabilities and as a result increase the flutter free envelope. In a more

advanced stage, when the system layout is frozen, these tools can provide robustness stability

certificates in an efficient way for the most critical operating conditions identified by the standard

approaches. This complementarity between the different analyses approaches is highly desirable

and one of the contributions of this study.

99





C
H

A
P

T
E

R

5
WORST-CASE ANALYSIS OF FINITE HORIZON

LINEAR TIME-VARYING SYSTEMS

The properties of an aeroelastic system are function of several parameters, as discussed

in the previous two chapters. Among these, the flight speed V has a central importance,

as testified by its adoption by industry and certification authorities to define the safe

operating envelope of an aircraft. For manoeuvres involving a change of speed, the state-of-

practice is to evaluate stability and performance with respect to linear time-invariant models

corresponding to frozen time instances along the trajectory. This is a valid but not rigorous

approach, and in some cases can lead to erroneous conclusions [137]. In the specific case of very

flexible aircraft, where as shown in Chapter 4 V is able to determine a strong coupling between

aerodynamics, deformations, and flight mechanics, this simplifying hypothesis might be further

challenged. As a result, the mathematical description of an aircraft manoeuvre is more accurately

given as a Linear Time-Varying (LTV) system. Note that this reasoning holds true not only for

speed but also for other properties of the system that might change during the manoeuvre (e.g.

activation of feedback control only during specific parts of the mission). Moreover, capturing

the presence of time-varying properties can be seen as a preliminary step to relax the linear

assumption made so far. Indeed, a standard approach in aerospace applications [84, 162] is

to linearise nonlinear models around different operating points each corresponding to an LTI

system. The schematisation of this problem with an LTV representation gathering the family of

linearised systems is then a possible approach to capture some nonlinear features of the original

system.

Prompted by these considerations, this chapter proposes a method for analysing the perfor-

mance of (nominal) Linear Time-Varying systems on a finite time horizon. Known facts from

optimal control theory (Riccati differential equation, Hamiltonian dynamics, two-point boundary
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value problem) represent the theoretical background for the technical result and are briefly

reviewed in Section 5.1. The performance is defined by means of a generic quadratic cost function,

from which commonly used metrics can be derived. The main technical contribution, covered in

Section 5.2, consists of a numerical algorithm to compute the worst-case input signal verifying

that a given performance objective is not achieved. To this end, an original solution to the well

known issue connected to the simulation of Hamiltonian dynamics is proposed. The applicability

of this novel approach is then shown in Section 5.3 with the aircraft demonstrator designed by

the FLEXOP project consortium (Fig. 2.8).

The work presented in this Chapter was developed during a research collaboration with

Prof. Pete Seiler from the University of Minnesota, who suggested the field of work. Specifically,

the author: developed the novel technical contents (theoretical construction and numerical

algorithms) in Sec. 5.2; devised the gust case study and performed all the analyses reported in

Sec. 5.3.

Publications1: [130, 155] Section 5.2-Section 5.3.

5.1 Mathematical background

5.1.1 Generalities on LTV performance

Note first that, for a given a signal v : [0,T]→Rnv , the finite-horizon L
nv
2 [0,T] norm is defined as

||v||2,[0,T] :=
√∫ T

0 v(t)>v(t)dt . If ||v||2,[0,T] is finite, then it is said that v ∈L
nv
2 [0,T].

Consider an LTV system G defined on [0,T], where it is assumed throughout that T <∞:

ẋ(t)= A(t)x(t)+B(t)d(t), (5.1a)

e(t)= C(t)x(t)+D(t)d(t). (5.1b)

x ∈ Rnx is the state, d ∈ Rnd is the input and e ∈ Rne is the output. Note that the input vector d

will also be referred to as disturbance throughout the chapter due to its meaning in this context.

Similarly, the output vector is denoted by e because the focus here is performance, hence the

output can be seen as an indicator of the error in achieving a certain objective (e.g. tracking a

reference signal). The state matrices A : [0,T] → Rnx×nx , B : [0,T] → Rnx×nd , C : [0,T] → Rne×nx

and D : [0,T]→Rne×nd are piecewise-continuous (bounded) functions of time. The dependence on

t of these and other time-varying matrices will be omitted when it is clear from the context for

ease of presentation. The state response due to an initial condition x(t0)= x0 at t0 ∈ [0,T] and a

disturbance d ∈L
nd
2 [0,T] can be expressed using the state transition matrix Ψ as follows:

x(t)=Ψ(t, t0)x0 +
∫ t

t0

Ψ(t,τ)B(τ)d(τ)dτ. (5.2)

1Material published during the PhD which relates to the content of this chapter.
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Since T <∞, x ∈ L
nx
2 [0,T] for any x0 and d ∈ L

nd
2 [0,T]. Moreover, there exists a constant M

such that ‖Ψ(t,τ)‖ ≤ M for all t,τ ∈ [0,T], i.e. Ψ is uniformly bounded [36].

A generic quadratic cost is introduced next to unify different finite-horizon LTV performance

metrics. Let Q : [0,T] → Snx , R : [0,T] → Snd , S : [0,T] → Rnx×nd and F ∈ Rnx×nx be given. Q, S,

and R are assumed to be piecewise-continuous (bounded) functions. A quadratic cost function

J : L nd
2 [0,T]→R is defined by (Q,S,R,F) as follows:

J(d) := x(T)>Fx(T)+
∫ T

0

[
x(t)
d(t)

]> [
Q(t) S(t)
S(t)> R(t)

][
x(t)
d(t)

]
dt, (5.3a)

subject to: Eq. (5.1a) with x(0)= 0. (5.3b)

The choice of (Q,S,R,F) defines the particular performance metric. The derivation of two well

known performance metrics from the above general cost function is shown here. First, consider

the finite-horizon induced L2-gain of G:

||G||2,[0,T] = sup
{ ||e||2,[0,T]

||d||2,[0,T]

∣∣∣ x(0)= 0,0 6= d ∈L
nd
2,[0,T]

}
. (5.4)

As noted above, the state matrices are assumed to be bounded and the state transition matrix

is uniformly bounded. This can be used to show that the induced L2 gain is bounded for any

fixed horizon T <∞. Consider now a given scalar γ > 0 and select Q := C>C, S := C>D, R :=
D>D−γ2Ind and F := 0. These choices yield the following quadratic cost:

J2,γ(d)= ||e||22,[0,T] −γ2||d||22,[0,T]. (5.5)

Thus J2,γ(d)6 0 ∀d ∈ L
nd
2 [0,T] if and only if ||G||2,[0,T] 6 γ, which retrieves the performance

metric from (5.4).

Next, assume D(T)= 0. Then the finite-horizon induced L2-to-Euclidean gain of G is:

||G||E,[0,T] = sup
{ ||e(T)||2
||d||2,[0,T]

∣∣∣ x(0)= 0,0 6= d ∈L
nd
2,[0,T]

}
. (5.6)

The L2-to-Euclidean gain depends on the system output e only at the final time T, and can be

used, for example, to bound the set of states x(T) reachable by disturbances of a given norm

(reachability analysis). The assumption that D(T) = 0 ensures this gain is well-defined. This

performance metric can also be related to the quadratic cost J as follows. Let γ> 0 be given and

select Q := 0, S := 0, R :=−γ2Ind and F := C(T)>C(T). This yields the following cost function:

JE,γ(d)= ||e(T)||22 −γ2||d||22,[0,T]. (5.7)

Thus JE,γ(d)6 0 ∀d ∈ L
nd
2 [0,T] if and only if ||G||E,[0,T] 6 γ, which retrieves the performance

metric from (5.6).

The next theorem states an equivalence between a bound on the quadratic cost J and the

existence of a solution to a Riccati Differential Equation (RDE).
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Theorem 5.1. [98] Let (Q,S,R,F) be given with R(t)≺ 0 for all t ∈ [0,T]. The following statements

are equivalent:

1. There exists a constant ε> 0 such that J(d)≤−ε||d||22,[0,T]∀d ∈L
nd
2 [0,T].

2. There exists a differentiable function Y : [0,T]→Sn such that:

Ẏ + A>Y +Y A+Q− (Y B+S)R−1(Y B+S)> = 0, (5.8a)

Y (T)= F. (5.8b)

This result is given as Theorem 3.7.4 in [98] for the particular case of J corresponding to

the induced L2 gain. A statement and proof for general (Q,S,R,F) cost functions can be found

in [218]. Theorem 5.1 allows to assess the performance of the finite-horizon LTV system in (5.1)

using the RDE (5.8). Specifically, the performance J(d)≤−ε||d||22,[0,T] is achieved if the associated

RDE exists on [0,T] when integrated backward from Y (T)= F. Conversely, the performance is

not achieved if the RDE solution fails to exist on the interval [0,T]. Note that the existence of a

solution to (5.8) can be easily tested by numerically integrating the ordinary differential equation

(5.8).

Bisection can be used in conjunction with this theorem to evaluate upper and lower bounds on

the system performance [218]. For example, for the case of induced L2 gain, it has been observed

before that the quadratic cost J2,γ depends on the choice of γ. If, for a given γ, the RDE solution

exists on [0,T] then ||G||2,[0,T] < γ, i.e. γ is a valid upper bound (γUB). Conversely, if γ is selected

too small then the RDE solution will fail to exist on [0,T]. Moreover, if Y fails to exist then, by

Theorem 5.1, for all ε> 0 there exists a non-trivial dε such that:

J2,γ(dε)= ||e||22,[0,T] −γ2||dε||22,[0,T] >−ε||dε||22,[0,T]. (5.9)

This implies that ||G||2,[0,T] ≥ γ, i.e. γ is a lower bound on the induced L2 gain (γLB). Moreover,

the inputs dε provide a validation that the gain is greater than or equal to γ. The objective of

next section is to compute such a signal dε.

An exemplification of the use of Theorem 5.1 in this context is given next.

Example 5.1. Consider the following LTI system

ẋ =
[
−11 −2.5

4 0

]
x+

[
2

0

]
d,

e =
[
0 1.25

]
x.

(5.10)

Bisection was used to compute an upper and lower bound on the induced L2 gain on the horizon

[0,T], with T = 0.1 s. This yielded the bounds γUB = 0.0156 and γLB = 0.0155. As noted above

(5.5), computing the induced L2 gain entails applying a bisection where the RDE is integrated

backward from Y (T)= 0. Fig. 5.1 shows the spectral radius of Y (ρ(Y )) on [0,T] for the solutions
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corresponding to γLB (red dashed) and γUB (blue solid). As expected, the solution for γUB exists on

[0,T]. On the contrary the RDE solution associated with γLB fails to exist on the entire horizon. In

fact, it grows unbounded at t0 ≈ 0.015 when integrating backward from T.
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Figure 5.1: Spectral radius of Y for the upper and lower bound cases.

5.1.2 Hamiltonian dynamics

A two-point boundary value problem is used in the proof of Theorem 5.1, and this section briefly

reviews a related useful result. First consider the following dynamics on [0,T]:[
ẋ∗(t)

λ̇(t)

]
= H(t)

[
x∗(t)

λ(t)

]
, (5.11a)

H :=
[

A 0

−Q −A>

]
+

[
−B

S

]
R−1

[
S> B>

]
. (5.11b)

The matrix H is the time-varying Hamiltonian associated with the RDE in (5.8). Denote with Φ

the associated state transition matrix. Then, given any final condition (x∗(T),λ(T)), the solution

to (5.11) can be written as: [
x∗(t)

λ(t)

]
=Φ(t,T)

[
x∗(T)

λ(T)

]
. (5.12)

Next define a generalised quadratic cost function J∗(d, x0, t0) by:

J∗(d, x0, t0) := x(T)>Fx(T)+
∫ T

t0

[
x(t)
d(t)

]> [
Q(t) S(t)
S(t)> R(t)

][
x(t)
d(t)

]
dt, (5.13a)

subject to: ẋ = Ax+Bd with x(t0)= x0. (5.13b)

Note that the generalised cost J∗ differs from the cost J defined in (5.3) in that it allows for a non-

zero initial condition x0 at some time t0 ∈ [0,T]. The next lemma provides a useful relationship

between the generalised cost J∗(d, x0, t0) and the solution of the Hamiltonian dynamics.
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Lemma 5.1. Let (Q,S,R,F) be given and let (x∗,λ) be a solution of (5.12) from any boundary

condition satisfying λ(T)= Fx∗(T). For t0 ∈ [0,T], define the signal:

d̄ :=
 0. t < t0,

−R−1(t)(S(t)>x∗(t)+B(t)>λ(t)). t ≥ t0.
(5.14)

Then J∗(d̄, x∗(t0), t0)= x∗(t0)>λ(t0), where:[
x∗(t0)

λ(t0)

]
=Φ(t0,T)

[
x∗(T)

λ(T)

]
. (5.15)

Proof. Note first that the Hamiltonian dynamics (5.11) can be re-written using the definition of

d̄ from (5.14) as follows: [
ẋ∗

λ̇

]
=

[
A 0

−Q −A>

][
x∗

λ

]
−

[
−B

S

]
d̄. (5.16)

Thus, x∗ satisfies the LTV dynamics in (5.13b) with initial condition x∗(t0). Next, use the definition

of d̄ and the Hamiltonian dynamics to show the following relation:[
x∗
d̄

]>[
Q S
S> R

][
x∗
d̄

]
=−x∗>(λ̇+ A>λ)− (ẋ∗− Ax∗)>λ, (5.17a)

=− d
dt

(x∗>λ). (5.17b)

Use this relation to rewrite the generalised cost as:

J∗(d̄, x∗(t0), t0)= x∗(T)>Fx∗(T)−
∫ T

t0

d
dt

(
x∗(t)>λ(t)

)
dt. (5.18)

Integrate the last term and apply the boundary condition λ(T)= Fx∗(T) to yield J∗(d̄, x∗(t0), t0)=
x∗(t0)>λ(t0).

�

5.2 An algorithm for constructing worst-case disturbances on
finite horizons

According to Theorem 5.1, if there is no solution to the RDE in (5.8), then the performance

associated with the quadratic cost J is not verified. The objective of this section is to derive an

input signal which confirms that the defined performance is not achieved. First, an analytical

expression of the worst-case signal is derived in Section 5.2.1 in terms of the Hamiltonian

dynamics associated with the RDE. However, a straightforward implementation of this result

features numerical issues commented on therein. This observation leads to a numerically reliable

algorithm, presented in Section 5.2.2, which exploits the solution of the RDE.
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5.2.1 Theoretical construction

Consider first the instances when a solution Y to the RDE does not exist. Note that the assump-

tion R(t)≺ 0 for all t ∈ [0,T] ensures R is always invertible and hence the RDE is well-defined.

Therefore, the only reason for which there is no solution to the RDE is that Y becomes unbounded

at a certain time inside the finite horizon. This was seen in Fig. 5.1 of Example 5.1, where the

solution Y (t) associated with γLB became unbounded (ρ(Y ) →∞) as t → t0 > 0 when integrat-

ing backward from Y (T) = 0. Prompted by this observation, the following lemma proposes an

analytical expression for the worst-case disturbance.

Lemma 5.2. Let (Q,S,R,F) be given with R(t)≺ 0 for all t ∈ [0,T]. Assume the associated RDE in

(5.8) has a solution only in the interval (t0,T], with t0 > 0. Then, there exists a non-trivial input

signal d̄ ∈L
nd
2 [0,T] such that J(d̄)= 0.

Proof. Consider the Hamiltonian dynamics (5.11) on the horizon [t0,T] and the associated state

transition matrix Φ(t,T) (5.12). Next define the matrix functions X1 and X2 by:[
X1(t,T)

X2(t,T)

]
:=Φ(t,T)

[
I

F

]
=

[
Φ11(t,T) Φ12(t,T)

Φ21(t,T) Φ22(t,T)

][
I

F

]
. (5.19)

Here both X1 and X2 have nx rows so that the partitioning is compatible with the states

vector
[ x∗
λ

]
. It can be shown that the RDE solution with boundary condition Y (T)= F satisfies

Y (t)= X2(t,T)X1(t,T)−1 for values of t ∈ [0,T] where the RDE solution exists [218].

By hypothesis, the RDE cannot be integrated backward from Y (T)= F in the interval [0,T].

Specifically, it is assumed that Y only exists in the interval (t0,T]. Note that Φ(t,T) is uniformly

bounded in t and this implies that X2(t,T) is also uniformly bounded in t. Hence Y (t) becomes

unbounded as t → t0 if and only if X1(t0,T) is singular. Thus, there exists a non-trivial vector v

such that X1(t0,T)v = 0. Setting x∗(T)= v and λ(T)= Fv, a solution of (5.12) can be determined

as follows: [
x∗(t)

λ(t)

]
=Φ(t,T)

[
v

Fv

]
=

[
X1(t,T)

X2(t,T)

]
v. (5.20)

Note that for this solution it holds x∗(t0)= X1(t0,T)v = 0.

Construct d̄ based on (5.14) using the solution to the Hamiltonian dynamics given in (5.20).

Apply Lemma 5.1 to show that J∗(d̄,0, t0)= 0. Note finally from (5.16) that the response of the

original LTV system (5.1) with input d̄ and initial condition x(0)= 0 is given by x(t)= 0 for t < t0

and x(t)= x∗(t) for t ≥ t0. As a consequence, it holds that J(d̄)= J∗(d̄,0, t0)= 0, which proves the

statement. �

The proof of Lemma 5.2 is constructive, in that it suggests a strategy to construct the worst-

case disturbance d̄ based on the solution (5.20) of the Hamiltonian dynamics. Next, a pseudocode

for a straightforward implementation of the proposed algorithm is provided.
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Algorithm 5.1. Construction of d̄ based on simulation of the Hamiltonian dynamics

Outputs: worst-case signal d̄.

Inputs: (Q,S,R,F) such that a solution Y (t) exists for t ∈ (t0,T], t0 > 0.

1. Step-1. Calculate the state transition matrix Φ(t,T) of Eq. (5.11) and

compute X1(t0,T)=Φ11(t0,T)+Φ12(t0,T)F.

2. Step-2. Solve the eigenvalue problem for X1(t0,T) and determine the eigenvector v associated

with the eigenvalue with the smallest magnitude.

3. Step-3. Use Φ(t,T) from Step-1 and Eq. (5.20) to compute (x∗,λ).

4. Step-4. Use Eq. (5.14) to build d̄.

The main issue with Algorithm 5.1 arises from Step-1, which requires computing the state

transition matrix of the Hamiltonian dynamics. This is achieved by simulating (5.11) for a set of

linearly independent boundary conditions at t = T (single-point boundary conditions). However,

it is known that for LTI systems and quadratic cost functions the eigenvalues of the constant

matrix H are symmetric about the imaginary axis [269]. This will compromise the accuracy in

predicting the worst-case signal, since the procedure relies on simulating a system with unstable

dynamics.

Example 5.2. The induced L2 gain for the LTI system (5.10) introduced in Example 5.1 is

studied. A generic finite horizon [0,T] is considered, and the bisection algorithm is first applied to

determine guaranteed bounds on the performance objective for different T. Algorithm 5.1 can be

used to compute the worst-case disturbance from the cost function matrices (Q,S,R,F) associated

with the performance lower bound γLB. Fig. 5.2 shows a comparison between γLB (obtained via

bisection using the RDE) and γd = ||ē||2,[0,T]

||d̄||2,[0,T]
, where ē is the output of (5.10) corresponding to the

input signal d̄ given by Algorithm 5.1.

It can be noted that when small finite horizons are considered (T ≤ 2s), the two values are

practically the same, that is, Algorithm 5.1 accurately provides the worst-case signal d̄. But as

T increases, the gain γd is markedly different from the one obtained via bisection. Given that

the latter provides a guaranteed lower bound on the metric, it is inferred that the calculation

underlying γd is inaccurate.

This result can be understood by considering the Hamiltonian H associated with (5.10), which

is time-invariant and whose spectrum, irrespective of the final time T, has always two eigenvalues

on the imaginary axis and two on the real axis (symmetric about the imaginary axis). For example,

for T = 10, the two pairs of eigenvalues are respectively ± 0.29i rad
s and ± 10.05 rad

s . As the finite

horizon increases, the integration of the associated dynamics (Step-1 of Algorithm 5.1) is performed

on a larger time window. Thus, the accuracy in computing the state transition matrix deteriorates
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Figure 5.2: Worst-case L2 gain from Algorithm 5.1 vs. guaranteed γLB for different horizons T.

due to the unstable dynamics. Consequently, X1(t0,T) and its eigenvector v (Step-2) are also poorly

estimated, and this explains why the worst-case disturbance is not well captured.

5.2.2 A numerically robust construction of worst-case disturbance

The goal here is to propose an algorithm for the computation of d̄ which is robust to the numerical

issues highlighted in Sec. 5.2.1. The driving idea is to exploit directly the knowledge of the

solution Y of the RDE in the fraction of the finite horizon where it does exist. Let us first prove

the following matrix algebra property which will be used later.

Lemma 5.3. Let M ∈Sn and v,w ∈Rn. Then it holds:

|v>Mv−w>Mw| ≤ σ̄(M)
[||v||+ ||w||] ||v−w||. (5.21)

Proof. The symmetry of M implies that w>Mv = v>Mw. This can be used to show the following

relationship:

v>Mv−w>Mw = (v−w)>M(v+w). (5.22)

This leads to the following bound:

|v>Mv−w>Mw| = |(v−w)>M(v+w)|,
≤ ||M(v+w)|| ||v−w||,
≤ σ̄(M)

[||v||+ ||w||] ||v−w||.
(5.23)

The first inequality follows (5.22) and Cauchy-Schwartz inequality. The second inequality follows

from the definition of σ̄(M). The last inequality is an application of the triangle inequality. �

The following lemma is central for the goal of the section. The statement bears similarities

with the one of Lemma 5.2, but crucially the proof allows for an alternative construction of the

disturbance that does not entail simulating H.
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Lemma 5.4. Let (Q,S,R,F) be given with R(t) ≺ 0 for all t ∈ [0,T]. Assume the associated RDE

in (5.8) has a solution only in the interval (t0,T], with t0 > 0. Then for all ε > 0 there exists a

non-trivial disturbance d̄ε such that J(d̄ε)>−ε||d̄ε||22,[0,T], i.e. condition 1 in Theorem 5.1 fails to

hold.

Proof. By hypothesis, the solution Y (t̂0) to the RDE exists for any t̂0 in (t0,T]. Let (w, g) denote

the eigenpair of Y (t̂0) associated with its largest eigenvalue in magnitude, i.e. Y (t̂0)w = gw,

g = ρ(Y (t̂0)), and ||w|| = 1 without loss of generality. It holds that ρ(Y (t̂0)) →∞ as t̂0 → t0 (as

discussed in the proof of Lemma 5.2 and observed in Example 5.1).

Next, recall the definition for (X1, X2) given in (5.19) and that Y (t) = X2(t,T)X1(t,T)−1 for

values of t where Y exists. Let x∗ and λ be the solution of the Hamiltonian dynamics with the

following boundary condition:[
x∗(T)

λ(T)

]
=

[
I

F

]
z, where z := X1(t̂0,T)−1 w

g
. (5.24)

Then it is possible to construct d̄ as in (5.14) using the solution (x∗,λ) and t0=t̂0. Without loss

of generality d̄ is scaled such that ||d̄||22,[0,T] = 1. Note that the signal d̄ depends on the choice of

t̂0 due to the boundary conditions in (5.24), i.e. d̄ = d̄ t̂0
. The subscript t̂0 will be omitted in the

sequel for clarity.

The solution of the Hamiltonian dynamics at t = t̂0 is given by:[
x∗(t̂0)

λ(t̂0)

]
=

[
X1(t̂0,T)

X2(t̂0,T)

]
z =

[
I

Y (t̂0)

]
w
g
=

[
w
g

w

]
. (5.25)

It follows from Lemma 5.1 that J∗(d̄, x∗(t̂0), t̂0) = w>w
g . It is important to note, however, that

J∗(d̄, x∗(t̂0), t̂0) 6= J(d̄) due to the non-zero initial conditions. To better appreciate this, note that

the solution of the Hamiltonian dynamics satisfies the following on [t̂0,T]:

ẋ∗ = Ax∗+Bd̄, with x∗(t̂0)= w
g

. (5.26)

However, applying d̄ to the original LTV system (5.1a) from x(0)= 0 yields x(t)= 0 on [0, t̂0) and

the following dynamics on [t̂0,T]:

ẋ = Ax+Bd̄, with x(t̂0)= 0. (5.27)

To address this aspect and hence complete the proof, J(d̄) is first rewritten as follows:

J(d̄)=x(T)>Fx(T)+
∫ T

t̂0

[ x
d̄
]> [

Q S
S> R

][ x
d̄
]
dt,

=J∗(d̄, x∗(t̂0), t̂0)+χ,

=w>w
g

+χ,

(5.28)
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where the term χ is given by:

χ := x(T)>Fx(T)+
∫ T

t̂0

[ x
d̄
]> [

Q S
S> R

][ x
d̄
]
dt− x∗(T)>Fx∗(T)−

∫ T

t̂0

[
x∗
d̄

]> [
Q S
S> R

][
x∗
d̄

]
dt. (5.29)

Using Lemma 5.3, this error term can be bounded as follows:

|χ| ≤
[
σ̄(F)+ (T − t̂0) maxt∈[t̂0,T] σ̄

([
Q(t) S(t)
S(t)> R(t)

])][
||x||∞,[t̂0,T] +||x∗||∞,[t̂0,T]

]
||x− x∗||∞,[t̂0,T]. (5.30)

Both ||x||∞,[t̂0,T] and ||x∗||∞,[t̂0,T] are uniformly bounded as t̂0 → t0 because d̄(=d̄ t̂0
) is selected

to satisfy ||d̄||22,[0,T] = 1. Moreover, x(t)− x∗(t)=−Ψ(t, t̂0) w
g so that ||x− x∗||∞,[t̂0,T] → 0 as t̂0 → t0.

Therefore, it follows that |χ|→ 0 as t̂0 → t0.

Finally, it follows from (5.28) that |J(d̄)| → 0 as t̂0 → t0. Thus, for all ε > 0 there exists a

t̂0 ∈ (t0,T] such that d̄(=d̄ t̂0
) yields ||d̄||2,[0,T] = 1 and J(d̄)>−ε.

�

Lemma 5.4 is also constructive, because the worst-case disturbance can be obtained by

computing x∗ and λ with initial conditions (5.25). However, a straightforward implementation of

this would still require the integration of the Hamiltonian H. The task of simulating the states of

the Hamiltonian dynamics only without incurring numerical issues has been considered in the

literature. For example in [38, 67] a Riccati transformation of the Hamiltonian is proposed (but

note that this would have not applied to Algorithm 5.1, as the latter requires computing the state

transition matrix of H).

Another approach is taken here, prompted by the observation that if
[

x∗(T)
λ(T)

]
=

[
I
F

]
z then:

[
x∗(t)

λ(t)

]
=

[
X1(t,T)

X2(t,T)

]
z =

[
I

Y (t)

]
X1(t,T)z. (5.31)

This means that λ(t) = Y (t)x∗(t) for all t ∈ [t̂0,T], which allows to express the disturbance d̄

equivalently in terms of (x∗,Y ) rather than (x∗,λ). Specifically, for t ∈ [t̂0,T] it holds:

d̄ =−R−1(S>x∗+B>λ),

=−R−1(S>+B>Y )x∗.
(5.32)

The states x∗ of the Hamiltonian dynamics are thus given by:

ẋ∗ = [A−BR−1(S>+B>Y )]x∗. (5.33)

Eq. (5.33) can be used now to compute x∗ without direct integration of H. Then, the states x∗ and

the RDE solution Y can be used to construct the disturbance according to (5.32). These formulae

implicitly reconstruct also the co-states as λ(t)=Y (t)x∗(t).

The following pseudocode recaps the main steps of the proposed algorithm to compute the

worst-case disturbance without numerical integration of the Hamiltonian dynamics.
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Algorithm 5.2. Construction of d̄ exploiting the solution of the RDE

Outputs: worst-case signal d̄.

Inputs: (Q,S,R,F), the associated RDE solution existing on (t0,T], and some time t̂0 ∈ (t0,T].

1. Step-1. Evaluate the eigenpair (g,w) associated with the largest (in magnitude) eigenvalue

of Y (t̂0) to compute BC.

2. Step-2. Simulate x∗ with Eq. (5.33) from the initial condition x∗(t̂0)= w
g .

3. Step-3. Use Φ(t,T) from Step-1 and Eq. (5.20) to compute (x∗,λ).

4. Step-4. Use x∗ and Y to construct d̄ using Eq. (5.32).

Note that with this approach only nx states are simulated (Step-2). This leads to a reduction

in the run time compared to the calculation of the state transition matrix of H in Algorithm 5.1,

since H has double size and it had to be computed there for 2nx linearly independent initial

conditions. More importantly, Algorithm 5.2 is not subject to the aforementioned numerical issues

because the states x∗ are not obtained by simulation of the Hamiltonian, but rather by exploiting

the knowledge of the solution Y of the RDE.

Example 5.3. The induced L2 gain for the LTI system introduced in Example 5.1 is considered

again. As done in Example 5.2, a comparison between γLB (obtained via bisection) and γd = ||ē||2,[0,T]

||d̄||2,[0,T]

is considered. The difference is that ē corresponds now to the input signal d̄ given by Algorithm

5.2. Fig. 5.3 shows that Algorithm 5.2 is capable of accurately predicting the worst-case signal.

Indeed γd matches the guaranteed lower bound γLB for all the finite horizons.
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Figure 5.3: Worst-case L2 gain from Algorithm 5.2 vs. guaranteed γLB for different horizons T.
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5.3 Gust analysis of the FLEXOP demonstrator

This section shows an example of application of the finite horizon worst-case LTV analysis

to investigate performance of the FLEXOP aircraft demonstrator (described in Section 2.3.4).

Namely, the susceptibility to atmospheric gusts during a prototypical flight test manoeuvre is

studied. After describing the problem in Section 5.3.1, the study will investigate the importance

of capturing the time-varying nature of the problem (Section 5.3.2) and the difference between

open and closed-loop performance (Section 5.3.3). Finally, a comparison of this approach with

traditional gust analyses employed in aircraft design is performed in Section 5.3.4.

5.3.1 Manoeuvre definition

In Fig. 5.4 a schematic representation of the part of the flight test of interest for the analyses is

reported. This consists of three sections: first a uniformly accelerated (AC) level flight manoeuvre

(dashed) is performed to increase the speed from V1 to V2, followed by a constant speed level

flight (where the flutter controller is tested), and finally a uniformly decelerated (DC) manoeuvre

(dash dot) where the speed of the aircraft is decreased. The scenario studied here is the leg AC,

of which an enlargement is shown. The manoeuvre starts at t = 0 with an initial speed V1 and

is concluded when V = V2 at T = 2 Lac
V1+V2

, where Lac is the covered distance and Vm = V1+V2
2 the

mean speed. The following values will be considered: V1 = 45 m
s , V2 = 49 m

s , and Lac = 250m (hence

T = 5.3s).

Figure 5.4: Detail of the analysed manoeuvre.

The modelling starting point is represented by the reduced order LTI models (38 states)

[155] obtained linearising around the trajectory AC the original nonlinear model capturing

the interaction between rigid body, elastic dynamics, and unsteady aerodynamic [257]. These

models provide the state-matrices A, B, C, and D at fixed times, which are linearly interpolated

with respect to time in the horizon [0,T]. This allows to finally build up the LTV model GLTV ,

capturing the variability of the aircraft properties in the speed interval [V1,V2]. Consistently with
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the generic LTV model defined in (5.1), the input and output vectors considered in the analyses

will be denoted respectively by d and e. The disturbance d assumed here is a uniform vertical

wind gust. Since the models do not have dedicated input channels for gust, this is accounted for by

means of the control surface inputs δail−L• and δail−R•, with • =1,2,3,4 (the numbering of control

effectors was indicated in Fig. 2.7). The premise for this is that, to a first approximation, the

effect of a vertical gust is to change the local angle of attack of the wing, thus it can be captured

as an equivalent rotation of the control surfaces (which modifies the curvature of the section,

hence resulting in a similar effect to a change in the angle of attack). Therefore, the input d has

units of speed (i.e. m
s ). Then, by means of first approximation formulae [212], this is scaled and

will finally result in control surfaces rotation units (i.e. rad). When a uniform symmetric gust

is considered, the control surfaces have all the same rotation, i.e. δail−L• = δail−R• = d, which

is the case studied here. This is done for exemplification, but variations of the wing’s sections

and gust properties along the span can easily be modelled. As for the outputs e, two different

cases will be studied: vertical acceleration at the tip of the right wing az−tR (specifically, at the

sensor R6 depicted in Fig. 2.7) and at the aircraft centre of gravity (CG) az−CG . In both cases, e is

normalised with the gravitational acceleration g. For a better representation and comparison of

the time-domain responses, the signals shown in the plots are adimensionalised and normalised

such that ||d||2,[0,T] = 1.

5.3.2 Finite horizon LTI vs LTV

In this subsection the importance of considering the time-varying feature of the problem in the

assessment of aircraft performance is investigated. The two performance metrics defined in Eqs.

(5.4)-(5.6) (respectively induced L2 and L2-to-Euclidean gains) are analysed, and the bisection

algorithm proposed in Sec. 5.1.1 is applied. The RDE (5.8) is numerically integrated with the

routine ode45 from MATLAB©. Table 5.1 reports the results in terms of upper bounds on the

performance γUB. In the first column the adopted model is defined: G1, Gm, and G2 are the LTI

models at speeds V1, Vm (mid-speed), and V2 respectively; and GLTV is the LTV model. In the

second and third columns the two performance metrics for az−tR are listed, while for az−CG it is

the fourth and fifth column. It is emphasised that for both LTI and LTV analyses a finite-horizon

problem (of length T = 5.3s) is considered.

It can be inferred from the results that analysing the aircraft manoeuvre with a frozen LTI

approach leads to different results than with the LTV framework. A classic approach when

adopting the former strategy is to consider the LTI plant corresponding to the mid-speed, on the

basis that this sufficiently captures the effect of varying the speed. The results in Tab. 5.1 show

that this is approximately true only for the induced L2 gain (i.e. columns 2 and 4). In fact, by

looking at columns 3 and 5 it can be noted that the predictions obtained with GLTV are closer to

the ones with G2 (i.e. the plant at the final speed).

By comparing the performance for the two outputs (tip and CG accelerations), it is also
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Table 5.1: Comparison of finite horizons LTI and LTV performance based on L2 and Euclidean
gains.

e az−tR az−CG

Metric ||G||2 ||G||E ||G||2 ||G||E

LTI

G1 12.7 21.9 1.7 2.1

Gm 18.3 26.1 2.4 2.8

G2 31.1 34.7 4.3 4.3

LTV GLTV 20 32 2.7 3.8

column 1 2 3 4 5

observed a substantial difference between the values, which can be interpreted as a measure

of the flexibility of the wing. Complementing the quantitative information from Table 5.1, it is

possible to identify the worst-case signals for both performance metrics. In particular, in Fig. 5.5

the worst-case signals for the induced L2 gain of az−CG obtained with Gm and GLTV are plotted,

whereas Fig. 5.6 shows those corresponding to the Euclidean norm of az−tR . The cases for G1 and

G2 are not shown here but have disturbance profiles similar to that of Gm.
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Figure 5.5: L2 gain worst-case disturbances for az−CG (LTI vs. LTV).

From the figures it can be seen that the worst-case disturbance corresponding to the LTI

system is different from the LTV case. This is more markedly noticeable from Fig. 5.5, but can

also be appreciated in Fig. 5.6 where the discrepancies in the final part of the input signal have

a large effect on the performance (recall that its value depends on the output e at time T only).

Thus it is confirmed the importance of capturing the time variance of the system, anticipated by

Table 5.1, in analysing the considered manoeuvre.
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Figure 5.6: L2-to-Euclidean gain worst-case disturbances for az−tR (LTI vs. LTV).

5.3.3 Open-loop vs. Closed-loop manoeuvres

The open-loop model GLTV is augmented with an H∞ controller designed to suppress the onset

of flutter at the open-loop flutter speed Vf l and thus extend the FLEXOP demonstrator valid

flight region 2. A description of the synthesis strategy is provided in [155] (Section IV describes

the University of Bristol team controller). Briefly, the control design process uses as performance

channels the modal speeds for the first two flexible modes. The controller is a single LTI state-

space system with 4 states, 4 inputs (pitch rate q, az−CG , az−tR , az−tL) and 2 outputs (δail−L4

and δail−R4).

For ease of comparison, the previous results from the open-loop (OL) LTV analysis are

repeated in Table 5.2 together with the results from the application of the LTV analysis method

to the closed-loop (CL) case. The associated worst-case signals will be displayed and discussed

afterwards.

Table 5.2: Comparison of OL and CL performance of GLTV based on L2 and Euclidean gains.

e az−tR az−CG
Metric ||G||2 ||G||E ||G||2 ||G||E

OL 20 32 2.7 3.8
CL 4.3 21.2 0.7 1.8

A number of observations can be made with reference to the results in Table 5.2. It is first

seen that the controller is able to significantly reduce all the gains. This is pronounced in the

induced L2 gain case (columns 2 and 4), for which it can be noticed also that the gap between

2The author is thankful to Sérgio Waitman for providing the controller used in the analyses.
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||G||tR2 and ||G||CG
2 is reduced. This was previously described as a measure of the flexibility of the

system, and thus the analyses showcase the ability of the controller to tackle it. When looking at

the Euclidean gain (columns 3 and 5), there is less improvement between OL and CL case, and

the gap between ||G||tRE and ||G||CG
E has actually increased. Note that this result can be motivated

by considering the rationale behind the design technique employed for the investigated controller.

It is based on the H∞ formalism, which aims at reducing the frequency response peak of the

closed loop and thus is expected to enhance the performance for the induced L2 gain, and not

necessarily for others. In conclusion, the analyses are able to point out performance metrics for

which the controller is less effective and can thus inform a redesign if these are deemed important

in the tests.

Additional insights are provided by calculating the worst-case disturbance that maximises the

energy of the selected output. Fig. 5.7 shows a comparison between the open-loop and closed-loop

cases for the CG acceleration. A substantial difference is observed in the time-domain profile

of the signals. Specifically, the CL case has a (dominant) lower frequency of approximatively

10 rad
s , whereas the OL has a frequency of about 50 rad

s , close to that of the first bending modes

responsible for the onset of flutter [155]. This shows that the controller achieves the reduction in

the closed-loop L2 gain by reducing the energy associated with the first elastic modes (which

was indeed the aim of the design process as mentioned before). Compared to the OL case, the

worst-case gust associated with the CL excites lower frequency modes of the system, which have

a lower energy content and thus results in the improved gain. It is also interesting to note that in

the CL case the disturbance acts on a shorter time window (t0 ≈ 2s).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5

t [s]

d
 [
−

]

 

 

OL
CL

Figure 5.7: L2 gain worst-case disturbances for az−CG (OL vs CL).

This latter feature was also observed in other tests that were performed comparing the open

and closed loops. It is interpreted here by observing that, from the point of view of maximising

the energy of the output, it is more advantageous for the gust to act at later times since the
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aircraft increases its speed and thus as time progresses it becomes more deformable. This is true

in general, but in the CL case the advantage in acting at higher speeds is accentuated due to the

effect of the controller of reducing flexibility. To support this explanation, Fig. 5.8 shows the same

comparison displayed in Fig. 5.7, where now a deceleration is considered (DC in Fig. 5.4), that is

the manoeuvre starts at V2 and finishes when V =V1. Note that the signal d̄ for the CL case is

now predicted to act from the first time steps of the horizon (t0 ≈ 0s), and to converge (sooner

than OL) to very small values as time increases. The tests in Figs. 5.7-5.8 thus points out that

the activation time t0 of the worst-case signal (5.14), corresponding to the last time for which a

solution to the RDE (5.8) exists, can indeed have a physical meaning in relation to the studied

problem.
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Figure 5.8: L2 gain worst-case disturbances for az−CG (OL vs CL). Deceleration from V2 to V1.

Finally, the sensitivity of the shape of the worst-case signal to the length of the finite horizon

T is considered. Based on the nominal manoeuvre defined in Sec. 5.3.1, its value has been set to

5.3s so far. However, off-nominal conditions in the mission might result in a different value (e.g.

because of a different acceleration, and thus covered distance Lac, due to a difference performance

of the engine). In order to investigate the effect on the results, the disturbances predicted for the

closed loop case for larger horizons lengths (20%, 50%, and 100% larger than the nominal value

T0, respectively) are considered. The results are shown in Fig. 5.9, where also the case of nominal

T0 (corresponding to the curve CL in Fig. 5.7) is reported. For a better comparison, the time t is

adimensionalised for each curve with the corresponding horizon length (reported in the legend).

It can be observed that the disturbances are qualitatively very similar. In fact, they present

the same dominant frequency and distinctive signal features (e.g. higher frequency component

towards the end of the horizon). Moreover, the L2 gains corresponding to each curve are within

1.5 % with respect to the performance metric associated with the nominal case (Table 5.2). It can

then be concluded that, for this example, the algorithm is robust to changes in the horizon T.
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Figure 5.9: Effect of T on the L2 gain worst-case disturbances for the CL system.

This property, also observed for other analysed scenarios, is advantageous because the gained

insights (as those from Fig. 5.7) are not limited to specific cases but have a more general validity.

5.3.4 Comparison with standard gust performance analysis

The results obtained with this framework are compared now with those from a standard approach

widely used in the aerospace field for gust analysis. Atmospheric turbulence is typically considered

for aircraft design purposes in one of the two idealised categories [110, 256]: discrete gusts, where

the gust speed varies in a deterministic manner (provided in time domain); and continuous

turbulence, where the gust velocity is assumed to vary randomly (provided in frequency domain).

The former case is considered here, of which the most common example is the so called 1-cosine

gust. This provides the spatial variation of the vertical gust as:

wg(xg)= wg0

2

(
1−cos

(2πxg

Lg

))
0≤ xg ≤ Lg, (5.34)

where wg0 is the value of the peak gust velocity and Lg is the gust length. For a given energy

associated with the gust signal, Eq. (5.34) describes a set of gusts which vary depending on the

gust length Lg. The comparison performed in this subsection is then between the performance

achieved when the aircraft is subject to this set of gust profiles and that obtained under the

worst-case signals computed with Algorithm 5.2.

