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 A B S T R A C T

The paper presents an online optimization-based feedforward design framework using hybrid modeling to 
increase the dynamic accuracy of machine tools. Designed for use in dynamics simulation and feedforward 
compensation, the hybrid model combines a physics-based model of the multibody dynamics and a data-driven 
Gaussian process regressor of the output discrepancy. The feedforward control is based on the predictor–
simulator separation, where the accurate but tractable nonlinear hybrid model is used for dynamics simulation, 
and the linearized predictor is adopted for optimal feedforward design with a receding horizon approach based 
on convex programming. This strategy allows the advanced modeling techniques to be used for real-time 
dynamics compensation in an open-loop fashion, where the associated convex optimization problem can be 
solved efficiently and reliably. We propose a methodological approach that covers the entire design procedure 
from dynamics modeling to control architecture selection and parameter tuning, providing an end-to-end 
strategy for practical applications. The algorithm is validated on a real-time industrial CNC machine, where the 
average computation time is 63 μs on an Intel i5 CPU. Compared to the industry standard baseline feedforward 
control, the proposed feedforward framework reduces the mean absolute contour error by 46.1% and 56.8% 
for constant velocity tracking and freeform butterfly path following, respectively. Even with a mismatch of 
30 % in the model parameters, the presented feedforward still reduces the error by 38.5% compared to the 
baseline.
1. Introduction

Increasing the dynamic accuracy of machine tools is key to improv-
ing machining accuracy and, therefore, the economics of machine tool 
operation. As of today, practically every machine tool is controlled by 
model-free cascaded control, applied independently to each axis. By 
using dynamics models, the motion of the machine and its drives can be 
predicted more accurately. This prediction can be used for model-based 
control [1] and feedforward approaches [2] to improve the dynamic 
accuracy of feed drives and machine tools. At present, this is mainly 
achieved using analytical first-principles models [3–5]. Some effects 
are difficult to model analytically, such as motor torque ripple [6] 
and friction [7], which vary even between two instances of the same 
motor type and also depend on motor speed, load and temperature. In 
addition, the increase in modeling accuracy leads to an increase in the 
state dimension of the dynamics model, which increases the complexity 
of state estimation and system identification.

In recent years, machine learning approaches have become increas-
ingly successful for machine monitoring [8–10] and dynamics simu-
lation [11–13]. For precision applications, however, machine learning 
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faces a scaling problem: the axes may move over a range of several me-
ters, while the required machining precision is on the order of microns. 
For pure black box learning approaches, this leads to convergence 
problems where the micro behavior of the model is much harder to 
train due to the different problem scales.

Recent results incorporate prior knowledge into the learning pro-
cess, where the dominant system behavior is captured by first-principles 
models and utilized for learning. These include transfer learning [14,
15], where machine learning models are pre-trained with simulation 
data provided by a physics-based model, and then retrained with 
experimental data for refinement. Another approach is to integrate 
the physics-based model directly into the machine learning model 
structure [16–19], which filters the features of the learning targets 
and informs the machine learning model with the physics knowledge. 
Furthermore, the strategy of hybrid modeling transforms the learning 
task from the entire system characteristics into the prediction residual 
between the physics model and the true system [20–23]. However, 
while these advanced learning techniques allow accurate prediction of 
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system behavior, their application to increasing the dynamic accuracy 
of machine tools, such as feedforward compensation, which requires 
the inverse of the model from output to input [2], remains unclear.

Several possible inversion-based approaches have been investigated 
to integrate the learning-based models into feedforward compensation. 
Inverse learning captures the inverse dynamics of the systems and 
directly searches for the optimal feedforward under a given reference, 
such as the deep-neural-network-based inversion [24], physics-guided 
inverse neural networks [25,26], to name a few. Another possible 
approach is to limit the complexity at the modeling stage, and to 
take a differentially flat analytical model as basic structure [2,27]. The 
data-driven methods are used to learn the residual, while the overall 
extended hybrid model still remains invertible or can be compensated 
via an additive term of the control signal [28]. However, their com-
mon drawback is that they rely on the assumption of a differentially 
flat physics model (directly invertible) to provide the basic structural 
information for dynamics inversion. This means that the mechanics 
are assumed to exhibit only rigid body motion, which does not hold 
especially for multi-axis CNC machines with compliant mechanics [1, 
§7.2].

Optimization-based methods that approximately solve optimal con-
trol problems have also received special attention due to their inherent 
ability to take advantage of precise dynamics models for feedforward 
optimization. The optimal control problem can be solved offline for 
motion planning tasks subject to a fixed Ref. [29], which is not suitable 
for CNC machine applications, where the trajectories are determined 
in real time by the CNC kernel. Another possibility is to use model 
predictive control (MPC) [30,31], where the optimization problem is 
solved online and is able to deal with the changing setpoints in real 
time. These include predictive seam tracking [32], online trajectory 
optimization [33,34], and contour error compensation [35], to name 
a few. However, the non-convex optimization problem associated with 
the nonlinear dynamics model is practically intractable in real-time 
execution on CNC machines (sampling time ≤1 ms). In addition, be-
cause the dynamics of machine tools are often subject to variations 
over their lifetime, the robustness of MPC with a nonlinear learning-
based model still remains an open issue for industrial practice [31]. It is 
thus clear that whereas machine learning and optimization techniques 
have attracted much attention in the field, work on increasing the 
dynamics accuracy of machine tools with hybrid modeling in real-time 
applications is still scarce.

The feedforward framework in this paper is purely open-loop, al-
lowing the compensation scheme to be calculated directly from the 
reference signal in the CNC or inverter. Also, this approach emphasizes 
the separate use of an accurate but complicated simulator from a 
linearized predictor, and allows the efficient use of hybrid modeling for 
error compensation in an open-loop feedforward fashion. Unlike works 
describing the full system dynamics with learning-based models [14,
36], our presented hybrid modeling approach captures the dominant 
dynamics using a multibody model based on first principles, which will 
be called physics-based model throughout the paper in accordance to 
the data-driven modeling literature, cf. [15,37]. This ensures that the 
entire hybrid model stays close to the true system based on the prior 
knowledge and generalizes well to unseen dataset. Also, in contrast 
to the work that directly adopts the nonlinear dynamics model for 
online optimization [33,36], our presented separation strategy takes 
the nonlinear hybrid model for dynamics simulation and the linearized 
model for control optimization. By leveraging the technique of receding 
horizon optimization with convex programming, the associated optimal 
feedforward control problem is solved very efficiently and reliably, 
thereby enabling real-time capability even when integrating machine 
learning components. The main contribution of this paper can be 
summarized as follows:

1. Feedforward control-oriented hybrid modeling strategy of in-
dustrial machines combining physics-based multibody dynamics 
and data-driven discrepancy.
2 
2. Online optimization-based feedforward design with convex
quadratic program (QP) formulation via separation of hybrid 
simulator and linearized predictor.

3. Open-loop design of the compensation scheme, allowing calcula-
tion as a separate function block in the inverter or CNC without 
changing the standard control structure.

4. Practical guides to implementation on industrial machines, cov-
ering model identification, hyperparameter tuning, and embed-
ded numerical optimization.

5. Validated real-time capability and performance improvement 
on a multi-axis CNC machine, with experimental data openly 
available in [38].

The remaining part is organized as follows: Section 2 introduces the ar-
chitecture of the proposed feedforward framework. Section 3 proposes 
the hybrid modeling structure of the drive control loop, combining 
the physics-based multibody dynamics and the data-driven discrepancy. 
Section 4 proposes the optimization-based feedforward control design 
approaches. Section 5 provides guidelines on practical implementation 
including gain selection and numerical optimization. Section 6 presents 
an experimental validation of the proposed predictive feedforward 
scheme on industrial hardware. Section 7 gives the concluding remarks.

2. The architecture of the proposed method

The control architecture of the proposed predictive feedforward 
framework, applied to the independent axis control of a machine tool, 
is illustrated in Fig.  1. The drive dynamics, governed by a proportional–
integral (PI) velocity controller, are represented by a nonlinear hybrid 
model that combines multibody dynamics (physics-based model) with 
a data-driven output discrepancy model.  An open-loop linearization-
based MPC feedforward scheme is used to compute the optimal control 
input online, steering the simulator to the reference trajectory. This 
optimized control signal is applied to the real system as an optimal 
feedforward input. The current state for the MPC scheme is simulated 
by the simulation model, while the future states within the optimization 
horizon are predicted by the linearized predictor based on the state 
of the simulator. The predictive feedforward control does not rely on 
feedback from the real system; instead, it depends only on the reference 
trajectory (e.g., from the CNC). As a result, it cannot destabilize the 
system and can be implemented as a separate compensation function 
block in the CNC or frequency inverter.

3. Hybrid modeling of drive control loop

3.1. Physics-based model of machine tool motion dynamics

The major motion dynamics of a machine tool with 𝑛j axes can be 
captured by using a continuous-time multibody model, see Fig.  2 for 
the studied machine tool. To capture the compliant behavior of the 
axes and possibly the gearboxes, we distinguish between the measured 
angle of the motor shaft of each axis 𝜽̃ ⊂ R𝑛j  and the load-side axis 
positions 𝒒 ∈ R𝑛j , measured with a set of secondary encoders. For ease 
of notation and to scale the model uniformly, we also use the motor 
position converted to load-side coordinates 𝜽 ∶= 𝑼𝜽̃, where 𝑼 is a 
diagonal matrix with {𝑼}𝑗,𝑗 ≪ 1 containing the transmission ratio from 
the motor angle to the load-side coordinate of axis 𝑗. The multibody 
system dynamics of the studied machine tool (see e.g., [39]) can be 
formulated as the model given by
[

𝑴𝜃 𝑴𝜃𝑞

𝑴⊤
𝜃𝑞 𝑴𝑞

]

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝑴

[

𝜽̈
𝒒̈

]

+
[

𝟎
𝒏(𝒒, 𝒒̇)

]

+
[

𝝉c + 𝑼−1𝝉 f ,m
−𝝉c + 𝝉 f ,l

]

=

[

𝑼−1𝝉m
𝟎

]

. (1)
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Fig. 1. Proposed optimization-based feedforward control framework with hybrid modeling applied to independent axis control.
Fig. 2. Five-axis milling machine as test bench.

The upper part of the equations of motion describes the motor dynamics 
with motor friction 𝝉 f ,m (e.g. 𝝉 f ,m ∶= 𝑭 𝑐sgn(𝜽̇)+𝑭 𝑣𝜽̇ with Coulomb and 
viscous friction) and are driven by motor torques 𝝉𝑚. The lower part 
describes the dynamics of the coupled multibody system as in classical 
robotics, where Coriolis, centrifugal and gravity terms are summarized 
in the nonlinear vector 𝒏 with an additional load-side friction term 𝝉 f ,l. 
Compliant coupling between motor and load coordinates of each axis is 
captured by substituting the compliance force for 𝝉c. For the remainder 
of the paper, we use linear stiffness and damping as 

𝝉c = 𝑲(𝒒 − 𝜽) +𝑫(𝒒̇ − 𝜽̇), (2)

with diagonal stiffness matrix 𝑲 = diag
([

𝑘1,… , 𝑘𝑛j
])

 and 𝑫 =

diag
([

𝑑1,… , 𝑑𝑛j
])

. The motor-side and load-side inertias are described 
by the diagonal matrices 𝑴𝜃 = diag

([

𝑚𝜃1 ,… , 𝑚𝜃𝑛j

])

 and 𝑴𝑞 =

diag
([

𝑚𝑞 ,… , 𝑚𝑞𝑛j

])

, respectively. The inertia coupling between the 
motor and load is neglected (i.e., 𝑴𝜃𝑞 = 𝟎) for simplicity. Also, external 
process forces due to the contact of the tool with the environment are 
not included. Considering them for feedforward compensation would 
require additional sensors or estimation of Cartesian contact forces 𝒉e, 
which can be added to the load-side part as 𝑱⊤(𝒒)𝒉e via the machine’s 
Jacobian 𝑱⊤(𝒒).

Using the state vector 𝒙̃ =
[

𝜽⊤ 𝒒⊤ 𝜽̇⊤ 𝒒̇⊤
]⊤
, the multibody 

dynamics model (1) can be written in state-space form as

̇̃𝒙 =

[

𝟎2𝑛j 𝑰2𝑛j

−𝑴−1𝑲̄ −𝑴−1𝑫̄

]

𝒙̃

+

⎡

⎢

⎢

⎢

𝟎2𝑛j×1

𝑴−1

[

−𝑼−1𝝉 f,m
]

⎤

⎥

⎥

⎥

⎣ 𝒏(𝒒, 𝒒̇) + 𝝉 f,l ⎦

3 
+

⎡

⎢

⎢

⎢

⎣

𝟎2𝑛j×𝑛j

𝑴−1

[

𝑼−1

𝟎𝑛j

]

⎤

⎥

⎥

⎥

⎦

𝝉m, (3)

where the stiffness and damping matrices are given by

𝑲̄ ∶=
[

𝑲 −𝑲
−𝑲 𝑲

]

, 𝑫̄ ∶=
[

𝑫 −𝑫
−𝑫 𝑫

]

and the motor torque vector 𝝉m as input. The dynamics of the motor 
current control loop are neglected (assuming commanded 𝝉m,d equals 
actual 𝝉m), as their dynamics are much faster in practice (>factor 5 [1, 
§7]) than the achievable bandwidth of the mechanics.