Since the purpose is to simulate the effect of the idealised gust (5.34) on the LTV system GLTV

(described by means of its state-space representation), the gust velocity expression needs first

to be transformed from a spatial into a temporal function (Fig. 5.10). This can be done recalling

that the manoeuvre features a constant acceleration, and thus xg is a quadratic function of time

in the finite horizon [0,5.3]s. The temporal signal will then be denoted by dg. Moreover, since a

comparison with the worst-case signals computed with Algorithm 5.2 is sought, the signal dg is
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normalised such that it is of unitary energy, i.e. ||dg||2,[0,T]=1, and this fixes wg0. Note that this

practice is different from the usual convention in gust analysis [256] and is aimed at making

a straightforward comparison in terms of the performance gains used in the previous sections

(recall from the definitions (5.4)-(5.6) that the gains measure directly output quantities when the

input has unitary energy). This is without loss of generality and other options could have been

similarly pursued. A family of 15 gusts for Lac
15 ≤ Lg ≤ Lac is computed and plotted in Fig. 5.10.
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Figure 5.10: Set of 1-cosine gust signals for different gust length Lg.

This set of gusts is then simulated in the open-loop LTV plant GLTV presented in Sec.

5.3.2. The two figures Fig. 5.11(a) and Fig. 5.11(b) report the two performance metrics L2 and

L2-to-Euclidean as a function of the gust length Lg for az−tR and az−CG respectively.

The performance gains read off from the y-axis in Fig. 5.11 are markedly different from

those relative to the OL case in Table 5.1 (i.e. [20,32,2.7,3.8]). These differences are not only

quantitative, but also qualitative. For example, it can be noted that for the tip acceleration

(Fig. 5.11b) these analyses point out a larger value for ||G||2 than for ||G||E, whereas Table 5.1

indicated the opposite.

The motivation for this aspect is that a mathematically guaranteed worst-case signal is

provided by the developed analysis method (i.e., Algorithm 5.2), thus the corresponding results

are associated with the largest possible gain for the studied problem. Further, the computed

disturbance is a function of the particular performance metric and output considered (examples of

this were given in Sec. 5.3.2). In view of this, it is thus expected that the performance associated

with the analytic worst-case gust d̄ will be worse than other idealised gusts which have a

given shape independent of the particular performance problem studied. An example of the

latter approach is the one proposed in [138], where genetic algorithm optimization was used

to determine, for pre-defined ranges of flight conditions, the parameterised 1-cosine (i.e. with
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Figure 5.11: L2 and L2-to-Euclidean gains as a function of the gust length.

fixed shape) gusts able to degrade the performance with respect to monitored quantities (e.g.,

bending moments, load factors). As intrinsic to these approaches, the worst-case (broadly speaking,

because no globally optimum solution of the optimization is guaranteed to be found) character

depends on the particular shape guessed for the gust. On the contrary, the approach presented

here allows to construct the shape of the critical input signal (in this case exemplified by a gust)

for a very generic definition of the performance (defined by means of the cost in Eq. 5.3, and which

includes the classic monitored quantities [138] as particular cases). Moreover, a mathematical

guarantee that the signal will attain the worst possible performance holds.

It is typical of worst-case analyses based on robust analytical methods that the computed

signals do not usually have associated with them a probability of occurrence. Thus, the usual

trade-off between analysing for cases that are very probable (but that yield optimistic results)

versus analysing for a potentially very improbable case (but providing guaranteed worst-case

answers) applies in here. In any case, once the gap between the predictions obtained with

standard approaches and the actual worst-case is assessed, the proposed framework allows to

construct the signal determining such a performance degradation. This knowledge can in turn

drive additional investigations focused on specific objectives (e.g. determining the largest wing

tip deflections).

Future research can look at more physical worst-case gust disturbances, and attempt to

connect them with more elaborate gust models from the literature (e.g. Dryden wind turbulence

model). In addition to the gust example proposed here, other applications to the analysis and

design of very flexible aircraft are envisaged. For example, the active load alleviation problem,

which has been drawing increasing interest in the community [258], can benefit from the de-

veloped analysis framework. This can indeed be used to identify worst-case manoeuvres which

121



CHAPTER 5. WORST-CASE ANALYSIS OF FINITE HORIZON LTV SYSTEMS

prevent from achieving the performance targets and can in turn inform redesign of the feedback

loop. It is finally noted that the shapes of the signals shown in this section (see for example

Fig. 5.6) bear qualitative similarities to those investigated in the works [267, 268] where the

concept of Matched Filter Theory was used for analysis of gust loads on aircraft. This can be

ascribed to the fact that this theory, from the signal processing community, can provide a means

to predict responses of the system maximising some prescribed metric under input (e.g. energy)

constraints [186]. This observation also points out that the framework presented in this Chapter

has in principle the potential to be applied in different contexts from the one in which it has been

conceived, where a similar problem is of interest. An example is the design of input signals for

system identification with the goal to maximise the information extracted from the experiments.

5.4 Chapter summary

This Chapter has investigated the computation of worst-case disturbances associated with the

finite horizon performance of LTV systems.

A generalisation of the strict bounded real lemma stating an equivalence between a bound

on a generic cost function, specifying the performance objective, and the existence of a solution

to the associated Riccati Differential Equation is employed to provide an analytical expression

for the disturbance. It is claimed and motivated with a simple example that a straightforward

implementation of this result features numerical issues due to the need of simulating the

Hamiltonian dynamics. This observation leads to the proposal of a numerically robust algorithm

which exploits the structure of the worst-case signal and the properties of the solution of the RDE.

It is noted that the approach taken here to overcome the problem of simulating the Hamiltonian

is different from previous ones explored in the literature (e.g. based on a Riccati transformation).

A second contribution is the demonstration of the applicability of this finite horizon LTV

analysis approach using a realistic aeronautic case study. The effect of atmospheric gusts on

the performance of the FLEXOP aircraft demonstrator during a leg of the planned flight test

manoeuvre is studied. The analyses allow, for example, to observe the effect of an H∞ controller

designed to actively suppress flutter on the shape of the worst-case gust. Moreover, the provided

results exemplify some of the insights that can be gained with this framework and include a

comparison with the standard 1-cosine approach used for gust analysis in aircraft design.
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6
LIMIT CYCLE OSCILLATIONS IN SYSTEMS WITH UNCERTAINTIES

The increase in flexibility of modern aeronautical structures and the demand for a more

realistic physical description of the system needed to achieve higher performance compel

to contemplate scenarios where the linear hypothesis no longer applies. This has been

assumed so far in the study, with Chapter 5 partially allowing for nonlinear features to be

captured with the introduction of time-varying properties. However, there exist inherently

nonlinear behaviours that can be predicted only by studying the original (nonlinear) dynamics.

This chapter is the first of three which aim at investigating analysis methodologies which

are able to cope with these scenarios in the presence of uncertainties. In here focus is on the

Limit Cycle Oscillation (LCO) phenomenon, which is of great concern for aeroelastic systems.

In fact, while linear flutter is associated with an unstable diverging response, the presence of

nonlinearities might lead to limited amplitude self-excited oscillations, generally named LCOs,

whose investigation is of well-ascertained interest in accomplishing a satisfactory design. The

contribution of the chapter is twofold. First, the combined application of Describing Functions

and µ is proposed to construct worst-case LCO curves and, based on this concept, to perform

LCO tailoring (Section 6.2). Second, a strategy which allows Integral Quadratic Constraints to be

employed for the study of the post-critical behaviour, instead of only for stability as it is typically

done, is developed (Section 6.3). In both cases, application is demonstrated on a benchmark study,

featuring freeplay, for which a wealth of analytical, numerical and experimental results from the

literature are available.

Publications1: [119, 120] Section 6.2; [121, 126] Section 6.3.

1Material published during the PhD which relates to the content of this chapter.

123



CHAPTER 6. LIMIT CYCLE OSCILLATIONS IN SYSTEMS WITH UNCERTAINTIES

6.1 Mathematical background

6.1.1 Describing Functions

The analysis and design of linear systems pivots on a complex-valued function, the frequency

response. However, this function cannot be defined for nonlinear systems, hence frequency-

domain techniques cannot be directly applied. The Describing Functions (DF) method [87] aims

to overcome this obstacle by providing in these cases an alternative definition of frequency

response. This method is mostly applied to systems which can be recast in the framework of

Fig. 6.1, characterised by having separable linear and nonlinear parts connected in a feedback

configuration. In the references [81, 136] the usage of DF for studying problems where G is

uncertain was pioneered.

Figure 6.1: Feedback representation of a nonlinear system for DF analysis.

The concept of quasi-linearisation is the basis of the application of DF. By quasi-linearisation

it is meant in this context that the approximation of the nonlinear operator is done through

a linear one which depends on some properties of the input v. By doing so, the dependence of

the response on the input, which is a basic nonlinear feature, is captured, and the advantages

of a linear approximation are retained without the constraint of requiring small departures of

the variables from the linear values. The application of the DF method requires for the quasi-

linearisation process to specify the input signal form. In analogy to what is done in frequency-

domain analysis, it is widely employed the concept of sinusoidal-input describing function, in

the following simply abbreviated as DF. The interest in periodic signals here is mainly dictated

by the aim to detect and analyse LCOs, but in general libraries of describing functions exist for

different signal’s forms [87].

Consider a sinusoidal signal v = A sin(ωt) at the nonlinear element. If the nonlinearity

is single-valued (i.e. only one output is possible for any given value of the input, also called

memoryless), the output w is a periodic function and thus can be expanded using Fourier series:

w(t)= a0

2
+

∞∑
n=1

[an(A,ω)cos(nωt)+bn(A,ω)sin(nωt)] , (6.1)

where an and bn are the Fourier coefficients and are function of A and ω (this dependence will be

omitted when clear from the context). If an odd nonlinearity (i.e. the relation between the input
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and output of the nonlinear block is symmetric about the origin) is considered, then a0=0. This

assumption is introduced to further simplify (6.1), without loss of generality.

The key hypothesis of the DF method is that only the fundamental component has to be

retained in the periodic output w. This is an approximation because the output of a nonlinear

element corresponding to a sinusoidal input usually contains higher harmonics. The rationale

underpinning this assumption is that the higher harmonics in the output are filtered out by G,

i.e. the linear element satisfies the low-pass filter condition (or filter hypothesis):

‖G( jω)‖À‖G( jnω)‖ for n ≥ 2. (6.2)

The DF of a nonlinear element is thus the complex fundamental-harmonic gain of a nonlinearity

in the presence of a driving sinusoid of amplitude A and frequency ω:

N(A,ω)= Me j(ωt+θ)

Ae j(ωt) = M
A

e jθ = b1 + ja1

A
,

with M(A,ω)=
√

a2
1 +b2

1 ; θ(A,ω)= arctan
(

a1

b1

)
,

(6.3)

where a1 and b1 are the first Fourier coefficients in (6.1) and both depend on (A,ω). This method

hence consists of treating the nonlinear element of Fig. 6.1 in the presence of a sinusoidal input

as if it were a linear element with a frequency response N(A,ω). Note that the complex gain in

(6.3) can be interpreted as an operator which acts upon a sinusoidal input and gives the phased

sinusoidal output (i.e. proportional plus derivative element), or in other words:

N(A,ω)= b1 + ja1

A
= np(A,ω)+ jnq(A,ω)= np +

nq

ω
s, (6.4)

where the subscripts p and q are used to stress the in-phase and quadrature nature of the gains

of the nonlinearity (and s is the Laplace variable). In [87] it is shown that Eq. (6.4) minimises the

mean-squared error between the output of the approximation and that of the actual nonlinearity

(this property holds also for the DF corresponding to other input signal forms and not only the

sinusoid one).

Another important aspect of the application of DF is that, from a modelling perspective, the

representation in Fig. 6.1 can be fitted into the LFT one (Fig. 3.1) by viewing the N.L. operator as

the uncertainty block [81]. Therefore, application of DF to systems described in an LFT fashion

is straightforward.

While the use of the DF method has been supported by theoretical arguments [26] and

experimental evidences [52], it is important to stress the main assumptions underlying its

application:

• the nonlinear element is time-invariant;

• the actual signal at the input of the nonlinearity has a form resembling the one used to

derive the describing function (e.g. sinusoid);
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• the output of the nonlinear element in response to a sinusoid is periodic (always true when

the nonlinearity is single-valued);

• the linear part of the system acts as a low pass filter, i.e. condition (6.2) is satisfied.

In particular the last assumption is often regarded as critical for a profitable use of this method.

With reference to aeroelastic applications, several works [19, 58, 234] have supported the adoption

of the filter hypothesis with numerical and experimental validation, but this is highly case-

dependent and hence a check on the fulfilment of condition (6.2) is always recommended. For

example, in [151] it was discovered that a large number of harmonics was needed for the analysis

of an aerofoil with nonlinear torsion spring undergoing secondary Hopf (or Neimark-Sacker)

bifurcation, characterised by quasi-periodic response. In these cases, the Harmonic Balance

(HB) method should be employed to correctly predict Limit Cycles. The main idea of the HB

method [69] is to approximate the periodic motion as a Fourier series up to n components (where

n defines the order of the method) and equate the coefficients of each harmonic component on the

two sides of the ordinary differential equations describing the dynamics. This procedure leads to

the resolution of a system of nonlinear equations in the fundamental frequency and the Fourier

coefficients an and bn, which scales in size with n. The (sinusoidal input) Describing Function

method is for this reason also referred to as first-order Harmonic Balance.

Note finally that DF can in principle be used in the presence of more than one nonlinearity

[168, 169]. In practice, its application is more tedious and relevant works where this instance

was considered in the analysis of aeroelastic systems are [184, 198].

6.1.2 Integral Quadratic Constraints

Integral Quadratic Constraints (IQC) is a well established technique to deal with stability and

performance analysis of an LTI system G in feedback connection with a nonlinear and uncertain

system ∆ within a unified framework [170, 259].

Figure 6.2: Feedback G−∆ studied in IQC.

It is said that a vector signal v : [0,T]→Rnv belongs to the space of square integrable func-

tions L
nv
2 [0,∞) if

√∫ ∞
0 v(t)>v(t)dt <∞. The idea then is to describe the operator ∆ : L

nv
2 [0,∞)

→ L
nw
2 [0,∞) by means of an integral quadratic constraint on its input v and output w. Let
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Π : jR→ C(nv+nw)×(nv+nw) be a measurable Hermitian-valued function, commonly named mul-

tiplier and usually chosen among the rational functions bounded on the imaginary axis, i.e.

Π ∈RL(nv+nw)×(nv+nw)
∞ . It is said that the two signals v ∈L

nv
2 [0,∞) and w ∈L

nw
2 [0,∞) satisfy the

IQC defined by Π if: ∫ +∞

−∞

[
v̂( jω)

ŵ( jω)

]∗
Π( jω)

[
v̂( jω)

ŵ( jω)

]
dω≥ 0, (6.5)

where v̂ and ŵ indicate the Fourier transforms of the corresponding signals. A bounded and

causal operator ∆ is said to satisfy the frequency domain IQC defined by Π if the signals v and

w =∆(v) satisfy Eq. (6.5) for all v ∈L
nv
2 [0,∞). This will be denoted here by writing ∆ ∈ IQC (Π).

The next theorem provides a stability condition for the interconnection of G and ∆.

Theorem 6.1. [170] Let G ∈RH∞ and ∆ be a casual bounded operator. Assume for all τ ∈ [0,1]:

1. the interconnection of G and τ∆ is well-posed.

2. τ∆ satisfies the IQC defined by Π.

3. ∃ ε such that [
G( jω)

I

]∗
Π( jω)

[
G( jω)

I

]
≤−εI ∀ω ∈R (6.6)

Then the feedback interconnection of G and ∆ is stable.

In order to numerically verify condition 3 of Theorem 6.1, it is common practice to factorise

the multiplier as:

Π=Ψ∼MΨ, (6.7)

where M = M> ∈Rnz×nz is a real matrix variable (typically sign indefinite) and Ψ ∈RHnz×(nv+nw)
∞

is constructed from pre-selected basis transfer functions. Condition 3 in Theorem 6.1 can then be

equivalently rewritten as:

Φ( jω)∗MΦ( jω)< 0 ∀ω ∈R, (6.8)

with:

Φ( jω)=Ψ( jω)

[
G( jω)

I

]
= CΦ( jω− AΦ)−1BΦ+DΦ, (6.9)

where [AΦ,BΦ,CΦ,DΦ] are the state-matrices of Φ. By exploiting the Kalman-Popov-Yakubovich

(KYP) Lemma [199], it can be proved that (6.8) holds true if and only if there exists a matrix P =

P> such that: [
A>
ΦP +P AΦ PBΦ

B>
ΦP 0

]
+

[
C>
Φ

D>
Φ

]
M

[
CΦ DΦ

]
≺ 0. (6.10)

The power of the KYP Lemma is to transform the infinite set of constraints in (6.8) into the Linear

Matrix Inequality (6.10), which represents the standard way of solving IQC problems. In practice,

this has the cost of introducing the optimisation matrix P whose size grows quadratically with
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the order of G and the dynamics in Ψ. With the aim to mitigate the computational burden, an

alternative solution has been recently proposed [61]. Briefly, the optimisation problem is solved

directly using the frequency-domain inequalities (6.8) starting from an arbitrary frequency grid.

A specific algorithm, based on LFT and µ, is then applied in order to guarantee the validity

of the solution on the frequency-domain continuum. This technique has thus the advantage of

not relying on the (high-dimensional) optimisation matrix P, but in its current implementation,

available with the SMAC toolbox [28], is restricted in terms of available parameterisations for

Π. Due to this restriction, the IQCβ toolbox [133], which uses the standard LMI formulation in

(6.10), will be employed in this thesis.

6.1.2.1 Time-domain interpretation of IQC

The core effort in IQC analysis is to find suitable multipliers Π that specify the properties of

∆ and thus allow less conservative results to be obtained. Libraries exist for various types of

uncertainties and nonlinearities as summarised in [170, 251], many of them conveniently derived

in the frequency-domain. Since the problem is actually solved with the LMI in (6.10), it has great

importance the factorisation used for Π (6.7). Moreover, this factorisation provides a time-domain

interpretation of (6.5) [215], which will be exploited in Chapter 7. For these reasons, a general

discussion on it is given next.

By Parseval’s theorem [269], after substituting the factorisation (6.7) in the frequency-domain

constraint (6.5), it holds: ∫ ∞

0
z(t)>Mz(t)dt ≥ 0, (6.11)

where z is the output of the LTI system Ψ with state matrices AΨ, BΨ = [BΨ1 BΨ2], CΨ, DΨ =
[DΨ1 DΨ2], and states xΨ:

ẋΨ = AΨxΨ+BΨ1v+BΨ2w, xΨ(0)= 0,

z = CΨxΨ+DΨ1v+DΨ2w.
(6.12)

Fig. 6.3 aids in providing an interpretation of the new constraint (6.11). Indeed, the input and

output of ∆ are filtered through Ψ, whose output z is constrained to satisfy the inequality in

(6.11). In this new setting, conditions are given in terms of Ψ and M, which depend on Π, via the

factorisation (6.7), and in turn on ∆, via the original constraint (6.5).

It is stressed that an important distinction holds for time domain IQCs. Namely, a bounded

causal operator ∆ : L
nv
2 [0,∞)→L

nw
2 [0,∞) satisfies the time domain soft IQC defined by (Ψ, M)

if the following inequality holds for all v ∈L
nv
2 [0,∞) and w =∆(v):∫ ∞

0
z(t)>Mz(t)dt ≥ 0. (6.13)

This will be denoted here by writing ∆ ∈ SoftIQC (Ψ, M). On the other hand, a bounded causal

operator ∆ : L
nv
2 [0,∞)→L

nw
2 [0,∞) satisfies the time domain hard IQC defined by (Ψ, M) if the
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following inequality holds for all v ∈L
nv
2 [0,T], w =∆(v) and for all T ≥ 0:∫ T

0
z(t)>Mz(t)dt ≥ 0. (6.14)

This will be denoted here by writing ∆ ∈ HardIQC (Ψ, M). While by Parseval’s theorem any time

domain IQC yields a valid frequency domain IQC, i.e. ∆ ∈ SoftIQC (Ψ, M) → ∆ ∈ IQC (Π) and

∆ ∈ HardIQC (Ψ, M) → ∆ ∈ IQC (Π), the converse is only true in the former case. In fact, ∆ ∈ IQC

does not, in general, imply the existence of a factorisation (Ψ, M) for which ∆ ∈ HardIQC (Ψ, M),

the hard/soft property not being inherent to the multiplier Π but dependent on the (non-unique)

factorisation (Ψ, M).

Figure 6.3: Augmented plant for the time-domain interpretation of IQC.

6.1.2.2 Example of hard/soft IQCs

To exemplify the difference between soft and hard IQCs and its implications for the analyses,

let us consider a real constant uncertain parameter δ ∈ R satisfying |δ| ≤ k. A possible frequency

domain multiplier Πδ is:

Πδ =
[

k2X ( jω) Y ( jω)

Y ∗( jω) −X ( jω)

]
, (6.15)

with X = X∗ ≥ 0 and Y =−Y ∗ bounded functions of ω [170]. A possible time domain factorisation

for Πδu is [250]:

Ψδ =
[

kHν 0

0 Hν

]
, MDG =

[
M11 M12

M>
12 −M11

]
, (6.16)

where Hν ∈RHnH∞ is a column vector of basis functions (typically chosen as low-pass filters, i.e.

Hν := [1; 1
s+a1

; ...; 1
s+aν

]), and M11=M>
11, M12=−M>

12 are decision matrices constrained to satisfy

Hvν ( jω)M11Hν( jω)≥0. This factorisation is a general expression for the so called D-G scalings

[251, 269], and specifies that δ is a constant and real parameter. It holds δ ∈ SoftIQC (Ψδ, MDG).

The special case of (6.15) with Y ≡ 0 corresponds to the frequency-domain IQC for a dynamic,

norm-bounded LTI system, i.e. δ ∈ RH∞ and ‖δ‖∞ ≤ k. For this case, a valid time-domain fac-

torisation, known as D scalings, is given by (Ψδ, MD), with MD obtained from MDG by setting
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M12 ≡ 0. It holds that δ ∈ HardIQC (Ψδ, MD) [13]. It is important to note that, while (Ψδ, MD)

holds the (stronger) hard property, it does not fully capture the nature of δ as real uncertainty,

thus it can possibly lead to more conservative results than those obtained with (Ψδ, MDG).

The IQC analyses in this Chapter use the standard frequency-domain interpretation (in

conjunction with the KYP Lemma), and thus the influence of the adopted state-space factorisation

is limited to the parameterisation of Ψ (this aspect will be investigated in Sec. 6.3.2). The

distinction between soft and hard IQCs will instead play a crucial role in the Region of attraction

(ROA) analysis approach developed in Chapter 7 which leverages the time-domain interpretation.

6.2 Robust LCO analysis with Describing Functions and µ

This section proposes DF-based analysis methodologies to characterise properties of LCOs in

nominal and uncertain systems. Section 6.2.1 considers the nominal case, and, despite being

an application of known procedures in the field [83, 136], serves to highlight and reflect on the

main features and capabilities of the technique. Moreover, in Section 6.2.1.2 a novel method for

testing stability of the (nominal) LCO for models formulated in the frequency-domain, which

generalises the one from [8], is proposed. Sec. 6.2.2 introduces the concept of worst-case LCO

curve with the aim to provide a measure of the degradation of the LCO properties in the face of

parametric uncertainties, whereas in Sec. 6.2.3 the idea of using µ analysis in conjunction with

DF to perform LCO tailoring is proposed. The approaches will be illustrated considering freeplay

(due to the large amount of results available from literature), but are valid for any nonlinearity

holding a Describing Function representation.

The combined use of DF and µ was originally presented in [136], and an application to

nonlinear aeroelastic systems shown in [16]. While in the former reference the theoretical

foundation was established and the latter work demonstrated its applicability to nonlinear

aeroelastic systems, the contribution of this section is to develop systematic approaches to study

the effect of the uncertainties in terms of nonlinear response and to provide an interpretation of

the results in terms of worst-case LCO curve.

6.2.1 Limit Cycle Oscillations in nominal systems

6.2.1.1 Definition of N and necessary conditions for LCO

The first step entailed by the application of DF is the definition of the describing function N, which

depends on the nonlinearity. Due to the well established usage of the DF method in the control

community, expressions can be found for the majority of nonlinearities commonly encountered in

applications [87]. Among these freeplay, also called dead-zone or threshold, is characterised by

the fact that the first part of the input is needed to overcome an initial opposition at the output,
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as schematically depicted in Fig. 6.4. Its explicit mathematical definition is given by:

w =
0. |v| ≤ δ̄,

k(v− δ̄). |v| > δ̄,
(6.17)

where δ̄ is the (positive) freeplay size and k is the linear constant. Freeplay (for example between

the main wing and the control surface or the horizontal tail and the stabiliser) is relevant in

aeroelasticity. Indeed, it is known to be a primary cause of LCO, as testified by the dedicated

works in the literature [236, 237] (and other references therein).

It is worth noting some important properties of this nonlinearity, which determine simplifica-

tions of the associated describing function with respect to the generic definition in (6.4): it is odd

(i.e. the relation is symmetric about the origin), memoryless (i.e. only one output is possible for

any given value of the input, thus nq=0), and static (i.e. no dependence upon the input derivatives,

thus np=np(A)).

Figure 6.4: Freeplay nonlinearity.

The DF function NF for freeplay can be obtained analytically [87] through Fourier integrals

by applying the definition in (6.3) and assuming a sinusoidal input v =βs sin(ωt):

NF =


0. |v| ≤ δ̄,

k
π

π−2sin−1
(
δ̄

βs

)
−2

(
δ̄

βs

)√√√√1−
(
δ̄

βs

)2
 . |v| > δ̄,

(6.18)

The notation βs is now adopted for the amplitude A since freeplay in the control surface rotation

DOF β of the typical section will be considered in the numerical example. Consistently with the

aforementioned properties, NF , plotted in Fig. 6.5 for k=1, is a pure real gain not depending

on frequency, but only on the amplitude of the input signal, in particular on its ratio with the

freeplay size δ̄. Note also that NF is monotonic increasing with respect to βs

δ̄
.

The methodology employed to study LCOs through DF takes the clue from the feedback

representation of a nonlinear system in Fig. 6.1, specialised by specifying the signal circulating

through the system as a sinusoid, and replacing the nonlinear element by its describing function
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Figure 6.5: Freeplay describing function.

NF . Linear theory is then applied to the quasi-linearised system, searching for points of neutral

stability which are interpreted as LCOs in the original (nonlinear) system. The well known

feedback relations involve the frequency response of the signals and the transfer functions of the

operators, and the resulting necessary condition for oscillations are:

v̂( jω)=−G( jω)ŵ( jω),

ŵ( jω)= NF (βs)v̂( jω),[
1+G( jω)NF (βs)

]
v̂( jω)= 0.

(6.19)

Solution of the characteristic equation gives amplitude βs and frequency ω of the self-sustained

oscillations (or LCO) exhibited by the system.

6.2.1.2 Stability of the LCO

The characteristic equation in (6.19) gives a necessary condition for the occurrence of periodic

oscillations in the system, because stability of the oscillations must still be verified. The stability

of periodic orbits is generally posed in terms of the behaviour of perturbed trajectories. This

can be formally addressed by looking at the eigenvalues of the monodromy matrix (also called

Floquet multipliers) [145]. A drastic simplification holds when the problem can be studied with

the DF approach. Specifically, the method from [8] allows to address this task analytically in the

following manner.

Let us denote the eigenvalue of the quasi-linearised state-matrix A associated with the

occurrence of the LCO as λLC=ζ+jω, with ζ=0 when the necessary condition for oscillations is

satisfied. This matrix is obtained by replacing the nonlinear element with the value of NF (6.18)

corresponding to the predicted amplitude βs of the LCO. The idea is to study the variation

of the real part ζ following a perturbation in βs (note that the frequency does not influence
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NF , otherwise perturbations in ω would have to be considered as well). The general spectral

decomposition allows to express the state-matrix A as:

A =
nx∑

k=1
λkukv>k , (6.20)

where uk and vk are the right and left eigenvectors corresponding to the eigenvalue λk. Starting

from (6.20) and taking advantage of the orthogonal property of left and right eigenvectors, the

following holds [8]:
∂ζ

∂βs
=ℜ

(
v>LC

∂A

∂βs
uLC

)
. (6.21)

By means of the DF, it is possible to express the nonlinear term in the state-matrix as a function of

βs, and thus the derivative can be analytically performed. The rationale is that if after amplitude

perturbations the LCO returns to its original equilibrium state it is defined stable, whereas if its

amplitude or frequency change in order to reach another equilibrium state, it is defined unstable.

Therefore, a stable limit cycle requires ∂ζ
∂βs

< 0, since a positive perturbation in amplitude moves

the trajectory outside the limit cycle and requires a decay in the response (negative real part)

to move the trajectory back to the limit cycle, and conversely an unstable limit cycle will have
∂ζ
∂βs

> 0.

The application of this procedure is straightforward, and has been successfully employed in

the analysis of aeroelastic systems [16]. However, it is limited to state-space representations. As

highlighted in previous chapters, the frequency-domain is a common modelling option for flutter

analysis, and thus an extension of this method for the study of stability in frequency-domain is

proposed here. Let us define the aeroelastic frequency response matrix T based on the governing

equation in (2.1):

T(s)= [
s2M̄s + sC̄s + K̄s − q∞Qhh(s̄)

]
, (6.22)

and its total derivative with respect to the LCO amplitude as:

∂T
∂βs

= ∂T
∂s

∂s
∂βs

+ dT
dβs

. (6.23)

Eq. (6.23) features the term ∂s
∂βs

, which describes the variation of the considered eigenvalue when

perturbing the LCO amplitude, and thus its real part is sought here to address the study of

stability in frequency-domain. Assume that a flutter root sT is given, that is for η 6= 0 it holds:

T(sT )η= 0. (6.24)

This can be found, for example, by applying the p-k method (for a given value of βs). Then:

[
AT − sT Inx

]
η= 0,

with AT = T + sT Inx .
(6.25)
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where AT can be interpreted as an equivalent state-matrix. In fact, let us define the right and left

eigenvectors uT and vT of AT corresponding to its eigenvalue sT . Then, the following property is

satisfied:

v>T TuT = 0. (6.26)

As a result of Eq. (6.26), and of known properties of eigenvectors, the following key relation is

obtained:
∂
(
v>T TuT

)
∂βs

= ∂v>T
∂βs

TuT +v>T
∂T
∂βs

uT +v>T T
∂uT

∂βs
= v>T

∂T
∂βs

uT = 0. (6.27)

Eq. (6.27) enables the derivative of the root s associated with the LCO condition to be written out.

By substituting (6.23) in (6.27), it is finally obtained:

∂sT

∂βs
=−

v>T
dT
dβs

uT

v>T
∂T
∂s uT

. (6.28)

Eq. (6.28) provides the variation of sT when the LCO amplitude is perturbed. By specialising sT

to the LCO condition (i.e. sT =λLC = jω), an equivalent criterion to the one in (6.21) is obtained:

ℜ
(∂sT

∂βs

)∣∣∣∣
sT=λLC

=− ℜ
(v>k

dT
dβs

uk

v>k
∂T
∂s uk

)∣∣∣∣∣
sT=λLC

. (6.29)

The calculation of the partial derivatives can be performed applying the definition of T (6.22).

For the denominator it is:
∂T
∂s

= 2sM̄s + sC̄s − q∞
∂Qhh

∂s
. (6.30)

Since the GAF matrix typically depends on the imaginary part of s only, it holds ∂Qhh
∂s = ∂Qhh

∂ω
. This

can be evaluated for example by means of a finite difference scheme. However, the performed

tests showed that this term is negligible compared to the other two in (6.30). As for the derivative

in the numerator of (6.29), this can be evaluated once the operators in T (6.22) which are subject

to the nonlinearity are replaced by the corresponding DF.

6.2.1.3 Application to a freeplay benchmark case study

The analyses in this Chapter will be applied to a benchmark case study consisting of a typical

section model featuring freeplay in the control surface rotation. The reason is that results

obtained by means of different approaches are available: experimental [52], analytical [234],

harmonic-balance [152], numerical continuation [95], and DF-µ analysis [16]. Details of the model

can be found in Appendix A.4.

Recalling the presentation of the typical section model in Sec. 2.3.1, the nonlinearity is in

the diagonal term of the stiffness matrix Ks (2.10) corresponding to the DOF β. Based on the

definition of freeplay in (6.17), the corresponding elastic moment ME
β

can be written as:

ME
β =

0. |β| ≤ δ̄,

KL
β (β− δ̄). |β| > δ̄,

(6.31)
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where KL
β

is the flap stiffness in the linear case (i.e. for δ̄ = 0). By making use of the DF

approximation, an expression for the nonlinear elastic moment ME
β

can be given as:

ME
β = KQL

β
(βs)β,

KQL
β

(βs)= NF (βs)KL
β ,

(6.32)

where KQL
β

can be seen as the quasi-linear flap stiffness and NF is taken from (6.18) with k = 1. In

other words, the nonlinear flap stiffness Kβ is replaced by KQL
β

, which is a monotonic increasing

function of the flap rotation amplitude βs and ranges in the interval [0,KL
β

].

The procedure to detect LCOs in the system can be applied now. A fundamental harmonic

solution with fixed amplitude βs is assumed, and from (6.18) the corresponding value of NF

is obtained. This enables to calculate the quasi-linear stiffness KQL
β

(6.32) and thus to quasi-

linearise the system. At this stage standard (nominal linear) flutter analyses methods can be

applied to evaluate the corresponding flutter speed Vf and flutter frequency ω f . Fig. 6.6 displays

the results of these analyses. Specifically, on the x axis the values for KQL
β

are reported, while

on the y axis there are Vf and ω f . The results are in good agreement with others from the

literature [52, 234] (the latter reference providing also experimental results).
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Figure 6.6: Flutter speed Vf and frequency ω f vs. quasi-linear flap stiffness KQL
β

.

The linear flutter speed of the system, which corresponds to KQL
β

= KL
β
= 3.9N, can be found to

be equal to Vf ∼= 24 m
s . An interesting feature also detectable in Fig. 6.6 is the existence, depending

on the value of KQL
β

, of a low (LF) or high (HF) flutter frequency associated with the instability.

The physical reason for this is that two distinct modes, respectively the plunge and pitch, go

unstable as KQL
β

varies. This aspect will be further studied in Sec. 6.2.3.

The next step consists of associating the conditions of neutral stability for the quasi-linearised

system with LCOs in the nonlinear system by using the key relation between KQL
β

and βs in

Eq. (6.32). The DF method is instrumental in guaranteeing the connection between these two
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representations and enabling to transfer the information coming from multiple linear flutter

analyses to an LCO curve characterisation. Fig. 6.7 presents the nondimensional LCO amplitude
βs
δ

against speed V . Note that an analogous plot with the LCO frequency on the y axis could

also be built up by considering as basis the dashed curve in Fig. 6.6. Two curves are shown: the

one labelled with SS (black curve) uses a state-space approach for flutter (p method) and LCO

stability [8] analysis, whereas FD (red curve) is obtained using a frequency-domain approach for

flutter (p−k method) and LCO stability (new method developed in Sec. 6.2.1.2). The two curves

are in good agreement (indeed almost indistinguishable), and most importantly the same ranges

of stable (solid line) and unstable (dashed line) oscillations are detected, therefore validating the

proposed approach. It is worth stressing that the unstable branches are not physically meaningful

because they represent a dynamic response not occurring in reality (the system will experience

only the stable LCO branches).

The plot also allows to infer the onset of a subcritical Hopf bifurcation at V =VH . Indeed for

V<V0(= 3.8 m
s ) the equilibrium of the system is stable, whereas in the range V0<V<VH(= 7 m

s )

the system can either settle down to the stable configuration (this branch is not reported in Fig.

6.7) or experience oscillations (on the upper stable branch), depending on the perturbation to the

state trajectories. For V>VH the only stable steady-state response is the LCO.
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Figure 6.7: LCO amplitude βs

δ̄
vs. speed V .

Additional features of the oscillations are displayed in Fig. 6.7, where three regions can

be identified as the speed increases: (i) V0<V<V1(= 9 m
s ), where the system undergoes LCOs

associated with the plunge instability (recall from Fig. 6.6 that in this range a low frequency

LCO is predicted); (ii) V1<V<V2(= 23.2 m
s ) where the LCO switches to the pitch instability (the

frequency correspondingly changes, as in Fig. 6.6) and the amplitude visibly increases; and (iii)

V>V2, where there is an asymptote in the LCO amplitude corresponding to a dramatic growth

of the oscillations. It is worth noting that the maximum speed for which the system does not
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experience LCO (i.e. V0) is considerably smaller than the flutter speed evaluated with a linear

model (Vf ∼= 24 m
s ).

It is finally observed that equivalent results to those presented in this section could have

been obtained by applying graphical methods, which closely resemble standard frequency-domain

techniques based on Nyquist and Nichols plots [83]. Their application to this case study was

detailed in [120], but it is not reported here in the interest of compactness of presentation.

6.2.2 Worst-case LCO curve with µ

The interpretation of the plot in Fig. 6.7 is that at a given speed V the system will experience

periodic oscillations as described by the stable curve. In particular, the oscillation amplitude βs

δ̄

can be directly read off in the y-axis. If the nonlinear system is subject to modelling uncertainties

(of the type discussed in Chapter 4), it is of practical interest to characterise how the stability

properties (in terms of V0) and the features of the LCO change. To this end, the concept of

worst-case LCO curve is proposed here. Conceptually, this is an analogous representation of

Fig. 6.7 where a measure of the LCO amplitude and frequency degradation in the face of the

uncertainties is provided. This is motivated by the fact that an accepted industry practice is to

limit LCO accelerations in prescribed points of the airframe [19], and that these quantities can

be estimated provided that a reliable characterisation of the response in terms of amplitude and

frequency is available.

The task can be approached as follows. Consider a speed V and an amplitude βs larger than

the one associated with that speed in the nominal plot. Quasi-linearisation is performed via

DF around the operating point
(
V , βs

δ̄

)
, and the selected uncertainties are captured in an LFT

fashion. Application of robust analysis with µ will then allow to quantify how close the point is

to become a Limit Cycle when uncertainties are considered. In other words, the µ analysis will

provide the minimum distance to the LCO curve by evaluating a robust stability margin of the

quasi-linearised system. Exemplification of this idea is provided by considering the following

uncertainty set consisting of 3 mass and 2 stiffness parameters of the typical section model (2.10):

∆7,R = diag(δKh ,δKα
,δrα ,δxα I2,δrβ I2). (6.33)

All the parameters are allowed to vary within 10% of their nominal values.

The idea of using µ to quantify the distance of an operating point from a possible LCO is

illustrated first with Fig. 6.8. The plot shows the results of µ for the quasi-linearised system

associated with βs

δ̄
= 1.9 (corresponding to NF=0.367 and KQL

β
= 1.43 N) and V = 10.3 m

s . From

Figs. 6.6-6.7 it is inferred that, in nominal conditions, an LCO with amplitude βs

δ̄
= 1.9 takes place

at a speed V = 23.2 m
s and a frequency ω= 37 rad

s , whereas at V = 10.3 m
s an LCO with amplitude

βs

δ̄
∼= 1.605 (corresponding to KQL

β
= 1.02 N) and frequency ω= 70 rad

s is expected.

Upper and lower bounds are reported in the plot, featuring two distinct peaks. The smaller

one takes place at a low frequency (close to the one of the nominal case), whereas the peak of
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Figure 6.8: µ analysis at V = 10.3 m
s and βs

δ̄
= 1.9.

µUB (with a value around 1) has a higher frequency of approximately 80 rad
s . The upper bound

analysis thus suggests that an LCO with amplitude βs

δ̄
= 1.9 might occur at V = 10.3 m

s . This is a

drastic change with respect to the nominal case in that this LCO would feature a considerably

greater amplitude. Although no definitive conclusions can be drawn from Fig. 6.8, due to the gap

in the bounds around the highest peak, this result suggests the need for further investigations.

The analysis strategy discussed above can be applied to scattered operating points (e.g. based

on the planned mission of the system) and a possible representation of the results is proposed

in Fig. 6.9. The solid curve is the nominal plot presented in Fig. 6.7, while the star markers

represent four operating points where µ analysis is applied (the corresponding upper bounds µUB

are shown in the smaller insets).
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Figure 6.9: Robustness analysis of the LCO for scattered operating point.
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According to the proposed interpretation of the results, when µ < 1 then it can be inferred that

the LCO curve will lie below the considered point despite the uncertainties, that is, the worst-case

amplitude of the LCO is smaller than the one associated with the star marker. Conversely, when

µ > 1 then the LCO curve might lie above the point for an adverse (but within the considered

range) combination of parameters, meaning in practice that the oscillatory response might feature

greater amplitude than the one associated with that point.

These results predict robustness of the LCO at discrete operating points. Adding to this, a

mismatch in the bounds was observed in Fig. 6.8, and predictions based only on µUB can be too

conservative. Prompted by these reasons, an improved methodology, leading to the calculation

of the worst-case LCO curve, is proposed. This consists of evaluating a sufficiently fine grid of

values of βs and then implementing at each point a bisection-like algorithm searching for the two

smallest speeds V attaining the conditions µUB = 1 and µLB = 1, respectively. Note that, due to

the fact that upper and lower bounds do not coincide in general, these two speeds might hold

different values.