3.2. Extended state-space model of velocity control loop

Practically all industrial motor drives of each axis in a machine 
tool use proportional–integral (PI) controllers for speed control. A key 
factor of the presented architecture is the modeling of the mechanics 
with PI velocity controllers and the use of the velocity controlled plant 
for feedforward design (loop inversion [2, §4.2]), which provides the 
following main features

1. The PI controller reduces the influence of nonlinearity on the 
identification such as nonlinear friction and pose-dependent 
stiffness, which are typical of ball screw drives (the most com-
mon form of linear feed drive) [1].

2. The PI controller regulates not only the physical system to the 
reference trajectory, but also the simulator and optimization 
components, even under model and numerical errors [2, §4.2].

These properties ensure that an accurate simulation model with an 
extended PI controller can be obtained with less identification effort, 
and does not diverge from the physical control system in real-time feed-
forward applications, even if no measurement is taken for feedforward, 
as shown in Section 6.2.

The PI velocity controller determines the commanded motor torque 
𝝉m,d using the velocity error 𝒆𝑣 between the commanded velocity 𝜽̇d
and the motor velocity 𝜽̇, given by 

𝝉m,d = 𝑲𝑝

(

𝜽̇d − 𝜽̇ +𝑲 𝑖 ∫
(

𝜽̇d − 𝜽̇
)

d𝑡
)

, (4)

with proportional gains 𝑲𝑝 = diag
([

𝑘𝑝,1,… , 𝑘𝑝,𝑛j
])

 and integral gains 
𝑲 𝑖 = diag

([

𝑘𝑖,1,… , 𝑘𝑖,𝑛j
])

 of each axis, which are exactly known, 
as they can be extracted from the frequency inverter. Note that the 
error integral 𝒆m = ∫ (𝜽̇d − 𝜽̇) d𝑡 is not equal to the motor position 
error, since the actual commanded velocity 𝜽̇d is the combination of 
velocity feedforward and feedback signal of position controller, which 
is different from the desired velocity value 𝒒̇d given by trajectory 
planner, see Section 4.2.
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𝒙̇ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝟎2𝑛j 𝑰2𝑛j 𝟎2𝑛j×𝑛j

−𝑴−1

[

𝑲̄ 𝑫̄+

[

𝑼−1𝑲𝑝 𝟎
𝟎 𝟎

] [

−𝑼−1𝑲𝑝𝑲 𝑖
𝟎𝑛j

] ]

𝟎𝑛j×2𝑛j
[

−𝑰𝑛j 𝟎𝑛j
]

𝟎𝑛j

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝒙 +

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝟎2𝑛j×1

𝑴−1

[

−𝑼−1𝝉 f,m
𝒏(𝒒, 𝒒̇) + 𝝉 f,l

]

𝟎𝑛j×1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝒇 𝑐 (𝒙)

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝟎2𝑛j×𝑛j

𝑴−1

[

𝑼−1𝑲𝑝
𝟎𝑛j

]

𝑰𝑛j

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝒈𝑐 (𝒙)

𝜽̇d
⏟⏟⏟
=∶𝒖⊂R𝑛𝑢

(6a)

𝒚 =𝒉̃(𝒙). (6b)

Box I. 
A state-space formulation of the PI velocity controller is obtained 
by assuming 𝝉m,d ≈ 𝝉m and introducing a new state of the integrated 
error as 
𝒆̇m = 𝜽̇d − 𝜽̇ (motor speed error) (5a)

𝝉m = 𝑲𝑝
(

𝒆̇m +𝑲 𝑖𝒆m
)

(velocity controller output) (5b)

and, hence, the PI-controlled input-affine state-space formulation with 
model state 𝒙 =

[

𝜽⊤ 𝒒⊤ 𝜽̇⊤ 𝒒̇⊤ 𝒆⊤m
]⊤

⊂ R𝑛𝑥 , 𝑛𝑥 = 5𝑛j is given by 
the Eqs.  (6a) and (6b) in Box  I. 

The measurement equations are directly the load-side axis velocities 
in the ideal case, i.e. 𝒉̃(𝒙) = 𝒒̇ =

[

𝟎𝑛j×3𝑛j 𝑰𝑛j 𝟎𝑛j
]

𝒙, but may contain 
slight nonlinearity in the measurement systems.

3.3. Model discretization

Finally, to use the model in a data-driven framework, the state-space 
Eqs. (6a) are discretized with a fixed step size 𝛥𝑡 equal to the sampling 
time of the velocity controller. This has to be done taking into account 
the dominant frequencies of the model and the chosen step size to 
ensure numerical stability of the integration scheme. For the presented 
group of mechanical systems and sampling frequency above 1 kHz, a 
4th order Runge–Kutta integration [40] is usually sufficient, resulting 
in an analytical model in discrete-time form 
𝒙𝑘+1 = 𝒇 (𝒙𝑘) + 𝒈(𝒙𝑘)𝒖𝑘 (analytical state equations) (7a)

𝒚𝑘 = 𝒉(𝒙𝑘) (analytical output equations) (7b)

with inputs 𝒖𝑘 = 𝜽̇d(𝑘𝛥𝑡) ⊂ R𝑛𝑢  being assumed to be piecewise constant 
between time steps and outputs 𝒚𝑘 = 𝒒̇(𝑘𝛥𝑡) ⊂ R𝑛𝑦 .

3.4. Learning model discrepancy of the control loop

By leveraging machine learning methods, we enhance the physics-
based model (7) by incorporating regressors that account for output 
discrepancies, thereby improving prediction accuracy of the input–
output behavior. The output function extended by discrepancy learning 
is formulated as 
𝒚𝑘 = 𝒉(𝒙𝑘) +𝜱𝒚(𝒙𝑘), (augmented output) (8)

where the state equations stay the same as in (7a). This approach 
ensures that the system’s input–output behavior is more accurately pre-
dicted by combining the analytical model with the learned discrepancy 
4 
Fig. 3. Signal flow of the prediction using physics-based model (7) with 
chosen output discrepancy augmentation.

model. As shown in Fig.  3, the regressors 𝜱𝒚 are trained to 𝜱𝒚 → 𝝃𝑘 ∶=
𝒚𝑘,meas−𝒚𝑘 using the output error, i.e. the difference between measured 
output 𝒚𝑘,meas and simulated output 𝒚𝑘. Other possibilities to train 
regressors would be state augmentation (replacing 𝒇 (𝒙𝑘) by 𝒇 (𝒙𝑘)+𝜱𝒙) 
or input function augmentation (replacing 𝒈(𝒙𝑘) by 𝒈(𝒙𝑘)+𝜱𝒖). To focus 
on the demonstration of the proposed feedforward framework, we only 
consider the output regressors in this work, see [37] for a more detailed 
comparison.