Results are shown in Fig. 6.10, which depicts the two distinct curves corresponding to the two

bounds as well as that of the nominal for comparison purposes. The location of the four operating

points at which µ analysis was shown in Fig. 6.9 is reported for the benefit of the discussion. This

plot can be interpreted as a worst-case analysis of the nonlinear flutter problem in terms of LCO

onset and amplitude. In fact, it assesses how the properties discussed before (with reference to

Fig. 6.7) degrade. The first information that can be inferred regards the smallest speed for which

the system experiences an LCO. The assumed set of uncertainties slightly decreases this value

from V0 = 3.8 m
s to V N

0 = 3.6 m
s . A similar trend is observed for the Hopf bifurcation speed. As the

speed is increased, the regions highlighted in Fig. 6.7 are still detectable but V1 and V2 are shifted

towards smaller values (V N
1 and V N

2 ). Furthermore, the plot allows a significant deterioration

in amplitude in the third region to be clearly appreciated. This trend was somehow foreseen in

Fig. 6.8, but finds here a rigorous confirmation (note that the two dashed curves are very close

meaning good agreement between the bounds). Although not reported in the plot, at each LCO

point it is also possible to associate the oscillation frequency (corresponding to the peak value of

µ). This information can provide physical insights into the problem. In this case, for example, Fig.

6.8 suggests that the drastic increase in amplitude caused by the uncertainties (highlighted by

the gap nominal-robust becoming large) can be ascribed to the high frequency (pitch) LCO, which

is also responsible for shifting towards left the asymptote (vertical branch).

It is finally remarked that the two points which in the insets of Fig. 6.9 yielded µUB < 1 (i.e.

the two left-most points) lie above the worst-case LCO curves, whereas the two points resulting

in µUB > 1 are located below it, as expected based on the proposed interpretation.
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Figure 6.10: Worst-case LCO curve.

6.2.3 LCO amplitude tailoring

The objective of this section is to demonstrate how DF and µ analysis can be advantageously

employed to achieve a reduction in LCO amplitude by design. The rationale is to select tailoring

variables and gather them in ∆. Rather than an uncertainty set, this is now the variable design

space made up of parameters which can be exploited in order to achieve a better nonlinear

behaviour, here defined as an LCO curve featuring smaller amplitudes.

6.2.3.1 Object definition

The connection between Fig. 6.6 and Fig. 6.7 represents the starting point for the formulation

of the LCO tailoring problem. The solid curve in Fig. 6.6 indeed represents a parametric linear

flutter analysis with respect to variation in the flap stiffness. Crucially, all the points lying on this

curve feature a condition of neutral stability. This curve, together with Eqs. (6.18)-(6.32), provides

in turn the LCO amplitude as a function of the speed (Fig. 6.7). It is thus apparent, recalling the

monotonicity of NF (Fig. 6.5), that a reduction in the LCO amplitude can be achieved by moving

towards the left the flutter speed curve in Fig. 6.6.

The second important observation is that the standard application of µ is to predict a measure

(via the maximum singular value norm of the perturbation matrix) of the distance of a stable

plant from the neutral stability condition. However, the algorithms can in principle be employed

to obtain the same measure for an unstable plant, the meaning of it being distance to regain

neutral stability. While this usage of µ has to be considered exceptional and care should be put

in interpreting the results (in fact, the classical µ interpretation prescribes that the system is

nominally stable), the idea here is to exploit it in order to understand how and which parameters

should be modified to achieve the amplitude reduction goal.
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Fig. 6.11 illustrates all the combinations of speed and quasi-linear flap stiffness for which the

system has a pair of purely imaginary eigenvalues. The unstable eigenvalue is associated with its

elastic mode via the Modal Assurance Criteria (Sec. 4.1.1). Compared to Fig. 6.6, where for each

value of the stiffness only the smallest of such speeds Vf was indicated, it can be appreciated from

Fig. 6.11 that for a large range of stiffness (0 < KQL
β

<1.3 N) both pitch (dashed) and plunge (solid)

modes experience instability. Consider now the operating point denoted by the circle marker,

which indicates that at V = 15 m
s the system will exhibit an LCO of amplitude βs

δ̄
∼= 1.8. In order

to achieve a reduction in the amplitude of oscillations at this speed, this point should lose the

condition of neutral stability in favour of one lying on the horizontal line (dotted line in Fig. 6.11)

at the left of the circle marker. For example, the point identified by the square marker (whose

quasi-linearisation features an unstable eigenvalue associated with the pitch mode) would have

a smaller LCO amplitude βs

δ̄
∼= 1.45. From a µ perspective, this problem can be solved by defining

the nominal system as the one identified by the square marker, and by interpreting the largest

peak found with µ as the smallest perturbation in the design parameters space such that the

nominal plant becomes the new LCO point. An important feature of this strategy is that it allows

to specify the desired reduction in LCO amplitude at a certain speed V by selecting the value

of KQL
β

at which the neutral stability condition is regained (roughly speaking, by defining the

location of the square marker). Moreover, the worst-case scenario nature of µ analysis has here a

very practical consequence: the critical perturbation matrix ∆cr (provided by µLB) represents the

smallest change from the nominal design necessary to achieve the stated objective, because it

points out the combination of parameters with the overall minimum perturbation size. For this

reason it is here referred to as an optimal design remedy.
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Figure 6.11: Objective definition for the DF and µ-based tailoring.

A specific property of this case study complicates the tailoring process. In fact, Fig. 6.11

highlights that in the range of speed where there is a drastic increase in LCO amplitude (and

thus mitigation strategies would be highly beneficial) the nominal plant lies in between the
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pitch and plunge curves. As a result, if the tailoring is performed only with the objective of

shifting towards the left the dashed curve, the change in the parameters might have an opposite

(detrimental) effect on the solid curve, eventually leading towards only a partial or negligible

achievement of the objective. To tackle this, a µ-based sensitivity analysis can be performed in

order to discern the effect of the parameters in the different frequency ranges, and thus make

effective and efficient design changes.

6.2.3.2 Numerical example

As in standard µ analysis, the procedure starts with the definition of the nominal plant and

the block ∆, which have now both a different meaning as stressed in the previous section. The

variable design space gathers the same 5 parameters considered in the LCO robust analyses

(6.33). For all of them a range of variation of 20% from the nominal value is assumed. As for the

nominal plant, the one identified by the square marker in Fig. 6.11 is considered.

The next step consists of applying µ analysis, and the results are shown in Fig. 6.12.
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Figure 6.12: µ analysis for the nominal plant identified by the square marker.

As expected, two peaks are predicted: a low frequency ω1 ∼= 34 rad
s related to the plunge mode

and a high frequency ω2 ∼= 63 rad
s related to the pitch mode. Moreover, both peaks are greater than

1. The implication of this for the peak at ω2 (µ∼= 2.1), which is associated with the dashed branch

in Fig. 6.12, is that if all the parameters are perturbed within the allowed range of 20% a greater

reduction than the one prescribed with the definition of the nominal plant will be achieved. In

fact, it would be sufficient to perturb 45%(≈ 1
2.1 ) of that range to obtained the desired shift in the

curve. Note also that the upper and lower bounds in both cases are close, especially around the

peaks, thus the associated matrices ∆cr
1 and ∆cr

2 provide the smallest perturbations capable of

determining a pair of purely imaginary eigenvalues in the nominal plant. Unfortunately, ∆cr
2 ,

the critical worst-case combination for the tailoring, has similar values, for some parameters,
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to those in ∆cr
1 , thus the detrimental effect on the plunge branch envisaged before represents a

concrete risk.

In order to minimise it, a µ-based sensitivity analysis, as the one applied in Sec. 4.2.2 for

the BFF instability, is performed to understand which parameters have a greater effect on the

pitch instability. This basically consists of estimating the LCO amplitude sensitivity with respect

to the parameters in ∆. In an active control perspective, this study could drive the design of

the feedback control law to actively reduce the LCO amplitudes and possibly eliminate LCOs

[224]. The importance of this step is acknowledged in literature. In [223] for example the task of

obtaining this sensitivity is tackled by differentiating the equations derived with the Harmonic

Balance method and obtaining analytical sensitivities. The method proposed here is believed to

be less affected by the complexity of the system since it does not rely on analytical formulations,

and it can be straightforwardly applied once an LFT description of the system is available.

The conclusions of this sensitivity analysis step are:

• the dimensionless moments of inertia of the section and control surface have great effect on

the pitch instability, but not on the plunge one. Hence, it can be advantageously modified

according to ∆cr
2 , i.e. δrα = 1 and δrβ =−1;

• the plunge stiffness parameter does not affect the pitch instability, but is relevant for the

plunge one. Hence, it can be modified with opposite sign to that in ∆cr
2 in order to push the

plunge curve in Fig. 6.11 towards left and counteract potential undesired effect on it, i.e.

δKh =−1;

• the elastic axis location xα has in general a small influence and thus it is left unaltered

since it would represent an ineffective design change, i.e. δxα = 0;

• the pitch stiffness parameter has great effect on both instabilities and its worst-case has

the same perturbation sign (δKα
=−1), thus it might have to be carefully considered.

With respect to the last point, it is observed that a sound tailoring strategy should not determine

a decrease in V0 (hence worsening the stability of the system) or in V2 (where an asymptote in

the LCO amplitude occurs). Since both speeds are associated with the plunge instability (this

is visible in Fig. 6.11), it is foreseeable that Kα will represent a trade-off between two different

objectives: on the one hand maximising the reduction in the LCO amplitude, and on the other

preserving the speed range where LCO occurs.

Based on the conclusions above, three different designs are defined in Table 6.1 in terms

of percentage variations of the tailoring variables from the nominal values. The designs differ

only in the pitch stiffness Kα, in order to observe its global effect, and the corresponding LCO

amplitude curves are plotted in Fig. 6.13 against the original case.

All the proposed designs achieve the main goal of reducing the LCO amplitude as well as

fulfilling the requirement of maintaining the same lowest LCO occurrence speed V0. Design 2
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Table 6.1: Change in the tailoring variables to achieve the amplitude reduction goal.

Design 1 Design 2 Design 3

Kα 0% -20% +20%

Kh -20% -20% -20%

rα +20% +20% +20%

rβ -20% -20% -20%

xα 0% 0% 0%

features the minimum LCO amplitude among the curves but presents, as side effect, a drastic

reduction of the asymptotic speed V2. Design 3 goes in the opposite direction for both objectives

due to the role of Kα. Finally Design 1, which does not alter the value of the pitch stiffness,

represents a trade-off solution since it maintains similar values for V0 and V2 while achieving a

noticeable amplitude reduction. Of course, other designs could be proposed which contemplate

absolute variations of the parameters smaller than 20% and thus entail smaller changes in the

design at the expense of lower amplitude reduction.
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Figure 6.13: LCO amplitudes βs

δ̄
obtained with the proposed tailoring strategy (3 possible designs

are considered).
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6.3 LCO analysis with IQC

In this section the use of IQC analysis to study the LCO problem is investigated. The power

of this technique lies in the capability to handle uncertainties and nonlinearities in the same

framework. However, it is acknowledged that a possible drawback lies in the conservatism

associated with the results. This can be ascribed to various causes, and the focus has been here

on two aspects: the selection of the multipliers (Section 6.3.2) and the local/global validity of the

results (Section 6.3.3). The main outcome is a strategy to obtain worst-case predictions not only

in terms of stability (as classically done in IQC analysis) but also on the post-critical response

(here represented by LCO).

6.3.1 Posing of the problem

The starting point when applying IQC is the characterisation of the nonlinear uncertain operator

∆ via suitable multipliers. The IQCβ toolbox [133] allows to formulate the problem declaring

the connections among the signals v and w through appropriate sub-functions which associate

with them the constraint (6.5) given by the multipliers. Since the problem is solved via the

KYP LMI (6.10), internally the toolbox implements the state-space factorisation of Π, typically

parameterising the dynamic part Ψ with first or second order filters having user’s selected

frequencies and optimised gains.

In order to reduce the conservatism of the results, a collection of multipliers, reflecting

different properties of freeplay, is adopted in the analyses [251]. For example, freeplay can be

generically defined as a memoryless sector nonlinearity with bounds [σ, η]. The associated sector

multiplier ΠS is:

ΠS =λS

[
−2ση σ+η
σ+η −2

]
, (6.34)

where λS is positive decision scalar. For the case of freeplay in the control surface, this property

can be assigned by linking the signals β and ME
β

(6.31) with the sub-function iqc_sector. Since

this is a static IQC (that is, ΠS does not depend on the frequency), no parameterisation is required

and the only options to be specified are the sector bounds, discussed later.

The Popov IQC allows time-invariance of the nonlinearity to be captured:

Π̃P =λP

[
0 jω

− jω 0

]
, (6.35)

where λP is a sign indefinite decision variable. Due to the unboundedness of Π̃P on the imaginary

axis, a loop transformation ∆1 =∆ 1
s+1 is typically employed such that the new nonlinear operator

∆1 satisfies the multiplier ΠP :

ΠP =λP

[
0 jω

1+ jω

− jω
1− jω 0

]
. (6.36)
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This multiplier can be assigned with the sub-function iqc_popov_vect and again it does not re-

quire any dynamic parameterisation. Precisely, the sub-function iqc_popov defines the combined

sector and Popov IQC (which gives the classic Popov criterion), but in the analyses they will be

reported separately for clarity. Note that, due to the loop transformation, ΠP can be employed

only if the plant G is strictly proper [170].

A further refinement in the IQC description of this nonlinearity can be obtained observing

that the freeplay is a monotonic and odd function, and thus a slope restriction in the sector [σ1,

η1] holds. These properties lead to the Zames-Falb IQC [104, 266]:

ΠZF =λZF

[
Π11

ZF Π12
ZF

Π21
ZF Π22

ZF

]
,

Π11
ZF =−σ1η1(2−H−H∼), Π12

ZF =σ1(1−H)+η1(1−H∼),

Π21
ZF =σ1(1−H∼)+η1(1−H), Π22

ZF =−2+H+H∼,

(6.37)

where λZF is a positive decision scalar and H ∈RL∞ is arbitrary except that the L1-norm of its

impulse response must be smaller than 1. This multiplier can be selected in the IQCβ toolbox

with the sub-function iqc_slope_odd, which requires, in addition to the sector bounds, also the

length NH and the pole location aH of the parameterisation:

H(s)w
NH∑
k=0

hk

(s+aH)k+1 , (6.38)

where hk are decision variables.

As for constant real uncertainties δ ∈ R satisfying |δ| ≤ k, a candidate is the frequency-domain

multiplier Πδ introduced in (6.15), and repeated next for ease of readability:

Πδ =
[

k2X ( jω) Y ( jω)

Y ∗( jω) −X ( jω)

]
. (6.39)

This is parameterised in the IQCβ toolbox with a standard conic combination of first and

second order filters by invoking the sub-function iqc_ltigain. It is important to stress that

this parameterisation is different from the state-space factorisation defined in Eq. (6.16) and

originally proposed in [250], which will lead in general to less conservative results. The latter

will be employed in Sec. 7.3, where the use of IQC to perform Region of Attraction analysis is

presented and focus are given to the different parameterisations available for the case of scalar

uncertainties.

It is well known that IQC analysis with D-G scalings multipliers build on the same theoretical

premises of µ. An important difference is that thanks to the KYP lemma the LMI test (6.10)

does not rely on a discretisation of the frequency range, which for numerical reasons is usually

done in µ implementation [14] (recall the evaluation of M11 on the frequency grid discussed in

Chapter 3). Therefore, the stability certificate obtained with IQC is guaranteed on the whole

frequency spectrum. However, this valuable property is penalised by the need to parameterise
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Πδ with a finite basis of rational functions Ψδ and hence the feasibility of the LMI is only a

sufficient condition on the stability of the system (i.e. nothing can be said if the test fails). These

considerations apply also to the parameterisations of other multipliers (e.g. Eq. 6.38) and motivate

some of the analyses performed in Sec. 6.3.2.

From the modelling point of view, the problem is formulated by building up an LFT Fu(M,∆)

where the linear nominal part is closed with the set ∆ gathering parametric uncertainties

and the freeplay channel. While the former is standard, the latter needs a clarification for the

normalisation. The (nonlinear) stiffness parameters Kβ is treated (from an LFT viewpoint) as if

it was an uncertain parameter. Once the sector bound [σ, η] is defined for ΠS (6.34), a range of

variation for the stiffness is defined Kβ−1 < Kβ < Kβ−2 (where Kβ−1 = 2σ−η and Kβ−2 = η), with

the corresponding block in ∆ normalised such that |δKβ
| ≤ 1. This guarantees that Kβ is in the

sector [σ, η] when the normalised nonlinearity δKβ
is in the sector [0,1]. That is, the sector [0,1]

will be assigned to the sub-function iqc_sector regardless of the true bounds (which are taken

into account with the normalisation of the LFT). If σ 6=σ1 or η 6= η1, the Zames-Falb sector for

δKβ
will not be [0,1], but can be easily evaluated from the previous normalisation.

With this implementation, the sector bounds are defined with no ambiguity and can be easily

modified in the course of the analyses (this will be particularly useful in the analyses of Sec.

6.3.3). Moreover, the fact that the analysis methodology pivots on LFT models is a strong point

of the proposed approach. This indeed enables powerful techniques [20, 146, 156, 160] for the

modelling of complex systems to be employed, and all the insights and methodologies developed in

Chapter 3 and tailored to the aeroelastic case to be exploited. In addition, methods to derive LFT

models of nonlinear systems have been recently proposed [113] (also specifically for aeroelastic

applications [17]) and can be used for the present purpose.

6.3.2 Sensitivity of results to the multipliers

The analyses in this section are performed in an incremental way (in terms of number and type

of uncertainty) with the goal of providing an overview of the application of IQC to the aeroelastic

problem. Table 6.2 summarises the three LFTs adopted in this work by listing the captured

parameters and total size of the operator ∆ (including repetitions). LFT 1 describes a nominal

nonlinear problem, since only the freeplay is included; LFT 2 describes a linear robust problem

with stiffness and mass uncertain parameters; and finally, LFT 3 considers the nonlinear robust

problem featured by structural uncertainties and nonlinearity.

The first IQC tests, performed with LFT 1, aim to give a stability certificate for the nominal

aerofoil affected by freeplay. The methodology consists of increasing the speed until the LMI

problem in (6.10) becomes unfeasible (the first speed for which this happens is referred to as

Vunf ). In this section the standard sector description adopted for the analysis of sector bounded

nonlinearities is used, i.e. σ=σ1 = 0 and η= η1 = KL
β

. This is shown in Fig. 6.14 where the shaded

area identifies all the possible combinations of β and ME
β

fulfilling the IQC description.
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Table 6.2: LFT models employed in the IQC analyses.

Parameters ∈ ∆ ∆ size

LFT 1 Kβ — 1

LFT 2 — Kh, Kα, xα, rα, rβ 7

LFT 3 Kβ Kh, Kα, xα, rα, rβ 8

Figure 6.14: Standard sector constraint.

Table 6.3 reports for each test the multiplier (with corresponding options), the size of the LMI

problem in terms of decision variables, the computation time, and the speed Vunf .

Table 6.3: IQC analysis of LFT 1 (only freeplay).

Case Multiplier & Options Size Time Vunf

1 ΠS 47 1 s –

2 ΠS, ΠP 48 1.1 s 3.81 m
s

3 ΠS, ΠP ,ΠZF (1 rad
s ) 80 1.3 s 3.82 m

s

When only the memoryless sector bounded condition is enforced, no feasible solution is

achieved (case 1). When the Popov multiplier ΠP , encompassing the time invariance of the

freeplay, is added then it is possible to find Vunf = 3.8 m
s . This result is also recovered when using

the ΠZF multiplier (case 3). This value is the same as the speed V0 detected in Fig. 6.7 and it

indicates that the approach of considering the entire sector provides the smallest speed such that

the system experiences an LCO. The adoption of the entire sector can thus be interpreted as a

search for global stability certificates. Note also that, due to the good agreement, this analysis

may be seen as a validation of the stability result given by means of DF.

The analyses reported in Table 6.4 investigate the linear robust stability of LFT 2. In order to

draw a parallel with the analyses in Fig. 6.8 (showing that µUB=1 at V = 10.3 m
s ), the nominal
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LFT is obtained by fixing KQL
β

at the same value of 1.43 N used in those analyses.

Table 6.4: IQC analysis of LFT 2 (only uncertainties).

Case Multiplier & Options Size Time Vunf

1 Πδ (1 rad
s ) 330 9 s 8.6 m

s

2 Πδ (80 rad
s ) 330 9 s 8.9 m

s

3 Πδ (1 rad
s , 80 rad

s ) 800 70 s 10.3 m
s

When only one filter is employed for the parameterisation (cases 1 and 2), the minimum speed

at which the problem becomes unfeasible is still lower than what was obtained with µ analysis.

However, changing the pole from the default value (i.e. 1 rad
s ) to one which is closer to the

expected flutter frequency (about 80 rad
s from the analyses in Fig. 6.8) increases the estimation

of Vunf . The addition of another filter (case 3) aids to considerably improve the prediction, in

particular it yields the same speed for which µUB = 1 in Fig. 6.8. This represents an important

confirmation of what was shown in Fig. 6.8, since it holds on the frequency continuum.

This first set of tests concludes with a nonlinear robust analysis applied to LFT 3, reported

in Table 6.5. It is clear from the results that when only one filter is used for Πδ (cases 1 and

2) the algorithm is not able to find a feasible solution (regardless of the description provided

for the freeplay). In fact, it is decisive to increase the number of filters to 3 (cases 5 and 6) in

order to match the largest stable speed Vunf = 3.6 m
s found in the analyses of Fig. 6.10. This IQC

description for Πδ is reflected in an increase of the computation burden, but clearly improves the

LMI feasibility problem solution.

Table 6.5: IQC analysis of LFT 3 (nonlinear uncertain).

Case Multiplier & Options Size Time Vunf

1 Πδ (40 rad
s ) , ΠS,ΠP , ΠZF (40 rad

s ) 390 19 s -

2 Πδ (80 rad
s ),ΠS,ΠP , ΠZF (40 rad

s ,80 rad
s ) 450 40 s -

3 Πδ (40 rad
s , 80 rad

s ),ΠS,ΠP , ΠZF (40 rad
s ) 890 105 s 3.1 m

s

4 Πδ (40 rad
s , 80 rad

s ) , ΠS,ΠP , ΠZF (40 rad
s ,80 rad

s ) 980 170 s 3.1 m
s

5 Πδ (1 rad
s , 40 rad

s , 80 rad
s ) , ΠS, ΠP , ΠZF (40 rad

s ) 1590 530 s 3.6 m
s

6 Πδ (1 rad
s , 40 rad

s , 80 rad
s ) , ΠS, ΠP , ΠZF (40 rad

s ,80 rad
s ) 1700 790 s 3.6 m

s

The results presented in this section confirm the well known dependence of IQC predictions

on multipliers selection and parameterisation. However, in this study the importance of having

reference results (here provided by the DF-µ approach, or in general also obtainable with
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other tools) is stressed. Firstly, they provide a measure of the conservatism associated with the

infeasibility of the LMI problem and therefore may point out the need to employ a more refined

set of multipliers. While this is typically accomplished with a frequency sweep of the filter poles

(time-consuming and not always successful), the availability of auxiliary reference results can

also inform the improvement of the parameterisation for the multipliers: characterizing the

sensitivity of the instability to certain sub-blocks of ∆ and hence allowing to focus only on the

refinement of the associated multipliers; as well as highlighting critical frequencies of the systems.

As for the latter aspect, the values of the filter poles are profitably selected here considering the

expected unstable frequencies of the systems, obtained by DF-nominal analysis (Fig. 6.6) or DF-µ

approach (Fig. 6.8).

6.3.3 Post-critical analysis with IQC

The certificates found in Sec. 6.3.2 with respect to LFT 3 guarantee global stability of the system.

In fact, only the largest speed at which the system, in the face of parametric uncertainties, settles

down to the original equilibrium when subject to any vanishing perturbation can be inferred from

the results. This is ascribed to the selection of the standard sector for the freeplay nonlinearity

(Fig. 6.14), here referred to as global because it covers the nonlinear relationship between β and

ME
β

for all values of β. It is indeed well understood in the literature [141, 231] that results holding

locally can enrich the contents of the analyses performed via IQC and reduce the conservatism.

In this section an alternative definition of the sector condition, sketched in Fig. 6.15, is proposed,

aimed at obtaining certificates concerning not only stability but also post-critical features.

Figure 6.15: Local sector constraint for LCO analyses.

The premise of this relaxation is that the DF method provides, for a given freeplay size

δ̄, a relation between the amplitude of the nonlinear response βs and the equivalent stiffness

KQL
β

(6.32). Assume that a (non-zero) oscillation level, quantified by βs, can be withstood by the

structure, and thus is tolerated as post-critical response. Then, the corresponding KQL
β

(βs) can be

computed from (6.32) and taken as the lower bound K s
β

of the sector (dashed-dotted line). The

IQC analysis will in turn determine the largest speed Vunf such that the system is guaranteed to

experience an oscillatory motion in the DOF β of amplitude smaller than βs. Put it differently,
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the shaded are covered by the local sector (Fig. 6.15) will only capture post-critical responses

characterised by LCO amplitudes β̄ greater than βs.

Note that from the limit on the nonlinear response of the DOF β, analogous information for

the response of the other DOFs can be easily obtained by making use of the Describing Function

method. This simple procedure was for example shown in [234] for the plunge and torsion DOFs of

the typical section. The proposed local analysis allow therefore to detect operating conditions for

which the system do not converge to the equilibrium but is attracted to self-sustained oscillatory

responses featured by a given maximum level of amplitude.

It is remarked finally that the proposed relaxation applies in the exact same way to both the

multipliers ΠS and ΠZF .

6.3.3.1 Results

Table 6.6 shows the results obtained applying this approach to LFT 1 and 3. The upper sector limit

η= η1 is fixed at KL
β

as in the previous analyses. A different lower limit for the sector σ=σ1 = K s
β
,

with an associated smallest amplitude βs

δ̄
, is instead selected for each test and the smallest

unfeasible speeds (namely V 1
unf for LFT 1 and V 3

unf for LFT 3) are reported. This analysis,

repeated on a grid of values of K s
β
, can be interpreted as a nominal and robust characterisation of

the nonlinear response of the system in that it provides the highest speed at which the system

can be operated if oscillations below a certain threshold are tolerated. The parameterisation

of the multipliers follows the rationale discussed in Sec. 6.3.2 so as to provide a reliable IQC

description of the problem. It is remarked here that, especially for LFT 3, the multipliers had to

be re-tuned in order to improve the accuracy as the value of K s
β

was increased. The LMI decision

variables, tailored to each single case by making use of the heuristic strategy illustrated in the

previous section, were always kept below 2000.

Table 6.6: Local IQC analysis of LFT 1 and LFT 3.

Cases K s
β
[N] βs

δ̄
V 1

unf [ m
s ] V 3

unf [ m
s ]

1 0.01 1.02 3.8 3.6

2 0.18 1.13 3.8 3.6

3 0.32 1.21 5.9 4.3

4 0.86 1.5 9.0 8.45

5 1.15 1.69 12.2 9.2

6 1.39 1.9 23.05 10.3

7 1.72 2.2 23.5 12.3

8 2.00 2.5 23.6 15.7
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From Table 6.6 it can be seen that the values of V 1
unf and V 3

unf for case 1 and 2 match with

the predictions obtained using the global sector condition, reported in Tables 6.3-6.5 respectively.

If Figs. 6.7-6.10 from Sec. 6.2 are examined, it can be observed that both the LCO amplitudes
βs

δ̄
= 1.02 and βs

δ̄
= 1.13 are smaller than the one associated with the smallest LCO speed V0 and

V N
0 . Indeed, at these two speeds the system will exhibit an LCO of amplitude βs

δ̄
' 1.16. Consistent

with the given interpretation of the local sector condition, the analysis returns therefore the

corresponding speed value (either V0 or V N
0 ). As βs

δ̄
is increased, it becomes evident the advantage

of using the local sector since different unfeasible speeds are predicted for each lower sector bound.

For βs

δ̄
≤1.5 (a bold line is employed in Table 6.6 to emphasise the two regions), the degradation

due to the uncertainties, measured by the difference between V 1
unf and V 3

unf , is not remarkable.

As the amplitude is increased, it is evident a greater effect of the uncertainties in worsening the

response (i.e. larger difference between the two speeds associated with the given amplitude βs

δ̄
).

For example, assume a nominal analysis cleared the system to operate at V=16 m
s (because it was

able to withstand an oscillation of amplitude 1.9δ̄). This amplitude corresponds to K s
β
=1.39N in

Table 6.6 (case 6) and takes place indeed at V 1
unf =23.05 m

s (> 16 m
s ) in nominal conditions. The

proposed analysis reveals however that in the face of uncertainties the system could exhibit an

LCO greater than 2.5δ̄ (case 8) at V 3
unf = 15.7 m

s , and thus highlights possible risks in operating

the system at V=16 m
s .

The trend in Table 6.6 is in good agreement both qualitatively and quantitatively with the

worst-case LCO curve proposed in Sec. 6.2.2. The intersections of horizontal lines (drawn for

different values of the ordinate βs

δ̄
) with the nominal and robust curves in Fig. 6.10 give points

having as x coordinate approximately the corresponding values of V 1
unf and V 3

unf . Two curves

were provided for the uncertain system, one for µUB = 1 and another for µLB = 1. The values of

V 3
unf are typically closer to the intersections with the curve µUB = 1, which is expected since they

both give only a sufficient condition for the stability violation. However, the two curves are very

close as stressed before.

Finally, note that, for a given value of βs

δ̄
, the LCO amplitude βs experienced by the system is

a function of the freeplay size δ̄. Thus this methodology provides an outcome which depends also

on this parameter (which is expected from a physical viewpoint). On the contrary, there was no

influence of δ̄ when the standard approach was employed.

6.3.3.2 Validation

The methods to study LCO in systems with uncertainties are validated here by means of time-

marching simulations. In view of the close connections in the formulations of the worst-case

LCO curve with the DF-µ approach (Sec. 6.2.2) and that just performed above with IQCs, the

discussion and comparisons apply to both the approaches developed in this Chapter.

The library in [29], which enables to simulate LFR objects [156] in Simulink©, is employed to

evaluate the response of the nonlinear system subject to uncertainties. In Fig. 6.16 a comparison
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of the results in terms of the normalised oscillation amplitude βs

δ̄
between the analytic approaches

proposed here (Analytic) and the nonlinear simulations (Simul.) is presented for nominal (Nom.)

and robust (Rob.) conditions. In the latter case, the largest amplitude of oscillation obtained

with a vertex approach (Vertex), where all the possible combinations of the extreme values of the

parameters are simulated, is reported. The 32 tested cases are deemed to provide a sufficiently

good estimation of the worst-case amplitude because the uncertainty set is a polytope [269].
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Figure 6.16: Validation via simulation of the worst-case LCO curve.

First, the nominal analyses are discussed. It is apparent a good agreement in terms of smallest

LCO speed V0 and amplitudes (featuring a mismatch of less than 5%), except in a limited speed’s

interval (approximately 7 m
s <V<9 m

s ). The work in [52], which compared experimental and time-

marching results, found that in the same range the system experiences complex behaviours such

as quasiperiodicity and chaos.

As for the case with uncertainties, it is noted that all the conclusions drawn in the previous

section by looking at the worst-case LCO curve (Fig. 6.10) are confirmed: little effect on V0; sizeable

growth in amplitude for V>V1; drastic decrease in the asymptote speed V2. The predictions are

in good agreement also quantitatively, except for the branch in the speed range 5.5 m
s <V<9 m

s . To

better interpret these results, the worst-case (i.e. featuring the maximum amplitude) time-domain

responses at two different speeds are displayed in Fig. 6.17.

The plot in Fig. 6.17(a) shows the behaviour of the system at V=6 m
s for different initial

conditions (all the states are set to zero except β, whose initial value β0 is reported in the legend).

The features apparent from the plot are nonperiodicity and sensitivity to the initial conditions,

hinting at a chaotic behaviour of the system in this range, which was commented on before for

the nominal case. It can be thus inferred that the adverse combination of the uncertainties are

able to exacerbate these features (note that the speed range is increased when compared to the
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Figure 6.17: Simulated responses at two different speeds.

nominal case). The effect of uncertainties on chaotic behaviour can not clearly be captured by

the approaches proposed here, because they assume periodic response of the system. In fact,

the accuracy of the nonlinear simulations itself is not ascertained in these conditions when

standard simulation algorithms are employed. Only refined time-marching methods [47], tailored

to the simulation of piecewise linear systems, were able to reduce the discrepancies observed

in [52] between experimental and numerical results. Fig. 6.17(b) shows the case at V = 10.3 m
s ,

where a limit cycle with amplitude βs=0.0735 rad (i.e. βs

δ̄
∼= 1.97) and a period T = 0.077s can be

clearly detected. The worst-case response at this speed was previously studied with the analytical
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approaches. For example, a mismatch of less than 5% with the result in Table 6.6 (see the row

with V 3
unf = 10.3 m

s ) is registered. Moreover, µ analysis in Fig. 6.8 captured the largest peak

at a frequency of approximately 80 rad
s , which corresponds to the LCO period detected from

simulations.

The validation campaign shows that IQC can be efficiently used to guarantee global stability

of the nonlinear aeroelastic system without requiring the same assumptions made by the DF-µ

approach. When IQC is used to study the post-critical behaviour of the system, a criterion is

needed to compute the reduced sector which allows for oscillations in the system. Here a lower

bound on the sector is formulated by using the freeplay describing function NF , thus its accuracy

is inherently linked to the DF applicability. However, the core idea presented here of redefining

the IQC multipliers based on some features of the system post-critical response can inspire other

solutions which are not affected by this limitation.

6.4 Chapter summary

This Chapter proposes methodologies to study Limit Cycle Oscillations in aeroelastic systems

with emphasis on the case when these are subject to uncertainties. Two approaches have been

presented, the first featured by a combination of Describing Function and µ analysis, and the

second based on Integral Quadratic Constraints.

The main achievement of the first approach is the so-called worst-case LCO curve, quantifying

the worst-case degradation in the response of the system (in terms of oscillation amplitude) due to

the uncertainties. This is obtained by computing a robust stability margin of the quasi-linearised

system with DF, and provides a guaranteed minimum distance of an operating point characterised

by speed and oscillation amplitude to the LCO curve. Another point of view on the joint use of

DF and µ has led to the proposal of a tailoring strategy to inform passive design changes with

the goal of reducing the LCO amplitude. Capabilities of µ reviewed in the previous chapters

(worst-case, sensitivity) are exploited to select which parameters should be perturbed, and how,

in order to achieve the stated goal with the smallest departure from the nominal values.

The application of IQC to the aeroelastic problem is conducted in an incremental manner in

order to achieve insights into the selection of the multipliers and their impact on the analyses.

A major outcome of these investigations is a strategy allowing IQC to be used for the study of

LCO. The core idea is to use relaxed integral quadratic constraints (not valid to prove global

stability) that specify some properties of the post-critical response. An example is given by using

an equivalent stiffness depending on the LCO amplitude as lower bound for the sector multiplier,

but this interpretation can be followed to devise other solutions. In view of the importance of

the LCO characterisation in the presence of uncertainties, this is believed to be a useful tool

for nonlinear flutter analysis. Although IQC-based control synthesis is still an active area of

research, this description of the freeplay nonlinearity could also be exploited for the design of
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feedback control laws addressing active reduction of the LCO amplitudes.

A validation of the proposed frameworks, based on nonlinear time-marching simulations, was

performed. This suggests that both approaches are able to cope with the nonlinear uncertain

problem. Qualitative trends are well captured, and quantitative estimations are reliable except

in limited cases when the hypotheses underpinning the approaches are violated.
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7
APPROACHES FOR THE ESTIMATION

OF THE REGION OF ATTRACTION

The concept of stability of an equilibrium point x∗ is fundamental in the study of dynamical

systems. This property guarantees that, despite small departures from x∗, all the states

trajectories will eventually converge to a neighbourhood of the equilibrium. For linear

systems, stability guarantees that convergence to the equilibrium is a global asymptotic property.

That is, regardless of the magnitude of the perturbation in their trajectory, the states of the

system will converge to the equilibrium as time tends to infinity. On the contrary, for nonlinear

systems stability guarantees might be valid only locally [137], and for this reason the notion

of Region of attraction (ROA) has been proposed. The ROA of an equilibrium point x∗ is the

set of all the initial conditions from which the trajectories of the system converge to x∗ as time

goes to infinity, and its knowledge is of practical interest to guarantee the safe operation of

nonlinear systems. A classic example where this aspect is relevant to aeroelastic systems is the

onset of subcritical Hopf bifurcations. As discussed in Chapter 6, this determines the existence

of stable Limit Cycle Oscillations at smaller speeds than the bifurcation one. Thus, there is

a range of speeds for which perturbations of the trim condition (where the aircraft must be

safely operated) are capable of driving the response into self-sustained oscillations. Therefore, a

complete definition of flutter-free envelope in the nonlinear context should not only consider the

variation with speed of stability properties, but also whether or not their validity is local and, in

this case, evaluate the associated region of attraction.

The exact ROA is often difficult to compute either numerically or analytically [88], therefore

algorithms have been proposed to calculate inner estimates of the ROA (recall Section 2.1.2.2 for

a review of the existing methods). Prompted by the current limitations in the field, this work con-

tributes to the state-of-the art by proposing two alternative approaches within the non-Lyapunov
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class of methods. The first extends the application of a recent formulation based on invariant sets

[246] to the case of uncertain systems (Section 7.2). The second allows generic nonlinearities to

be studied and the nature of the uncertainties to be exploited by formulating the problem within

the IQC framework (Section 7.3). The IQC-based approach was developed during a research

collaboration with Prof. Pete Seiler from the University of Minnesota. Specifically, the author:

formulated the ROA problem in the IQC framework and derived the theoretical guarantees for

local stability (Theorem 7.3 and Theorem 7.4); devised the numerical SOS algorithms 7.7 and 7.8;

performed all the analyses reported in Sec. 7.3.2.

Publications1: [123, 124, 127] Section 7.2; [129] Section 7.3.

7.1 Mathematical background

The notation used in the remainder of the section is regrouped here for the sake of clarity.

The set of functions g : Rn → R which are m-times continuously differentiable is denoted by

C m. R[x] indicates the set of all polynomials r : Rn → R in n variables, and ∂(r) indicates the

degree of r. Given a scalar c > 0, the level set of r is defined as Ωr,c = {x ∈ Rn : r(x) ≤ c} and

∂Ωr,c = {x ∈ Rn : r(x) = c} denotes its boundary. A polynomial g is said to be a Sum of Squares

if there exists a finite set of polynomials g1, ..., gk such that g = ∑k
i=1 g2

i . The set of Sum of

Squares (SOS) polynomials in x will be denoted by Σ[x].

7.1.1 Problem statement

Consider an autonomous nonlinear system of the form:

ẋ = f (x), (7.1)

where f :Rn →Rn is the vector field. The vector x∗ ∈Rn is called a fixed or equilibrium point of

(7.1) if f (x∗)= 0. Let φ(t, x0) denote the solution of (7.1) at time t with initial condition x(0)= x0.

The ROA associated with x∗ is defined as:

R := {
x0 ∈Rn : lim

t→∞φ(t, x0)= x∗
}
. (7.2)

Thus R is the set of all initial states that eventually converge to x∗. For nonlinear systems, it

generally holds R ⊆Rn.

Consider now the system governed by:

ẋ = f (x,δ), (7.3)

where δ ∈∆ is the vector of unknown parameters, ∆ is a known bounded set, and f :Rn ×∆→Rn.

The robust Region of Attraction Rδ is defined as the intersection of the ROAs for all systems

1Material published during the PhD which relates to the content of this chapter.
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governed by (7.3):

Rδ :=∩δ∈∆
{
x0 ∈Rn : lim

t→∞φ(t, x0,δ)= x∗(δ)
}
, (7.4)

where φ(t, x0,δ) denotes the solution of (7.3) at time t with initial condition x0 and subject to δ.

Note that, as explicitly reported in (7.4), the equilibrium point x∗ can, in general, depend on the

uncertainties. This chapter will provide certificates and develop algorithms for inner Estimates

of the ROA (ERA) of nominal vector fields and Robust inner Estimates of the ROA (rERA) of

uncertain vector fields.

7.1.2 State-of-practice in nominal ROA analysis

A standard approach to calculate ERA of R consists of finding Lyapunov function level sets. The

next result follows directly from Lyapunov’s direct method:

Lemma 7.1. [137] Let D ⊂Rn and let x∗ ∈D. If there exists a 1-time continuously differentiable

function V :Rn →R such that:

V (x∗)= 0 and V (x)> 0 ∀x 6= x∗, (7.5a)

∇V (x) f (x)< 0 ∀x ∈D\x∗, (7.5b)

ΩV ,γ = {x ∈Rn : V (x)≤ γ} is bounded and ΩV ,γ ⊆D, (7.5c)

then ΩV ,γ ∈R.

Lemma 7.1 prescribes that the function V defining the ROA fulfils set containment constraints.

The problem of satisfying these constraints can be generically formulated as: given h, f0, ..., fr ∈
R[x], does the following set containment holds?

{
x : h(x)= 0, f1(x)≥ 0, ..., fr(x)≥ 0

}⊆ {
x : f0(x)≥ 0

}
. (7.6)

This problem is classically solved in control by applying the S-procedure [34, 259], which provides

LMI constraints to ensure the validity of (7.6). This requires the polynomials in (7.6) to be

quadratic, but it is possible to state a generalisation of the S-procedure to the case of polynomials

with generic degree. First, note that (7.6) can be equivalently rewritten as a set emptiness

condition: {
x : h(x)= 0, f1(x)≥ 0, ..., fr(x)≥ 0,− f0(x)≤ 0, f0(x) 6= 0

}=;. (7.7)

This reformulation of the problem allows to use a result from real algebraic geometry. Namely, the

Positivstellensatz (P-satz) Theorem states an equivalence between emptiness of an algebraic set

and existence of polynomials with special properties and satisfying algebraic conditions [31]. An

important result from [187] is that these conditions can be verified with convex tests by resorting

to Sum of Squares optimisation. Starting from these premises, the lemma given next is central

for the numerical recipes proposed in this chapter to compute ERA.
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Lemma 7.2. (Generalised S-procedure) If there exist polynomials p ∈ R[x] and s1, ..., sr ∈ Σ[x]

such that:

p(x)h(x)−
r∑

i=1
si(x) f i(x)+ f0(x) ∈Σ[x], (7.8)

than the set containment (7.6) holds.

The problem of verifying the set containments in (7.5) has thus been recast as the search for

an SOS decomposition of a polynomial (7.8).

The popularity of SOS optimisation in control [50, 107] is primarily motivated by their

connection with convex optimisation. The idea is to express a given polynomial g with ∂(g)=2d

as a quadratic form in all the monomials of degree less than or equal to d, i.e. g=z>Qz where

z = [1, x1, x2, ..., xn, x1x2, ..., xd
n]. Since the variables in z are not algebraically independent, the

matrix Q, named Gram matrix, is not unique. In fact, it can be shown that the set of matrices Q

satisfying the previous relation is an affine subspace [188]. Most importantly, g belongs to the set

of SOS polynomials in x, i.e. g ∈Σ[x], if and only if there exists Q =Q> º 0 such that g = z>Qz.

Therefore, the search for an SOS decomposition of a polynomial amounts to determining if the

intersection of the positive semidefinite matrix cone with an affine subspace is non-empty. This

problem can be tackled by solving a Semidefinite Program (SDP), basically a convex optimisation

problem with LMI constraints. There exist freely available software allowing to accomplish this

in an efficient manner. In this work, the software SOSOPT from the suite of libraries in [15] is

used in conjunction with the SDP solver Sedumi [229]. As for the computational aspects, note

that if g is dense (or sparsity of the monomials is not exploited), the dimension of the Gram

matrix is
(n+d

d
)
. This means that the size of the SDP problem NSDP grows polynomially with n if

d is fixed (and vice versa), but it grows exponentially if both n and d increase.

Let us conclude this section with the formulation of an SOS program for the determination of

Lyapunov Functions (LF) level sets. To this purpose, the conditions in (7.5) are expressed as a set

containment condition of the type of (7.6).

V (x)> 0 ∀x 6= x∗,

∇V (x) f (x)< 0 ∀x ∈ {x : V (x)≤ γ},
(7.9)

where V is parameterised such that V (x∗)= 0.

The following SOS program represents then an application of the generalised S-procedure to

(7.9) with the goal of computing the largest inner estimates of the ROA:

Program 7.1.
max

s1∈Σ[x];V∈R[x]
γ,

V ∈Σ[x],

−∇V f − s1(γ−V ) ∈Σ[x].

(7.10)
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In Program 7.1 there are bilinear terms featuring the multiplier s1, the level set size γ and

function V . When the objective function is one of the two terms in the bilinearity (this is the

case of s1γ), it was demonstrated in [217] that the problem is quasi-convex, hence the global

optimum can be computed via cost bisection. However, in general the shape V of the estimated

ROA is part of the optimisation (except when verifying that a given level set is an ERA), and

this makes the above program non-convex (because of the term s1V ). This can be handled with

Bilinear Matrix Inequality solvers [142] or by means of iterative schemes. A detailed study of the

former approach was performed in [232], while in this research the latter strategy is considered

and related aspects are investigated.

An example of iterative scheme proposed in the literature [43] to solve Program 7.1 is the

so-called V−s iteration, which is presented next as it will serve as basis for new developments

and comparisons in the next sections.

Algorithm 7.1. [43] V−s iteration

Output: the level sets ΩV ,γ and Ωp,β (both inner estimates of the ROA).

Input: a polynomial V 0 satisfying (7.5) for some γ.

1. γ-Step. Solve through bisection on γ

max
s1∈Σ[x]

γ,

− (∇V 0 f +Lε)− s1(γ−V0) ∈Σ[x],

set γ̄← γ, s̄1 ← s1.

2. β-Step. Maximise β such that Ωp,β ⊆ΩV ,γ

max
s2∈Σ[x]

β,

(γ̄−V 0)− s2(β− p) ∈Σ[x],

set β̄←β, s̄2 ← s2.

3. V -Step. Compute a new shape for the level set for a given γ

V −Lε ∈Σ[x],

− (∇V f +Lε)− s̄1(γ̄−V ) ∈Σ[x],

(γ̄−V )− s̄2(β̄− p) ∈Σ[x],

set V 0 ←V and go to γ-Step.

where Lε = εx>x with ε on the order of 10−6. The idea of the V−s iteration is to employ a shape

function p(x)= x>Nx, where N ∈Snx (shape matrix) is chosen based on important directions in

the state space, to enlarge the level set ΩV ,γ throughout the iterations. In fact, the goal of the
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β-Step is to maximise the value of β for which Ωp,β is contained in ΩV ,γ, and in the V -Step a new

shape for ΩV ,γ (with γ computed in the γ-Step) is optimised such that the new level set contains

Ωp,β. Note that a candidate V is required to initialise the algorithm. A possible choice is any

quadratic LF proving asymptotic stability of the linearised system (provided that the associated

Jacobian is Hurwitz), denoted in the following as Vl in, or common functions (e.g. spheroid) for

sufficiently small γ.

A final remark concerns the positive polynomial Lε. This term is adopted in other SOS-based

iterative schemes [241, 243] because it provides at the end of every iteration a solution satisfying

the constraints with some margin, increasing in this way the possibility of achieving feasibility

in the subsequent iterative steps.

7.2 Invariant sets approach

The formulation of inner estimates of ROA as Lyapunov functions level sets is usually conserva-

tive due to the fact that contractiveness of the level set defining the ERA (that is, the condition in

Eq. 7.5b) is unnecessary. In fact, LeSalle’s theorem [137] points out that it suffices to consider

compact positively invariant subsets of a domain D where the function V satisfies the inequalities

in Lemma 7.1. That is, a compact set Ω⊆D such that every trajectory starting in Ω stays in there

for all future times. Invariance of Ω typically requires only conditions on its boundary to ensure

that trajectories starting inside cannot leave.

Prompted by these observations, recently formalised in [246], this section proposes methods

to study estimates of the Region of Attraction with invariant sets. In Sec. 7.2.1, which is dedicated

to the nominal case, improved iterative schemes are presented and their performance is assessed.

Sec. 7.2.2 extends the result in [246] to the case with uncertainties. It is highlighted that the

hypothesis of polynomial vector field holds throughout this section.

Note also that only a subset of the numerical examples, deemed sufficient to provide an

overview of the benefits of this contribution, is reported in this section to not clutter up the

discussion. See [127] for a larger discussion on the results obtained with the proposed algorithms.
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7.2.1 Computation of nominal ERAs using invariant sets

7.2.1.1 Starting point

The formulation of an ERA (7.1) via invariant sets builds on the following result.

Theorem 7.1. ([246], Th. 1) If there exist R,VN :Rn →R, with R,VN ∈C 1, and a positive scalar γ

satisfying:

∇R(x) f (x)< 0 ∀x ∈ ∂ΩR,γ, (7.11a)

VN (0)= 0 and VN (x)> 0 ∀x ∈ΩR,γ\0, (7.11b)

∇VN (x) f (x)< 0 ∀x ∈ΩR,γ\0, (7.11c)

ΩR,γ is compact and 0 ∈ΩR,γ, (7.11d)

then ΩR,γ is an invariant set of R.

The proof of this result can be found in [246]. The fundamental idea is that ΩR,γ is a positively

invariant set, due to (7.11a)-(7.11d), and that all trajectories initiated from it converge to a

level set of some LF, which is contractive and invariant because of (7.11b)-(7.11c), therefore

guaranteeing such set to be an ERA. Note that the level set ΩR,γ, which is the positive invariant

set generically denoted by Ω in the previous discussion, is not contractive, because negativity of

the gradient is only required on the boundary ∂ΩR,γ.

By means of the generalised S-procedure, the conditions in Theorem 7.1 can be certified via

SOS optimisation.

Lemma 7.3. [246] Let VN and R be multivariable polynomials and γ a positive scalar. If there

exist SOS polynomials s1, s2 and a polynomial s0 such that:

−∇R f − s0(γ−R) ∈Σ[x], (7.12a)

VN − s1(γ−R) ∈Σ[x], (7.12b)

−∇VN f − s2(γ−R) ∈Σ[x], (7.12c)

then the inequalities (7.11) are satisfied and ΩR,γ is an inner estimate of the ROA of the origin.

The following program can be employed to enlarge the provable ERA based on Lemma 7.3.

Program 7.2.
max

s1,s2∈Σ[x];s0,VN ,R∈R[x]
γ,

subject to conditions (7.12a-7.12b-7.12c).
(7.13)

It is observed that VN and R are part of the optimisation, thus the same issue commented

on in Sec. 7.1.2 concerning the presence of bilinearity arises. In [246] the following two-step

(Invariant sets, IS) algorithm is proposed.
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Algorithm 7.2. [246] IS - 2 Steps

Output: the level set ΩR,γ (inner estimate of the ROA).

Input: a polynomial R0 satisfying (7.12a) for some γ.

1. Step A1-1. Optimise VN and multipliers through bisection on γ

max
s1,s2∈Σ[x];s0,VN∈R[x]

γ,

−∇R0 f − s0(γ−R0) ∈Σ[x],

VN − s1(γ−R0) ∈Σ[x],

−∇VN f − s2(γ−R0) ∈Σ[x],

set γ̄← γ, s̄# ← s# (#= 0,1,2).

2. Step A1-2. Optimise VN and R through bisection on γ

max
s3∈Σ[x];VN ,R∈R[x]

γ,

−∇R f − s̄0(γ−R) ∈Σ[x],

VN − s̄1(γ−R) ∈Σ[x],

−∇VN f − s̄2(γ−R) ∈Σ[x],

(γ−R)− s3(γ−R0) ∈Σ[x],

γ− γ̄≥ 0

set R0 ← R and go to Step A1-1.

This iterative scheme consists of two steps. In Step 1 the multipliers s# and VN are optimised,

whereas Step 2 computes again VN and the level set function R, which is updated (R0 ← R) before

a new iteration is begun. The iterations terminate when one of the steps fails, i.e. the associated

optimisation is found unfeasible, and the last optimised values for R and γ provide the output

ΩR,γ. The last two constraints in Step 2 ensure that ΩR0,γ̄ ⊆ΩR,γ, i.e. the solution is a set that

strictly contains the previous one. A candidate R is required to initialise the algorithm, and a

possible choice is Vl in, i.e. the quadratic LF associated with the linearised system.

7.2.1.2 Improved algorithms

Alternative schemes to Algorithm 7.2 are proposed here to solve Program 7.2. The aim is on

the one hand to improve the run time, and on the other to overcome numerical issues typically

arising when employing SOS and commented throughout the section.

First, a modification of Algorithm 7.2 is discussed. The last two constraints in Step A1-2

(motivated before) make Step A1-2, in addition to Step A1-1, quasi-convex. To make it convex,

the last two SOS constraints in Step A1-2 are replaced by:

(γ−R)− s3(γ̄−R0) ∈Σ[x]. (7.14)
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By direct application of Lemma 7.2, this constraint enforces ΩR0,γ̄ ⊆ΩR,γ. Thus, the estimated

ROA increases at each step, but this is achieved now without introducing bilinearities. In the

tested cases this modification led to a reduction in simulation and better accuracy in the results.

Therefore, this is implemented in all the analyses shown here (i.e. Algorithm 7.2 represents

already an improvement compared to the baseline proposed in [246]).

In addition to this, a new iteration strategy is devised which consists of splitting Step A1-1

into two steps, Step A2-1 and Step A2-2. The idea is to distribute the computational effort in

order to ease the SDP calculations underpinning each step and in turn to enhance accuracy and

efficiency of the estimations of the level set ΩR,γ. This is achieved with the three-step iteration

scheme reported in the following.

Algorithm 7.3. IS - 3 Steps

Output: the level set ΩR,γ (inner estimate of the ROA).

Input: polynomials R0, V 0
N satisfying (7.12) for some γ.

1. Step A2-1. Optimise the multipliers for fixed level sets shapes

max
s1,s2∈Σ[x];s0∈R[x]

γ,

−∇R0 f − s0(γ−R0) ∈Σ[x],

V 0
N − s1(γ−R0) ∈Σ[x],

−∇V 0
N f − s2(γ−R0) ∈Σ[x],

set γ̄← γ, s̄# ← s# (#= 0,1,2).

2. Step A2-2. Optimise VN

max
VN∈R[x]

γ,

−∇R0 f − s̄0(γ−R0) ∈Σ[x],

VN − s̄1(γ−R0) ∈Σ[x],

−∇VN f − s̄2(γ−R0) ∈Σ[x],

γ≥ γ̄,

set V̄N ←VN , γ̄← γ.

3. Step A2-3. Optimise R

max
s3∈Σ[x];R∈R[x]

γ,

−∇R f − s̄0(γ−R) ∈Σ[x],

V̄N − s̄1(γ−R) ∈Σ[x],

−∇V̄N f − s̄2(γ−R) ∈Σ[x],

(γ−R)− s3(γ̄−R0) ∈Σ[x],

set R0 ← R,V 0
N ← V̄N and go to Step A2-1.
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The scheme consists of one quasi-convex step (Step A2-1) and two convex steps (Step A2-2

and Step A2-3). Each step has a specific task: Step A2-1 provides the multipliers for the next two

steps; Step A2-2 calculates the function VN ; and Step A2-3 (embedding the constraint proposed

in Eq. 7.14) evaluates the sought level set ΩR,γ based on the iterates from the previous steps.

The size γ of the ERA is maximised throughout each iteration, although Step A2-2 and Step A2-3

can also be solved as simple feasibility problems. In this regard, note that the optimality of the

solution is already prevented by the non-convexity of (7.13), and that the algorithm ensures in any

case that the ERA is non-decreasing. Therefore, resorting to just feasibility when maximisation

fails is a viable solution.

Algorithm 7.3 requires initialisations for R and VN . A first option is to choose for both Vl in,

which automatically satisfies (7.12) for sufficiently small γ. Alternatively, the calculation can

start with Algorithm 7.2 which in turn provides the initialisations R0 and V 0
N to Algorithm 7.3.

It is stressed the importance of the fact that Algorithm 7.3 is initialised with both the functions

R and VN . This feature can be favourably used when preliminary estimations of the shape of

the ERA are available in that the search can be seeded with them. In fact, while in Algorithm

7.2 this information would be partially lost because the function VN is optimised anew with the

multipliers in Step A1-1, Algorithm 7.3 optimises first the multipliers based on the provided

estimations of R and VN , and then adjusts VN and R correspondingly in the next two steps.

Even though the problem remains non-convex (and thus it cannot be guaranteed that the global

optimum is found), the formulation of this iterative scheme privileges local searches, therefore can

represent an important complement to Algorithm 7.2. This observation represents the premise

for the hybrid algorithm described next.

The issues typically arising when computing ERA with SOS-based techniques are twofold:

the SDP associated with each iteration can be computationally challenging, both in terms of run

time and accuracy; the non-convexity due to the bilinear terms forces coordinate-wise search

algorithms to be adopted, inevitably leading to local optima. While Algorithm 7.3 attempts to

ameliorate the former behaviour, this is nonetheless affected by the same local optima pitfall.

The issue of local optima is well known in the optimisation field and one of the proposed solutions

is represented by so-called hybrid strategies [172]. In essence, global optimisers are crossed

with problem-specific local search algorithms. In the currently investigated programs, the non-

convexity is inherent to the adoption of SOS relaxations for the enforcement of set containments.

Thus, hybrid schemes meant in the conventional sense do not look viable. However, the availability

of the two distinct Algorithms 7.2 and 7.3 featuring the aforementioned properties is exploited to

devise the following algorithm attempting to make the search of ERA more robust to numerical

issues.
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Algorithm 7.4. IS - Hyb

Output: the level set ΩR,γ (inner estimate of the ROA).

Input: a switching criterion swcr; polynomials R0, V 0
N satisfying (7.12) for some γ.

1. Stage 1. Execute Algorithm 7.2.

if Stage 1 converged then set R0 ← R and V 0
N ←VN ,

if swcr is true then go to Stage 2,

else restart Stage 1,

else go to Stage 2,

2. Stage 2. Execute Algorithm 7.3.

if Stage 2 converged then set R0 ← R and V 0
N ←VN ,

if swcr is true then go to Stage 1,

else restart Stage 2,

else set go to Stage 1,

The iterative scheme builds on the advantageous capability of switching from one algorithm

to the other in case of failed solution or slow progress. The switching criterion swcr can be

formulated based on the idea of associating with each stage a reward [171], that is, a figure of

merit of the executed algorithm. If slow progress in the computation is considered as performance,

the size of the level set γ can be employed. A possible metric to quantify the expansion rate of the

ERA for a given algorithm is obtained comparing values of γ referred to the same shape function

R. The cost bisections in the first steps of both the algorithms (Step A1-1 and Step A2-1) are

performed keeping fixed R at the value of the previous iteration. Thus, swcr can be defined as

a tolerance on the ratio between γ computed at the end of the first step and at the end of the

previous iteration. Note that when Algorithm 7.3 is employed, another choice for swcr is the ratio

between γ computed at Step A2-2 and Step A2-1, because the shape R is held fixed over the two

steps. The number of failures in convergence experienced by the used algorithm can also be used

to define the reward, because it reveals the suitability of adopting a certain search strategy for

the considered problem.

The adoption of a switching criterion can reduce the run time by pointing at faster search

directions, and can help taking advantage of the different features of the two algorithms. However,

it should not be underestimated the utility of a scheme whose goal is simply to carry on the

optimisation in case of failed solution of one algorithm. It is indeed often the case that infeasibility

of one of the steps is not caused by the fact that the ERA is close to the actual ROA (and thus

no further optimisation is possible), but by numerical issues of the SDP (exacerbated when the

size of the program increases). This aspect motivates the choice made in this work of testing
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Algorithm 7.4 with swcr defined such that the algorithm crosses the stages sequentially (i.e. the

inner if condition is always true). The selection of swcr is deemed a problem-specific feature, and

the study of alternative solutions is on itself an interesting research study that can be undertaken

in future works focused on the study of ROA with hybrid approaches.

7.2.1.3 Numerical example

The invariant sets algorithms are applied here to a closed-loop nonlinear short-period (SP) model

of an aircraft longitudinal dynamics [241]. It features 3 open-loop states (pitch rate z1, angle of

attack z2, pitch angle z3) and 2 controller states η1,η2.

ż =


−3 −1.35 −0.56

−0.91 −0.64 −0.02

1 0 0

 z+


1.35−0.04z2

0.4

1

u+


0.08z1z2 +0.44z2

2 +0.01z2z3 +0.22z3
2

−0.05z2
2 +0.11z2z3 −0.05z2

3

0

 ,

y= [z1 z3]>, u = η1 +2.2η2,

η̇=
[
−0.6 0.09

0 0

]
η+

[
−0.06 −0.02

−0.75 −0.28

]
y.

(7.15)

By defining x = [z;η], the system is recast in the formalism of (7.1).

Fig. 7.1 shows different inner estimates of the ROA. IS and LF stand for invariant sets and

Lyapunov functions level set approach, respectively. For the IS approach, Algorithms 7.2 (IS - 2

Steps), 7.3 (IS - 3 Steps) and 7.4 (IS - Hyb) are tested. The degree of the optimised polynomials

(V ,VN ,R) is 4 in all cases. Since the system has more than 2 states, projections of the ERA onto

particular planes have to be considered. In general, the analyst will focus on the states which are

supposed to experience larger perturbations during the operation of the system.

The results confirm that the invariant set approach lead to a larger (i.e. less conservative)

estimation of the ROA than the LF level set one, whose predictions obtained with an in-house

implementation of the V − s algorithm (with the shape function p taken as the spheroid) are

in good agreement with the results presented in [241]. The plot also allows to appreciate the

effect of the adopted iteration scheme. Although no conclusive remarks can be stated, some

trends, confirmed when changing the parameterisation of the multipliers and level set functions

degrees, were observed. For example, the algorithms are sensitive to the initialisation, especially

Algorithm 7.3 which requires a guess for both VN and R. When initialised with the first iterate

from Algorithm 7.2 (as it is the case in Fig. 7.1), the use of Algorithm 7.3 improves the accuracy

of the ROA estimation and outperforms the results obtained with the invariant set baseline

algorithm. When the two algorithms are used in conjunction, i.e. the hybrid algorithm is employed,

the estimated ERA is usually larger.

Table 7.3 summarises the computational statistics of the employed algorithms. Recall that

each algorithm is iterative and each iteration features two or three steps. Therefore, for each

algorithm only the number of decision variables Nvar and the size of the Gram matrix NSDP for
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Figure 7.1: Comparison of the ERA of the short-period model with different algorithms.

the most demanding step are reported. In addition, the averaged processing time per iteration

Titer as well as the overall time Ttot required to determine the ERA are given.

Table 7.1: Computational statistics for the invariant sets ROA analyses.

Algorithm Nvar NSDP Titer [s] Ttot [s]
LF (7.1) 120 3866 14 840

IS - 2 Steps (7.2) 246 12322 78 1872
IS - 3 Steps (7.3) 126 12322 70 1260

IS - Hyb (7.4) 246 12322 72 2742

Algorithm 7.3 has clearly a smaller Titer than Algorithm 7.2. Even though the former consists

of 3 steps (as opposed to Algorithm 7.2 which has only 2), this performance is a result of

the redistribution of the computational effort driving the proposal of Algorithm 7.3 (and also

benefiting Algorithm 7.4). Algorithm 7.3 also features the smallest Ttot. The high value observed

for Algorithm 7.4 can be motivated observing that the associated ERA is markedly larger than

the others and thus more iterations will be involved in its computation. This is an important

aspect to keep in mind when using the metric Ttot to compare different algorithms.

Since the algorithms only provide a guaranteed region of stability (i.e. inner estimates, or

lower bound, of the actual ROA) it is important to quantify the conservatism of the results. A

useful aspect in this regard is that the availability of different ERA can enhance insight into

the actual boundaries of the ROA. For example, from a closer inspection of Fig. 7.1, a dense

presence of curves in some regions, marked with circles in the plot, can be identified. It can be

speculated that these correspond to boundaries of the actual region of attraction of the system

169



CHAPTER 7. APPROACHES FOR THE ESTIMATION OF ROA

on the basis of an approximate overlap of the estimations given by different algorithms. These

observations can be of great help to inform extensive refined time-marching simulations as well

as provide initialisations for further analyses (recall the importance of the initial guess and the

possibility to exploit it in Algorithm 7.3 due to the required initialisation of two functions). In

order to verify these inferences and quantify an upper bound on the size of the estimates, the

following algorithm is proposed.

Algorithm 7.5. Computation of upper bounds on the size of the estimated ROA

Output: the value of γ f such that ΩR,γ f 6⊂R; a set of initial conditions which do not belong to R.

Input: ∂ΩR,γ, integer Ns, and a small scalar εγ.

1. Simulate the nonlinear system using as initial conditions Ns random points X0 on the

boundary ∂ΩR,γ (time-marching campaign).

2. Define F := {
X0 ∈Rn : limt→∞φ(t, X0) 6= x∗

}
.

3. If F =;, update the size γ= (1+εγ)γ and repeat from 1. Otherwise, γ f = γ and F gathers a

set of initial conditions which do not belong to R.

Algorithm 7.5 is applied to the level setΩR,γ obtained with the hybrid iteration scheme, which

gave γ=14.7. The algorithm, applied using Ns = 300 and εγ = 0.03, returns γ f =15.6, i.e. there is a

6% gap between the lower bound γ obtained by the hybrid scheme and the upper bound γ f from

Algorithm 7.5. However, it is important to stress that Algorithm 7.5 gives an upper bound on

the size of the ERA for a fixed shape R. This means that, even when γ and γ f are close, the ERA

might still not capture accurately the actual shape of the region of attraction. A heuristic method

to assess this consists of checking the set F returned by Algorithm 7.5. The more distributed

around ∂ΩR,γ are the points in F , the closer to the actual ROA the shape of the level set is.

Fig. 7.2 shows the results obtained applying this methodology to the SP case. Projections in

two phase planes, z1 − z2 (Fig. 7.2(a)) and z2 −η2 (Fig. 7.2(b)), are considered. In each plot, the

ERA is shown as well as cross markers corresponding to initial conditions whose trajectories do

not converge to the equilibrium. Note that the markers are not confined in one area of the plane,

but are distributed around distinct regions of the ERA. Specifically, the points certified to be

outside of the ROA in Fig. 7.2(a) lie in the same regions highlighted in Fig. 7.1 by circle markers

and discussed therein. This hints at the fact that the estimations capture also the actual shape of

the ROA, and not only its size as inferred from the upper bound γ f . By increasing the degree of

VN and R, an improvement of the ERA was observed along the directions where violations were

not detected. Or, put it differently, where the curves in Fig. 7.1 were scattered.

Further results of the nominal invariant sets algorithms (obtained with this and another

benchmark study from the literature) are discussed in [127].
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Figure 7.2: Upper bounds of the ERA.

7.2.2 Robust ROA with invariant sets

The case when the vector field is subject to parametric uncertainties is considered here. A first

important aspect is that, as explicitly reported in the definition of Rδ (7.4), the equilibrium

point x∗ depend, in general, on the uncertainties. It is largely established in the literature

[6, 49, 241] the assumption that f (0,δ)= 0 ∀δ ∈∆, i.e. the equilibrium point (assumed without

loss of generality to coincide with the origin) does not depend on the uncertainties. For the case of

parametric uncertainties, i.e. δ ∈∆⊂Rnδ , approaches are available to relax this assumption. In

[12] an algorithm based on contraction metrics was proposed in the context of global stability

and could be extended for local analysis purposes. An alternative approach, based on the idea of

guaranteeing local stability without knowledge of the associated equilibrium, has been developed

in this research (and published in [128]) and is detailed in Appendix B. In order to focus here on

the new contribution to the invariant set framework, the aforementioned simplifying hypothesis

is made and thus x∗ = 0 ∀δ ∈ ∆. This is not a limitation because the approach described in

Appendix B can be used to account for dependence of x∗ on ∆.

171



CHAPTER 7. APPROACHES FOR THE ESTIMATION OF ROA

7.2.2.1 Local stability certificates with algebraic sets

The starting point to find robust inner estimate of the ROA, or rERA, with the invariant sets

approach is represented by the following result.

Theorem 7.2. ([246], Th. 4) Given R :Rn →R, VN :Rn ×∆→R, R,VN ∈C 1 and a positive scalar

γ satisfying:

∇R(x) f (x,δ)< 0 ∀(x,δ) ∈ ∂ΩR,γ×∆, (7.16a)

VN (0, ·)= 0 and VN (x,δ)> 0 ∀(x,δ) ∈ΩR,γ\0×∆, (7.16b)

∇VN (x,δ) f (x)< 0 ∀(x,δ) ∈ΩR,γ\0×∆, (7.16c)

ΩR,γ is compact and 0 ∈ΩR,γ, (7.16d)

then ΩR,γ is an invariant set of Rδ.

The proof is very similar to that for Theorem 7.1 (see the reference for details).

It is proposed here to describe ∆ as a semialgebraic set [6]:

∆= {
δ ∈Rnδ : mi(δ)≥ 0,mi ∈R[δ], i = 1, ...,nδ

}
. (7.17)

This strategy is quite general and allows both time-invariant and time-varying parametric uncer-

tainties to be taken into account, as well as norm bounded operators. Moreover, no hypotheses on

how the uncertainties enter the vector field are made. This is different from previous strategies,

where, for example with reference to LF-based approaches, f is required to depend affinely on

the uncertain parameters [241], or ∆ must be within a polytope [243]. A useful result is recalled

next.

Lemma 7.4. [232] For each y satisfying g3(y)≤ 0,

{x | g1(x, y)≤ 0}⊆ {x | g2(x, y)≤ 0},

iff {(x, y) | g1(x, y)≤ 0, g3(y)≤ 0}⊆ {(x, y) | g2(x, y)≤ 0}.
(7.18)

The advantage of this result is that the last set-containment can be easily enforced with

Lemma 7.2. Based on these preliminaries, the following Lemma allowing to study robust ERA

within the framework of invariant sets is stated.

Lemma 7.5. Given R ∈R[x], VN ∈R[x,δ] with VN (0, ·) = 0, and a positive scalar γ, if there exist

s1, s2, s0i, s1i, s2i ∈Σ[x,δ] and s0 ∈R[x,δ] such that:

−∇R f − s0(γ−R)−Γ0 j ∈Σ[x,δ], (7.19a)

VN − s1(γ−R)−Γ1 j ∈Σ[x,δ], (7.19b)

−∇VN f − s2(γ−R)−Γ2 j ∈Σ[x,δ], (7.19c)

with Γ# j = s#1m1 + ...s#imi + ...+ s#nδ
mnδ

, #= 0,1,2 (7.19d)

then the conditions of Theorem 7.2 are satisfied and ΩR,γ ⊆Rδ.
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Proof. The proof of (7.19a)⇒(7.16a) is given here. By virtue of the uncertainty description in

(7.17), condition (7.16a) can be stated as:

For each δ satisfying mi(δ)≥ 0, (i = 1, ...,nδ),{
x : γ−R(x)= 0

}⊆ {
x :−∇R f (x,δ)≥ 0

}
.

(7.20)

For Lemma 7.4, this holds if and only if

{
(x,δ) : γ−R(x)= 0,mi(δ)≥ 0, i = 1, ...,nδ

}⊆ {
(x,δ) :−∇R f (x,δ)≥ 0

}
. (7.21)

This set containment constraint is in the form of (7.6). Indeed, it is enough to take h = γ−R(x),

f i = mi and f0 =−∇R f (x,δ). By applying the generalised S-procedure (Lemma 7.2) it is obtained

the SOS constraint (7.19a), which hence provides a sufficient condition for (7.16a) to hold. A

similar rationale applies to the other constraints in the Lemma. �

Lemma 7.5 and provides a novel recipe for the determination of robustly invariant sets. The

corresponding program to enlarge the provable rERA is:

Program 7.3.

max
s1,s2,s0i ,s1i ,s2i∈Σ[x,δ]; s0,VN∈R[x,δ]; R∈R[x]

γ,

subject to conditions (7.19a-7.19b-7.19c).
(7.22)

Program 7.3 leads again to bilinearities and, to tackle this, adaptations of Algorithms 7.2, 7.3,

and 7.4 can be employed. As an example, the extension of Algorithm 7.3 is reported next (the

letter R in the name of the algorithm and of the steps stresses the fact that the algorithm allows

the computation of robust ERA).

Algorithm 7.6. ISR - 3 Steps

Output: the level set ΩR,γ (parameter-independent rERA).

Input: polynomials R0, V 0
N satisfying (7.19) for some γ.

1. Step A2R-1. Optimise the multipliers for fixed level sets shapes.

max
s1,s2,s0i ,s1i ,s2i∈Σ[x,δ]; s0∈R[x,δ]

γ,

−∇R0 f − s0(γ−R0) −Γ0 j ∈Σ[x,δ],

V 0
N − s1(γ−R0)−Γ1 j ∈Σ[x,δ],

−∇V 0
N f − s2(γ−R0)−Γ2 j ∈Σ[x,δ],

set s̄#i ← s#i (#= 0,1,2, i = 1, ...,nδ).
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2. Step A2R-2. Optimise VN .

max
VN∈R[x,δ]

γ,

−∇R0 f − s̄0(γ−R0)− Γ̄0 j ∈Σ[x,δ],

VN − s̄1(γ−R0)− Γ̄1 j ∈Σ[x,δ],

−∇VN f − s̄2(γ−R0)− Γ̄2 j ∈Σ[x,δ],

set V̄N ←VN , γ̄← γ.

3. Step A2R-3. Optimise R.

max
s3∈Σ[x,δ]; R∈R[x]

γ,

−∇R f − s̄0(γ−R)− Γ̄0 j ∈Σ[x,δ],

V̄N − s̄1(γ−R)− Γ̄1 j ∈Σ[x,δ],

−∇V̄N f − s̄2(γ−R)− Γ̄2 j ∈Σ[x,δ],

(γ−R)− s3(γ2 −R0) ∈Σ[x,δ],

set R0 ← R,V 0
N ← V̄N and go to Step A2R-1.

Γ# j is defined in Eq. (7.19d) and Γ̄# j = s̄#1m1+...s̄#imi+...+ s̄#nδ
mnδ

. In addition to the options

discussed previously for the nominal case, the initialisation of R and VN can be done with the

corresponding functions obtained with (nominal) ERA calculation. The independent variables

of the optimisation now include the states of the system x and the uncertain parameters δ.

The polynomial multipliers s can thus potentially be function of both x and δ (as reported in

Algorithm 7.6), but in practice there is a trade-off between computational time and accuracy.

One of the advantages of this formulation is that the level set function is R(x) (i.e. uncertain

parameter-independent), whilst VN (x,δ) is parameter dependent. On the one hand, this is a less

conservative approach than the one represented by parameter-independent level sets because

VN is allowed to be a function of δ. On the other, the fact that the level set ΩR,γ is parameter-

independent avoids the computation of the intersection of the parameterised estimates, resulting

in a more accurate and easier to visualise outcome. Moreover, R is always multiplied by the SOS

multipliers s# whereas VN not, thus it is more computationally efficient to reduce the number

of terms in the former polynomial. This favourable twofold behaviour is the result of using two

distinct functions, R and VN , which allows for greater flexibility in the optimisation.

The description of the set in (7.17) entails the definition of the polynomials mi, which depend

on the type of uncertainties featuring the system. This section focuses on parametric uncertainties,

and thus possible definitions will be discussed for this case. Let us denote with δi and δi the

minimum and maximum allowed values for each uncertain parameter δi, respectively. Then, at

174



7.2. INVARIANT SETS APPROACH

each parameter a polynomial mi can be associated as follows:

mi(δi)=−(δi −δi)(δi −δi),

δ ∈∆⇐⇒ mi(δi)≥ 0,

where δ= [δ1; ...δi; ...δnδ
]>.

(7.23)

Recalling the definition of Γ# j in (7.19d), it is worth noting that for each employed mi there are

three multipliers s0i, s1i, s2i (one for each constraint). Therefore, as the number of uncertain

parameters increases, so does the size of the associated optimisation problem. An alternative

solution is to define a single polynomial mc:

mc(δ)=−
nδ∑
i=1

(δi −δi)(δi −δi)=
nδ∑
i=1

mi(δi),

δ ∈∆=⇒ mc(δ)≥ 0,

(7.24)

which specialises Γ# j (7.19d) to Γ#1 = s#cmc. This definition gives only a sufficient condition (as

opposed to the one in (7.23) which is also necessary), because there are values of δ 6∈∆ for which

the inequality mc(δ) ≥ 0 is satisfied. Therefore, the obtained rERA is valid for a larger range

of uncertainties. However, the adoption of mc has the advantage of adding only 3 multipliers

s0c, s1c, s2c regardless of the number of uncertainties.

7.2.2.2 Examples

The uncertain short-period was studied in [241, 242]. Compared to the nominal plant (7.15), two

parametric uncertainties δ1 and δ2 affect the open loop dynamics:

ż =


−3 −1.35 −0.56

−0.91 −0.64 −0.02

1 0 0

 z+


1.35−0.04z2

0.4

1

u+

+


(1+δ1)(0.08z1z2 +0.44z2

2 +0.01z2z3 +0.22z3
2)

(1+δ2)(−0.05z2
2 +0.11z2z3 −0.05z2

3)

0

 ,

δ1,δ2 ∈ [−0.1,0.1].

(7.25)

In [241, 242] LF level sets-based algorithms were adopted, featuring respectively: [241] a sub-

optimal strategy to avoid enforcing the V -s iteration at each vertex of the polytope; [242] a

branch-and-bound refinement of the suboptimal algorithm consisting of partitioning the uncer-

tainty set and determining a different parameter-independent LF for each cell. In both cases,

the rERA was expressed in the form of Ωp,β because a unique LF V certifying the ROA over the

entire uncertainty set was not computed by the algorithms.

The plot in Fig. 7.3 shows the analyses using ∂(R,VN ) = 2 (the same nomenclature of Fig.

7.1 applies with ISR instead of IS). The largest estimate available in the published literature,
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taken from [242] and obtained with quartic LFs employing the suboptimal (branch-and-bound

refined) algorithm, corresponds to β= 11.1 and p = x>x and is reported in here for comparison.

Projections of the rERA onto the z1 − z2 plane (Fig. 7.3(a)) and z1 − z3 plane (Fig. 7.3(b)) are

depicted. The results showcase that the three proposed algorithms based on invariant sets are

close to each other and outperform the estimation given with the LF level set approach (which was

obtained with a higher degree for the LF). The analyses in Fig. 7.3 were obtained describing the

uncertainty set with a single polynomial mc(δ1,δ2) following the idea in (7.24). In Table 7.2 the

computational statistics are reported. Note that in [242] there is no reference to computational

time or size of the problem. However, in [241] a smaller estimation (i.e. without branch-and-bound

refinement) was achieved in approximately 2300 s (and this is taken as lower bound on the total

processing time of algorithm LF). The same observations gathered for the nominal case can be

made here.

Finally, an upper bound on the rERA of Fig. 7.3 is evaluated making use of an extension of

Algorithm 7.5. Since now the system is subject to uncertainties, the evaluation of Nδ random

samples of the uncertainty vector δ is performed first and, for each of them, Algorithm 7.5 is

applied. Results, obtained with Nδ = 100, Ns = 300, and εγ = 0.03, are visualised in Fig. 7.4 by

means of projections of ΩR,γ f and ΩR,γ onto the same planes used in Fig. 7.3.

Further results obtained with the nominal invariant sets algorithms (obtained with this and

another benchmark study from the literature) are discussed in [127].

Table 7.2: Computational statistics for the invariant sets robust ROA analyses.

Algorithm Nvar NSDP Titer [s] Ttot [s]
LF - - - > 2300

IS - 2 Steps 744 41772 220 2420
IS - 3 Steps 714 41772 210 1890

IS - Hyb 744 41772 203 2770

176



7.2. INVARIANT SETS APPROACH

−15 −10 −5 0 5 10 15
−5

−4

−3

−2

−1

0

1

2

3

4

z
1
 [deg/s]

z
2
 [
d
e
g
]

 

 

IS
R
 − 2 Steps

IS
R
 − 3 Steps

IS
R
 − Hyb

LF

(a) Projection onto z1 − z2 plane.

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

z
1
 [deg/s]

z
3
 [
d
e
g
]

 

 

(b) Projection onto z1 − z3 plane.

Figure 7.3: Comparison of the rERA of the short-period model with different algorithms.
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7.3 IQC approach

A common feature of the available approaches for ERA [43, 108, 246], including the invariant

set one discussed in the previous section, is that they require polynomial vector fields, thus a

limitation holds on the types of nonlinearities that can be considered. In addition, the methods

dealing with the case of uncertain systems [49, 243] do not typically allow to specify, and thus

exploit, the nature of the uncertainty set (e.g. linear time-invariant, real constant, time-varying).

This inherently leads to conservative outcomes because the results must hold for a larger set of

uncertainties than the one actually affecting the system.

Based on these observations, a more general and flexible framework for local stability analysis

of nonlinear uncertain systems is proposed. The problem is framed as the feedback interconnection

of a system G with polynomial vector field and a bounded causal operator ∆ for which an Integral

Quadratic Constraint description holds. The IQC paradigm (Sec. 6.1.2) is indeed particularly

suited to address the desired task of reducing the conservatism, because it characterises a broad

class of nonlinearities, and allows the description of the uncertainties to be refined by specifying

their nature. The setup provided by the feedback interconnection G-∆ is thus believed to be quite

general and to adequately cover a large class of nonlinear systems encountered in engineering

applications.

The time-domain interpretation of IQCs (Sec. 6.1.2.1) is instrumental to prove the main

results. In particular, the connection between dissipation inequality and IQC is exploited to

provide guarantees of local stability. Dissipation inequality arguments [210] classically require

the IQC to be hard in the sense that the integral constraints must hold over all finite times

[215]. This is not immediate because the frequency domain IQC only guarantees an equivalent

counterpart in the time-domain as an infinite-horizon integral constraint (soft IQC) [170] (recall

the example with the two alternative factorisations for the multiplier Πδ in Sec. 6.1.2.2). The

main technical contribution is to establish certificates for the domain of attraction with both hard

and soft factorisations (Sec. 7.3.1). Application to two benchmark studies from the ROA literature

is then shown in Sec. 7.3.2.

7.3.1 Region of attraction certificates

The theoretical formulation of ROA analysis with IQC is presented here. First, the problem setup

is detailed, and then local stability certificates for the cases of hard and soft IQCs are stated.

Algorithms based on SOS are also provided to numerically solve the problem.
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7.3.1.1 Problem statement

The proposed framework aims to analyse systems of the form:

ẋ = f (x,w), (7.26a)

v = h(x,w), (7.26b)

w =∆(v), (7.26c)

where f and h are polynomial functions of x and w and define the nominal plant G, and ∆ is a

bounded operator gathering nonlinearities and uncertainties for which an IQC description holds.

The prototype of systems considered by this work thus consists of the standard interconnection

G-∆ (Fig. 2.2), where G now is polynomial and ∆ is a generic uncertainty. Thus, the combined

system is in general non-polynomial. As already done for the invariant set approach, it will be

assumed that x∗ is not a function of ∆ (specifically x∗ = 0).

Starting from the generic description in (7.26), the first step consists of defining the augmented

plant displayed in Fig. 7.5. Note that, compared to the similar interconnection described in Fig.

6.3, here G can have polynomial dynamics (whereas in standard IQC G is LTI). In particular, the

feedback interconnection comprises the subsystems G (defined by (7.26a)-(7.26b)), ∆ (7.26c), and

Ψ, derived from the time-domain representation of the IQCs (6.12).

Figure 7.5: Augmented plant for IQC-based ROA analysis.