Various functional approximation methods would work here as a 
regressor of 𝜱𝒚 , e.g. neural networks, regression trees, to name a few. 
In this work, we use Gaussian Processes (GP) as regressors, because they 
can be learned from small data sets and generalize well to unseen data 
with guaranteed smoothness [41]. GP also fall back to their prior in 
regions far away from their training data, i.e., the output augmentation 
returns 𝟎 in regions, where there is not enough training data.

The input for GP training is the vector-valued position and velocity 
𝒒̃𝑗 = [{𝒒}𝑗 , {𝒒̇}𝑗 ]⊤, 𝑗 = 1,… , 𝑛j for each axis, which is part of the state 
vector of (7a). The output of GP model is the corresponding element 
of the discrepancy vector {𝝃𝑘}𝑗 , for which the Eq.  (7) is simulated to 
generate the output sequence of the physics-based model, as shown in 
Fig.  3. The GP model for each axis 𝑗 is independently formulated as 
{𝝃𝑘}𝑗 = 𝛷𝒚,𝑗 (𝒒̃𝑗 ) + 𝜀𝑗 , 𝑗 = 1,… , 𝑛j, 𝜀𝑗 ∈  (0, 𝜎2𝑗 ), (9)

where 𝜀𝑗 is the remaining Gaussian noise with variance 𝜎2𝑗 , assuming 
that 𝛷y,𝑗 is a universal function approximator. With the training data 
set 𝑸̃𝑗 = [𝒒̃𝑗,1,… , 𝒒̃𝑗,𝑛𝐷 ] and 𝝃𝑗 = [𝜉𝑗,1,… , 𝜉𝑗,𝑛𝐷 ] of length 𝑛𝐷. The 
prediction of 𝜱𝒚(𝒙) at an arbitrary test input 𝒒̃𝑗 is given by the posterior 
mean and variance
E[𝛷𝒚,𝑗 (𝒒̃𝑗 )] = 𝑘(𝒒̃𝑗 , 𝑸̃𝑗 )⊤ (𝑘(𝑸̃𝑗 , 𝑸̃𝑗 ) + 𝜎2𝑗 )

−1{𝝃𝑘}𝑗
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(10)
≝𝜷𝑗
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𝜎2[𝛷𝒚,𝑗 (𝒒̃𝑗 )] = 𝑘(𝒒̃𝑗 , 𝒒̃𝑗 ) − 𝑘(𝒒̃𝑗 , 𝑸̃𝑗 )⊤(𝑘(𝑸̃𝑗 , 𝑸̃𝑗 ) + 𝜎2𝑗 )
−1𝑘(𝒒̃𝑗 , 𝑸̃𝑗 ). (11)

The GP model in (10) and (11) allows approximating functions with 
scalar outputs, as shown in (9), while neglecting the correlation be-
tween model outputs. This premise is satisfied by the discrepancy 
signals when applied to the independent axis control, where cross-
axis correlations are negligible. The kernel function 𝑘(⋅, ⋅) measures 
the similarity in input space, which is given by a squared exponential 
kernel here 

𝑘SE(𝒙,𝒙′) = 𝜎2S exp
(

‖𝑳−1(𝒙 − 𝒙′)‖2∕2
)

(12)

where 𝜎2S is the signal variance determining the expected distance of 
𝛷𝒚,𝑗 to its mean value. The length scale 𝑳 = diag

(

𝑙1, 𝑙2
) captures the 

correlation of neighboring points in each dimension of the input space, 
influencing the width of the kernel [41].

4. Predictive feedforward optimization

The principle of the presented Model Predictive Feedforward Con-
trol (MPFFC) is to solve a linear tracking MPC problem repeatedly 
online. The control input computed from the optimization problem 
steers the nonlinear hybrid model to the given reference trajectory, and 
is used as the optimal feedforward control of the real control system. 
The key ingredient is the distinct use of the model used internally by 
the MPC scheme for prediction (predictor) and the nonlinear hybrid 
model used for dynamics simulation (simulator). This allows the more 
accurate but tractable hybrid model to be used for feedforward design 
in a computationally efficient and reliable way through the repeated 
online solution of a convex optimization problem.

4.1. Linearization and correction

Considering the hybrid model (7a), (8) for the state 𝒙𝑘 at time step 
𝑡𝑘, we define the linearized dynamics model throughout the length of 
the prediction horizon 𝑁 as 

𝑨𝑘 ∶=
𝜕𝒇
𝜕𝒙

|

|

|

|𝒙𝑘
, 𝑩𝑘 ∶= 𝒈(𝒙𝑘), 𝑪𝑘 ∶= 𝜕𝒉

𝜕𝒙
|

|

|

|𝒙𝑘
, (13)

which leads to the linearized prediction model at time step 𝑡𝑘 = 𝑘𝛥𝑡, 𝑘 ∈
N0 with prediction step 𝑖 ∈ {0,… , 𝑁}

𝒙𝑖+1|𝑘 = 𝑨𝑘𝒙𝑖|𝑘 + 𝑩𝑘𝒖𝑖|𝑘 + 𝜹𝒙,𝑘 (dynamics) (14a)

𝒚𝑖|𝑘 = 𝑪𝑘𝒙𝑖|𝑘 + 𝜹𝒚,𝑖|𝑘 (output) (14b)

where the initial condition 𝒙0|𝑘 of the linear predictor (14) is set to 
the simulated state 𝒙𝑘,sim of the nonlinear hybrid model (7a), (8) at 
each time step 𝑘. Note that the linearization is around the current state 
𝒙𝑘,sim and does not require future states or current input due to the 
input affine formulation. The additive correction terms 𝜹𝒙,𝑘 and 𝜹𝒚,𝑖|𝑘
account for the known model mismatch between the simulator and 
the linearized predictor, and the output discrepancy captured by the 
data-driven regressor. The state correction term 𝜹𝒙,𝑘 is approximated 
as constant during the prediction horizon and is calculated as 

𝜹𝒙,𝑘 = 𝒇 (𝒙0|𝑘) −𝑨𝑘𝒙0|𝑘. (15)

Similarly, the output correction term 𝜹𝒚,𝑖|𝑘 with 𝑖 ∈ {1,… , 𝑁 − 1} is 
given by 

𝜹𝒚,𝑖|𝑘 = 𝒉(𝒙0|𝑘) − 𝑪𝑘𝒙0|𝑘 +𝜱𝒚,𝑖|𝑘, 𝑖 ∈ {0,… , 𝑁}. (16)

The term 𝒉(𝒙0|𝑘) − 𝑪𝑘𝒙0|𝑘 accounts for the output linearization error, 
which is assumed to be constant inside the prediction horizon. The 
discrepancy model depends on the state, which is only given at the 
prediction step 𝑖 = 0 but is unknown for the future steps within the 
prediction horizon. To get a more accurate prediction than choosing a 
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constant value, the discrepancy model is linearized using a first-order 
Taylor expansion of 𝜱𝒚,𝑖 w.r.t. time, given by 

𝜱𝒚,𝑖|𝑘 ≈ 𝜱𝒚(𝒙0|𝑘) + 𝑖𝛥𝑡
𝜕𝜱𝒚

𝜕𝒙
|

|

|

|𝒙0|𝑘
𝒙̇0|𝑘, 𝑖 ∈ {0,… , 𝑁}, (17)

which similarly captures the information of the known derivative and 
avoids any dependence on future states. Note, that 𝒙0|𝑘 is obtained 
from the simulated state, 𝒙̇0|𝑘 is obtained by replacing the commanded 
velocity with its desired value 𝜽̇d = 𝒒̇d in Eq.  (6a). This linearization 
strategy reduces the computation of the GP model from 𝑁 to two 
evaluations at each time step (GP and its derivative), which allows 
embedding the GP model in the optimization-based feedforward design 
at high sampling frequencies (≫1 kHz, see Section 6.1).

4.2. MPFFC setup

At each time step 𝑡𝑘, the predictive controller searches for the 
optimal control action to steer the nonlinear hybrid simulator to the 
reference output trajectory, which also achieves the optimal feedfor-
ward control for the real control system using the hybrid model in an 
optimization-based way.

Problem 1.  Given the state of the simulator 𝒙𝑘,sim as well as the lin-
earization of the nonlinear dynamics (14), the optimal control problem 
underlying the MPFFC scheme at time step 𝑘 is as follows

min
𝒙𝑖|𝑘 ,𝒖𝑖|𝑘 ,𝒚𝑖|𝑘

𝑁−1
∑

𝑖=0

(

‖

‖

‖

𝒚𝑖|𝑘 − 𝒚r𝑘+𝑖
‖

‖

‖

2

𝑸
+ ‖

‖

‖

𝒖𝑖|𝑘 − 𝒖r𝑘+𝑖
‖

‖

‖

2

𝑹

)

+ ‖

‖

‖

𝒚𝑁|𝑘 − 𝒚r𝑘+𝑁
‖

‖

‖

2

𝑸𝑓
(18)

s.t. 𝒙0|𝑘 = 𝒙𝑘,sim (initial condition)
𝒙𝑖+1|𝑘 = 𝑨𝑘𝒙𝑖|𝑘 + 𝑩𝑘𝒖𝑖|𝑘 + 𝜹𝒙,𝑘 (dynamics)
𝒚𝑖|𝑘 = 𝑪𝑘𝒙𝑖|𝑘 + 𝜹𝒚,𝑖|𝑘 (output)
𝒙𝑖|𝑘 ∈  , 𝑖 ∈ {1,… , 𝑁} (state constraints)
𝒖𝑖|𝑘 ∈  , 𝑖 ∈ {0,… , 𝑁 − 1}. (input constraints)

Within the prediction horizon 𝑁 , the matrices 𝑸 and 𝑹 are the 
weights for the tracking error and input deviation, respectively, where 
a separate terminal weight 𝑸𝑓  is used for the last tracking error to 
improve the tracking performance without introducing terminal con-
straints [31]. The reference output 𝒚r and the reference input 𝒖r can 
be obtained by the trajectory planner (i.e. the desired axis velocities 𝒒d
from the CNC).

The optimization variables are the states 𝒙𝑖|𝑘, the inputs 𝒖𝑖|𝑘 and 
the outputs 𝒚𝑖|𝑘. In order to write the optimization problem in convex 
quadratic programming (QP) form, which can be solved efficiently, 
the input and state constraints are assumed to be polytopic (in the 
form of linear inequalities). Possible applications include describing 
box constraints, or limiting the change rate of variables. One result 
of the optimization problem is the sequence of optimal inputs 𝑼∗

𝑘, of 
which only the first entry 𝒖∗𝑘 = {𝑼∗

𝑘}1 is used in each iteration. This 
gives the calculation of MPFFC summarized in Algorithm 1.

4.3. Offset-free output tracking with integral action

It is well known that MPC in general cannot guarantee an offset-
free output tracking behavior due to model mismatch, leading to biased 
feedforward commands [42]. Such a model mismatch can be expected 
with the proposed framework, since the optimization model is lin-
earized and, furthermore, the optimization can be stopped early to meet 
the time requirements of online computation. To achieve the required 
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Algorithm 1 Predictive Feedforward Control Scheme.
For each time step 𝑘

1. Compute the linearized dynamics matrices 𝑨𝑘,𝑩𝑘,𝑪𝑘 (13) and 
correction terms 𝜹𝒙,𝑘, 𝜹𝒚,𝑖|𝑘 (15), (16).

2. Set the simulated current state as initial state for the linearized 
model as 𝒙0|𝑘 = 𝒙𝑘,sim and solve problem (18).

3. Apply the optimized control 𝒖∗𝑘 to nonlinear simulator (7a), (8).
4. Apply the optimized control 𝒖∗𝑘 to real control system as an 
additive feedforward.

offset-free tracking behavior despite possible model uncertainties [43], 
the integrated output tracking error is approximated as 

𝒅𝑘 = ∫

𝑡𝑘

𝑡0
(𝒚d(𝜏) − 𝒚(𝜏))d𝜏 ≈ 𝒅𝑘−1 + (𝒚d,𝑘−1 − 𝒚𝑘−1) ⋅ 𝛥𝑡 (19)

and added to the output correction term 𝜹𝒚,𝑘 of the linearized predictor 
in (16), given by 
𝜹𝒚,𝑖|𝑘 =

(

𝒉(𝒙0|𝑘) +𝜱𝒚,𝑖|𝑘
)

− 𝑪𝑘𝒙0|𝑘 + 𝑘int𝒅𝑘, (20)

where 𝑘 is the current time step. The only term varying over the pre-
diction horizon is still the linear approximation of the GP 𝜱𝒚,𝑖|𝑘. Since 
the inputs and outputs of the feedforward model are both velocities, 
the integral gain 𝑘int [1/s] is the inverse of the convergence time of 
the integral disturbance suppression, which can be directly prescribed 
(e.g. to the bandwidth of the velocity control loop). In addition, the 
integrator also compensates for drifts in the simulator states, e.g. due 
to gravity, which would cause the simulated PI controller to counteract 
and result in non-zero velocity command.