Introducing the vector x̃ = [x; xΨ] gathering the states of G and of the LTI system Ψ, the plant

can be reorganised eliminating any explicit dependence on ∆ as follows:

˙̃x = F(x̃,w),

z = H(x̃,w),
(7.27)

where F,H :Rn x̃+nw →Rn x̃ are polynomial maps depending on both G and Ψ. It is stressed that

this manipulation, leading from (7.26) to (7.27), does not make any assumption on ∆ except the

existence of a factorisation Ψ for the associated multiplier Π.
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Remark 7.1. Most IQCs require ∆ to map zero input to zero output, i.e. v = 0 maps to w =∆(v)= 0

(v = 0 and w = 0 mean here that the signals have zero L2 norm). To see this, consider the case

where v ≡ 0. Then, the frequency-domain IQC in (6.5) simplifies to:∫ +∞

−∞
ŵ( jω)∗Π22( jω)ŵ( jω)dω≥ 0, (7.28)

where the partition Π=
[
Π11 Π12
Π∼

12 Π22

]
is considered. It is typical that Π22( jω)≺ 0 for all ω [170, 215]

and hence, from Eq. (7.28), it must be w ≡ 0. This implies that, if ∆ has internal dynamics, e.g.

LTI uncertainties, then it must have zero initial condition. This assumption, used in [13] in a

similar context, is made here and can be interpreted as the absence of initial stored energy in ∆.

The instance of energy stored in the IQC has recently been addressed in [82, 193] and could allow

to relax this assumption.

Having said that in principle this hypothesis could seem restrictive for analyses which allow

for non-zero initial conditions in the plant G, there might be applications where this assumption

is known a priori to be valid (from physical reasoning), or when there is no effect of the initial

conditions of ∆ on the local stability (inferred from time-marching simulations). In fact, if the

only detrimental effect on ROA is the input-output behaviour of the uncertain dynamics, this is

correctly captured by the proposed framework.

For all these reasons, the results are stated here for a general ∆ and, in case of internal

dynamics inside it, the aforementioned hypothesis is assumed to hold. This is done in order not

to limit the application to static ∆, which naturally fulfils this assumption and are indeed a

particular class of the allowed set.

7.3.1.2 Case of Hard IQCs

The proposed estimation of invariant subsets of the ROA when ∆ has an hard IQC factorisation

is based on the following theorem.

Theorem 7.3. Let F be the polynomial vector field defined in (7.27) and ∆ : L
nv
2 [0,∞) →

L
nw
2 [0,∞) be a bounded, causal operator. Further assume:

1. ∆ ∈ HardIQC (Ψ, M);

2. there exists a smooth function V: Rn x̃ →R and positive scalars εx and εw such that:

V (0)= 0 and V (x̃)> 0 ∀x̃\{0}, (7.29a)

∇V (x̃)F(x̃,w)+ z>Mz+εx x̃> x̃+εww>w < 0 ∀x̃ ∈ΩV ,γ\{0}, ∀w ∈Rnw . (7.29b)

Then the intersection of ΩV ,γ with the hyperplane xΨ = 0 is an inner estimate of the ROA of (7.26).

Proof. The theorem assumes that Eq. (7.29b) holds only over the set ΩV ,γ. Hence, the proof

must ensure first that all the trajectories originating in ΩV ,γ remain within for all finite time.
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Assume there exists a T1 > 0 such that x̃(T1) 6∈ΩV ,γ, and define T2 := infx̃(T) 6∈ΩV ,γ T. Since F and

H are polynomial maps, solutions of Eq. (7.27) are continuous, thus x̃(T2) is on the boundary of

ΩV ,γ and x̃(t) ∈ΩV ,γ∀t ∈ [0,T2]. Therefore, it is possible to integrate the inequality (7.29b) in this

range:

V (x̃(T2))−V (x̃(0))+
∫ T2

0
z>Mz+εx

∫ T2

0
x̃> x̃ dt+εw

∫ T2

0
w>w dt < 0. (7.30)

Since by hypothesis ∆ ∈ HardIQC (Ψ, M) and V (x̃(0))6 γ, it thus holds:

γ=V (x̃(T2))< γ. (7.31)

This is contradictory and hence the assumption that ∃T1 > 0 such that x̃(T1) 6∈ΩV ,γ can not hold.

Thus x̃(0) ∈ΩV ,γ implies x̃(t) ∈ΩV ,γ for all finite time (invariance of the level set). Note that this

proof by contradiction is needed otherwise there is no guarantee that the trajectories stay in the

set (and thus that the inequality (7.29b), leveraged in the rest of the proof, holds).

Next, it is required to prove that the equilibrium point is attractive. Let us consider Eq.

(7.30) with the integrals performed in a generic interval [0,T]. From ∆ ∈ HardIQC (Ψ, M) and

V (x̃(T))≥ 0, it follows that:

εx

∫ T

0
x̃> x̃ dt+εw

∫ T

0
w>w dt <V (x̃(0)). (7.32)

Let T →∞ to see that x̃ ∈L
n x̃
2 [0,∞) and w ∈L

nw
2 [0,∞).

Let us now define y= [x̃;w] and Dy = {y(x̃,w) : x̃ ∈ΩV ,γ,w ∈Rnw }. The vector field F is a polynomial

function of x̃ and w. Therefore, F is locally Lipschitz [137]:

‖F(y2)−F(y1)‖ ≤ L‖y2 − y1‖ ∀y1, y2 ∈Dy, (7.33)

with L a real constant. In particular, for y1 = [0;0] and a generic y2, it holds that:

‖F(y2)‖ ≤ L‖y2‖. (7.34)

Eq. (7.34) is valid for any y2 in Dy, hence the subscript will be omitted. It follows directly from

Eq. (7.34) that:
˙̃x> ˙̃x = ‖F(y)‖2 ≤ L2‖y‖2 = L2 [

x̃> x̃+w>w
]
. (7.35)

By integrating both sides from 0 to ∞, it holds for any admissible trajectory:∫ ∞

0
˙̃x> ˙̃x dt ≤ L2

∫ ∞

0

[
x̃> x̃+w>w

]
dt,

|| ˙̃x||22 ≤ L2 [||x̃||22 +||w||22
]
.

(7.36)

Since x̃ ∈ L
n x̃
2 [0,∞) and w ∈ L

nw
2 [0,∞), it follows from (7.36) that ˙̃x ∈ L

n x̃
2 [0,∞). An identical

argument applied to the map h from Eq. (7.26b) allows to conclude that v ∈ L
nv
2 [0,∞), which

guarantees that the signals in the loop belong to the space of signals requested from IQCs. Finally,

( ˙̃x, x̃) ∈L
n x̃
2 [0,∞) implies that x̃ → 0 as T →∞ [64]. Therefore, all the trajectories originated by
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initial conditions in ΩV ,γ stay in the set and eventually converge to the equilibrium point. That

is, ΩV ,γ is a subset of the ROA of the system in Eq. (7.27).

Note finally that by definition of Ψ (6.12) xΨ(0)=0, i.e. the initial condition for the states xΨ
always lies on the hyperplane xΨ=0. Thus its intersection with ΩV ,γ provides an ERA for the

original system (7.26). �

Remark 7.2. Note that V is not a Lyapunov function of (7.27). In fact, it is possible for V̇

to be non-negative at some points in time. This is a consequence of the term z>Mz which in

general only provides integral constraints. When the IQC defines a pointwise-in-time constraint

(i.e. z>Mz ≥ 0 ∀t), then V is a Lyapunov function of the system. This can be the case sometimes

for hard IQCs, e.g. the sector bound multiplier initially encountered in Sec. 6.3.1 and further used

in Sec. 7.3.2.1.

Remark 7.3. It is common practice to tackle the nonlinear stability problem of systems subject to

polynomial nonlinearities with Lyapunov techniques, whereas the study of systems subject to hard

nonlinearities (and uncertainties) is addressed with multipliers-based techniques. The proposed

result allows to consider the asymptotic stability problem [137] of systems generically described

by (7.26) within a unified framework. To determine whether or not an equilibrium point x∗ is

asymptotically stable (without determining its ROA) it suffices indeed to satisfy Theorem 7.3 in

any domain D ⊂Rn containing x∗.

Theorem 7.3 is used here to compute inner estimates of the ROA of the original system (7.26).

By restricting the attention to the class of polynomial functions V , SOS optimisation can be

exploited to enforce the set containment constraints in Eq. (7.29). The following program is first

proposed.

Program 7.4.

max
s1∈Σ[x̃,w];V∈R[x̃]

γ,

V ∈Σ[x̃], (7.37a)

−(∇V f + z>Mz+Lε)− s1(γ−V ) ∈Σ[x̃,w]. (7.37b)

where Lε = ε[x̃;w]>[x̃;w] with ε small real number on the order of 10−6. These constraints are

sufficient conditions for (7.29). Indeed, (7.37a) ensures positivity of V (7.29a), whereas (7.37b) is,

by direct application of Lemma 7.2, a sufficient condition for the set containment (7.29b).

As discussed for the SOS programs investigated in Sec. 7.2, bilinear terms arise as a con-

sequence of the application of the generalised S-procedure. A three-step algorithm, inspired by

Algorithm 7.1 (the V -s iteration), is proposed with the aim to enlarge the inner estimates of the

ROA via solution of a sequence of convex programs.
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Algorithm 7.7. Hard-IQCs

Outputs: the level sets ΩV ,γ and Ωp,β (both inner estimates of the ROA).

Inputs: a shape function p; a polynomial V 0 satisfying (7.5) for some γ.

1. γ-Step. Solve through bisection on γ.

max
s1∈Σ[x̃,w],M

γ,

− (∇V 0F + z>Mz+Lε)− s1(γ−V 0) ∈Σ[x̃,w],

set γ̄← γ, s̄1 ← s1.

2. β-Step Maximise the size of Ωp,β through bisection on β such that Ωp,β ⊆ΩV 0,γ̄.

max
s2∈Σ[x̃]

β,

(γ̄−V 0)− s2(β− p) ∈Σ[x̃],

set β̄←β, s̄2 ← s2.

3. V -Step. Compute a new shape for the level set by solving over V , M.

V −εx̃> x̃ ∈Σ[x̃,w],

− (∇V F + z>Mz+Lε)− s̄1(γ̄−V ) ∈Σ[x̃,w],

(γ̄−V )− s̄2(β̄− p) ∈Σ[x̃],

set V 0 ←V and go to γ-Step.

Remark 7.4. The positive polynomial Lε is required by the perturbation argument used in

Theorem 7.3 (see Eq. 7.29b). In fact, this term is adopted in other SOS-based iterative schemes

(this was already illustrated with regard to Algorithm 7.1) as a numerical trick to help achieving

feasibility in the optimisations. With the same spirit it has been used here for the constraint on V

(where there is no requirement in principle from Theorem 7.3). An important consequence of this is

that the two ε-terms in the dissipation inequality (7.29b) are costless, i.e. they are automatically

taken into account by the proposed numerical recipes. This is an advantageous aspect of the

proposed formulation, since the adoption of this perturbation argument allows to avoid other

stronger assumptions (e.g. compactness of the level set ΩV ,γ).

The shape function p can be specified by the user based on important directions in the

state space (its role was commented on when Algorithm 7.1 was presented). Since the selection

of p has an influence on the results, if these information are not available to the analyst an

alternative scheme which does not entail using p can be derived starting from Algorithm 7.7.

This is omitted here since it does not present particular complexity and was presented in [129].

As for the initialisation of V , the same rationale followed in Sec. 7.2 can be followed here. Note
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finally that M is a matrix of optimisation variables, as it is the case in standard IQC analysis. In

general M will be subject to constraints in order to represent a valid IQC. These can be typically

recast as SOS constraints and thus added to the optimisations. Examples of this instances will

be evaluated in Sec. 7.3.1.3 and Sec. 7.3.2.2.

7.3.1.3 Region of Attraction certificates with Soft IQCs

Theorem 7.3 assumes that ∆ ∈ HardIQC (Ψ, M). As discussed in the introductory section to IQC

(Sec. 6.1.2.1), once a suitable multiplier Π is selected for the uncertainty ∆ (i.e. ∆ ∈ IQC (Π)), its

factorisation can, in general, hold only the weaker property ∆ ∈ SoftIQC (Ψ, M). Indeed, it is often

desirable to enrich the description of ∆ by using different multipliers Π, and for some of them

only a soft factorisation might hold (e.g. the less conservative D-G factorisation defined in Eq.

6.16 for real uncertainties). It is then deemed important to provide guarantees of local stability

also for the cases that do not satisfy condition 1 of Theorem 7.3.

In order to make use of the key dissipation inequality argument (7.32), at least a bound

on the finite-horizon integral is needed when no hard factorisation is available. To this end, a

recent result is recalled next. Let us denote by KYP(A,B,C,D, M) the LMI constraint on a matrix

Y =Y>: [
A>Y +Y A Y B

B>Y 0

]
+

[
C>

D>

]
M

[
C D

]
≺ 0. (7.38)

Let us also partition the frequency domain multiplier Π conformably with the dimensions of

the input v and output w of ∆ as Π=
[
Π11 Π12
Π∼

12 Π22

]
. Then, the result proposed in [82] (building on a

previous finding from [215]) provides the desired bound.

Lemma 7.6. [82] Let Ψ ∈RHnz×(nv+nw)
∞ and M = M> ∈Rnz×nz be given and define Π = Ψ∼ M Ψ.

If Π22 < 0 ∀ω ∈R∪ {∞} then:

• D>
Ψ,2MDΨ,2 < 0 and there exists a solution Y22 =Y>

22 to KYP(AΨ,BΨ2,CΨ,DΨ2, M);

• if ∆ ∈ SoftIQC (Ψ, M) then for all T ≥ 0, v ∈L
nv
2 [0,∞) and w =∆(v):

∫ T

0
z(t)>Mz(t)dt ≥−xΨ(T)>Y22xΨ(T), (7.39)

for any Y22 satisfying KYP(AΨ,BΨ2,CΨ,DΨ2, M).

This result is particularly attractive because it relates the multiplier (Ψ, M) and the bound

Y22 via a KYP constraint, which is a convex LMI on M and Y22.

By making use of Lemma 7.6, Theorem 7.4 is proposed to address the estimation of ROA with

soft IQCs.

Theorem 7.4. Let F be the polynomial vector field defined in (7.27) and ∆ : L
nv
2 [0,∞) →

L
nw
2 [0,∞) be a bounded, causal operator. Further assume:
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1. ∆ ∈ SoftIQC (Ψ, M);

2. there exists a Y22=Y>
22 that satisfies KYP(AΨ,BΨ2,CΨ,DΨ2, M);

3. there exist smooth functions V: Rn x̃ →R and Ṽ = V − x>ΨY22xΨ, and positive scalars εx and

εw such that:

Ṽ (0)= 0 and Ṽ (x̃)> 0 ∀x̃\{0}, (7.40a)

∇V (x̃)F(x̃,w)+ z>Mz+εx x̃> x̃+εww>w < 0 ∀x̃ ∈ΩṼ ,γ\{0}, ∀w ∈Rnw . (7.40b)

Then the intersection of ΩṼ ,γ with the hyperplane xΨ = 0 is an inner estimate of the ROA of (7.26).

Proof. Integrating the inequality in Eq. (7.40b) in the interval [0,T], it follows:

V (x̃(T))−V (x̃(0))+
∫ T

0
z>Mz+εx

∫ T

0
x̃> x̃ dt+εw

∫ T

0
w>w dt < 0. (7.41)

Contrary to the case in the proof of Theorem 7.3, since ∆ ∈ SoftIQC (Ψ, M), the finite-horizon

integral involving the IQC term is not necessarily positive here. According to the result in Lemma

7.6, the following lower bound on the soft IQC (Ψ, M) is valid:∫ T

0
z>Mzdt ≥−xΨ(T)>Y22xΨ(T). (7.42)

for any Y22 satisfying KYP(AΨ,BΨ2,CΨ,DΨ2, M). Thus, by making use of this lower bound in Eq.

(7.41), it holds:

V (x̃(T))−V (x̃(0))− xΨ(T)>Y22xΨ(T)+εx

∫ T

0
x̃> x̃ dt+εw

∫ T

0
w>w dt < 0. (7.43)

Define Ṽ (x̃) = V (x̃)− x>ΨY22xΨ. Since xΨ(0) = 0 (recall the definition of Ψ in Eq. (6.12)), the

following holds directly from Eq. (7.43):

Ṽ (x̃(T))− Ṽ (x̃(0))+εx

∫ T

0
x̃> x̃ dt+εw

∫ T

0
w>w dt ≤ 0. (7.44)

Note that (7.44) represents a formally equivalent expression of Eq. (7.30), with the crucial

difference that Ṽ is now the level set function. Specifically, the same proof by contradiction of

Theorem 7.3 can be used to prove the invariance of the set ΩṼ ,γ. Moreover, due to the positivity

of Ṽ , it holds again that x̃ ∈L
n x̃
2 [0,∞) and w ∈L

nw
2 [0,∞). Therefore, the same arguments apply

to prove that the equilibrium point is attracting in the invariant set. It can then be concluded

that the level set ΩṼ ,γ is a subset of the ROA of the system in Eq. (7.27). Thus, the intersection of

ΩṼ ,γ with the hyperplane xΨ = 0 (equivalently, the intersection of ΩV ,γ with xΨ = 0) provides an

ERA for the original system (7.26). �
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Remark 7.5. The key step in proving Theorem 7.4 is the finite-horizon bound on the soft IQC

(7.42). In this case this is specified as an LMI constraint and thus can be easily incorporated in

convex optimisation algorithms. However, as it has already been discussed throughout the Chapter,

the numerical estimation of ROA via SOS inherently leads to bilinear terms. In view of this, other

(less conservative) bounds involving non-convex bilinear matrix inequalities could be similarly

considered. For example, in [216] an iterative scheme was presented to efficiently employ the tighter

non-convex bound proposed in [215] and involving an Algebraic Riccati Equation. Theorem 7.4

can be adapted with small changes in the initial assumptions, and the bound from [215] can

in turn be implemented in the SOS iterative schemes potentially determining less conservative

results.

In order to formulate an algorithm for the case of soft IQCs, a Lemma allowing condition 2 in

Theorem 7.4 to be enforced as an SOS constraint is first presented.

Lemma 7.7. The constraint KYP(AΨ,BΨ2,CΨ,DΨ2, M) on Y22 holds if and only if there exists

a function VΨ = x>ΨY22xΨ: RnxΨ →R such that:

∇VΨ(xΨ) fΨ(xΨ,w)+ z>Mz < 0, (7.45)

with fΨ = AΨxΨ+BΨ2w,

z = CΨxΨ+DΨ2w.
(7.46)

Proof. It immediately follows by left and right multiplying the LMI (7.38) by [xΨ;w]> and

[xΨ;w] respectively. �

It is important to note that enforcing (7.45) with an SOS constraint is lossless because it only

features quadratic forms.

The SOS iterative scheme for the case of soft IQC is then stated.

Algorithm 7.8. Soft-IQCs

Outputs: the level sets ΩṼ ,γ and Ωp,β (both inner estimates of the ROA).

Inputs: a shape function p; a polynomial V 0 satisfying (7.5) for some γ; M0; Y 0
22.

1. γ-Step. Set Ṽ 0 ← (
V 0 − x>ΨY 0

22xΨ
)

and solve through bisection on γ.

max
s1∈Σ[x̃,w]

γ,

− (∇V 0F + z>M0z+Lε)− s1(γ− Ṽ 0) ∈Σ[x̃,w].

set γ̄← γ and s̄1 ← s1.

2. β-Step. Maximise the size of Ωp,β through bisection on β such that Ωp,β ⊆ΩṼ 0,γ̄.

max
s2∈Σ[x̃]

β,

(γ̄− Ṽ 0)− s2(β− p) ∈Σ[x̃].
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set β̄←β and s̄2 ← s2.

3. V -Step. Compute a new shape for the level set by solving over V , M,Y22.

Ṽ −εx̃> x̃ ∈Σ[x̃,w],

− (∇V F + z>Mz+Lε)− s̄1(γ̄− Ṽ ) ∈Σ[x̃,w],

(γ̄− Ṽ )− s̄2(β̄− p) ∈Σ[x̃],

− (∇VΨ fΨ+ z>Mz)+L3 ∈Σ[x̃,w],

set V 0 ←V, M0 ← M, Y 0
22 ←Y22, and go to γ-Step.

where VΨ, fΨ are defined in Lemma 7.7. It is worth remarking that in the proposed algorithm

only the V -step is affected by the KYP constraint. In fact, in the γ-step only a maximisation of

the size (given by the scalar γ) of the level set is performed, but its shape (given by Ṽ ) is held

fixed to a given value Ṽ 0. Therefore, by keeping in the γ-Step the multipliers M fixed to the value

optimised at the previous iteration, the KYP constraint is automatically satisfied. In this regard,

note that the algorithm needs an initialisation for M and Y22. There are not formal guidelines

for their selection, and here the γ-Step at the first iteration uses Y 0
22 = 0 and optimises over M

–that is, it is applied as in the case of hard IQCs (Algorithm 7.7). This potentially leads to an

error on γ̄ which, however, only serves in the first iteration to perform the β-step and V -step. The

latter then computes a level set ΩṼ ,γ fulfilling all the prescribed constraints, and thus a valid

ROA estimate of the system is achieved. This will in turn provide the sought initialisations for

the next iteration and so forth.

This section is concluded with some remarks on the properties of the proposed framework

for ROA analysis. The main advantage of this approach is that it allows to capture the effect of

different kind of uncertainties on the local stability of the analysed system. It is indeed possible to

refine the description of the uncertainty by adding different classes of multipliers (this property

will be showcased in the example section). Different from other solutions proposed in the literature

[6, 241, 243], this framework exploits the nature of the uncertainties (e.g. LTI, real constant,

linear time varying) to reduce the conservatism by specializing the IQC description. In addition

to that, a further refinement is allowed by the parameterisation of the dynamic multipliers

(e.g. increasing the number of basis functions in the vector Hν of the D-G scalings (6.16)). In

practice, a trade-off between computational time and accuracy will arise, and system-dependent

investigations are required to assess the benefits of a more sophisticated description.

Another favourable feature is that the estimate of the ROA is given by means of parameter-

independent level sets, i.e. V is a function of x̃ only. The advantages of having a parameter-

independent level set, together with the possible drawbacks, have already been discussed in Sec.

7.2.2, where a solution has been proposed by introducing in the formulation a second function

which is allowed to depend on the uncertainties. The situation here is different, specifically the

function V indirectly depends on the uncertainties via the IQC states xΨ (for dynamic IQCs).
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This however has no effect on the interpretation of the results because it always holds xΨ(0)= 0,

thus the analyst will only look at the intersection of ΩV ,γ with the hyperplane xΨ = 0.

The main drawback of this approach is the presence of the states xΨ associated with dynamic

multipliers, which determines an increase in the run time. Note however that there are a number

of static multipliers which allow features of the operator ∆ (e.g. sector, norm bound, time varying

real scalar) to be specified without affecting the size of x̃.

7.3.2 Numerical examples

This section illustrates the application of the proposed framework with two numerical examples.

In the first case study (Section 7.3.2.1) hard IQCs are employed to describe input saturation of a

closed-loop, nonlinear, short-period aircraft model, whereas in the second (Section 7.3.2.2) soft

IQCs will be used for modelling parametric uncertainties affecting the Van der Pol oscillator.

7.3.2.1 Closed-loop short period GTM aircraft

The closed-loop short period motion of the NASA’s Generic Transport Model (GTM) can be

approximated as a 2 states polynomial system [42]:

α̇=−1.492α3 +4.239α2 +0.2402αδe +0.003063αq−0.06491δ2
e+

+0.006226q2 −3.236α−0.3166δe +0.9227q,

q̇ =−7.228α3 +18.36α2 +41.5αδe −45.34α−59.99δe −4.372q+1.103q3,

δeCMD =K q.

(7.47)

where α is the angle of attack, q is the pitch rate, δe is the elevator deflection (all angles expressed

in radians), and K = 4 π
180 is a constant gain. The GTM steady-state solution consists of a locally

stable equilibrium point at the origin, i.e. x∗ = 0. Previous studies focused on Region of Attraction

analysis of the Open (OL) and Closed-Loop (CL) system [42], and worst-case L2 gain analysis

with saturated rate of δe [44]. In this work, the elevator δe is assumed to be subject to actuator

magnitude saturation, that is:

δe =


δsat

e . δeCMD > δsat
e ,

δeCMD . |δeCMD | ≤ δsat
e ,

−δsat
e . δeCMD <−δsat

e ,

(7.48)

where δsat
e is a constant defining the saturation level. Note that there is a wealth of techniques

which allows the ROA of a saturated system to be determined when the plant G is linear [114].

The novelty of the approach is that it allows to consider the more general case of polynomial, and

potentially uncertain, G.

A characterisation of the saturation by means of IQC holding as finite-horizon time-domain

constraints (i.e. hard IQCs) is discussed next. For example, the saturation is a memoryless and
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bounded nonlinearity, thus satisfies the sector multiplier (6.34) introduced in Sec. (6.3.1) and

used therein to model freeplay. This multiplier is static and a state-space factorisation is:

ΠS =λS

[
−2ση σ+η
σ+η −2

]
, ΨS = I2, MS =λSΠS, (7.49)

Similarly to the case of the freeplay (Sec. 6.3.1), the slope of the saturation is also in the sector

[σ1, η1] and thus the Zames-Falb multiplier ΠZF can be used (6.37). In this example H will be

parameterised by low pass filters, and a J-spectral factorisation Js f (ΠZF ) is obtained with the

algorithm from [215], which provides an hard IQC factorisation (ΨZF , MZF ).

A common choice in IQC analysis of saturated systems is to consider the sector [0,1] for both

ΠS and ΠZF . However, these IQCs include the OL system (i.e. δe=0) as a particular case and thus

the estimated ROA cannot be larger than that. In order to address this aspect, two strategies

have been developed, and presented in [129]. Here only one approach is illustrated in detail.

The idea is to devise a relaxation of the sector IQC by exploiting the fact that the ROA

inherently provides a bound on the values of the states of the system. The premise is sketched

in Fig. 7.6, which shows the relationship between commanded (δeCMD ) and saturated (δe) input.

On the horizontal axis it is highlighted δmax
eCMD

= K qmax, where qmax denotes the largest value for

which q belongs to the region of attraction. It is then apparent that the lower bound σ of the

sector multiplier has nonzero value, specifically it holds σ= δsat
e
K

1
qmax

. It is worth noting that a

similar relaxation does not hold for the sector slope multiplier ΠZF because regardless of the

bound on δeCMD , the slope of the saturation stays always within the sector [0,1].

Figure 7.6: Relaxed sector constraint exploiting bounds on qmax.

In order to embed this relaxation in Algorithm 7.7 (a similar adaptation would hold for

Algorithm 7.8), qmax is determined at the end of each iteration, and based on that the lower

bound σ of the sector multiplier is updated. The expression of ΠS at iteration n+1 is thus:

ΠS|n+1 = ΠS|[
σ= δsat

e
K

1
qmax |n ;η=1

] , (7.50)
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where the value qmax|n can be computed at the end of iteration n with the following SOS program:

qmax|n = max
s f+ ,s f−∈Σ[x̃]

qmax,

q+ qmax − s f+(γ
∣∣n − V |n) ∈Σ[x̃],

−q+ qmax − s f−(γ
∣∣n − V |n) ∈Σ[x̃].

(7.51)

This program is a direct application of Lemma 7.2 and guarantees that − qmax|n ≤ q|n ≤ qmax|n.

This strategy has the desired property that the sector employed at iteration n+1 (function

of qmax|n) is always consistent with the ROA computed at the same iteration. This results

from the fact that the computed ROA is non-decreasing throughout the iterations, therefore

qmax|n+1 ≥ qmax|n. The other strategy proposed in [129] consists of integrating in the program

the lower bound of the sector σ as optimised variable.

The study here has formal similarities with that in Sec. 6.3.3 since both are concerned with

less conservative IQC descriptions of hard-nonlinearities (of which freeplay and saturation are

common examples). Despite the application to two different problems (in Chapter 6 LCO, while

here inner estimates of the ROA), in both cases the adoption of the standard global approach

would have been too restrictive, preventing in the former case to study the post-critical response

and in here to quantify the effect of the controller on the local stability. These contributions thus

aim at making IQC attractive for analyses where local descriptions are fundamental in order to

obtain less conservative results.

Fig. 7.7 displays inner estimates of the ROA of the saturated GTM model obtained with

Algorithm 7.7 and the discussed relaxation strategy. Three levels of saturation (δsat
e =[0.05, 0.1,

0.2] rad) are considered, and the dynamic part of ΠZF is parameterised with a low-pass filter

with cross-over frequency 1 rad
s . The open loop OL and unsaturated closed-loop CL cases are

also reported for comparison. A quartic level set (∂(V )= 4) is considered, and the shape matrix

N=diag(8.16,1.31) from [42] is employed to define the shape function p.

The first important observation is that the three curves obtained with the proposed approach

are all larger than the OL one. It is also worth noting that the provided estimates of ROA depend

on δsat
e , which was not possible without the proposed relaxation. Specifically, as the value of δsat

e

is increased, the corresponding curves get closer to the unsaturated closed-loop, as expected.

A measure of the conservatism of the results is provided by means of extensive simulation

campaigns. Fig. 7.7 shows three markers (asterisk for δsat
e =0.05 rad, cross for δsat

e =0.1 rad,

and circle for δsat
e =0.2 rad) corresponding to initial conditions for which the dynamics was

found unstable, and the relative escaping trajectories in dashed-dotted lines. The inset allows to

appreciate the small gap between markers and corresponding estimate of ROA, suggesting that

the effect of saturation is well predicted by the proposed approach.
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Figure 7.7: Estimates of the region of attraction for different saturation levels.

7.3.2.2 Uncertain Van der Pol oscillator

The Van der Pol oscillator is a polynomial nonlinear system with 2 states, often used as benchmark

study in the ROA literature. The case with an uncertain scalar parameter δ1 ∈ [−1,1] is taken

from [241]:
ẋ1 =−x2(1+0.2δ1),

ẋ2 = x1 + (x2
1 −1)x2.

(7.52)

The steady-state solutions are characterised by an unstable limit cycle and a locally stable origin

for the considered range of δ1. Note that the origin is an equilibrium point for all the values

of the uncertainty, as it was assumed in the beginning. The ROA for this system is the region

enclosed by the limit cycle and thus can be obtained from the numerical solution of (7.52) once

the uncertain parameter is fixed.

The estimation of the ROA is performed exploiting the class of multipliers discussed in

Sec. 6.1.2 for the case of real parametric uncertainties. The additional constraint Hvν M11Hν >
0 required from the factorisation (6.16) can be enforced without conservatism by means of

KYP(AHν
,BHν

,CHν
,DHν

, M11). This in turn can be expressed by Lemma 7.7 as an inequality

involving the optimisation variables, and thus appended as an additional SOS constraint in the

algorithms.

Fig. 7.8 shows the analyses with ∂(V ) = 6 and the shape function p = 0.378x2
1 +0.278x2

2 −
0.274x1x2 from [241]. Fig. 7.8(a) presents the results obtained with the D-G scalings multipliers

(6.16), allowing to specify the nature of the uncertainty as real parameter but only providing

soft IQCs, i.e. Algorithm 7.8 must be employed. Hν is parameterised as Hν = [1, 1
s+a1

], and the

sensitivity of the results to the cross-over frequency a1 is investigated by showing two different

curves, namely a1=100 (1 pole with frequency 100 rad
s ), and a1=1 (1 pole with frequency 1 rad

s ).

For comparison purposes, the unstable limit cycles of the system corresponding to eight values of
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δ1 across its range, labelled ROA(δ1), are also reported. Fig. 7.8(b) shows the comparison between

the estimates obtained with soft and hard IQCs. For the latter the hard factorisation (Ψδ, MD) is

considered (D scalings), which captures δ1 as an LTI uncertainty. This IQC description fulfils the

assumption of Theorem 7.3 and thus allows to apply Algorithm 7.7. Hν is parameterised here

with ν= 1 (and a1=1 rad
s ).
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(a) Case of D-G scalings (soft IQC).
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Figure 7.8: Estimates of the region of attraction for the uncertain Van der Pol oscillator.

In Fig. 7.8(a) the inner estimates of the ROA lie close to the smallest in size of the LCOs (which

serve to provide upper bounds for the ROA of the uncertain system). Moreover, a sensitivity to the

value of a1 can be detected. In fact, it was already shown in Sec. 6.3.2 that the parameterisation

of the dynamic multipliers can be enhanced by placing the poles close to characteristic frequencies

of the system. It is interesting to note that this is confirmed also in this case since the frequency of

the unstable LCO is approximately 1 rad
s , and the choice a1 = 1 rad

s yields indeed an improvement

in the estimation of the ROA.

As for Fig. 7.8(b), it can be noted that the estimation obtained with the D-G scalings (spec-

ifying the nature of the uncertainty as real parameter) is the largest. This stresses once more

the favourable effect of enriching the description of the uncertainties/nonlinearities with an

appropriate selection of the IQCs. In addition, it motivates the importance of providing the

main result also for the case of soft IQCs (Theorem 7.4). Finally, Table 7.3 reports a comparison

in terms of computational statistics (Nvar and NSDP are respectively the number of decision

variables and size of the Gram matrix for the most demanding steps of the two algorithms).

Since the variables optimised in the γ-Step of the two algorithms are the same, there is no

difference for what concerns Nvar and NSDP . The soft IQC case features a small increment of

variables in the V -Step, but this has barely an effect on the run time as noticeable from Titer.

Finally, a larger number of iterations was registered when using hard IQC. This is ascribed to a
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Table 7.3: Computational statistics for the hard and soft IQCs

Nvar NSDP Titer [s] Niter

Hard (D) 102 24025 31.6 50

Soft (DG) 102 24025 32.1 40

slow progress in the last iterations, which could be overcome adopting a stopping criterion (e.g.

based on the increase of β during two successive iterations).

7.4 Chapter summary

This Chapter considers the problem of estimating the Region of Attraction of locally stable

equilibria of nonlinear, and possibly uncertain, systems. Two distinct approaches are developed,

which are connected with recent results in the literature.

First, a characterisation for nominal ROA analysis with positive invariant sets is adopted

as the foundation for the proposal of improvements and extensions of this newly developed and

less conservative framework. Two new iterative algorithms are devised to tackle the bilinearities

arising when the set containments constraints are enforced as SOS conditions. The rationale

underpinning the algorithmic choices is illustrated, and application to a numerical case study

shows the advantages in terms of accuracy and computational time compared with the baseline

algorithm. The other contribution of this section is the extension of the original result to the

study of uncertain systems. The uncertainty set is described as a semialgebraic set and new

stability certificates are derived based on the application of the generalised S-procedure. The

dependence of the level set functions on the parameters, known to be a critical aspect, is addressed

by exploiting the availability of two distinct functions. This solution is more numerically efficient

than previous ones, and at the same time enhances the interpretation of the results by providing

the region of stability as parameter-independent.

The goal considered next is the development of a framework able to deal with generic

nonlinearities (i.e. not only polynomial) and to specify the class of uncertainty (in order to take

into account in the estimation of the ROA only the actual perturbations affecting the system,

and by doing so reduce conservatism). The proposed solution is to use IQC-based representations

of nonlinear uncertain operators (well suited to enrich the description of the operator) in the

dissipativity framework (allowing to include constraints for regional analysis), and for this the

time-domain interpretation of IQC is leveraged. Since not every frequency-domain IQC has

a hard factorisation (needed to use dissipativity arguments), certificates are provided for the

distinct case of hard and soft IQC. In the latter case, a recent result providing a lower bound on

the finite horizon integral is employed, and the possibility to use other (tighter) available results
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is commented on. Iterative algorithms that allow to enlarge the provable invariant and attractive

sets are then formulated and then applied to two case studies. The saturated closed-loop of a

nonlinear short-period model is first considered, and a strategy to update the sector multiplier

by combining it with the estimation of ROA is discussed. As done in Chapter 6 for the study of

LCO, a local interpretation of IQC is suggested to obtain less conservative results and allow the

study of a broader class of problems. In the second example, the effect of using D or D-G scalings

multipliers to model real parametric uncertainties is investigated.

The relevance of ROA analysis to the nonlinear flutter problem has been motivated before,

however no aeroelastic application, unlike in all the other Chapters, is shown here. The reason for

that is twofold. A detailed presentation of the theoretical and algorithmic advances (e.g. properties

of the invariant set and IQC approaches; rationale underlying the iterations; advantageous

features of the formulations) has been privileged over an extended application section. In fact,

only a restricted number of numerical examples to show the salient points of the approaches are

discussed, and the overall quality of the work would have not been enhanced by the addition

of analyses to simple case studies as the typical section. On the other hand, computational

limitations of the available libraries for SOS optimisation must be acknowledged and would have

prevented, at present, from applying the algorithms presented in the Chapter to more challenging

aeroelastic problems. It is well known in the control community that an issue with the use of

SOS is scalability, i.e. the significant growth in simulation time and corresponding decrease in

computational efficiency as the size of the analysed system increases. This has stimulated the

investigation of algorithmic strategies in Section 7.2, such as the adoption of different iteration

schemes and the approximated polynomial descriptions of the uncertain semialgebraic sets.

Indeed, providing alternative ways to solve the optimisation problem in case of failed solution

is a possible way to prevent SOS related problems from hindering the estimation of the ROA.

The research community is actively working on rigorous improvements to the well recognised

issue of computational efficiency. For example, in [5] a method to decompose nonlinear dynamical

systems into lower order ones and then compute the stability certificates on the latter is proposed.

This method, suitable for systems which have a modular structure, can be further expedited

if sparsity is imposed on the polynomials calculated for each subsystem. A survey on recent

advances in SOS, covering also efficient ways to exploit sparsity, was recently presented in [1].

Another computationally promising strategy, also discussed in [1] and originally proposed in [2],

is to relax the requirement that the Gram matrix Q is semidefinite with stronger but cheaper

conditions, e.g. diagonally dominant and scaled diagonally dominant matrix. This has the benefit

that the optimisation underpinning the determination of Q is a linear and a second order cone

program respectively, in both cases more tractable that an SDP. These references (and those

cited therein) show the potential for efficient advanced numerical tools which can make the SOS

programs presented in this chapter more amenable for higher order systems, and thus aeroelastic

applications, which are advised as possible future steps of the work.
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8
ROBUSTNESS FROM A DYNAMICAL SYSTEMS PERSPECTIVE

The two previous chapters have considered the problem of quantitatively assessing the

detrimental effect of uncertainties on nonlinear phenomena. Examples are the increase of

Limit Cycle Oscillation amplitude (Chapter 6) and the reduction of the size of the region

of attraction (Chapter 7). A complementary approach, to which this chapter is devoted, consists

of looking at whether uncertainties can determine qualitative changes in the response of the

system (e.g. number and type of steady-state solutions).

Bifurcation theory is a well known tool to study the effect of parameters on the dynamics of

nominal nonlinear systems. The typical approach is to select a few bifurcation parameters, equal

in number to the codimension of the studied bifurcation (1 or 2 for the most common ones), based

on their importance for the system. A classic example of bifurcation parameter for aeroelastic

studies is the speed V . This analysis strategy, which uses numerical continuation to determine

the type of equilibria and their stability as the parameters are varied, is beneficial since it allows

complex dynamic behaviours to be characterised and an understanding of the system to be gained.

However, it does not directly provide indications on the robustness of the results to uncertainties

in the models. In fact, uncertain parameters, unlike the bifurcation parameters, in principle are

not restricted in number, are allowed to vary simultaneously and their influence on the dynamics

may not be known a priori. Examples of these parameters were discussed in the previous chapters

and range from stiffness and mass parameters to aerodynamic coefficients. It is then important

to predict whether, in the presence of uncertainties, bifurcations can occur at operating points

cleared by nominal analyses.

The objective of this chapter is therefore to study robustness to qualitative changes in

the steady-state solutions of an uncertain nonlinear system, and in this regard it provides an

interpretation of robustness from a dynamical systems perspective. In particular, focus here is on
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Hopf (or dynamic) bifurcations, where a stable branch of equilibria meets a branch of periodic

solutions. This is the standard mechanism that leads to the onset of Limit Cycle Oscillations, a

phenomenon amply discussed in Chapter 6 and closely related, in a nonlinear setting, to flutter.

To answer this question, the concept of robust bifurcation margins is proposed based on

Linear Fractional Transformation (Chapter 3) and µ analysis (Chapter 4). The core idea is to

build an LFT model of the Jacobian of the uncertain vector field (which will generically depend on

the states of the system and on the uncertainties) and to formulate the closest Hopf bifurcation as

the worst-case perturbation matrix for which the LFT becomes singular. This bears similarities

to the problem solved by µ, but significant differences hold as will be stressed. The determination

of the margins is posed as a nonlinear smooth optimisation problem, which also allows the type of

Hopf bifurcation (subcritical or supercritical) to be specified. The issue of local minima, associated

with the non-convexity of the optimisation, is discussed and different strategies are proposed to

mitigate it. These include a continuation-based multi-start strategy based on the construction of

a manifold of Hopf points connected to a given solution of the optimiser.

Section 8.1 provides a cursory overview of bifurcation and numerical continuation, whereas

Section 8.2 addresses the technical contribution of the chapter. Section 8.3 finally demonstrates

the application of the framework with the typical section system. Starting from the same (linear)

case study analysed in Section 4.2, hardening plunge and pitch nonlinearities are added and

the effect of different sets of uncertainties on the onset of supercritical and subcritical Hopf

bifurcations are investigated. Interpretations of the results and an overview of the insights that

can be gained by means of this analysis technique are also provided.

Publications1: [115].

8.1 Mathematical background

This section provides an introduction to the tools employed in the chapter, namely bifurcation

theory (8.1.1) and numerical continuation (8.1.2). For a thorough description of these broad

disciplines and their applications the reader is referred to the dedicated monographs [96, 99, 145].

The reader is referred to Section 3.1 for the background on LFT and µ, which will also be central

to the next section.