5. Practical guidelines on system identification and feedforward 
optimization

5.1. Identification of dynamics model

Elasticity model
The multibody dynamics model (3) are treated as 𝑛j independent 

SISO systems, and the transfer behavior of the axis model is similar to 
that of the well-known elastic coupled two-mass dynamics model [27]. 
After neglecting the nonlinear vector 𝒏 of (3) and the friction and the 
coupling effects (off-diagonal elements of mass matrix), the frequency-
domain motor response from motor torque 𝜏m to motor velocity 𝜃̇ for 
each axis reads 

𝜃̇
𝜏m

|

|

|

|𝝉f ,𝒏=0
= 1

𝑈
⋅

1
𝑚𝜃

⋅ 𝑠2 + 𝑑
𝑚𝜃𝑚𝑞

⋅ 𝑠 + 𝑘
𝑚𝜃𝑚𝑞

𝑠3 + 𝑚𝜃+𝑚𝑞
𝑚𝜃𝑚𝑞

𝑑 ⋅ 𝑠2 + 𝑚𝜃+𝑚𝑞
𝑚𝜃𝑚𝑞

𝑘 ⋅ 𝑠
(21)

and the mechanics response from the motor velocity 𝜃̇ to the joint 
velocity 𝑞̇

𝑞̇
𝜃̇
|

|

|

|𝝉f ,𝒏=0
=

𝑑
𝑚𝑞

⋅ 𝑠 + 𝑘
𝑚𝑞

𝑠2 + 𝑑
𝑚𝑞

⋅ 𝑠 + 𝑘
𝑚𝑞

(22)

The model parameters 𝑚𝜃 , 𝑚𝑞 , 𝑘 and 𝑑 are then identified in the fre-
quency domain for each axis separately using nonlinear least squares
[44, §9.9] by fitting these two transfer functions.

Friction model
Friction can be measured at different velocities and fitted as the sum 

of viscous and Coulomb friction for each axis separately. Since it is not 
possible to measure them separately without an additional sensor, the 
total viscous friction is assumed to be equally distributed between the 
motor and the load, and the Coulomb friction is assumed to act only 
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on the motor side, similar to [27]. In addition, the sign function of 
the Coulomb friction sign(𝜃̇) is approximated by the hyperbolic tangent 
function tanh(𝛼 ⋅ 𝜃̇) to avoid numerical problems caused by non-smooth 
jumps around zero [45].

5.2. Hyperparameter selection

Gaussian process model
The noise variance 𝜎2𝑖  of (9) is set as the square of the maximum 

relative error of the encoders. The signal variance 𝜎2S of (12) is es-
timated from the variance of the measured output discrepancy. The 
length scale parameters 𝑳 = diag(𝑙1, 𝑙2) of (12) can be chosen iteratively 
to balance the smoothness of the input space with a good prediction 
result, which can also be obtained by likelihood maximization or 
cross-validation [41, §5.4].

Model predictive control
The prediction horizon 𝑁 is a trade-off between tracking perfor-

mance and computation time [31, §7], and can be chosen by starting 
from a large value (upper bounded by computation time) and reducing 
it before any obvious performance degradation occurs in the simula-
tion. The cost function is normalized by the inverse of the squared mean 
of the output error, which can be estimated from the measurement. This 
normalizes the cost and, therefore, improves numerical conditioning of 
the optimization problem. In addition, the selection of output weight 
𝑄 and input weight 𝑅 are simplified by setting 𝑅 = 1. Then, the weight 
𝑄 is selected to balance between small tracking errors (large 𝑄) and 
small control input (small 𝑄). This can be selected by reducing the 𝑄
from a large value until an observation of a significant difference of 
the optimized control input. The terminal weight is then selected as 
𝑄𝑓 = 𝜅𝑄 and the factor 𝜅 > 1 can be set to a large value to improve 
the tracking performance of MPC scheme [31].

5.3. Real-time implementation

Local approximation of GP model
To achieve fast approximate GP prediction for real-time appli-

cations, the full model (10) is locally approximated by the nearest 
neighbor method [46]. The basic idea is that the kernels of the GP 
model affect the prediction result only locally, and the data points 
closest to the test input point have the most influence. The closest 
points 𝑸̃∗

𝑗  within predefined box constraints are searched at each pre-
diction step along each direction of the input space, which can be easily 
implemented by index searching for the uniformly discretized input 
space. The local approximation is computed by multiplying 𝑘(𝒒̃𝑗 , 𝑸̃∗

𝑗 )
⊤

by the GP coefficients 𝜷∗
𝑗  corresponding to 𝑸̃

∗
𝑗 , cf. (10). The size of the 

box constraints is a trade-off between the prediction accuracy and the 
computational complexity, and can be determined by comparing the 
local approximation with the full model for a given level of accuracy.

Numerical solution of MPC problem
The feedforward scheme is implemented independently for each 

axis, neglecting the coupling effects between different axes. The overall 
dynamics model (3) is treated as 𝑛j independent SISO systems, and 
thus the GP prediction and numerical optimization can be computed 
in parallel on different isolated CPUs, making the total computation 
time independent of the number of axes, as opposed to sequential 
computation. Second, the optimization problem (18) is formulated as 
a sparse quadratic program by including all states and inputs into 
the optimization variable [30, §8.5.3], where the system dynamics are 
expressed by local equality constraints between neighboring states. The 
main advantage of the sparse formulation is that only the operations 
of the non-zero elements need to be computed, which can reduce the 
computational complexity, especially when the optimization problem 
contains many zeros, as is the case in our MPC. The resulting optimiza-
tion problem is solved by the Operator Splitting Solver (OSQP) [47] 
and is warm-started from the previous solution at each solution step.
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Table 1
Computation time of MPFFC scheme measured on different CPUs.
 CPU time i5-4670 (2.7 GHz) i7-11850HE (2.6 GHz) i9-10900KF (3.7 GHz) 
 mean [μs] 63 64 33  
 max. [μs] 96 82 46  

6. Experimental results

To demonstrate the benefits of the proposed framework, an ex-
perimental validation is performed on an industrial setup running 
for one single axis and three linear axes combined. The setup and 
identification steps are presented, followed by a comparison of the 
tracking performance of a single axis with other feedforward design 
methods and a robustness analysis of the MPFFC scheme with respect 
to parametric and nonparametric perturbations. Finally, a freeform 
tracking experiment is conducted to three axes executing G-code of the 
CNC to demonstrate the effect on the contour error of the machine. All 
experimental data are available on [38].