8.1.1 Bifurcation theory

Consider an autonomous nonlinear system of the form

ẋ = f (x, p), (8.1)

where x ∈Rnx and p ∈Rnp are respectively the vectors of states and bifurcation parameters, and

f : Rnx ×Rnp → Rnx is the vector field. In this work f is assumed to gather smooth nonlinear

1Material published during the PhD which relates to the content of this chapter.
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functions ( f ∈C ∞), but bifurcation theory can also cope with the case of non-smooth vector fields

[66, 68]. Therefore, the Jacobian matrix of the vector field ∇x f :Rnx ×Rnp →Rnx×nx , denoted here

by J, is always defined.

The vector x0 is called a fixed point or equilibrium of (8.1) corresponding to p0 if f (x0, p0)= 0.

Let us denote with n−, n0, and n+ the number of eigenvalues of J(x0, p0) with negative, zero,

and positive real part, respectively. Then x0 is called a hyperbolic fixed point if n0 = 0, otherwise

it is called nonhyperbolic. Within the family of hyperbolic fixed points, if n− = nx, then x0 is a

stable equilibrium (also called sink) whereas if n− < nx then x0 is an unstable equilibrium (also

called source). Bifurcations of fixed points are concerned with the loss of hyperbolicity of the

equilibrium as p is varied. Specifically, two scenarios can take place: static bifurcations and

dynamic bifurcations [99, 145]. The former arise when J is singular at an equilibrium, i.e., it has

a zero eigenvalue. The common feature of static bifurcations, which include saddle-node, pitchfork,

and transcritical bifurcations, is that branches of fixed points meet at the bifurcation point. In

the case of dynamic bifurcations, also referred to as Hopf bifurcation, branches of fixed points and

periodic solutions meet. A bifurcation that requires at least c independent parameters to occur is

called a codimension-c bifurcation. The aforementioned bifurcations are all codimension-1.

The Hopf bifurcation is the focus of this chapter and is formally described by the following

theorem.

Theorem 8.1 ([99] Hopf bifurcation theorem). Suppose that the system ẋ = f (x, p), x ∈Rnx and

p ∈R has an equilibrium (xH , pH) at which the following properties are satisfied:

1. J(xH , pH) has a simple pair of purely imaginary eigenvalues and no other eigenvalues with

zero real parts. This implies, for the implicit function theorem, that there is a smooth curve of

equilibria (x(p), p) with x(pH)= xH . The eigenvalues ν(p), ν̄(p) of J(x(p)), with ν(pH)=iωH ,

vary smoothly with p;

2. and
d

dp
(Reν(p))|p=pH

= l0 6= 0. (8.2)

Then there is a unique three-dimensional centre manifold passing through (xH , pH) in Rnx ×R and

a smooth system of coordinates for which the Taylor expansion of degree 3 on the centre manifold

is given in polar coordinates (ρ,θ) by

ρ̇ = (l0 p+ l1ρ
2)ρ,

θ̇ =ω+ l2 p+ l3ρ
2,

(8.3)

where l0, l1, l2, and l3 are real coefficients defining the manifold. If l1 6= 0, there is a surface of

periodic solutions in the centre manifold which has quadratic tangency with the eigenspace of

ν(p), ν̄(p). If l1 < 0, then these periodic solutions are stable limit cycles, while if l1 > 0, the periodic

solutions are repelling.
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Note first that the theorem is stated considering a scalar p since the Hopf bifurcation

is codimension-1. Condition 1 of Theorem 8.1 requires that the Jacobian of the vector field

has a pair of purely imaginary eigenvalues (and no other eigenvalues on the imaginary axis).

Condition 2, also known as the transversality condition, prescribes that these eigenvalues are

not stationary with respect to p at the bifurcation. A fundamental parameter determining the

dynamic behaviour in the neighbourhood of a Hopf point is l1, also called the first Lyapunov

coefficient. Its value determines whether the Hopf bifurcation is subcritical or supercritical, and

its analytical expression is given by [145]:

l1 = 1
2ωH

Re〈r,C(q, q, q̄)−2B(q, A−1B(q, q̄))+B(q̄, (2iωH In − A)−1B(q, q))〉. (8.4)

Here the complex vectors r, q ∈Cnx satisfy:

Jq = iωH q, J>r =−iωH r, 〈r, q〉 = 1, (8.5)

where 〈r, q〉 is the scalar product in Cnx . The functions B :Rnx ×Rnx →Rnx and C :Rnx ×Rnx ×Rnx →
Rnx are the tensors of second and third order derivatives evaluated at xH , respectively. For

example, for vectors ξ, ς, χ ∈Rnx , B(ξ,ς) and C(ξ,ς,χ) are in Rnx with components:

Bi(ξ,ς)=
nx∑

j,k=1

∂2 f i(x, p0)
∂x jxk

∣∣∣∣
x=xH

ξ jςk, i = 1,2, ...,nx,

Ci(ξ,ς,χ)=
nx∑

j,k,l=1

∂3 f i(x, p0)
∂x jxkxl

∣∣∣∣
x=xH

ξ jςkχl , i = 1,2, ...,nx.
(8.6)

8.1.2 Numerical continuation

The computational tool of bifurcation analysis is numerical continuation [96], providing path-

following algorithms allowing implicitly defined manifolds to be computed. These schemes are

based on the implicit function theorem (IFT), which guarantees, under the condition that J is

non-singular at an initial point (x0, p0), that there exist neighbourhoods X of x0 and P of p0 and

a function g : P →X such that f (x, p)= 0 has the unique solution x = g(p) in X . In essence, the

problem is to find:

x = g(p), such that f (g(p), p)= 0, (8.7)

with g : P → X , x0 ∈ X , p0 ∈ P . Examples of numerical techniques to compute the implicit

manifold g are Newton-Raphson, arclength, and pseudo-arclength continuation [96], efficiently

implemented in freely available software, e.g., AUTO [72], MATCONT [65] and COCO [56].

Eq. (8.7) helps to clarify the substantial difference between the practice of linearising (8.1)

around a fixed point (x0, p0), common in various engineering applications, and the approach taken

by bifurcation theory where linearisations along a curve g of fixed points are considered. In fact,

g does not need to be computed explicitly, and is constructed numerically as p is continued, but it

allows stability of the nonlinear system to be determined for finite ranges of p ∈P . In contrast,
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the linearisation at a steady-state only gives information on the stability of the nonlinear system

at the point where linearisation is performed (and, by continuity, in a neighbourhood of p0). It

is also stressed that continuation applies not only to families of equilibria, but to steady-state

solutions in general (e.g., branches of periodic solutions) and allows various types of codimension-c

bifurcations to be detected [27, 96].

A general continuation problem, so called extended, can be formulated as follows [56]:

F(u,λ) :=
(
Φ̄(u)

Ψ̄(u)

)
−

(
0

λ

)
= 0,

Φ̄ :Rnu →Rm, Ψ̄ :Rnu →Rnλ ,

(8.8)

where Φ̄ defines the zero problem in the vector u of continuation variables, Ψ̄ denotes a family of

monitor functions and λ is a vector of continuation parameters. It is straightforward to see that

the goal of tracking equilibria of the vector field f can be pursued by solving the zero problem only

with Φ̄= f , and u = [x; p]. However, the extended continuation problem in (8.8) allows for a greater

variety of problems to be solved, as the related concept of restricted continuation problem shows.

Let I⊆ {1, ...,nλ} be an index set and Ī its complement in {1, ...,nλ}. Let λI = {λi|i ∈ I} and consider

the restriction F(u,λ)|λI=λ∗
I

satisfying the IFT at some point (u∗,λ∗ = Ψ̄(u∗)). Then F(u,λ)|λI=λ∗
I

defines a continuation problem for a d-manifold with d = nu − (m+|I|). λĪ and λI are called the

set of active and inactive continuation parameters respectively, since the former changes during

continuation, while the latter remain constant. Analogously, equations corresponding to λĪ are

inactive constraints, while equations corresponding to λI are active constraints, because they

impose an additional condition on the solutions to the set of zero problems. The formulation (8.8)

is implemented in the software COCO, which is used for all the continuation analyses performed

in this work.

Some of the previous works concerned with the application of bifurcation and continuation to

aeroelastic problems are those from [69, 77, 95, 228].

8.2 Computation of robust bifurcation margins based on LFT
and µ

In this section the technical contribution of the chapter is presented. The addressed problem

is formally defined in Section 8.2.1 and in Section 8.2.2 nonlinear optimisation programs are

proposed to solve it. The step-by-step presentation, from Program 8.1, which calculates the

smallest perturbations making the Jacobian unstable, to Program 8.4, which computes the closest

subcritical and supercritical Hopf bifurcations, aims at clearly presenting the formulation of

robust bifurcation margins. Finally, in Section 8.2.3 a novel multi-start strategy is developed,

within the extended continuation paradigm, to mitigate the issue of local optima.
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8.2.1 Problem statement

The objective of the work is to compute the margins of stable equilibria from the closest Hopf

bifurcation for nonlinear systems affected by parametric uncertainties. The starting point is

system (8.1) with np = 1. This is without loss of generality because the Hopf bifurcation is

codimension-1 and thus 1 parameter is sufficient for its analysis (see Theorem 8.1). In fact, the

case np > 1 is typically handled by fixing np −1 parameters and continuing only 1.

Assume that the vector field f is subject to real parametric uncertainties gathered in the

vector:

δ= [δ1; ...;δi; ...δnδ
], δ ∈Rnδ . (8.9)

This description allows the sources of uncertainty discussed in the previous chapters, e.g., lack of

confidence on the values of model parameters or simplifying assumptions underlying the model,

to be handled. The expression for the uncertain vector field f̃ and associated Jacobian J̃ is:

ẋ = f̃ (x, p,δ), (8.10a)

f̃ :Rnx ×R×Rnδ →Rnx , f̃ ∈C ∞, (8.10b)

J̃ :Rnx ×R×Rnδ →Rnx×nx . (8.10c)

Given a Hopf bifurcation point (xH , pH) for the nominal system f , and a value of the bifurcation

parameter p̄0 associated with a stable fixed point x̄0 of f , the goal is to determine the smallest

(or worst-case) perturbation δ̄ ∈ δ such that f̃ undergoes a Hopf bifurcation at p̄0. In fact, it is

relevant to distinguish between supercritical and subcritical Hopf bifurcations, hence two distinct

worst-case perturbations will be considered. For the sake of readability, this distinction will be

highlighted in the text when relevant but the notation used will be δ̄ in both cases.

It is implied by the goal stated above the adoption of a metric for the magnitude of the

perturbation, which allows the concept of worst-case to be formalised. Since the aim is to compute

stability margins, the adopted metric should measure in some quantitative form (e.g. magnitude)

the perturbation to which the system is subject. To this end, let us consider a generic uncertain

parameter d, with λd indicating the uncertainty level with respect to a nominal value d0 and

δd ∈ [−1,1] representing the normalised uncertain parameter. Note that d0 and λd are typically

fixed by the analyst based on the knowledge of the nominal value and dispersion of the parameter

d respectively. A multiplicative uncertain representation of d is thus obtained according to the

definition provided in Eq. (3.4b) as:

d = (1+λdδd)d0, (8.11)

where δd = 0 corresponds to the nominal value of d, while δd = ±1 represents a perturbation

at the extreme of the parameter range (e.g., a variation of ±20% from d0 if λd = 0.2). Once the

normalisation (8.11) is applied to all the parameters in (8.9), a possible scalar metric (or norm) to

quantify the magnitude of the perturbation is the largest of the absolute values of the elements
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in δ. This can be equivalently expressed as σ̄(diag(δ)), i.e., the maximum singular value of the

diagonal matrix with elements of δ on the diagonal. Such a metric quantifies the deviation of

the uncertain parameters from their nominal values along the direction of the parameter space

where this is largest. Specifically, the objective is to compute the perturbation vector with the

smallest possible norm, providing therefore the distance from the closest Hopf bifurcation.

In fact, km = σ̄(diag(δ)) can be regarded as a robust margin from bifurcation because km ≤ 1

means that a candidate (i.e., within the allowed range of the uncertainty set) perturbation exists

which determines a Hopf bifurcation. Thus, the equilibrium x̄0 of the nominal vector field is not

robustly stable at p̄0. On the contrary, if km > 1 then there is no perturbation inside the allowed

set which is capable of prompting a Hopf bifurcation. This is pictorially represented in Figure

8.1, where on the x-axis is reported the bifurcation parameter and on the y-axis the margin km

(note that the case p̄0 < pH where a Hopf bifurcation is encountered by increasing p is assumed

here without loss of generality). When the line km = 1 is crossed, with p increasing, the system is

operated in a region where Hopf bifurcations can occur in the face of the uncertainties accounted

for in the system (shaded area).

0

1

Figure 8.1: Concept of robust bifurcation margins.

8.2.2 Solution via nonlinear optimisation

The fundamental idea to address the stated objective is to exploit the interpretation of LFT as

realisation technique discussed towards the end of Sec. 3.1.1 (see, for example, Fig. 3.2). Consider

for a moment only Condition 1 of Theorem 8.1, which prescribes a pair of purely imaginary

eigenvalues for the Jacobian. If J̃ is interpreted as the uncertain state-matrix of the LTI case,

an LFT model of the former with respect to the uncertain parameters in δ can be built up

(numerically or analytically [159]) and its singularity investigated. Recall then the connection
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between singularity of an LFT and eigenvalues of the underlying system discussed with respect

to Eq. (3.8) and Eq. (3.10) for the cases of nominal and uncertain LTI systems, respectively.

The main difference from the linear case is that in general J̃ is also a function of the states of

the system x. This reflects the fact that in the nonlinear context uncertainties have a twofold

effect on stability. They directly affect the matrix J̃ as independent variables, but also indirectly

by changing the location of the equilibrium (around which the vector field is linearised). The

latter is a distinctive feature of the nonlinear setting, since in the linear case the location of the

equilibrium does not have any effect on the spectrum of the state-matrix, and thus on stability.

The LFT of the Jacobian Fu(MJ̃ ,∆) can then be written by making use of the generic definition

of LFT given in Eq. (3.2) (the subscript of M emphasises that the uncertain Jacobian is considered

here):

Fu
(
MJ̃ ,∆

)=Fu
(
Fu

(
Fu

(
MJ̃ ,∆ν

)
,∆x

)
,∆u

)
, (8.12a)

∆= diag(∆u,∆x,∆ν) , MJ̃ = [
MJ̃11

MJ̃12
; MJ̃21

MJ̃22

]
, (8.12b)

∆u = diag
(
δ1Id1 , ...,δi Idi , ...,δnδ

Idnδ

)
, (8.12c)

∆x = diag
(
x1Ix1 , ..., x j Ix j , ..., xnx Ixnx

)
, (8.12d)

∆ν = 1
ν

Inx , ν= iω, (8.12e)

where (8.12a) exploits the property of interconnected LFTs, and ∆u is a particular instance of the

structured uncertainty set defined in (3.3), where only real parameters are considered. Note that

compared to the linear case (3.10), ∆ features now an additional block ∆x, which arises when

performing the LFT modelling of J̃ due to the discussed presence of the states, and for which a

similar structured representation to the one adopted for ∆u is employed. ∆ν finally restricts the

attention to purely imaginary eigenvalues of J̃ with frequency ω.

Condition 1 of Theorem 8.1 can then be expressed as the singularity of the LFT (8.12a). This

is the key step of the proposed extension from the linear context to the nonlinear one. Due to its

centrality for the discussion, let us recall here a possible definition of µ (previously given in Eq.

(3.11)):

µ∆(M)=
[

min
∆u,∆ν

(κ : Fu(Fu(M,∆ν),κ∆u) is singular; σ̄(∆u)≤ 1)
]−1

. (8.13)

Note that µ computes the worst-case (or smallest) perturbation matrix ∆u which makes the

LFT ill-posed, and thus the associated LTI system neutrally stable. Moreover, in Eq. (8.13)

the same metric as the one used to define the robust bifurcation margin km is employed. It

follows indeed from the definitions and properties illustrated earlier that km = σ̄(diag(δ))= σ̄(∆u).

Specifically, km is an analogue of the reciprocal of µ and it has been adopted here because of

its straightforward meaning of distance (or margin) to the onset of a bifurcation. Note in this

regard that the symbol km was used in the early stages of robust control with the name of excess

stability margin [208, 209].
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The discussion above paves the way for the program presented next, which aims to compute

the smallest perturbation for which J̃ has a pair of purely imaginary eigenvalues.

Program 8.1.

min
X

km such that


f̃ (x, p̄0,δ)= 0, (8.14a)

Fu
(
MJ̃ ,∆

)
is singular, (8.14b)

σ̄(∆u)≤ km, (8.14c)

X = [x;δ;ω],

where X is the vector of optimisation variables including: states x; uncertain parameters

δ; and frequency ω. X̂ will indicate the solution vector gathering x̂, δ̂, and ω̂ respectively. Let

us examine the constraints of the program. Eq. (8.14a) guarantees that the solution (x̂, δ̂) corre-

sponds to an equilibrium point for the system. Eq. (8.14b) ensures that J̃ has a pair of complex

eigenvalues ν=±ω̂, and Eq. (8.14c) bounds the size of the perturbation matrix.

This is a similar optimisation problem to that in (8.13), with two crucial differences: constraint

(8.14a), and the addition of ∆x in the block ∆ of Fu(MJ̃ ,∆) (to which, notably, the constraint in

Eq. (8.14c) does not apply). Due to these differences, available algorithms for µ cannot be applied

to compute solutions of (8.14), thus alternative ways should be pursued.

Let us examine closely (8.14b), and recall from Eq. (3.2) that a necessary and sufficient

condition for the well-posedness of an LFT is the existence of the inverse of a matrix. Specifically,

Fu(MJ̃ ,∆) is singular if and only if det(I −MJ̃ 11∆)= 0, which can be recast, once an LFT model

of J̃ is available, as a nonlinear constraint in the variables X .

As for (8.14c), this is a non-smooth constraint because of the maximum singular value operator,

but it can be drastically simplified by exploiting the structure of ∆u (8.12c). Indeed, this constraint

is equivalent to:

−km ≤ δi ≤ km, i = 1, ...,nδ, (8.15)

which is a set of linear inequalities in the optimisation variables and the objective function km.

Note that a similar relaxation would hold also for complex scalar uncertainties, not considered in

this work.

Based on the previous discussion, the following smooth nonlinear optimisation problem is

proposed to solve Program 8.1.

Program 8.2.

min
X

km such that


f̃ (x, p̄0,δ)= 0, (8.16a)

det(I −MJ̃ 11∆)= 0, (8.16b)

−km ≤ δi ≤ km, i = 1, ...,nδ, (8.16c)

X = [x;δ;ω].

203



CHAPTER 8. ROBUSTNESS FROM A DYNAMICAL SYSTEMS PERSPECTIVE

The key idea behind Program 8.2 is to enforce singularity of the LFT (8.14b) by using directly

the determinant condition represented by constraint (8.16b). In [206] this is listed among the

methods for the computation of µLB, and examples of related algorithms can be found in [103, 261].

The approaches presented in those works, however, are limited to the case of linear systems, i.e.,

they represent alternatives to well-established µ lower bounds algorithms such as the power

iteration [182] and the gain-based method [219]. To the best of the author’s knowledge, this is

indeed the first time that the concept of structured singular value is used in the context of worst-

case bifurcations of a nonlinear vector field. Moreover, Program 8.2 recasts the optimisation so

that the objective function and the constraints are smooth. This differs from the aforementioned

works where the optimisation was performed by minimizing the nonsmooth function σ̄(∆u). This

is overcome here by considering the relaxation resulting in (8.15) and introducing the objective

function km as an additional optimisation variable.

Remark 8.1. Constraint (8.16b) consists of two (real and imaginary parts of the determinant)

nonlinear equality constraints in the variables X. By using Laplace expansion of the determinant

[11] and the fact that ∆ is structured, an analytical expression for the gradient of (8.16b) with

respect to δ and x can be obtained and provided to the optimiser. As for ω, this is more tedious and

therefore finite differences are employed.

Note also that, from a numerical continuation perspective, (8.16b) can be regarded as an analogue

of the real scalar test functions commonly used to detect Hopf bifurcations [27]. The latter can be

efficiently formulated by means of bordered matrices techniques and have the property that the

test function has a zero at a bifurcation point. The main difference here is that (8.16b) is complex,

thus consists of two real scalar equations. This is due to the fact that the frequency ω of the purely

imaginary eigenvalues appear explicitly in the constraint (and thus is an additional independent

variable), which is different from the test functions formulation. This is an advantageous feature

of the developed approach, and possible ways to exploit it are discussed later.

8.2.2.1 Enforcing the transversality condition

Program 8.2 allows worst-case perturbations to be computed such that the Jacobian of f̃ linearised

around the perturbed equilibrium point has a pair of purely imaginary eigenvalues. This, however,

does not mathematically guarantee that the perturbed system undergoes a Hopf bifurcation

because transversality (Condition 2 of Theorem 8.1) is not automatically verified. Constraints

guaranteeing that transversality is satisfied can be appended to (8.16) in different ways, including

using test functions [27] or automatic differentiation [112]. Here an approach leveraging the

versatility of the LFT paradigm is proposed. Consider a small fixed constant εp which defines the

perturbed bifurcation parameter p̄εp = (1+εp)p̄0. The LFT Fu(Mε
J̃

,∆ε) of the Jacobian at p̄εp can
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be written, following Eq. (8.12), as:

Fu

(
Mε

J̃ ,∆ε
)
=Fu

(
Fu

(
Fu

(
Mε

J̃ ,∆εν
)
,∆εx

)
,∆u

)
, (8.17a)

∆ε = diag
(
∆u,∆εx,∆εν

)
, Mε

J̃ =
[
Mε

J̃11
Mε

J̃12
; Mε

J̃21
Mε

J̃22

]
, (8.17b)

∆εx = diag
(
(1+εx)x1Ix1 , ..., (1+εx)x j Ix j , ..., (1+εx)xnx Iknx

)
, (8.17c)

∆εν =
1
νε

Inx , νε = εν+ (1+εω)ω, (8.17d)

where εν, εx, and εω are unknown scalars described later. The following optimisation problem is

then proposed to determine the worst-case perturbation for which both conditions of the Hopf

theorem are guaranteed to hold, that is, to rigorously calculate the margins to the closest Hopf

bifurcation point.

Program 8.3.

min
X

km such that



f̃ (x, p̄0,δ)= 0, (8.18a)

det(I −MJ̃ 11∆)= 0, (8.18b)

−km ≤ δi ≤ km, i = 1, ...,nδ, (8.18c)

f̃ ((1+εx)x, p̄εp ,δ)= 0, (8.18d)

det(I −Mε
J̃ 11∆

ε)= 0, (8.18e)

X = [x;δ;ω;εν;εx;εω].

The first set of constraints (8.18a-8.18c) is identical to those in Program 8.2. The constraints

(8.18d-8.18e) additionally ensure that the Jacobian linearised at p̄εp has an eigenvalue νε with

real part εν (8.17d). Making use of a finite difference approximation, it follows from the definition

in (8.2) that l0 = εν
εp

. Therefore, existence of a solution to Program 8.3 with ε̂ν 6= 0 guarantees a

Hopf bifurcation for the system.

Underlying Program 8.3 there is a perturbation argument which builds on the application

of the IFT to the states x and the eigenvalue ν of the vector field f̃ (x, p, δ̂) for fixed δ̂ and p in a

neighbourhood of p̄0. Indeed, at p = p̄0, it holds x = x̂ and ν= iω̂ for the constraints (8.18a-8.18c).

When perturbing p by a small increment εp, a first order approximation for x and ν is assumed,

and reflected in the choice of the scalars εx (8.17c), as well as εω and εν (8.17d). A vector εx, with

an element for each component of x, could also be considered, by adding nx −1 unknowns to

Program 8.3.

Remark 8.2. Program 8.2 does not guarantee the onset of a Hopf bifurcation because it does

not take into account the transversality condition, and for this reason Program 8.3 is proposed.

However, for engineering systems where p has a physical meaning (as it is the case for speed in

aeroelasticity) the transversality condition is often automatically verified. In fact, the problem was

stated in Sec. 8.2.1 assuming that the nominal system has a bifurcation at pH whereas for p = p̄0
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the system has a stable equilibrium. It is thus implicit in the formulation of the problem that a

change of p has an effect on the stability of the system. In particular, it is expected that the critical

eigenvalues of the perturbed Jacobian will cross the imaginary axis as p is perturbed around p̄0

(hence satisfying the transversality).

Even though Program 8.3 only barely increases the computational cost, a strong reason to resort

to Program 8.2 whenever possible is related to the local optimality of the solutions of nonlinear

programs. This issue will be further discussed in Sec. 8.2.3, but it is remarked here that the addition

of the constraints (8.18d-8.18e) has a detrimental effect on it. Indeed, it is always advisable in

nonlinear optimisation to avoid redundant constraints in order to reduce the likelihood of local

optima [172]. Based on these considerations, the proposed strategy is to employ Program 8.2 to

find robust bifurcation margins and, if continuation analysis of the perturbed system show that

the transversality condition is not fulfilled, use Program 8.3. It is noted that none of the analyses

done in this thesis required the adoption of Program 8.3 (which however was tested to verify its

soundness). For this reason, and also for the sake of clarity, in the remainder of the work Program

8.2 will be considered as basis for discussion.

8.2.2.2 Specifying the type of closest Hopf bifurcation

The robust bifurcation margin km has been associated so far with the occurrence of a generic

Hopf bifurcation. Attention is now focused on the nature of the bifurcation, i.e., subcritical or

supercritical. The idea is to add to the constraints of Program 8.2 a condition on the sign of

the Lyapunov coefficient l1. This can be done by using the definition of l1 (8.4), which requires

the computation of left and right eigenvectors associated with the critical eigenvalue, and the

tensors of second and third order derivative. By exploiting the fact that ω is an optimisation

variable, the eigenvectors can be computed without performing an eigenvalue analysis, but by

direct computation as follows:

(J̃− iωInx )q = 0; q = [1; ql],

(J̃>+ iωInx )r = 0; r = [1; r l],

〈r, q〉 = 1,

(8.19)

where without loss of generality the first element of the eigenvectors has been fixed to 1. As

for the tensors, the derivatives in (8.6) can be computed analytically in simple cases and by

automatic or symbolic differentiation for more complex ones. Alternatively, in [145] efficient

strategies to avoid computing second and third order derivatives of the vector field are discussed.

In any case, they are available as a function of the optimisation variables x and δ, and thus there

is no addition to the vector of unknowns X .

In conclusion, given a positive tolerance εl on the value of the Lyapunov coefficient, and an

integer sl = ±1 defining the sign of l1 (sl = 1 for subcritical and sl = −1 for supercritical), the

following program allows the closest subcritical or supercritical Hopf bifurcation to be computed.
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Program 8.4.

min
X

km such that



f̃ (x, p̄0,δ)= 0, (8.20a)

det(I −MJ̃ 11∆)= 0, (8.20b)

−km ≤ δi ≤ km, i = 1, ...,nδ, (8.20c)

sl l1 −εl > 0, (8.20d)

X = [x;δ;ω].

8.2.3 Continuation-based multi-start strategy

The programs discussed in Sec. 8.2.2 allow margins to Hopf bifurcation for a nominally stable

equilibrium point in the face of uncertainties to be computed. The main issue with this approach

is that, due to the fact that the optimisation is non-convex, there is no guarantee that the one

found is the closest bifurcation, and thus only upper bounds on km are possibly computed. In

other words, the global minimum might be missed and thus there could be a perturbation vector

with a smaller norm than δ̂ which causes a Hopf bifurcation. Local optima are a well known

issue in nonlinear optimisation and, despite the large amount of research done on this topic, no

standard solutions are available [91, 172].

8.2.3.1 Local minima

Mitigation strategies depend on several aspects, including specific features of the program

(constraints, objective functions) and adopted optimisation algorithms. For this problem the

objective is to compute worst-case perturbations quantified by means of a scalar metric, thus

a possible way to account for this issue is to estimate a guaranteed smallest magnitude of the

perturbation for which the system is stable. This is the approach taken in µ analysis, where

the computation of µLB is known to be prone to local minima and as a remedy upper bounds

µUB have been proposed. Lower bounds on km (nonlinear analogues of µUB) could then be a

strategy, but this has not been pursued here and is a topic for future research. Note that a

preliminary step in this direction could be the approach used in Sec. B.1.2 in the context of

the equilibrium-independent ROA to define regions of the state space where the equilibria are

guaranteed to satisfy certain properties (see Remark B.3).

As for the optimisation algorithms, the focus of this work is not on developing ad-hoc advanced

optimisation strategies, hence off-the-shelf algorithms are employed, specifically the ones avail-

able in the MATLAB routine fmincon [165] for nonlinear constrained problems. These include:

interior point, which solves the constrained problem using a sequence of unconstrained optimi-

sations by using barrier or penalty functions to account for the constraints; active set and sqp,

belonging to the class of sequential quadratic programming, which solve directly the constrained

problem via a series of approximating quadratic programming based on the Karush-Kuhn-Tucker

equations (necessary conditions for optimality of constrained optimisation problems). Leveraging
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the availability of solvers based on different optimisation methods, a strategy employed in the

work is to restart the programs using different solvers.

Another good practice to reduce the likelihood of local minima is to formulate the problem

in the simplest way possible [172], e.g., using smooth objective functions and constraints and

avoiding redundant constraints. These two principles have guided the idea of introducing the

objective function km to relax the non-smooth bound on the uncertainty set involving σ̄, which

lead to the equivalent constraints (8.15). Moreover, the aim of simplifying the set of constraints

as much as possible prompted the discussion in Remark 8.2, where it was proposed (based on a

physically motivated assumption) to resort to Program 8.3 only if the solution does not satisfy

the transversality condition.

A strategy which exploits a distinctive feature of this formulation is to run Program 8.2

at a given frequency, i.e., ω does not belong to X but is fixed a priori. The rationale behind

this is twofold. From a mathematical point of view, the optimisation is simplified by the fact

that constraint (8.16b) does not depend on the frequency and this enhances the accuracy of

the result. From a bifurcation perspective, fixing the frequency restricts the mechanisms by

which the system can undergo a Hopf bifurcation when subject to uncertainties, which reduces

the number of feasible solutions in the first place, and as a result makes it also more likely to

detect the optimal one. A value of km can be associated with each discrete frequency, and the

smallest of these values is the most critical. A natural drawback of this approach is that critical

frequencies can be missed, but this can be overcome by running subsequently Program 8.2 with

ω as optimisation variable and initializing it with values corresponding to the critical solution.

8.2.3.2 Application of the extended continuation paradigm

Despite these measures, the risk of falling into local minima is still present and particularly

the programs’ initialisation represents a critical aspect. For this reason, an original solution

consisting of a continuation-based multi-start strategy is developed to allow multiple solution

branches to be identified. Assume that the optimiser has found a solution X̂ to Program 8.2 (the

same rationale would apply to Program 8.4). The goal is then to provide the optimiser with a set

of initialisations, derived from X̂ but possibly not leading the optimiser to find the same solution,

which allows an exhaustive optimisation campaign to be performed. The following extended

continuation problem based on the constraints of Program 8.2 is first considered:

F(x,δ,ω,λd,λk)=


f̃ (x, p̄0,δ)

det(I −MJ̃ 11∆)

σ̄(∆u)

−


0

λd

λk

= 0. (8.21)
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This can be recast in the formalism of (8.8) by setting:

u = X = [x;δ;ω], u ∈Rnu , nu = nx +nδ+1,

λ= [λd;λk], λd ∈R2, λk ∈R1,

Φ̄= f̃ (x, p̄0,δ), Φ̄ :Rnu →Rnx ,

Ψ̄= [det(I −MJ̃ 11∆); σ̄(∆u)], Ψ̄ :Rnu →R3,

F :Rnx+nδ+3 →Rnx+3.

(8.22)

Let I = {1,2} and Ī = {3} be its complement, with λI = {λi|i ∈ I} and λĪ = {λi|i ∈ Ī}, and u∗ = X̂ ,

λ∗ = Ψ̄(u∗). By construction, the restriction F(u∗,λ)|λI=λ∗
I
= 0 and F(u,λ)|λI=λ∗

I
satisfies the IFT

at (u∗,λ∗). Therefore, F(u,λ)|λI=λ∗
I

defines a continuation problem for the d-manifold with d =
nx+nδ+1−(nx+2)= nδ−1. Note that λI (coinciding with λd) are inactive continuation parameters

(corresponding to active constraints) because they are kept constant during continuation and they

ensure the singularity of the LFT Fu(MJ̃ ,∆). Since λ∗
d = 0, the corresponding active constraints

could have been equivalently embedded in the zero function Φ̄ but, for consistency with the

parallel between f and Φ̄ discussed in Sec. 8.1.2, this has been used for the vector field only.

On the other hand, λ∗
Ī

(i.e., λk) corresponds to an inactive monitor function bookkeeping the

magnitude of the perturbation at each step of the continuation.

The manifold associated with (8.21), denoted here by H , represents the set of Hopf bifurcation

points connected to the solution X̂ in the uncertain parameter space. A first important observation

is that the dimension of H is nδ−1. This is in agreement with the well known fact [27] that a

branch (i.e., 1-dimensional manifold) of Hopf points can be obtained by continuing simultaneously

two parameters starting from a known initial point. Indeed, in the case of two uncertainties

(nδ = 2) H is the branch of Hopf points connected to the initial solution X̂ .

8.2.3.3 Parameterisation of the manifold

In principle, the computation of H could directly locate bifurcation points associated with

perturbations featuring a smaller magnitude than δ̂ by monitoring λk (note however that they

could still be local optima since only the connected branches can be tracked). Moreover, exploring

the surroundings of X̂ (using a continuation meaning of this terminology) can provide the

sought initialisation points for a new optimisation campaign. Unfortunately, H is generally

multidimensional. In fact, it is reasonable to assume that even for a relatively small number of

uncertainties computing H is not viable. To overcome this, a 1-dimensional restriction of H is

constructed by considering a parameterisation of the uncertainty set δ with a vector function

g(z, y) :R2 →Rnδ , where the 2 independent variables z and y have been introduced. The definition

of g is arbitrary and various strategies can be pursued. The approach taken here assumes that

two solutions X̂1 and X̂2 from Program 8.2 are available (their selection will be assessed later).
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Given the associated perturbation vectors δ̂1 and δ̂2 ∈Rnδ , a possible choice for g is then:

g(z, y) :R2 →Rnδ



δ̂1
1z+ δ̂2

1(1− y),

...

δ̂1
i z+ δ̂2

i (1− y),

...

δ̂1
nδ

z+ δ̂2
nδ

(1− y).

(8.23)

Note that by construction g(1,1)= δ̂1 and g(0,0)= δ̂2. Based on this, the following continuation

problem is formulated:

F(x,δ,ω, z, y,λd,λk,λg)=


f̃ (x, p̄0,δ)

det(I −MJ̃ 11∆)

σ̄(∆u)

δ− g(z, y)

−


0

λd

λk

λg

= 0. (8.24)

With respect to the definitions in (8.22), z and y have been added to the vector of continuation

variables u (i.e., u = [X ; z; y]), while the vector function δ− g has been added to the family of

monitor functions Ψ̄ (with associated continuation parameters λg ∈Rnδ).

Let I= {1,2,4, ...,4+nδ}, and Ī, λI, λĪ as before. Two starting points are available, respectively

u∗ = [X̂1;1;1] and u∗ = [X̂2;0;0], with λ∗ = Ψ̄(u∗). Note that in both cases λ∗
g = Ψ̄(u∗) = 0 by

construction. Therefore, δ= g(z, y) at each step of the continuation, and δ is expressed as a linear

combination of δ̂1 and δ̂2.

Since F(u,λ)|λI=λ∗
I
= 0 and F(u,λ)|λI=λ∗

I
satisfies the IFT at (u∗,λ∗), then a manifold H g with

dimension d = nx + nδ+3− (nx +2+ nδ) = 1 is defined. Crucially, the dimension is 1 irrespec-

tive of the number of uncertainties nδ, with the drawback that these are now constrained to

vary according to (8.23). H 1
g and H 2

g indicate the manifold built starting from [X̂1;1;1] and

[X̂2;0;0] respectively, with the subscript and the superscript highlighting the dependence on the

parameterisation of the uncertainties g and the initial point.

The construction of H g requires two perturbation vectors δ̂1 and δ̂2. This is not restrictive,

since as a result of the local optimality typically more than one solution is available. In addition,

the possibility of running the optimisation at a fixed frequency ω can be advantageously exploited

with the goal of obtaining different modes of perturbations. Indeed, as discussed before, Hopf

bifurcations occurring at different frequencies could represent different mechanisms underlying

the loss of stability, thus considering a linear combination of the perturbations as in (8.23)

represent an efficient strategy to select points on H g.

To sum up the multi-start strategy approach, the starting point is Program 8.2 which provides

a solution consisting of an equilibrium point x̂ of f̃ perturbed by δ̂ such that the associated

Jacobian J̃ has a pair of purely imaginary eigenvalues. This is not necessarily the closest

bifurcation point to the nominal system due to the possibility of local minima. However, X̂ can be
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used to compute the restricted manifold H g via a numerically cheap continuation problem once a

parameterisation g for the uncertainty set is provided. Continuation of H g has two objectives.

First, it could directly detect improved solutions of Program 8.2 (if λk < k̂m). Second, points on

H g can be used to run Program 8.2 with different initialisations.

If the manifold H g gathers a large number of points, and running the optimisation for each

of them is not viable, criteria could be employed to select a subset of them only. Keeping in mind

that the goal is to provide initialisations which possibly make the optimiser converge to different

points from the initial solution X̂ , the premise of these criteria is to detect on H g perturbation

vectors qualitatively different from δ̂. Possible indicators are for example the frequency ω and

the changes in sign of the parameters in δ (recall that these are normalised, thus a change in

sign reveals a change in the direction of perturbation for the considered parameter).

8.3 Application to the typical section case study

The concept of robust bifurcation margins is applied to a nonlinear aeroelastic system with the

goal of studying the influence of parametric uncertainties on qualitative changes in its steady-

state behaviour. Following the notation in Sec. 8.2.1, let us denote with VH the speed at which

the nominal system undergoes a Hopf bifurcation. Given a subcritical speed V̄0 such that V̄0 <VH

corresponds to a stable equilibrium and the definition of an uncertainty set, the distance in the

parameter space of the equilibrium at V̄0 from the closest Hopf bifurcation is computed by means

of the margin km.

In order to emphasise the benefits of the newly proposed framework and the connections

between the analyses allowed by it and those available with the standard LFT-µ approach, the

same (linear) typical section study case considered in Chapter 4 is assumed as starting point.

Specifically, Sec. 4.1.2 gathered the results of nominal (linear) analyses which predicted a flutter

speed Vf = 302 m
s and a flutter frequency 70.4 rad

s –see Table 4.1 and Fig. 4.1 for further details.

In Sec. 4.2.1 the effect of perturbations in structural and aerodynamic parameters on flutter was

assessed by building LFT models of the uncertain linear system and applying µ analysis –see Fig.

4.5 and Fig. 4.8 for examples of robust (linear) flutter analyses.

In Section 8.3.1 nonlinearities in plunge and pitch DOF are introduced and standard bifurca-

tion analysis is applied to study the nominal nonlinear flutter behaviour. Since the system has

nonlinearities, robustness to parametric uncertainties can not be studied now with LFT-µ and

thus the approach developed in Section 8.2 is applied. Results are presented in Section 8.3.2 and

critically discussed therein. Finally, Section 8.3.3 reports on the effects of perturbations in the

control surface dynamics and points out interesting connections with findings observed in the

analyses performed in Chapter 6 with respect to freeplay-induced LCOs.
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8.3.1 Nonlinear problem definition and bifurcation analysis

Recall first the mathematical description for a generic linear aeroelastic system in (2.7). This

is written out here for the case where xs = [η; η̇] (with η=
[

h
b ;α;β

]
) and xa are the aerodynamic

states from the Minimum State rational approximation:

ẋ =


η̇

η̈

ẋa

=


0 I 0

−M−1K −M−1B M−1D

0 Ē R



η

η̇

xa

 , (8.25)

where, with reference to Eqs. (2.8)-(2.9): M, B and K are respectively the aeroelastic inertial,

damping and stiffness matrices; D = q∞D̄; R = χaa−MS; D̄ and Ē come from the unsteady part

Γlag−MS of QMS (2.6).

Nonlinearities in the structural stiffness matrix Ks are considered in this work. Specifi-

cally, hardening cubic terms for the plunge and pitch degrees of freedom are assumed, and the

expression of Ks (2.10) is specialised for this case as follows:

Ks = KL
s +K NL

s =


KL

h 0 0

0 KL
α 0

0 0 Kβ

+


K NL

h KL
h
( h

b
)2 0 0

0 K NL
α KL

αα
2 0

0 0

 , (8.26)

where the linear KL
s and nonlinear K NL

s structural stiffness matrices have been introduced.

As common practice [69], the nonlinear terms are assumed proportional to the corresponding

linear ones through the coefficients K NL
h and K NL

α . The hardening effect modelled in (8.26) takes

into account the fact that the stiffness properties change when the system undergoes large

deformations (as is the case for very flexible aircraft), and typically an increase in the stiffness is

observed. Softening effects can also be exhibited in systems subject for example to compressive

loads or heating at high Mach numbers [252], but, since these instances are less relevant to the

study of flutter, they will not be considered here.

When the nonlinear stiffness matrix Ks (8.26) is used to define the aeroelastic matrix K , the

dynamics (8.25) adopts the form of the generic vector field (8.1), and thus the following description

holds:
ẋ = f (x,V )=A L(V )x+ f NL(x,V ),

J(x,V )=A L(V )+∇x f NL(x,V ),
(8.27)

where A L :R→Rnx×nx is obtained from (8.25) by setting the nonlinear terms to zero (i.e. K NL
s = 0),

and f NL :Rnx ×R→Rnx is the nonlinear part of the vector field. For the case specified in (8.26),

the following holds:

A L =


0 I 0

−M−1[
KL

s − 1
2ρ∞V 2 A0

] −M−1B M−1D

0 Ē R

 , f NL =


0 0 0

−M−1K NL
s 0 0

0 0 0

x. (8.28)
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The bifurcation parameter p is typically the speed V in the context of flutter analysis, but other

options could be considered as well.