6.1. Experimental setup and computational requirements

The experimental setup considers the three translational axes (x,y,z) 
of the five-axis milling machine shown in Fig.  2. The drives are Rexroth 
MS2N03-D0BYN with a rated torque of 0.68 N m, maximum torque 
of 6.8 N m and a rated velocity of 5700 1/min. The axes are Franke 
TSL06U ball screw drives with a spindle lead of 5 mm, and effectively 
reachable lengths of 0.36, 0.18 and 0.18 m in x, 𝑦 and z directions, 
respectively. The motors are controlled by Rexroth ctrlX DRIVE in-
verters and commanded from a Beckhoff TwinCAT3 PLC/CNC system 
with a sampling rate of (𝛥𝑡)−1 = 1 kHz. All parts of the feedforward 
scheme, including the GP prediction and the numerical optimization, 
are implemented in PLC and C++ code on the TwinCAT 3 control 
system.

The local evaluation of the GP is constrained locally to a box by 
requiring a remaining accuracy of 99% compared to the full model 
prediction, resulting in constraints of ±20 mm in position and ±40 mm/s 
in velocity. The MPC algorithm (Problem  1) is tuned according to 
Section 5.2, setting the weights 𝑄 = 10, 𝑅 = 1, 𝑄𝑓 = 100 ⋅ 𝑄 = 1000
and prediction horizon 𝑁 = 5 for all three axes. A maximum number 
of iterations of 25 is used to ensure an upper bound in the computation 
time. The MPFFC algorithm is implemented under independent tasks 
distributed across different CPU cores and computed in parallel for each 
axis. The computation time of the MPFFC algorithm, including the GP 
prediction and the numerical optimization, is measured in the TwinCAT 
3 system on different CPUs given in Table  1. For example, on an i7-
11850HE (2.6 GHz) CPU, the mean and maximum execution times are 
64 and 82 μs. Even in the worst case with the i5-4670 (2.7 GHz) CPU, 
the maximum computation time is 96 μs, which is only 10% of the 
sampling time. In addition, a total memory of 37.6 kB is required to 
store the prediction parameters 𝜷 in (10) in double precision for all 
three axes.

6.2. System identification

The identification of the multi-body dynamics model of the motion 
stage is treated as the identification of three two-mass dynamics models 
including the Coulomb friction [27]. For the 𝑧-axis, the gravity is 
modeled additionally. The identification is shown exemplarily for the 
𝑦-axis in the following, which has the lowest stiffness. The results for 
all three axes can be found in the dataset [38].

For the identification of the motor drive dynamics and axis elastic-
ity, the frequency response functions (FRFs) of the motor (21) (from 
motor torque 𝜏𝑚 to motor velocity 𝜃̇) and the mechanics (22) (from 
motor velocity 𝜃̇ to load-side axis velocity 𝑞̇) are fitted to the exper-
imental data in the frequency domain using a least squares method. 
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Table 2
Identified parameters of the multibody dynamics model.
 Drive 𝑚𝜃 𝑚𝑞 𝑘 𝑑 𝑑𝜃 , 𝑑𝑞 𝐹𝑐  
 [kg] [kg] [N/m] [N m/s] [N m/s] [N]  
 x-axis 138.8 10.7 5.3 ⋅ 106 4.4 ⋅ 102 1.3 ⋅ 103 348.1 
 y-axis 99.5 18.5 9.5 ⋅ 105 1.1 ⋅ 103 9.6 ⋅ 102 138.9 
 z-axis 85.7 20.0 1.6 ⋅ 107 4.8 ⋅ 103 1.4 ⋅ 103 408.1 

Fig. 4. Comparison of the frequency response of the 𝑦-axis and the identified 
axis model.

The FRFs are determined using sinusoidal velocity sweeps with linearly 
increasing frequency 𝑓 ∈ [10, 400] Hz measured at different starting 
positions over the axis range. An offset velocity of 10 mm/s is used to 
minimize the nonlinear influence of the friction 𝝉𝑓 .

The identification is performed for the three axes by fitting the 
transfer functions (21) and (22) in the frequency domain [44, §9.9], 
and the second axis with the lowest stiffness is shown in Fig.  4. The 
resulting parameters are given in Table  2. Obviously, the two-mass 
dynamics model only captures the transfer behavior up to the first 
natural frequency. To identify a more accurate model that captures 
the higher frequency content from 80 Hz, additional states must be 
introduced to describe the higher order dynamics. However, these 
states are not directly measurable and identification would require 
additional sensors [48]. On the other hand, the industrial reference 
trajectories generated by the CNC are band-limited [1, §7.2.1], and the 
higher order dynamics are outside the interesting frequency band for 
feedforward control.

The output discrepancy is measured (see Section 3.4) over the 
workspace at the commanded velocity 𝒒̇d = {20, 60, 100} mm/s with a 
grid of 40 mm/s, which captures the difference between the measured 
load-side axis velocity and the simulated output of the extended loop 
model in Section 3.2. The hyperparameters of the GP regressors are 
selected according to Section 5.2, and the results of all three axes are 
given in [38].

The GP model is validated on the test bench at unseen velocities 
during the training phase to access its generalizability. The normalized 
validation result of the GP regression model at 𝒒̇d = {40, 80} mm/s 
is shown in Fig.  5. Overall, this result shows a high coefficient of 
determination 𝑅2 = 93% between measurement and prediction, and 
a mean absolute prediction error of 1.43 μm, which illustrates the 
generalizability of the GP model to unseen operating conditions. Fur-
thermore, even in the case of significant prediction error due to factors 
such as wear or varying lubrication conditions, the measurement data 
can still be stored for subsequent updating of the regressor parameters.

Finally, the identified three-axis hybrid simulation model is vali-
dated with a multi-axis experiment tracking a freeform butterfly con-
tour at a feedrate of 6000 mm/min, compare [49] and Section 6.5. 
The axes are controlled by industrial standard P-PI cascade controllers 
with a nominal velocity reference as feedforward. The simulation error 
𝝃 ∶= 𝒒 −𝒒  of the load-side axis position are quantified in Table 
𝑘 𝑘,meas 𝑘,sim
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Fig. 5. Validation of normalized GP prediction on 𝑦-axis at unseen velocities.