Numerical continuation can thus be applied to (8.27) after having specified the value of the

trim state xt. A first important difference between linear and nonlinear flutter analysis is indeed

the influence of xt on the results. In the linear context, the presence of non-zero states has no

effect on stability, since this can always be studied by considering the state-matrix only. This is

not true in the nonlinear case, where results depend on xt. Two trim conditions will be considered

to exemplify this effect. The first corresponds to a zero trim state, i.e., xt = 0, whereas the second

has a non-zero value αt = 1◦ for the angle of attack of the section. This is physically motivated by

the fact that the section is generating positive lift to counterbalance gravitational forces directed

downwards. More refined descriptions for xt could consider a dependence of αt on speed or the

presence of a pre-deformed shape (with non-zero values for h and β), but this is not done here

since this description is sufficient to illustrate the role played by xt.

In order to present an overview of the possible nonlinear responses of the system, 6 scenarios

are considered. These arise from taking into account, for each trim state, the cases of plunge

nonlinear stiffness only (K NL
α = 0), pitch nonlinear stiffness only (K NL

h = 0), and both nonlinear

stiffnesses. The results are presented in Table 8.1, where, for each scenario (s#, with #= 1, ...,6),

the speed VH at which the Hopf bifurcation occurs, the frequency of the associated imaginary

eigenvalues ωH , and the type of bifurcation (sub for subcritical and super for supercritical) are

reported. Fig. 8.2 shows the corresponding bifurcation diagrams with V on the x-axis and the

normalised plunge DOF h
b on the y-axis (in case of branches of LCO, this is the maximum value

over a period). The usual convention of representing stable steady-states (equilibria and LCOs)

with solid lines and unstable ones with dashed lines is adopted.

Table 8.1: Hopf bifurcations of the nominal system for different combinations of nonlinearities
and trim states.

K NL
h K NL

α xt VH ωH type

s1 100 0 0 302.7 m
s 70 rad

s sub

s2 0 100 0 302.7 m
s 70 rad

s super

s3 100 100 0 302.7 m
s 70 rad

s super

s4 100 0 αt = 1◦ 288.2 m
s 75 rad

s sub

s5 0 100 αt = 1◦ 303.7 m
s 70 rad

s super

s6 100 100 αt = 1◦ 289 m
s 75 rad

s super

The first important observation from Fig. 8.2 is that when xt = 0 the branch of equilibria is

x = 0 regardless of V . This implies that J =A L, thus the occurrence of the Hopf bifurcation is

independent of the nonlinear terms. This is in accordance with the results from Table 8.1, where
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for s1, s2 and s3 the results of the linear case are retrieved, i.e. VH = Vf and ωH = ω f holds.

Nonlinear terms however do have an effect on the type of bifurcation.
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Figure 8.2: Bifurcation diagram of the nominal system for different combinations of nonlinearities
and trim states.

When αt = 1◦, it can be seen that the branch of equilibria has a non-zero (speed dependent)

value (note that s4 and s6 overlap). Moreover, different values of VH and ωH are registered in the

three cases depending on the nonlinearities affecting the system. This is due to the fact that the

linearisation of the Jacobian is now affected by the nonlinear term of the vector field f NL, thus

there is an effect of the type of nonlinearity on the onset of the Hopf bifurcation. A consequence

of the nonlinear terms is thus also that different values of αt (in general xt) will correspond to

different VH . This behaviour is not surprising since the dependence of flutter speed on the angle

of attack is a known feature of nonlinear flutter [190].

Another important trend, also confirmed when xt 6= 0, is that a subcritical bifurcation occurs

for the cases of nonlinearity only in plunge (s1 and s4), whereas when there are nonlinearities in

the pitch degree of freedom the bifurcation is always supercritical. This aspect is in agreement

with the discussion in [69], where the concept of intermittent flutter based on the instantaneous

natural frequencies of the underlying linear system is used to qualitatively explain the mecha-

nisms prompting different LCOs. This is briefly discussed here with regard to s1 and s2 (similar

arguments could be used for s4 and s5).

As a preamble, recall the trend of the plunge and pitch natural frequencies emphasised in

Fig. 4.2(b). For the benefit of the discussion, a zoom of that plot is shown in Fig. 8.3. Consider

a speed V ε
H slightly larger than VH . Since the equilibrium is unstable, the system will start

oscillating and the nonlinear terms will become important. In s2 the pitch frequency ωα will

increase and, as the oscillations become larger, the plunge frequency ωh (which remains constant)
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Figure 8.3: Zoom on the plunge (solid) and pitch (dashed) frequencies around the linear nominal
flutter speed.

will be far from ωα and thus the binary flutter mechanism prompting the instability will cease

to exist. As a result, the oscillations will decay and reach a level which is compatible with the

existence of a flutter mechanism. In essence, the amplitude of the LCO will stabilise at a cycle

in which the system alternates between positive (when the frequencies get closer) and negative

(when they are far away from each other) damping. Since ωα >ωh at V ε
H , the growth in amplitude

must be gradual and thus a supercritical LCO emanates from the Hopf point. The situation is

different for s1. Indeed, the hardening plunge stiffness promotes an instantaneous higher value

of ωh as the system starts oscillating, and, since ωα >ωh, the existence of a flutter mechanism

at larger amplitudes is possible. Moreover, if V is decreased below VH , an LCO can still exist

because oscillations in the system are compatible with coalescence of the natural frequencies.

This qualitatively explains, at least for the case of binary flutter, the features of hysteresis and

abrupt oscillations observed in an aeroelastic system undergoing a subcritical Hopf bifurcation.

In the case of s3, where both nonlinear terms are present, a supercritical bifurcation occurs.

This is ascribed to the particular choice of K NL
h and K NL

α in Table 8.1, which makes a mechanism

qualitatively similar to the one described for s2 prevail. By increasing the coefficient K NL
h it is

noted that a subcritical bifurcation would occur.

8.3.2 Robust margins to nonlinear flutter

This section investigates how uncertainties in the model can affect the results presented in

the previous section. The first step to compute robust bifurcation margins is the definition of

the nominal system and of the uncertainty set, which in turn will drive the construction of the

underlying LFT. The former is described by the vector field (8.27) analysed in Sec. 8.3.1, while

for the latter 5 structural parameters are initially considered, and then the set is incrementally

augmented.
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Including uncertainties in the nominal vector field of (8.27) yields the following expression:

ẋ = f̃ (x,V ,δ)= ˜A L(V ,δ)x+ f̃ NL(x,V ,δ), (8.29a)

J̃(x,V ,δ)= ˜A L(V ,δ)+∇x f̃ NL(x,V ,δ). (8.29b)

The bifurcation parameter V will be fixed in the subsequent analyses to V̄0 = 270 m
s (the same

used in the linear analysis with µ), which, recall Figure 8.2, is associated in both cases with

stable equilibria –and hence, it is a valid choice according to the discussion in Sec. 8.2.1.

8.3.2.1 Structural uncertainties

The uncertainties considered here are those belonging to the set (4.7) originally studied in Sec.

4.2.1.1 and reported next:

∆s = diag(δMs,11 ,δMs,12 ,δMs,22 ,δKL
h
,δKL

α
). (8.30)

All the cases considered in Table 8.1 are analysed with Program 8.2, with initialisation provided

by the nominal values of the equilibrium point and of the uncertainties. Results are reported

in Table 8.2 in terms of robust stability margin km, frequency ω̂ of the imaginary eigenvalues

at V̄0, and type of Hopf bifurcation. Note indeed that Program 8.2 calculates the closest Hopf

bifurcation without constraining the value of l1, and the type of predicted Hopf bifurcation is

assessed a posteriori with numerical continuation of the perturbed system.

Table 8.2: Robust bifurcation margins at V̄0 = 270 m
s for different combinations of nonlinearities

and trim states.

k̂m ω̂ type

s1 0.73 71.5 rad
s sub

s2 0.73 71.5 rad
s super

s3 0.73 71.5 rad
s super

s4 0.47 75 rad
s sub

s5 0.73 71.6 rad
s super

s6 0.49 75.1 rad
s super

Let us first comment on the results relative to s1-s2-s3 (having xt = 0), presenting the same

robust margins and frequencies. Recall from the nominal analyses (Fig. 8.2) that the branch of

equilibria x = 0 was found for all these cases, and observe that f̃ NL(0, ·, ·)= 0. This implies that

x = 0 are equilibria of the uncertain vector field, too. Therefore, ∇x f̃ NL = 0 and the determination

of km, since this can not depend on the nonlinear terms, is equivalent to the problem solved by µ

in the linear case, i.e., finding the smallest perturbation matrix such that ˜A L is neutrally stable.
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This is an important result, which complements the discussion in Sec. 8.3.1 concerning the effect

of xt on nonlinear flutter. While the role played by xt on (nominal) nonlinear flutter is better

understood [190], that on robustness is relatively unexplored and should be considered when

making the simplifying assumption of zero trim states [228].

An important observation is that the margin km computed for these cases is within less than

1% from the maximum singular value of the perturbation matrix found by µ in the linear analyses

of Sec. 4.2.1.1 (4.8). Moreover, the (normalised) uncertainty vector found by the optimiser is:

δ̂=
[
δMs,11 ;δMs,12 ;δMs,22 ;δKL

h
;δKL

α

]
,

= [−0.7328;0.5027;0.7328;0.7328;−0.7328],
(8.31)

which also features the same directions of perturbations as those detected in (4.8). This is very

important, since µLB and µUB were shown to be close around the peak of Fig. 4.5, which indicates

that, at least for this case, Program 8.2 is able to detect the global minimum of the optimisation.

It is worth noting that Program 8.2 has the frequency ω as decision variable, whereas µ was

applied at discrete frequencies (Fig. 4.5) because this is the available implementation for the

standard algorithms [14].

Let us now turn the attention to the cases with xt 6= 0. These cannot be analysed with µ

because J̃ is now also a function of the nonlinear terms due to non zero values for the equilibria

(which are in turn a function of the uncertainties). It is inferred that in all cases the Hopf

bifurcation could be shifted to V = 270 m
s within the uncertainty range (note indeed that km < 1).

The values of km are consistent with the nominal analyses in Table 8.1, for which s4 and s6

presented a smaller VH than s5. Thus, V̄ = 270 m
s being closer to the nominal bifurcation speeds

for the former, they are also expected to have smaller margins.

Another insight available from Table 8.2 is that the closest Hopf bifurcations are of the same

nature as the corresponding ones in nominal conditions. The case of subcritical LCOs is by far

the most dangerous scenario, as amply commented in the thesis thus far and demonstrated by

the attention received from many researchers [69, 77, 228]. Therefore, one of the goals of the

rest of the analyses is to understand whether perturbations in the parameters can drive the

Hopf bifurcation from supercritical to subcritical. Focus will therefore be on s5 and s6 only, which

according to the intermittent flutter interpretation discussed before are prone to supercritical

bifurcations.

8.3.2.2 Structural and aerodynamic uncertainties

Uncertainties in two aerodynamic parameters are added to the set of structural parameters.

Specifically, the terms A0,12 and A0,22 of the steady aerodynamics matrix A0 (2.9) are allowed to

vary within 20% from their nominal values. This choice is made in order to associate a physical

meaning to the uncertain parameters, since A0,12 and A0,22 correspond respectively to the lift
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and moment coefficients of the aerofoil. Other options could also be considered, e.g. lag terms of

the unsteady part γi for which the indications provided in Sec. 3.2.2 could be followed.

Table 8.3 shows the solutions of Program 8.4, which allows the criticality of the closest Hopf

bifurcation sought by the optimisation (a tolerance εl = 1 was used) to be specified. In the first and

third columns the normalised perturbations leading to supercritical bifurcations are listed (in

the brackets the percent variation from the nominal value), whereas second and fourth columns

report the subcritical cases. The margin km and the frequency are also indicated.

Table 8.3: Worst-case perturbations and margins to the onset of supercritical and subcritical Hopf
bifurcations for s5 and s6 (structural and aerodynamic uncertainties).

s5 l1 < 0 s5 l1 > 0 s6 l1 < 0 s6 l1 > 0

KL
α -0.4062 (-4%) -3.4169 (-34.2%) -0.2493 (-2.5%) -3.1358 (-31.3%)

KL
h 0.4062 (+2%) 3.6470 (+17.1%) 0.2493 (+1.25%) 3.1358 (+15.7%)

Ms,11 -0.4062 (-4%) -3.41690 (-34.2%) -0.2493 (-2.5%) -3.1358 (-31.3%)

Ms,12 0.4062 (+2%) -3.4169 (-17.1%) -0.2493 (-1.25%) -3.1358 (-15.7%)

Ms,22 0.4062 (+4%) 3.4169 (+34.2%) 0.2493 (+2.5%) 3.1358 (+31.3%)

A0,22 0.4062 (+8%) 3.4169 (+68.3%) 0.2493 (+5%) 3.1358 (+62.7%)

A0,12 -0.4062(-8%) 1.9348 (+38.7%) -0.2493 (-5 %) 1.83 (+36.5%)

km 0.4062 3.4169 0.25 3.13

ω̂ 72 rad
s 64 rad

s 76 rad
s 67 rad

s

The execution time of Program 8.4 is larger than that of Program 8.2 (approximatively 6s

against 3s for the case with 7 uncertainties). Most importantly, the addition of the constraint on l1

exacerbates the issue of local minima, especially when this is an active constraint (i.e., when l1 > 0

in this case). The results in Table 8.3 were thus obtained employing the set of strategies described

in Sec. 8.2.3. Specifically, reinitializing the optimisation based on the solutions obtained with

different solvers and using points on the auxiliary manifold H g lead to significant improvements

on the solutions, which converged to the results in Table 8.3.

The supercritical cases are coherent with the results illustrated in Sec. 8.3.2.1. The margins

approximatively halve in both cases as a result of additional uncertainty in the system, with the

frequencies having similar values. By looking at the predicted variations in the parameters, it is

noted that the structural ones have the same pattern with regard to the predictions obtained with

µ (4.8). Ms,12 is the only one to change sign, and this can be explained by the small sensitivity

of flutter to this parameter, as already discussed. As for the perturbations in A0,22 and A0,12,

they also have a physical interpretation. Due to the sign conventions, an increase in A0,22 and

decrease in A0,12 (the predicted worst-case perturbations for these parameters) mean that a

positive pitch rotation (Fig. 2.3) determines a larger clockwise pitching moment and upwards
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vertical force respectively, making thus the system less stiff. It is thus intuitive that an increased

flexibility under the action of the aerodynamic forces will amplify the coupling between elastic and

aerodynamic terms, leading to earlier onset of instability. This has been confirmed by performing

analyses with opposite perturbations for A0,22 and A0,12, which all resulted in higher nonlinear

flutter speeds.

Let us now consider the subcritical cases (second and fourth columns), which occur for higher

perturbations in the system. While all parameters show the same trend as in the supercritical

cases commented on above, this does not hold for A0,12, which has an opposite perturbation and,

in absolute value, smaller than the others. This is an interesting aspect, because according to the

previous discussion a negative perturbation for A0,12 would be expected. The interpretation for

this is that, in order for the subcritical Hopf bifurcation to take place, the natural frequencies

of the system must substantially change (this aspect will be further investigated next) and this

entails the large perturbations observed in Table 8.3 for the structural parameters. These have

the same sign as for the supercritical cases, but are about one order of magnitude larger, thus

they would cause the system instability at much smaller speeds. However, the bifurcation must

occur at the pre-fixed speed V̄0 = 270 m
s , thus the perturbation in A0,12 is such that the bifurcation

point is at V̄0. The scenario under consideration is distinctive of this problem, where different

(possibly conflicting) constraints define the worst-case conditions. While robustness in the linear

context focuses on the loss of stability only, from a dynamical systems perspective this becomes a

multi-faceted concept characterised by concurrent conditions and thus non-intuitive results can

be found.

With the aim to further investigate the mechanism behind the onset of subcritical LCOs,

Fig. 8.4 shows bifurcation diagrams associated with worst-case perturbations predicted for s5.

In addition to the branches relating to the first and second column from Table 8.3, additional

subcritical LCOs obtained from Program 8.4 by increasing the tolerance parameter εl are pre-

sented. The initialisation was provided this time by the values in the second column of Table 8.3

(corresponding to εl = 1). The solutions are qualitatively similar to the initial point but present

slightly larger km (and consequently greater perturbations) as the parameter εl is increased.

In the legend of Fig. 8.4, the value of the Lyapunov coefficient at the bifurcation point is

indicated. Note first that in the supercritical case the constraint on l1 is not active and thus

l1 has a large value irrespective of the tolerance εl . On the contrary, in the subcritical cases

this constraint is active, and as a result l1 = εl always holds. It is stressed that a quantitative

interpretation of the absolute value of l1 depends on the arbitrary normalisation adopted for the

eigenvector q in its definition (8.19). The point made here is qualitative, and specifically, that

as the tolerance εl (and thus l1) is increased, the subcritical Hopf bifurcation predicted by the

optimiser is more pronounced (i.e. the range of speeds for which unstable and stable LCOs coexist

with the branch of stable equilibria is larger). Even though this is not guaranteed by the Hopf

bifurcation theorem, since l1 is defined on the centre manifold at the bifurcation point only, the

219



CHAPTER 8. ROBUSTNESS FROM A DYNAMICAL SYSTEMS PERSPECTIVE

magnitude of the Lyapunov coefficient can be taken as a measure of the subcriticality of the LCO

(when comparing different instances computed with the same normalisation of q). This is well

captured by the optimisation, as shown in the results in Figure 8.4.
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Figure 8.4: Bifurcation diagram of the perturbed system s5: supercritical and subcritical LCOs.

To conclude the analysis on subcritical bifurcations, plunge and pitch natural frequencies

linearised around the branch of equilibria are computed as a function of V for all the cases

analysed in Fig. 8.4. This is depicted in Fig. 8.5, where dashed and solid lines are used for ωα and

ωh respectively. Fig. 8.5(b) shows an enlargement around the coalescence of the frequencies for

the subcritical cases, and circle markers are used to indicate for each pair the point at which the

two frequencies have the same values.

Two apparent differences between supercritical and subcritical cases can be appreciated from

Fig. 8.5(a). The first concerns the coalescence between the natural frequencies. This takes place

after the bifurcation for the supercritical case, and before for the subcritical one (see Fig. 8.5(a)).

This is supported by the intermittent flutter interpretation of the LCO in [69], discussed for this

case study in Sec. 8.3.1. Indeed, by having ωα < ωh at the bifurcation speed and a hardening

pitch stiffness, large oscillations are compatible with the establishment of a flutter mechanism

and thus a subcritical Hopf is expected. Secondly, Fig. 8.5(a) shows that the gap between the

natural frequencies has decreased across all the speeds for the subcritical case. This results from

the large perturbations reported in Table 8.3, which have the effect of amplifying the coupling

between the modes. The role of the parameter A0,12 is thus, as discussed before, to ensure that

despite the large adverse changes in parameters (whose effects are visible in Fig. 8.5(a)) the Hopf

bifurcation will occur at V̄0 (as verified by the continuation analyses in Fig. 8.4).

By looking at Fig. 8.5(b), it can also be noted that for the cases where the subcritical LCO

is more pronounced (i.e., higher values for l1), the frequencies coalesce closer to the bifurcation
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Figure 8.5: Linearised pitch (solid) and plunge (dashed) mode frequencies of the perturbed
systems as V is increased.

point. An interpretation for this is that the coupling between the modes is in the latter case

strong enough to allow stable oscillations on a larger interval of subcritical speeds, whereas, if

the coalescence takes place further away, the interaction is weaker at subcritical speeds close to

V̄0 and the LCO can only take place over a smaller interval.

8.3.2.3 Effect of uncertainties in the nonlinear terms

The coefficients of the nonlinear plunge and pitch stiffnesses are given respectively by K NL
h KL

h
and K NL

α KL
α (8.26). Thus, the uncertainty in the linear stiffness coefficients, considered so far,

affect also the nonlinear stiffness matrix K NL
s . However, the proportional coefficients K NL

h and

K NL
α have been assumed fixed (and equal to 100, see Table 8.1). Since their determination is far

from being a consolidated practice, it is reasonable to account for a dispersion in their values.

Specifically, K NL
h and K NL

α will be allowed to vary within 20% from their nominal values. The

uncertainty set is thus augmented with two new parameters and, as a result, each nonlinear

coefficient is given by the multiplication of two independent uncertain parameters.

Table 8.4 gathers the worst-case perturbations and bifurcation margins in the face of the new

set of uncertainties. The supercritical cases barely change with respect to the analyses in Table

8.3, and this is probably due to the fact that the predicted perturbations for K NL
h and K NL

α are

identical to the ones for the linear coefficients KL
h and KL

α . Thus, the extra degree of freedom of

perturbing individually the two terms defining the nonlinear stiffness coefficients is not exploited.

This reasoning also applies to the subcritical case with only pitch nonlinearity (s5 l1 > 0), which

also features a slightly smaller km than the corresponding case analysed in Table 8.3. The only

detectable change concerns the last column, where the closest subcritical Hopf bifurcation for the
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case with both plunge and pitch nonlinearity is reported. It is interesting to observe that, for this

case, a positive perturbation for K NL
α is predicted by the optimisation, opposite to the one for the

linear term KL
α . The perturbation to Kα is thus now decoupled in the linear and nonlinear part,

resulting in a lower bifurcation margin km.

Table 8.4: Worst-case perturbations and margins to the onset of supercritical and subcritical Hopf
bifurcations for s5 and s6 (uncertainty also in the nonlinear coefficients).

s5 l1 < 0 s5 l1 > 0 s6 l1 < 0 s6 l1 > 0

KL
α -0.4054 (-4%) -3.3595 (-33.6%) -0.2432 (-2.5%) -2.9641 (-31.3%)

KL
h 0.4054 (+2%) 3.3595 (+16.8%) 0.2432 (+1.25%) 2.9641 (+15.7%)

Ms,11 -0.4054 (-4%) -3.3595 (-33.6%) -0.2432 (-2.5%) -2.9641 (-31.3%)

Ms,12 0.4054 (+2%) -3.3595 (-16.8%) -0.2432 (-1.25%) -2.9641 (-15.7%)

Ms,22 0.4054 (+4%) 3.3595 (+33.6%) 0.2432 (+2.5%) 2.9641 (+31.3%)

A0,22 0.4054 (+8%) 3.3595 (+67.2%) 0.2432 (+5%) 2.9641 (+62.7%)

A0,12 -0.4054(-8%) 1.9486 (+38.97%) -0.2432 (-5 %) 1.77 (+36.5%)

K NL
h - - 0.2432 (+5 %) 2.9641 (+36.5%)

K NL
α -0.4054(-8%) -3.3595 (-67.2%) -0.2432 (-5 %) 2.65 (+36.5%)

km 0.4054 3.3595 0.24 2.9641

ω̂ 72 rad
s 63.5 rad

s 76 rad
s 69 rad

s

To better ascertain this behaviour, a close investigation of the two subcritical bifurcations

corresponding to the last columns of Table 8.3 (where no uncertainty in K NL
h and K NL

α is captured,

case D1) and Table 8.4 (case D2) is performed. The idea is to consider the stable LCO exhibited

at V̄0= 270 m
s , which is shown in Fig. 8.6(a) by plotting the response of h

b and α over a period. By

linearising the Jacobian around the trajectory of Fig. 8.6(a), it is possible to calculate the plunge

and pitch natural frequencies at each time step. This is reported in Fig. 8.6(b), where for reference

the natural frequencies linearised around the equilibrium at which the bifurcation occurs are

reported as horizontal lines. From Fig. 8.6(a) it can be inferred that the LCO corresponding to

D1 features the largest amplitude. This could be motivated by the fact that the two natural

frequencies are close over the period, as visible from Fig. 8.6(b), thus the flutter mechanism

stabilises at higher amplitudes. The case D2, despite having a smaller LCO, exhibits a large

excursion for ωα, due to the fact that the positive perturbation for K NL
α determines a larger

hardening term. The one observed for D2 is thus a different LCO mechanism from that for

D1, because stable oscillations exist even if the coupling between the modes seem weak over

large parts of the period. This is an interesting aspect as it shows that, by enlarging the set of

uncertainties, different scenarios can arise. Moreover, the bifurcation margin associated with D2

is smaller which makes the characterisation of the associated bifurcation of practical importance.
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Figure 8.6: Effect of uncertainty in the nonlinear coefficients on the onset of a subcritical Hopf
bifurcation.

As for the computational aspects, the availability of results from previous analyses (even if

performed only on a subset of the uncertainty space, e.g. Table 8.4) greatly improves the required

computational time and accuracy of the results, since these could be used to seed the optimisation

(and the multi-start continuation-based search). Adding uncertainties incrementally, as done

here, not only allows a deeper understanding of the physical mechanisms underlying the onset

of Hopf bifurcations in the system, but represents an effective strategy to tackle the possible

numerical issues associated with non-convex optimisation and discussed in Sec. 8.2.3.

A possible objection to this approach is that seeding the optimisation with previous results

could bias the solution because new global minima, possibly appeared as an effect of the additional

uncertainties in the system, might not be captured. For this reason, the possibility to run Program

8.4 at a fixed frequency ω is exploited and the results are shown next. Fig. 8.7 shows the reciprocal

of the robust bifurcation margin km for s6, subject to the set of uncertainties considered in this

section, as a function of the frequency. The cases of supercritical and subcritical Hopf are

respectively depicted in Fig. 8.7(a) and Fig. 8.7(b). Two different initialisations are considered:

Init. 1 uses zero for the uncertainties and the nominal equilibrium at V̄0 for the states; Init.

2 uses the solution corresponding to the maximum peak of Init. 1. The representations in Fig.

8.7 resemble those typically employed in linear robust analysis with µ (recall for example Fig.

4.5). This points out once again the connection between the concept of km and the structured

singular value µ. In particular, when 1
km

≥ 1, a perturbation in the allowed range of uncertainties

exist such that an Hopf bifurcation is experienced by the system when perturbed. In this regard,

Fig. 8.7(a) features a pronounced peak of approximately 4, corresponding to a margin of 0.25
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(which equals the result in the third column of Table 8.4). Fig. 8.7(a) shows also that there is no

sensitivity of the solutions to the initial condition. This is primarily ascribed to the fact that the

constraint on the Lyapunov coefficient is not active in this case and, as already highlighted, this

makes the optimisation more robust to the issue of local minima. The results in Fig. 8.7(b) show

on the other hand a sensitivity to the initialisation. However, the peak detected by the curve Init.

2 (approximately 0.34), corresponds to the margin 2.95 reported in Table 8.4, which was obtained

via the multi strategy outlined in Sec. 8.2.3.
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Figure 8.7: Frequency representation of the reciprocal of the robust bifurcation margin.

The analyses shown in Fig. 8.7 help not only in mitigating the issue of local minima, but

provide additional insights into the instability. For example, the results here confirm that the

closest supercritical and subcritical Hopf bifurcations take place in the range of frequencies

where the pitch and plunge modes coalesce. This binary flutter mechanism was ascertained in

nominal conditions with both linear (Sec. 4.1.2, e.g. Fig. 4.1) and nonlinear approaches (Table 8.1

and Fig. 8.2). Therefore, the presence of the uncertainties is able to prompt the onset of the Hopf

bifurcation at lower speeds and to change the type (from supercritical to subcritical), but the

underlying physical mechanism is unaltered. The next section shows that this analysis framework

can also anticipate new mechanisms not observed in nominal conditions which, depending on the

perturbations of the parameters, could become critical.

8.3.3 Effect of control surface stiffness uncertainty

The destabilising mechanism analysed so far is the result of a coupling between the two elastic

states h and α, while the third state β does not participate in it. This fact, supported by a wide

frequency separation between the dynamics of β and the other two states, is often exploited to

reduce the size of the problem by neglecting the flap motion [111]. However, this hypothesis might
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be invalidated by a decrease in the stiffness of the control surface Kβ. A possible cause for this, in

addition to the lack of confidence on its exact value, could be the presence of nonlinear behaviours

which typically affect control surfaces. For example, Chapter 6 has shown that freeplay can be an

important driving force behind the onset of limit cycles, and notably of subcritical nature. The

robust bifurcation margins framework assumes smooth vector fields, thus freeplay cannot be

directly modelled, but its effect on the dynamics can be captured to a first approximation as a

reduction in the value of Kβ. For example, the Describing Function method, employed in Sec.

6.2, provides an equivalent value for Kβ which lies in the interval [0,KL
β

] and depend on the

amplitude of the LCO (6.32). In other words, freeplay has an uncertain softening effect on the

associated stiffness, and thus the addition of Kβ to the set of uncertainties is physically justified.

A range of variation of 40% from its nominal value will be assumed.

The analyses reveal that the supercritical cases are practically unaltered because the mag-

nitude of the worst-case perturbations associated with this instability (recall for example the

small percent variations in Table 8.4) are not able to modify Kβ in such a way that the flap

motion dynamics participate in the instability. On the contrary, the subcritical cases feature a big

sensitivity to this parameter. Fig. 8.8 shows the reciprocal of km as a function of the frequency

and is built by using 4 different initialisations (derived from the multi-start strategy). For clarity,

only the envelope curve of the maxima of these 4 tests (labelled B1) is reported. The curve Init. 2

from Fig. 8.7(b) is also reported (labelled B2), which allows a comparison with the case where Kβ

holds a fixed nominal value.
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Figure 8.8: Comparison of km for the cases with and without uncertainty in Kβ.

The results in Fig. 8.8 show that uncertainty in Kβ has a strong impact on the potential

onset of a subcritical LCO in the system. Note indeed that, even though the margin km is still

above 1 (thus the predicted perturbation provoking the bifurcation lies outside the allowed set),

this has drastically decreased compared to the previous analyses. Moreover, the peak of the

225



CHAPTER 8. ROBUSTNESS FROM A DYNAMICAL SYSTEMS PERSPECTIVE

plot (corresponding to km ∼= 1.65) is in a different frequency interval, specifically around 100 rad
s ,

which suggests a different physical mechanism prompting the Hopf bifurcation. The worst-case

perturbations associated with the peak of curve B1 are reported in Table 8.5.

Table 8.5: Worst-case perturbations for the onset of a subcritical Hopf bifurcation with uncertainty
also in Kβ.

KL
α 1.6587 (+16.59%)

KL
h - 1.6587(-8.29%)

Ms,11 0.2420 (+2.42%)

Ms,12 1.2101 (+6.05%)

Ms,22 -1.6587 (-16.59%)

A0,22 -1.6587(-33.17%)

A0,12 -1.6587(-32.97%)

K NL
h -1.6587 (-33.17%)

K NL
α 1.6587(+33.17%)

Kβ -1.6587(-66.35%)

The predicted variations for the structural parameters are markedly different from those

encountered in all the previous analyses. The linear stiffness and mass parameters, for example,

have opposite signs when compared to the results in Tables 8.3 and 8.4, and Ms,11 is almost

unperturbed. In fact, the perturbations do not bring the plunge and pitch modes closer in this

case, but determine an increase in ωα and a decrease in the flap frequency ωβ (note the trends

for KL
α , Ms,22, K NL

α , and Kβ).

Fig. 8.9 attempts to interpret this result by making use of the linear indicators commonly

adopted in flutter analysis. At each speed V the Jacobian is linearised around the equilibria of

the stable branch and an eigenvalue analysis is performed. This allows the natural frequencies

of the three structural modes to be obtained as the speed is increased, which are reported in Fig.

8.9(a). In addition, Fig. 8.9(b) shows the Modal Assurance Criterion for the three modes. MAC

was defined in (4.1) and can be advantageously employed to quantify the similarity (in a linear

combination sense) between two mode shapes. Recall from Sec. 4.1.1 that MAC ranges between 0

and 1, where the extremes are achieved by two orthogonal or identical vectors respectively, while

for values in between there is a certain degree of similarity between the reference and the tested

modes. The idea is then to plot the MAC among the three structural modes in order to monitor

how their coupling vary with speed. The labels MAC(α,β) and MAC(α,h) in Fig. 8.9(b) indicate

the MAC between pitch mode and flap mode, and pitch mode and plunge mode respectively. In

both figures, the indicators relative to the system with perturbations from Table 8.5 are compared

with those for the nominal (i.e., s6 from Table 8.1).
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Figure 8.9: Linearised frequencies and MAC around the branch of equilibria for nominal (red)
and perturbed (black) case s6.

The perturbed system shows in Fig. 8.9(a), as expected from the result of the optimisation

gathered in Table 8.5, a significant reduction in ωβ and increase in ωα compared to the nominal

system. However, there is still a considerable frequency gap between the pitch and flap modes,

thus based on this plot only there seem to be no strong coupling between them. In fact, by

recalling the intermittent flutter interpretation of LCO, the curves seem to suggest a supercritical

Hopf bifurcation involving h and α (indeed the trend of natural frequencies is similar to that

in Fig. 8.3 which prompted a supercritical bifurcation). A different perspective is given by Fig.

8.9(b), where a marked increase in the coupling between α and β is apparent for the perturbed

system (observe the black solid line versus the red solid one), and a decrease in that for α and

h (dashed black and red lines). In particular, the black curves MAC(α,β) and MAC(α,h) have

comparable values around V̄0, but their slope is opposite. This might suggest that at subcritical

speeds there is opportunity for stable oscillations in the system, since the coupling between α and

β is amplified as the speed is decreased. In order to further support these claims, the Jacobian is

linearised around the stable LCO at V̄0 (depicted in Fig. 8.10(a)) and the variation of MAC over a

period is plotted in Fig. 8.10(b), where the horizontal lines correspond to the values in Fig. 8.9(b)

for V = V̄0 (i.e., at the equilibrium point where the Hopf bifurcation occurs).

Fig. 8.10(b) shows that oscillations in the system allow a strong coupling between β and α

to take place. The MAC indeed has a value just below 0.9 for large parts of the period, which

is much larger than the one corresponding to the equilibrium (the horizontal solid line). It is

thus confirmed that the system has a stable (high amplitude) LCO at V̄0 due to the interaction

between β and α. Note also from Fig. 8.10(a) that the frequency of the oscillations is about 185 rad
s .

This is markedly higher than the one observed for the plunge-pitch LCO in Fig. 8.6(a) and is in
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agreement with the frequency interpretation of the margin km discussed in Fig. 8.8.
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Figure 8.10: Periodic behaviour of the perturbed system s6 at V̄0.

While the analyses so far has focused on the behaviour of the perturbed system around the

speed V̄0, the response of the perturbed system from a global bifurcation analysis perspective is

studied next. Numerical continuation is applied and the results are displayed by means of the

bifurcation diagram in Fig. 8.11.
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Figure 8.11: Bifurcation diagram of the perturbed s6 for the DOFs h
b (red) and α (black).

The plot features a branch of equilibria losing stability at V̄0 where the subcritical Hopf

bifurcation occurs (circle marker), and an unstable branch of LCO emanating from it. Note that

this branch does not fold into a stable LCO as typically happens (recall for example the curves

in Fig. 8.4). The stable LCO branch is constructed by initialising the continuation solver with
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the periodic response obtained with time-marching simulations at V̄0. As the speed is decreased,

this branch undergoes a supercritical Neimark-Sacker (NS), or torus, bifurcation [145] (square

marker at V ∼= 40 m
s ), with quasi-periodic solutions present in the system at smaller speeds.

These results show that the perturbations in Table 8.5 (predicted with respect to local

bifurcations) are able to drive the system into a global complex scenario featuring bi-stability for

very low values of V . This implies, for example, that the stable equilibrium branch is only locally

stable at those speeds and thus ROA analyses as those investigated in Chapter 7 are required to

guarantee a safe operation of the system. Moreover, for speeds greater than V̄0 the system will

jump into a stable LCO featuring very high amplitudes (compare the branch for α in Fig. 8.11

with those in Fig. 8.4 which also emanated from a subcritical Hopf). This feature is even more

critical considering that the km associated with the scenario in Fig. 8.11 is the smallest among

all the subcritical cases detected in the analyses.

8.4 Chapter summary

In this chapter the problem of studying robustness of stable equilibria of nonlinear systems to

the onset of Hopf bifurcations is considered.

The technical contribution is the proposal of a possible extension of the structured singular

value µ to the nonlinear context. A scalar metric quantifying a perturbation in the uncertainty set

is first defined, and the magnitude of the smallest perturbation such that a stable equilibrium is

driven into a Hopf bifurcation point is defined the robust bifurcation margin km. Its computation,

which also allows the nature of the closest Hopf bifurcation (subcritical or supercritical) to be

specified, is based on the idea of building a Linear Fractional Transformation model of the

uncertain Jacobian and then studying its singularity. The problem of calculating km is then

recast as a nonlinear smooth constrained optimisation problem, and as such it suffers in principle

from the issue of local minima. Thus, the proposed numerical recipes technically provide only

an upper bound on the margin. However, several mitigation strategies are described in order

to tighten the gap with the actual margin, including a continuation-based multi-start strategy.

The latter represents a novel solution to the problem of computing manifold of Hopf bifurcation

points in the space of uncertain parameters.

The second part of the chapter shows an application of this approach to a typical section system

featuring polynomial stiffness coefficients. A first important outcome is that, for a particular

analysis case, the results are shown to correspond with those obtained with µ, for the linear

counterpart of the investigated case study, in Chapter 4. The uncertainty set is then incrementally

augmented in order to assess the effect of perturbations on the nonlinear behaviour. The capability

offered by the framework to specify the type of the closest Hopf bifurcation (subcritical or

supercritical) is exploited to ascertain whether the uncertainties are able to change it with

respect to what observed in the nominal system. One of the main findings is that uncertainty
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in the control surface stiffness can drastically lower the margin to the onset of subcritical Hopf

bifurcation even when the control surface dynamics does not participate in the destabilising

mechanism in nominal conditions. Moreover, complex dynamics such as quasi-periodicity and

bi-stability at low speeds are revealed suggesting the need to carefully consider the effect of

uncertainties in bifurcation analysis. The detail devoted to the application section has a twofold

aim: on the one hand it allows the various scenarios arising in the study of nonlinear flutter when

uncertainties are accounted for to be investigated and discussed; on the other, it provides the

reader with a complete example of application of the novel framework and interpretation of its

results which could help its usage in future studies.

230



C
H

A
P

T
E

R

9
CONCLUSIONS

This chapter draws general conclusions on the work described in the thesis, and discusses

possible future direction.

9.1 Contributions

The three main objectives of the research work were outlined at the end of Section 1.1. Below, the

contributions of the thesis towards achieving them are summarised.

Linear robust flutter approaches for aeroelastic systems of increasing
complexity

The problem of addressing robustness of linear aeroelastic systems in the presence of uncertain-

ties in the model has been addressed from the modelling and analysis perspectives.

A systematic and detailed investigation of two different Linear Fractional Transformation

modelling paths was performed in Section 3.2. These two paths arose from the frequency-domain

expression of the aerodynamic operator (non-rational in the Laplace variable s) for flutter calcu-

lations. An important outcome of this was the presentation of a unifying formulation combining

the respective advantages. This is believed to be an important step to facilitate a physical-based

description of the aerodynamic uncertainties, which can have positive repercussions on both

the analysis and robust control design tasks. The problem of providing a characterisation of

the uncertainties capturing their physical meaning motivated also the approaches developed in

Section 3.3. Their main benefit is that the LFT modelling step is performed embedded in the FSI

solvers (which are typically employed in aeroelasticity), and in this way systems of moderate

complexity can be efficiently obtained with the proposed framework.
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On the analysis side, several applications of robust flutter analysis are performed in order to

highlight the capability of µ of providing a wealth of information in addition to its most common

use as simple yes/no test on robust stability. This is showcased and compared with the previous

works on the topic by application to body freedom flutter in Section 4.2.2 (for which a simplified

model based on first principles has been developed here) and to the complex aeroelastic behaviour

exhibited by an unconventional joined-wing configuration in Section 4.3.

The physics-oriented approach taken in this thesis to develop the modelling strategies and

interpreting the analysis results is believed to help bridge the gap between the robust and

aeroelastic communities.

Methods for investigating the effect of uncertainties on nonlinear
phenomena

The presence of nonlinearities prompts the onset of phenomena that must be carefully considered

in the design of aeroelastic systems. Particularly relevant in this context are limit cycles, which

might arise, instead of a diverging response, when the flutter speed is exceeded. Two distinct

methods have been developed in Chapter 6 to predict the worst-case oscillation amplitude of LCOs

as a function of speed. The approaches build respectively on Describing Functions and Integral

Quadratic Constraints, and can be applied to different types of nonlinearities and uncertainties.

A systematic application of these approaches to freeplay-induced LCOs for a system subject

to parametric uncertainties has been illustrated, and the prowess of the predictions verified

with time-marching simulations (showing very close results). The underlying hypotheses and

associated limitations have been critically discussed in order to support the use of these methods

for the study of LCOs.

Another important nonlinear effect is that stability of equilibrium points is in general only

a local property, as exemplified in the case of subcritical LCO where for a certain range of

speeds two (or potentially more) possible steady-states exist. In other words, depending on the

perturbations of the states, the trajectories could converge to another attractor or even diverge

instead of returning to the original equilibrium. This is for example the case when subcritical Hopf

bifurcations occur, and it has motivated the study of region of attraction approaches. Specifically,

the detrimental effect of the uncertainties on the size of the region where the system can be safely

operated has been considered. The research carried out in Chapter 7 has contributed to the state-

of-the-art in the field by focusing on two different aspects. The first concerns the investigation of

non-Lyapunov approaches (known to be less conservative) within the framework of positively

invariant sets, and resulted in the extension of an available approach to the uncertainty case and

the proposal of alternative iterative algorithms (valid for polynomial systems) to improve the

solution of the optimisation problems. The second proposes the use of IQC in order to capture

generic nonlinearities (not necessarily polynomial) and exploit the properties of the uncertainties

to reduce the conservatism of the estimations. Theoretical guarantees of local stability are given
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for a generic factorisation of the IQC (hard or soft) and are based on recent results on the

reconciliation between multiplier theory and dissipativity.

Interpretation of robustness from the bifurcation viewpoint

The possibility of qualitative changes in the steady-state behaviour of uncertain systems has

been characterised in Chapter 8 by means of the notion of the robust bifurcation margin km.

While the underlying idea is general (i.e. applicable to different types of static bifurcations), the

approach has been specialised here to Hopf bifurcations due to their importance in aeroelasticity

(as justified throughout the second part of the thesis). The meaning of the results is recapped

here: if km ≤ 1 then a perturbation within the allowed uncertainty range exists which causes

the onset of bifurcation for a nominally stable fixed point, whereas if km > 1 then the system

has excess of stability, i.e. it is robustly stable to the uncertainties. This margin, which is a

worst-case indicator, can be considered a possible nonlinear extension of the structured singular

value µ, and builds on a similar modelling framework. In fact, the computation of km requires

the construction of an LFT representation of the Jacobian of the vector field and exploits the

meaning associated with the singularity of this LFT. However, intrinsic differences hold with

respect to the formulation of the problem in the linear context. One of them is the possibility

to specify the type of the predicted closest Hopf bifurcation, namely subcritical or supercritical,

which is a beneficial feature in view of the greater danger associated with the former. Moreover,

an original solution to the known issue of local minima for non-convex programs is proposed,

which consists of constructing a manifold of Hopf bifurcation points in the uncertain parameter

space by leveraging the extended formulation of the numerical continuation problem.

A detailed application of this concept to a nonlinear aeroelastic case study is also proposed.

The capabilities offered by the framework are exploited to investigate whether the uncertainties

are able to prompt the onset of the Hopf bifurcation at lower speeds and to change its criticality

with respect to what is obtained for the nominal system. Interesting patterns in the detected

worst-case perturbations are revealed and reconciled with results from previous chapters. The

level of detail devoted to the application part aims to: investigate the scenarios arising in the

study of nonlinear flutter when uncertainties are accounted for in the model; and provide a

complete example of application of the novel framework and interpretation of the results to

support its usage in future studies.

In addition to the technical aspects, this contribution represents the culmination of the effort

put in this PhD to reconcile robust control and dynamical systems techniques (recall Fig. 1.1).

In fact, the dynamical systems point of view has been helpful in formulating the problem of

uncertain LCO and ROA and in interpreting the results, but its interplay with robust control

concepts has been instrumental for a novel interpretation of robustness in the nonlinear setting.
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9.2 Recommendations for future research

This section discusses possible future works connected with technical aspects dealt with in the

thesis.

LFT-FSI co-modelling framework

The approaches described in Section 3.3 aim to provide strategies to perform Linear Fractional

Transformation modeling embedded in fluid-structure interaction solvers. In order to foster the

combined use of these tools in the aeroservoelastic community, three aspects can be further

addressed. From a technical viewpoint, capturing the effect of variations in the structural

parameters on the modal base is crucial in order to obtain accurate predictions, as confirmed by

the analyses performed in this work. Additional strategies to the iterative cycle proposed with

Algorithm 3.3 would hence be beneficial, and a possible novel starting point is the interpretation

of the problem as a nonlinear LFT given in Eq. (3.34). On the application side, an opportunity is

envisaged to analyse aircraft configurations other than the Joined Wings considered in Section

4.3. The reasoning behind that choice was to show the ability of the framework to cope with a

known challenging case study, but other studies would be important to consolidate the framework.

Finally, from the implementation perspective, the integration of an LFT library inside an FSI

solver would allow for an efficient and reliable execution of Algorithms 3.2, 3.3 and 3.4 and

could provide an off-the-shelf solution for robust aeroelastic analyses. In this regard, it would

be interesting (and computationally advantageous) to investigate implementation of these tools

inside low level programming languages (as is typically the case for high-fidelity aeroelastic

solvers).

Characterisation of LCO in the presence of uncertainties

The method presented in Section 6.3 to study Limit Cycle Oscillations by means of Integral

Quadratic Constraints is to the best of the author’s knowledge new. However, a possible connection

holds with previous works where the study of limit cycles with dissipativity theory was proposed.

Specifically, a relaxed version of the notion of passivity [137] is considered in [220, 227] by adding

to the supply rate an activation term which allows the alternate mechanism of dissipation and

storage of the energy, which intuitively characterises self sustained oscillations, to be described. In

view of the existing parallel between IQC and dissipativity, and the qualitatively similar approach

of relaxing the description of the input/output behaviour of the nonlinearities (by means of the

multiplier description here and the supply rate in [220, 227]), it is of interest to further explore

the connection between these studies. In particular, a formal extension of the passivity-based

approach, valid for nominal systems, to the case of uncertainties is of potential interest. Indeed, no

theoretical guarantee of the worst-case LCO analysis was given in Section 6.3, and the definition

of the relaxed sector multiplier (Fig. 6.15) builds on the Describing Function approximation (with
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the associated hypotheses). Toward this goal, previous studies that focused on the behaviour of

periodic systems in the presence of uncertainties could be of interest [139, 221].

Numerically efficient computation of ROA

The proposed recipes for calculating inner estimates of the Region of Attraction build on the

solution of non-convex Sum of Squares programs. While the research here has studied different

iterative schemes to tackle the bilinearities and has investigated their impact on the results,

standard solvers have been employed for the solution of the Sum of Squares optimisation. The

main issue is that SOS suffer from scalability and thus computational limitations might prevent

the proposed analysis strategies from being applied to sufficiently accurate aeroelastic models

(e.g. featuring a larger number of states and order of the nonlinearities). Research in the field of

positive polynomials optimisation has been active in recent years, with two directions looking

particularly promising: exploiting sparsity in the problem structure and underlying Semidefinite

Program [1]; and formulating the certificates for positivity of the polynomials with stronger but

cheaper conditions [2]. Both approaches have been recently implemented in MATLAB packages

[79, 157] and thus their effectiveness in addressing ROA analysis with the new SOS-based

algorithms developed in Chapter 7 could be investigated. Specifically, application to aeroelastic

systems undergoing subcritical Hopf bifurcations is advised as a future activity of interest for

nonlinear flutter problems.

Tighter bounds on the robust bifurcation margins

The computation of the worst-case uncertainty combination prompting the onset of a Hopf

bifurcation in a nominally stable system is recast as the solution of a smooth constrained

optimisation problem. Specifically, the margin km is the objective function (to be minimised)

of a non-convex program. One of the consequences of this formulation is that the computed

km may be only an upper bound of the actual robust bifurcation margin. That is, there is no

guarantee that the global minimum is computed, and thus a smaller perturbation leading to a

Hopf bifurcation can exist. This issue is partially mitigated by the continuation-based multi-start

strategy proposed in Section 8.2.3, but two aspects could further improve the framework. First,

the application of advanced optimisation strategies to Programs 8.2-8.4. In this thesis the solvers

available in the MATLAB routine fmincon have been used, but other options could be pursued, for

example: employing existing global solvers, e.g. based on genetic algorithms or branch and bound

methods; and developing more efficient optimisation strategies (e.g. in [230] an improved version

of the standard sequential quadratic programming implemented in fmincon is presented based on

its integration with a second-order cone program). Second, the proposal of a lower bound on km

(in analogy to what is done in the structured singular value analysis with µUB). Starting points

can be: the ideas presented in ([187], Section 7.4), where SOS are used to compute a guaranteed

smallest distance to saddle-node bifurcations in the parameters space; or the approach used in
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Section B.1.2 to compute regions of the state space (by means of the level set Ωgd ,cd ) where the

equilibria satisfy certain properties (see Remark B.3). Alternatively, extensions of established

algorithms in µ analysis can be investigated (e.g. power iteration, balanced form). With respect to

Eq. (8.12), an expected difficulty here is represented by the block ∆x, which is subject to different

constraints from ∆u, hence it must be handled differently in the optimisation problem. The

concept of skew-µ [81] can be helpful in this regard.
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CASE STUDIES DATA

This Appendix gathers the data used for the case studies analysed in the manuscript. These are

grouped according to the chapters where they were employed.

A.1 Chapter 3

The geometry and aerodynamic properties used for the investigations of the aerodynamic LFTs

in Sec. 3.2.2 are taken from the typical section model detailed in the next section.

A.2 Chapter 4

A.2.1 Linear typical section

The properties of the typical section model used for the analyses in Sec. 4.1.2 and Sec. 4.2.1

are taken from [134]. With reference to the symbols defined in Sec. 2.3.1, the values of the

geometry and structural parameters are reported in Table A.1. As for the aerodynamic model,

the Theodorsen GAF matrix Qhh was presented in (2.11) and recapped here:

Qhh =
(
Mnc s̄2 + (

Bnc +C(s̄)R1 ·S2
)
s̄+Knc +C(s̄)R1 ·S1

)
. (A.1)
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Table A.1: Parameters of the linear typical section case study.

Parameter Value Parameter Value

b 1 m rα 0.497

a -0.4 Kh 3.85 ·105 N

c 0.6 Kα 3.85 ·105 N

xα 0.2 Kβ 8.66 ·104 N

mw 153.94 kg
m ch 0 Ns

rβ 0.0791 cα 0 Ns

S 2m2 cβ 0 Ns

xβ -0.025 ρ 1.225 kg
m3

The real coefficient matrices Mnc, Bnc, Knc, R1, S1 and S2, depend on the dimensionless distances

a and c, and their analytical expressions, taken from [134], are reported below.

Mnc =


−π πa T1

πa −π(a2 + 1
8 ) −2T13

T1 −2T13
T3
π

 , Bnc =


0 −π T4

0 π(a−0.5) −T16

0 −T17 −T19
π

 ,

Knc =


0 0 0

0 0 −T15

0 0 −T18
π

 , R1 =


−2π

2π(a+0.5)

−T12

 , S1 =


0

1
T10
π


>

, S2 =


1

0.5−a
T11
2π


>

,

where

T1 =−1
3

(2+ c2)
√

1− c2 + carccos(c),

T3 =−1
8

(1− c2)(5c2 +4)+ 1
4

c(7+2c2)
√

1− c2 arccos(c)− (c2 + 1
8

)(arccos(c))2,

T4 = c
√

1− c2 −arccos(c), T5 =−(1− c2)− (arccos(c))2 +2c
√

1− c2 arccos(c),

T7 = 1
8

c(7+2c2)
√

1− c2 − (c2 + 1
8

)arccos(c), T8 =−1
3

(1+2c2)
√

1− c2 + carccos(c),

T9 = 1
2

(
1
3

(1− c2)3

2
+aT4), T10 =

√
1− c2 +arccos(c),

T11 = (2− c)
√

1− c2 + (1−2c)arccos(c), T12 =
√

1− c2 (2+ c)− (2c+1)arccos(c),

T13 =−0.5(T7 + (c−a)T1), T15 = T4 +T10,

T16 = T1 −T8 − (c−a)T4 +0.5T11, T17 =−2T9 −T1 + (a−0.5)T4,

T18 = T5 −T4T10, T19 =−0.5T4T11.
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C(s̄) is the Theodorsen function, which is a complex scalar defined as:

C(s̄)= K1(s̄)
K0(s̄)+K1(s̄)

= H1(z)
H1(z)+ iH0(z)

, z =−is̄, (A.2)

where Kn and Hn are respectively modified Bessel functions and Hankel functions of order n. The

former can be obtained, for a given reduced frequency k and s = ik, with the MATLAB function

besselh.

Finally, note that the equations of motion are all written in Newton (N).

A.2.2 Aircraft model

The parameter values for the BFF analyses performed in Sec. 4.1.3 and Sec. 4.2.2 are reported in

Table A.2. The parameters defining the wing (upper part of the table) are taken from the Goland

wing benchmark [93], whereas the geometry and inertial properties of the aircraft (lower part of

the table) are obtained by scaling the values from [190] adopting the Goland wing mass ratio and

span as the reference mass and length. As an example of the scaling procedure, the definition of

the vehicle payload pitch inertia I yyP is:

I yyP = I0
yyP

(mw

m0
w

)( L
L0

)2
, (A.3)

where the superscript 0 is used for values taken from [190], and mw
m0

w
and L

L0 represent the mass

and length scale factors respectively. The aircraft pitch inertia I yy is then obtained summing up

I yyP with the wing and tail contributions I yyw and I yyt .

The parameters EI = σsEIG and D are varied in the nominal parametric analyses in Sec.

4.1.3 (0.15 <σs < 1, 5m < D < 10m), and the values reported in the table are the nominal ones

used to generate the LFTs used in Sec. 4.2.2.

Theodorsen theory (A.1) is used to model the aerodynamic forces acting on the wing in

response to its deformation (see Sec. 2.3.2 for details on the modelling).

The evaluation of the aerodynamic stability derivatives, used to characterise the short period

(2.14) and the coupling terms, employs a first-order approximation:

Zr
• =

∂Zr

∂• =−q∞SCL• , Mr
• =

∂Mr

∂• = c̄q∞SCM• , (A.4)

where • = {ᾱ, q̄, ˙̄α} and CL• , CM• are functions of the aircraft’s geometry [212]:

CLᾱ
= CLw +CL t

St

S
, CMᾱ

= (X̄CG − X̄AC)CLᾱ
,

CL q̄ = CL t

St

S
(X̄CG − X̄ t

AC)
c̄
V

, CMq̄ =−CL t

St

S
(X̄CG − X̄ t

AC)2 c̄
V

,

CL ˙̄α =−(CL tεAR(X̄ t
AC − X̄ w

AC)
St

S
)

c̄
V

CM ˙̄α ,=−CL ˙̄α(X̄ t
AC − X̄AC),
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Table A.2: Parameters for the aircraft model used in the BFF analyses.

Parameter Value Parameter Value

b 0.9144 m a -0.333

mw 35.7187 kg
m rα 0.4998

xα 0.2 ρ 1.225 kg
m3

Kh 1.493 104 N
m2 Kα 6.567 104 N

EIG 9.77 106 Nm2 GJ 9.89 105 Nm2

c̄ 1.8288 m L 12.192 m

Cw
Lα

,Ct
Lα

2 π σs 0.15

m 1.351 103 kg I yy 1.39 103 kg.m2

D 6 m

ct 0.3 m L t 2.2 m

X̄CG 0.266 X̄ w
AC 0.25

X̄ w
AC 3.3 X̄AC 0.3

with:

X̄ t
AC = D+0.25ct

c̄
, X̄AC =

CLw X̄ w
AC +CL t X̄

t
AC

St
S

CLw +CL t
St
S

,

CLw = Cw
Lα

ARw

2+
√

AR2
w +4

, CL t = Ct
Lα

ARt

2+
√

AR2
t +4

,

ARw = L, ARw = L t,

εAR = 2
CLw

πARw
.

A.2.3 Joined Wings

A description of the PrP250 aircraft model analysed in Sec. 4.3 can be found in the dedicated

publications [55, 70]. Another relevant work where flutter analysis of this configuration was

performed is [40].

In this section detailed aspects of the analyses performed with the iterative algorithm in Sec.

4.3.2 are presented. Table A.3 reports the normalised perturbations in the parameters as well

as the corresponding flutter speed Vf µ calculated by the FSI solver at each iteration. This table

represents an extension of Table 4.5 where only Vf µ
m
s and σ̄(∆cr) were listed. For the benefit
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of readability, the columns are labelled with the symbol of the parameter (e.g. EIz1), but the

reported values are normalised perturbations (e.g. δEIz1
).

Table A.4 reports the normalised perturbations in the parameters as well as the corresponding

flutter speed Vf µ at the final iteration (ITER=3) of the iterative cycle initialised based on the

optimality check (Algorithm 3.4). See Sec. 4.3.3 for a discussion on it.

Table A.3: Perturbation matrix ∆cr
ITER# and corresponding speed Vf µ at each iteration.

ITER Vf µ
m
s EIz1 EIz2 EIz3 EIz4 EIz5 EIz6 EIz7 EIz8 EIz9 EIz10

1 288.4 -0.98 -0.98 -0.98 -0.98 0.082 0.98 0.98 -0.98 -0.98 -0.98

2 287.4 -1.23 -1.23 -1.23 -1.23 1.08 1.23 1.23 -1.23 -1.23 -1.23

3 285.9 -1.41 -1.41 -1.41 -1.41 1.37 1.41 1.41 -1.41 -1.41 -1.41

4 285.24 -1.47 -1.47 -1.47 -1.47 1.47 1.47 1.47 -1.47 -1.47 -1.47

EIz13 EIz15 EIz17 EIz18 EIz19 EIz20 EIz21 EIz22 EIz23 EIz24 m f7 m f8

-0.98 0.98 -0.98 -0.98 0.98 0.98 -0.98 -0.98 -0.98 -0.98 0.98 0.98

-1.23 1.23 -1.23 -1.23 1.23 1.23 -1.23 -1.23 -1.23 -1.23 1.23 1.23

-1.41 1.41 -1.41 -1.41 1.41 1.41 -1.41 -1.41 -1.41 -1.41 1.41 1.41

-1.47 1.47 -1.47 -1.47 1.47 1.47 -1.47 -1.47 -1.47 -1.47 1.47 1.47

m f9 m f10 m f11 m f12 m f13 m f14 m f15 m f16 m f17 m f18 m f19 m f20

0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 -0.98 -0.98

1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 -1.23 -1.23

1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 -1.41 -1.41

1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 -1.47 -1.47

m f21 m f22 m f23 m f24 m f25 m f26 m f27 m f28 m f29 m f30 m f31 σ̄(∆cr)

0.82 0.98 0.92 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

-1.23 1.18 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23

-1.3 1.39 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41

-1.09 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47
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Table A.4: Perturbation matrix ∆cr
ITER3−new and corresponding Vf µ at the final iteration of the

re-initialised cycle.

Vf µ
m
s EIz1 EIz2 EIz3 EIz4 EIz5 EIz6 EIz7 EIz8 EIz9 EIz10 EIz13

285.23 -1.34 -1.34 -1.34 -1.34 1.30 1.34 1.34 -1.34 -1.34 -1.34 -1.34

EIz15 EIz17 EIz18 EIz19 EIz20 EIz21 EIz22 EIz23 EIz24 m f7 m f8 m f9

1.34 -1.34 -1.34 1.29 1.34 -1.34 -1.34 -1.34 -1.34 1.34 1.34 1.34

m f10 m f11 m f12 m f13 m f14 m f15 m f16 m f17 m f18 m f19 m f20 m f21

1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 -1.34 -1.34 1.34

m f22 m f23 m f24 m f25 m f26 m f27 m f28 m f29 m f30 m f31 σ̄(∆cr)

1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34

A.3 Chapter 5

The derivation of the reduced order LTI models used for analysis of the FLEXOP demonstrator

was discussed in Sec. 2.3.4. A detailed description of the demonstrator [226], the nonlinear

high-fidelity model [257], and the reduction procedure can be found in the references [155].

A.4 Chapter 6

The parameters of the typical section benchmark with freeplay in the control surface are taken

from [234] and are summarised in Table A.5.

Table A.5: Parameters of the nonlinear (with freeplay) typical section case study.

Parameter Value Parameter Value

b 0.127 m rα 0.4968

a -0.5 Kh 2818.8 N
m2

c 0.5 Kα 37.3 N

xα 1.5731 KL
β

3.9 N

mw 3.3843 kg
m ch 0 Ns

rβ 0.0773 cα 0 Ns

S 0.254 m2 cβ 0 Ns

xβ 0.0724 ρ 1.225 kg
m3

δ̄ 2.12◦

Sα 0.08587 K g Sβ 0.00395 K g

Iα 0.01347 K g m Iβ 0.0003264 K g m
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In [234] a slightly different notation from the one adopted in Sec. 2.3.1 to present the typical

section model was adopted, and in particular two points are stressed next. First, in [234] Sα,

Sβ, and Iα are used instead of the dimensionless counterparts xα, xβ, and rα. Therefore, the

expression for the latter reported in Table A.5 was obtained by normalising them with b and

mw (e.g. rα=
√

Iα
mwb2 , xα= Sα

mwb2 ). Second, in [234] the plunge DOF is h and not h
b and the mass

matrix Ms is thus written in a slightly different way. To avoid confusion, its expression using the

convention in [234] is reported:

Ms =


mw Sα Sβ

Sα Iα Iβ+Sβ(c−a)b

Sβ Iβ+Sβ(c−a)b Iβ

 . (A.5)

The terms of the aerodynamic matrix Qhh should be consistently normalised such that in the end

the equations of motion are expressed in N
m for the plunge equilibrium and in N for the moment

equilibria.

A.5 Chapter 7

Three different case studies are used for the Region of Attraction analysis, namely short-period

model with dynamic controller (Sec. 7.2.1.3-7.2.2.2), short-period model (GTM) with static and

saturated controller (Sec. 7.3.2.1), Van der Pol oscillator (Sec. 7.3.2.2). The definition of their

vector fields can be found in the respective sections.

A.6 Chapter 8

The typical section case study detailed in Sec. A.2.1 forms the basis for the model used to exem-

plify the computation of robust bifurcation margins. The linear benchmark is then augmented

including cubic nonlinearities in the plunge and pitch DOF as described in Sec. 8.3.1.
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The estimations of the robust Region of attraction in Chapter 7 assumed that the equilibrium point

is independent of the uncertainty. This assumption, typically done in the literature [6, 49, 241], is

primarily for the sake of simplicity and in most cases the uncertainty does alter the equilibrium

point. In this Appendix an approach is proposed which allows to compute ROA of equilibrium

points whose location is modified by the uncertainties (assumed here constant). Inner estimates of

the ROA are formulated as invariant level set which does not explicitly depend on the equilibrium

point or on the uncertainties. The result thus consists of an Equilibrium-Independent Region

of attraction (EIR). Note that the formulation is given, for clarity and generality, in a Lyapunov

setting, but it can be extended to both the invariant set (Sec. 7.2.2) and the IQC framework (Sec.

7.3.1).

The idea of guaranteeing a property of the system without knowledge of the equilibrium is

inspired by the work in [109], where the notion of equilibrium-independent passivity was first

introduced. This was then generalised in [10], where the concept of equilibrium-independent

dissipativity for systems with unknown equilibria was formulated. However, the approach here

considers an equilibrium-independent storage function, and, equally important, allows to study

systems with multiple equilibria, relaxing the assumption in [109] that there exists a unique

equilibrium for a given perturbation. This key feature is achieved by specifying the branch

of equilibria considered in the analyses as the level set of a suitable function. If no a priori

knowledge is available, a candidate function can be identified via Sum of Squares techniques,

which is used to provide computational recipes for estimating subsets of the EIR.

A similar problem was studied in [53], where lower and upper estimates of the ROA were

formulated based on viability theory. Specifically, that work considered convergence of the

trajectories to a given set, whereas here the problem of asymptotic converge to an (unknown)

equilibrium point is investigated. Another related work is [12], where an algorithm based on

245



APPENDIX B. EQUILIBRIUM-INDEPENDENT ROA

contraction metrics was proposed to relax the uncertainty-independent equilibrium hypothesis.

While that study focused on global stability certificates, the approach here is tailored to ROA

analysis, even though it could be employed for certifying global stability of branches of fixed

points as well.

This work was presented in [128] and has been developed in collaboration with Prof. Pete

Seiler from the University of Minnesota.

B.1 Equilibrium-independent region of attraction certificate

B.1.1 Problem formulation

The problem of computing inner estimates of the robust ROA Rδ defined in Sec. 7.1.1 is considered.

The analysed vector field is recalled next:

ẋ = f (x,δ), (B.1)

where δ ∈∆⊂Rnδ is a vector of constant unknown parameters, ∆ is a known bounded set, and

f :Rn ×∆→Rn. Crucially, the equilibrium point x∗(δ) depend on the uncertainties as explicitly

reported in the definition of Rδ (7.4). The proposed approach builds on the concept of equilibrium-

independent passivity, introduced in [109]. The objective here is to find a storage function

whose level set is attractive and invariant for any potential equilibrium point of the uncertain

system. There are two main distinctions relative to [109]. First, the storage function does not

explicitly reference the equilibrium point. This yields an equilibrium-independent ROA. Second,

the proposed approach does not assume the existence of a unique equilibrium.

First, define E := {
x∗ : f (x∗,0)= 0

}
, i.e. E is the set of equilibria of the nominal vector field (for

the sake of notation, we assume without loss of generality that δ= 0 ∈∆ corresponds to nominal

conditions). We will assume that E is non-empty, with |E | indicating the cardinality of the set. In

general, |E | ≥ 1, i.e. the nominal vector field has one or more fixed points x∗. Specifically, we will

be concerned with the subset E a ⊆ E gathering attractive equilibria.

Define the induced set DE
x∗ := {

x̄ : 0= f (x̄,δ), ∀δ ∈∆}
which associates each element x∗ of E a

with the branch of equilibria resulting from varying δ inside ∆. Note that the definition of DE
x∗

only assumes that, as δ takes values in the uncertainty set, the branch consists of attracting

equilibria. Further discussions on this aspect are referred to Remark B.2 below. The objective

is to compute an equilibrium independent region of attraction for the branch of fixed points x̄

associated with the selected nominal equilibrium point x∗.

The existing approach is to find a parameter-dependent Lyapunov function V (x,δ), but it

is computationally demanding since the variables δ need to be included in the SOS program.

Moreover, it entails having a closed form expression for the dependence of the equilibria on

the uncertainties in order to ensure that V (x̄(δ),δ) = 0. To avoid this, consider the coordinate

transformation y(x,δ)= x− x̄(δ). The new coordinate y can be interpreted as the deviation of the
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state x relative to the equilibrium point x̄(δ) for uncertainty δ ∈∆. It is stressed that, since δ is

assumed constant, it holds ẏ= ẋ. Hence the vector field f (y+ x̄(δ),δ) governs the evolution of the

state x relative to the equilibrium point x̄(δ) that occurs at δ.

It is now possible to state the following result, which gives conditions to determine invari-

ant and attractive regions associated with the equilibria of (7.3) via equilibrium-independent

Lyapunov functions.

Theorem B.1. Let x∗ be an attractive equilibrium point of the nominal system, i.e. x∗ ∈ E a. We

denote with DE
x∗ the associated set and we apply to f the coordinate transformation x = y+ x̄, with

x̄ ∈DE
x∗ .

If there exists a smooth, continuously differentiable function Ṽ : Rn →R and an associated level

set ΩṼ ,γ = {y ∈Rn : Ṽ (y)≤ γ} such that

Ṽ (0)= 0 and Ṽ (y)> 0 ∀y\{0}, (B.2a)

∇Ṽ (y) · f (y+ x̄(δ),δ)< 0 ∀y ∈ΩṼ ,γ\{0}, ∀δ ∈∆,∀x̄ ∈DE
x∗ . (B.2b)

Then ΩṼ ,γ is an inner estimate of the EIR of the fixed points x̄ ∈ DE
x∗ when (B.1) is subject to

perturbations in ∆.

Proof. The theorem assumes there exists a function Ṽ which is positive and decreasing inside a

level set ΩṼ ,γ, and its only zero is the origin. This implies, by application of the Lyapunov direct

method [137], that this region is attractive and invariant, therefore it holds ΩṼ ,γ ⊆Rδ. Note the

subtlety, compared to standard Lyapunov function level sets, that the function Ṽ decreases along

trajectories y representing the deviation of the original state x from the equilibrium point x̄ as δ

take values in the uncertainty set. These trajectories will ultimately converge to y= 0, that is the

state x will settle down to the equilibrium. �

Remark B.1. The robust Region of Attraction provided by Theorem B.1 is equilibrium indepen-

dent, due to the fact that the level set is a function of y only. This choice privileges the interpretation

of the results by making the domain of attraction only implicitly related to x̄, which is in principle

unknown (due to its dependence on the uncertainty). In view of this, an apparent practical benefit

of the EIR formulation is that it is not required to fix a value of x̄ to represent the predicted

region of local stability. In fact, this approach underlies the concept of family of ROA, consisting

of a single region ΩṼ ,γ which has embedded the information relative to multiple domains of

attraction. Indeed if Ṽ satisfies the conditions of Theorem B.1, then V (x,δ) = Ṽ (x− x̄(δ)) provides

a parameter-dependent Lyapunov function and ΩV ,γ = {x ∈ Rn : V (x,δ) ≤ γ} is a ROA relative to

the equilibrium point x̄(δ). For similar reasons, a parameter-dependent ROA of the type V (y,δ)

has not been pursued. This choice, despite being in principle a source of conservatism (because

dependency on δ is not exploited), aims to reduce the computational complexity of the ensuing

numerical problem and favour a better interpretation of the results.
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Remark B.2. The proposed framework can be applied to systems having multiple equilibria. This

is achieved by introducing the set E a (where |E a| ≥ 1) and associating an EIR to each x∗ ∈ E a. The

induced set DE
x∗ is then instrumental in Theorem B.1 to ensure that the analyses are relative to a

specific branch of solutions only (see the domain of x̄ where Eq. B.2b must hold). In practice, it

is made the additional hypothesis that f (x̄,δ) = 0 has a unique solution x̄(δ), associated with a

given x∗, for δ ∈∆. This assumption is not restrictive and, to show this, we consider the Implicit

Function Theorem (IFT) [145]. Under the condition that the linearised Jacobian of f around the

pair (x∗,0) is not singular, it is guaranteed existence and uniqueness of a mapping F : x̄ = F(δ)

in neighbourhoods D and X of δ = 0 and x∗ respectively. This condition is always satisfied if

the steady-state solutions of f do not undergo qualitative changes (e.g. bifurcations) when the

uncertainty vary inside the set ∆. Having in mind that this framework is employed to study ROA

of attractive fixed points, it can be assumed that D = ∆ holds, i.e., the additional assumption

is natural in this context. Note that Theorem B.1 still holds when the IFT is not verified (e.g.,

pitchfork bifurcation, where it would suffice to consider one of the stable emanating branches), but

the computational recipes proposed in the next sections do not apply.

B.1.2 Equilibria identification and computation of inner estimates of EIR

The computation of the EIR with Theorem B.1 involves finding a function that satisfies set

containment conditions. Since interest is restricted to polynomial vector fields, the problem can

be recast an SOS program by means of the generalised S-procedure (Lemma 7.2). In the following

discussion x̄ and δ are algebraic indeterminates satisfying particular conditions.

As proposed in Sec. 7.2.2, the bounded set ∆ is described as a semialgebraic set (7.17), and

thus the condition δ ∈∆ can be enforced by means of the multipliers mi (7.23-7.24). Another set

containment prescribed by (B.2b) is that the inequality must hold ∀x̄ ∈DE
x∗ . In order to incorporate

this condition into an SOS program, the idea is to find a function g such that x̄ ∈DE
x∗ =⇒ g(x̄)≥ 0

and, similarly to what is done with the uncertainties, use this function to constrain the variables

x̄. If no a priori knowledge on the location of the branch is available to define g, the following

strategy can be followed to compute it.

A function gd with a prescribed shape is considered, and the smallest positive scalar cd > 0

such that x̄ ∈DE
x̄ =⇒ x̄ ∈Ωgd ,cd is computed. Possible choices for gd are the spheroid or ellipsoid

centred at x∗. Then, g = cd − gd is a candidate function to enforce the constraint. This problem

can be recast as an SOS optimisation. In order to specialise the search of the function g to the

branch corresponding to x∗ (in case |E | > 1), the auxiliary level set Ωpb,Rb is introduced. The

rationale behind the selection of pb and Rb is that Ωpb,Rb should include the branch of equilibria

associated with x̄, i.e. DE
x∗ ⊆Ωpb,Rb . The SOS program for computing cd is presented next.
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Program B.1.

min
sb,sdi∈Σ[x̄;δ];r f ∈R[x̄;δ]

cd,

r f f − sb(Rb − pb)−Γd + (cd − gd) ∈Σ[x̄,δ], (B.3a)

Γd = sd1m1(δ1)+ ...sdimi(δi)+ ...+ sd jm j(δ j). (B.3b)

This program is a direct application of Lemma 7.2. The last term in (B.3a) is equivalent to

f0 in (7.8) (i.e. the including set function), whereas the others are the included sets (h, f i) and

relative multipliers. The first term provides the constraint that x̄ is a fixed point of the original

vector field f as δ varies within its range. Note however that, if |E | > 1 this information is not

sufficient because there are multiple branches of solutions (x̄,δ) for which f (x̄,δ) = 0. For this

reason, the aforementioned set Ωpb,Rb is employed. Despite being seemingly similar, Ωpb,Rb and

Ωgd ,cd have a substantially different meaning. The latter is indeed the smallest level set (for a

given shape) to include the equilibria of the system, whereas Ωpb,Rb has the purpose of selecting

the branch of interest. Note that Rb has to be chosen such that Ωpb,Rb does not include other

branches of solutions. The optimisation over cd guarantees then, even without a good initial

guess for Rb, the sought estimation for Ωgd ,cd is eventually obtained (e.g. iteratively).

Finally, Γd guarantees that the SOS constraint hold in the uncertainty set by applying the

rationale discussed in (7.23). Note that a version of Program B.1 where the shape of the level set

function gd is optimised over can be also employed.

Remark B.3. The aforementioned approach is proposed here with the aim to characterise the set

DE
x∗ . In other words, the level set Ωgd ,cd allows regions of the state space where there is a branch of

fixed points to be identified. It is common in the study of nonlinear dynamics to relate properties of

the system (e.g. bifurcations in the steady-state solutions) to algebraic conditions fulfilled by the

Jacobian of the vector field and its higher derivatives (see the case of Hopf bifurcation discussed in

Sec. 8.1.1). These conditions can be easily appended to Program B.1, and thus this approach can

be applied to investigate additional properties of uncertain systems described by the vector field in

(7.3). An example could be the computation of guaranteed (lower) bounds on km.

Based on the foregoing discussion, an SOS program to determine equilibrium independent

regions of attraction based on Theorem B.1 is formulated. The independent variables of the

optimisation are denoted by ỹ= [y; x̄;δ].

Program B.2.
max

sD ,sdi ,s1∈Σ[ ỹ];r f ∈R[ ỹ];Ṽ∈R[y]
γ,

Ṽ −L1 ∈Σ[y],

r f f − s1(γ− Ṽ )− sD g−Γd − (∇Ṽ f +L2) ∈Σ[ ỹ],

(B.4)
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where Γd is defined as in (B.3b) and L1 and L2 are positive definite polynomials, specifically

L1 = ε1 yT y and L2 = ε2 ỹT ỹ with ε1 and ε2 small real numbers on the order of 10−6 (the use of

these terms was motivated in Remark 7.4 and has the aim to provide solutions satisfying the

SOS constraints by some margin). Due to the presence of bilinear terms, an iterative scheme

inspired by the V -s iteration (Algorithm 7.1), is proposed.

Algorithm B.1.
Output: the level set ΩṼ ,γ (inner estimate of the EIR).

Input: a polynomial Ṽ 0 satisfying (B.2) for some γ.

1. γ-Step. Solve through bisection on γ.

max
s1,sD ,sdi∈Σ[ ỹ];r f ∈R[ ỹ]

γ,

r f f − s1(γ− Ṽ 0)− sD g−Γd − (∇Ṽ 0 f +L2) ∈Σ[ ỹ],

set γ̄← γ, s̄1 ← s1.

2. β-Step. Maximise β such that ε(p,β)⊆ ε(V ,γ).

max
s2∈Σ[y]

β,

(γ̄− Ṽ 0)− s2(β− p) ∈Σ[y],

set β̄←β, s̄2 ← s2.

3. V -Step. Compute a new shape for the level set for a given γ.

Ṽ −L1 ∈Σ[y],

(γ̄− Ṽ )− s̄2(β̄− p) ∈Σ[y],

r f f − s̄1(γ−V )− sD g−Γd − (∇Ṽ f +L2) ∈Σ[ ỹ],

set Ṽ 0 ← Ṽ and go to γ-Step.

B.2 Numerical example

B.2.1 System description

The following nonlinear dynamics with an uncertain scalar parameter δ is considered to demon-

strate the application of the EIR framework.

φ̇=−ψ− 3
2
φ2 − 1

2
φ3 +δ,

ψ̇= 3φ−ψ−ψ2,

δ ∈ [0.9;1.1].

(B.5)
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The steady-state solutions of the system consist of two distinct branches of equilibria as δ varies

in the prescribed range. By linearising the Jacobian of (B.5) around the equilibria and evaluating

the corresponding eigenvalues, it can be seen that one branch corresponds to sinks (i.e. stable

fixed points), while the other corresponds to sources (i.e. unstable fixed points). This means

that the cardinality of E is 2 and thus the set of interest DE
x∗ (i.e. the one associated with sinks)

must be specified. This characterisation can be performed by means of Program B.1, where the

fixed shape function gd is taken here as the circle centred at the nominal fixed point (i.e. δ= 1).

Fig. B.1 displays the set of DE
x∗ (dotted curve Equilibria) and two boundaries g1 and g2. The

former (dashed curve) is relative to the level set Ωgd ,cd where gd is the circle discussed above

and only the size cd is optimised, whereas the latter (solid line) was obtained with Program B.1

by optimising both shape and size (i.e. gd is not fixed a priori but is defined as a polynomial

of degree 6). It can be noted that in both cases the level sets circumscribe the equilibria, and

thus are both good candidates to characterise DE
x∗ . As expected, the case with optimised shape

provides a tighter boundary for the set DE
x∗ , but this does not give advantages in this particular

application.
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Figure B.1: Characterisation of the set of sinks via level sets.

Another important feature of the dynamics in (B.5) is that the sinks are only locally asymptot-

ically stable. Therefore, the proposed approach can be used to determine the associated region of

attraction. Note that, since the other branch of solutions is unstable, it is fundamental to specify

that the analyses consider only the set of sinks, because otherwise no region of attraction could

be estimated.
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B.2.2 EIR of the sinks

Equilibrium-independent estimations of the ROA of system (B.5) are computed in this section by

means of Algorithm B.1. Fig. B.2 shows the results obtained with functions Ṽ of different degree,

specifically ∂(Ṽ )= 2 and ∂(Ṽ )= 4.
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Figure B.2: EIR for ∂(Ṽ )= 2 and ∂(Ṽ )= 4.

Note first that the shifted coordinates y1 =φ− φ̄ and y2 =ψ− ψ̄ are reported on the axes of

the plots. This is consistent with the central idea of the approach of representing the domain of

attraction as an equilibrium-independent level set. It can also be ascertained that by increasing

the degree of Ṽ , the estimation of the ROA is improved. It is interesting to register an enlargement

of the stability region in the lower right part of the plot. Further aspects associated with the

concept of EIR are investigated next.

In Remark B.1 it was introduced the equilibrium-dependent level set ΩV ,γ which is associated

with ΩṼ ,γ via coordinates transformation. Once a value for the uncertainty is specified, ΩV ,γ

provides an estimate of the ROA for the associated equilibrium point x̄(δ). Taking the cue from

this, a Monte Carlo-based search to quantify the conservatism associated with the predictions

reported in Fig. B.2 is employed. The goal is to compute the smallest γ f > γ (and associated δ)

such that there is an initial condition x0 on the boundary of ΩV ,γ f for which the system does not

eventually converge to the equilibrium point.

Results are evaluated next with regard to the estimations shown in Fig. B.2 for the case of

quartic V (serving as lower bound). The Monte Carlo search reveals that δ= 0.9 is the critical

(i.e. leading to the smallest γ f ) value for the uncertain parameter. Fig. B.3 shows lower (LB) and

upper (UB) bounds of the ROA, as well as cross markers corresponding to initial conditions on

ΩV ,γ f whose trajectories do not converge to the equilibrium (square marker).

It is interesting to notice that the cross markers in Fig. B.3 are all distributed in the region

where Fig. B.2 featured the smaller gap between the curves ∂(V ) = 2 and ∂(V ) = 4 (note that
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Figure B.3: Level sets ΩV ,γ and ΩV ,γ f associated with δ= 0.9.

the transformation y= x− x̄ is implied by the comparison). This is an important observation as

it shows that Algorithm B.1 effectively exploits the higher degree of the level set function to

enlarge the ROA in regions of the state space (e.g. lower right part) associated with converging

trajectories.

The outcome in Fig. B.3 can be interpreted as a worst-case analysis, in that it detects the

closest points to the estimated set which do not belong to the ROA of the system, and the

associated combination of uncertain parameters (in this case the scalar δ = 0.9). One of the

advantages of the equilibrium-independent framework proposed in this work is that also the

degradation of local stability in the face of uncertainties can be efficiently visualised. This can

be done by taking advantage of the concept of family of ROA underlying the formulation, which

allows to represent the results compactly in the y space (or y1-y2 plane, in the particular case n = 2

considered here). The idea is to apply the Monte Carlo search discussed before repeatedly and so

obtain γ f as a function of the uncertainties. In the scalar case (nδ = 1), this is straightforward,

but the strategy can in principle be applied to the case nδ > 1 by partitioning the uncertainty set

∆ and associating with each cell a value of γ f .

Fig. B.4 shows an application of this approach, where the quartic level set ΩV ,γ from Fig. B.2

is again used as basis for the analyses (LB). Based on the Monte Carlo campaign discussed above,

a range of δ is associated with a level set if, within that uncertainty interval, there are diverging

trajectories with initial conditions on its boundary.

These analyses can be interpreted as an equilibrium-independent upper bound estimation

of the ROA for different uncertainty ranges. In other words, the results give a measure of the

robustness of the local stability. The key feature is that this information is unrelated to the specific

equilibrium point, i.e. it allows to isolate the effect of δ on the degradation of local stability from

that on the equilibrium point. This is deemed an important feature, because it recovers the type

253



APPENDIX B. EQUILIBRIUM-INDEPENDENT ROA

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

y
1
 [−]

y
2
 [
−

]

 

 

LB

0.9<δ<1.1

0.96<δ<1.1

1.02<δ<1.1

1.08<δ<1.1

Figure B.4: Degradation of the local stability in the face of uncertainties.

of investigation commonly performed when the uncertainty-independent hypothesis is assumed

for the equilibrium point. It is worth observing that, when the parameter-dependent level set

ΩV ,γ is considered, these types of analysis would not be possible because the representation of

the ROA is inherently connected to a specific equilibrium x̄ (and thus to a specific δ).

Note finally that, to complement the stability degradation study displayed in Fig. B.4, an

equilibrium-independent lower bound study can be performed by running Algorithm B.1 for

different uncertainty ranges.
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