Table 3
Simulation error of hybrid model validated by multi-axis experiment.
 Absolute simulation error x-axis y-axis z-axis 
 Mean [μm] 28.1 30.3 12.3  
 Maximum [μm] 124.1 196.8 60.9  

Table 4
Tracking performance of the respective controllers.
 baseline torqueff rigid-velff MPFFC 
 mae(𝑒𝑞 ) [μm] 4.38 4.40 4.31 2.18  
 max(|𝑒𝑞 |) [μm] 144.82 138.63 140.78 72.60  

3. Compared to the axis operating range, even the worst case simulation 
errors at the transient stage are only 0.03%, 0.11% and 0.03% for the 
x, 𝑦 and z axes respectively.

6.3. Axis tracking performance

A key performance indicator for axis motion is the tracking per-
formance for linear motion, which is an indicator for the surface 
finish quality of workpieces produced on a machine tool. The tracking 
behavior is studied for a single axis (y-axis) using a fast linear trajectory 
(G01) using a speed profile in both directions with dynamic limits of 
𝑣max = 90 mm/s, 𝑎max = 5000 mm/s2 and 𝑗max = 30 000 mm/s3. For 
comparison, standard P-PI cascaded control with constant parameters 
is used together with the following feedforward schemes:

baseline Industry standard feedforward using the speed of the nomi-
nal reference trajectory as velocity feedforward.

torqueff In addition to the velocity feedforward described above, a 
motor torque feedforward is added to compensate for the rigid 
body drive inertia and friction [27].

rigid-velff Analytical velocity feedforward assuming rigid-body me-
chanics model, derived in Appendix.

MPFFC Our proposed optimization-based predictive velocity feedfor-
ward combining physics-based elasticity model and learning-
based discrepancy model (Algorithm 1).

The position and velocity of the tracking experiment is shown in Fig.  6. 
The resulting tracking error is shown in Fig.  7 and further summarized 
in Table  4. For a quantitative comparison, the performance is evaluated 
with the mean absolute error (mae) and the maximum absolute error 
(max), where the mean absolute tracking error during the constant 
velocity phase mae(𝑒𝑞) is measured for 𝑡 ∈ [0.4, 1.6] ∪ [2.2, 3.4] s.

It is observed, that the MPFFC outperforms the other feedforward 
schemes by reducing the mae by more than 49.4% compared to the 
8 
Fig. 6. Position (left) and velocity (right) of MPFFC for tracking the reference 
trajectory.

Fig. 7. Measured transient tracking behavior of different feedforward 
schemes.

Table 5
Power consumption on y-axis with different feedforward schemes.
 DC power baseline torqueff rigid-velff MPFFC 
 Mean [W] 126.9 125.0 126.3 124.3  
 Maximum [W] 315.7 304.9 348.2 341.4  

other feedforward methods. Similarly, the maximum tracking error is 
reduced by 49.9% and 47.6% compared to the baseline and the torque 
feedforward of acceleration and friction, respectively. The additional 
torque feedforward does not show any significant improvements, which 
may be due to uncertainties in the torque equations, such as more 
complex friction and other unmodeled nonlinearities, e.g., the effects of 
lead errors and backlash typically appear themselves together with the 
elastic deformation, which makes it difficult to model them separately 
without additional measurement equipment [27,50]. Furthermore, the 
rigid body model neglects the elasticity of the drive train and approxi-
mates the mechanical dynamics with a first-order lag term. This could 
work for axes with a higher stiffness ratio, but in this case there is too 
much compliance, meaning that the lowest natural frequency is due to 
the drive mechanics. Inversion-based feedforward design of the velocity 
loop with a rigid mechanical model assumption leads to overshoot 
behavior in this case.

An interesting point for the feedforward controller is the power 
consumption, which was measured for 10 repetitions of the tracking 
trajectory using the active DC voltage and the drive current. As can be 
seen from Fig.  8 and Table  5, the average power consumption of the 
MPFFC is slightly lower compared to the baseline velocity feedforward 
control, which could be due to less steady-state errors at constant 
velocities (which will be analyzed further in the following section). The 
maximum power consumption, which occurs during the acceleration 
phase, is slightly higher by 8%, which is the price for the 50% smaller 
tracking errors in these transient phases.

To evaluate the steady-state errors, three different constant veloc-
ities 𝒒̇ ∈ {70, 80, 90} mm/s are chosen, which are unseen operating 
d
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Fig. 8. Measured power consumption on y-axis during 10 repetitions of the 
axis tracking experiment.

Table 6
Stationary tracking errors at unseen velocities.
 baseline MPFFC 
 vel. 70 mm/s mae(𝑒𝑞 ) [μm] 3.35 1.56  
 max(|𝑒𝑞 |) [μm] 9.62 5.06  
 vel. 80 mm/s mae(𝑒𝑞 ) [μm] 3.62 1.36  
 max(|𝑒𝑞 |) [μm] 9.67 4.93  
 vel. 90 mm/s mae(𝑒𝑞 ) [μm] 3.84 2.07  
 max(|𝑒𝑞 |) [μm] 9.47 7.24  

Fig. 9. Measured constant-velocity tracking performance on the 𝑦-axis under 
unseen operation conditions.
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Fig. 10. Robustness test against nonparametric perturbation of state and input 
matrices by ±10% (left: without integral action, right : with integral action).

Fig. 11. Robustness test against variation of model parameters by ±30%.

points during the GP training to test the generalizability of the GP 
model. Fig.  9(a) shows the steady-state tracking behavior with the cor-
responding feedforward controllers, a summary of the tracking errors 
is given in Table  6. Even under all unseen operating conditions, the 
MPFFC still achieves an error reduction by at least 46.1% of mae and 
the maximum error is reduced between 23.6% and 49.0%. These results 
are also confirmed by analyzing the tracking errors in the frequency 
domain by using the Fast Fourier Transform (FFT) in Fig.  9(b). It can 
be seen that by using the baseline controller, the velocity-dependent 
frequency content of the tracking error, which is mainly caused by 
the spindle lead error, has a single dominant harmonic frequency 
and also some quasi-dynamic content as lower frequencies. The pro-
posed MPFFC greatly attenuates both these frequency contents through 
the discrepancy learning with GP, resulting in improved feedforward 
control performance.

6.4. Robustness analysis

In addition to the performance studies, the robustness of the pre-
sented feedforward scheme is also investigated experimentally, which 
is separated into a study considering nonparametric perturbations of 
the state and input matrices (𝑨𝑘 and 𝑩𝑘), and a robustness test against 
varying model parameters.
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Fig. 12. Experimental comparison of contour errors on the butterfly trajectory with three axes and a feedrate of 6000 mm/min.
To conceptually illustrate the benefits of introducing the additional 
integral action to the MPFFC scheme as discussed in Section 4.3, the 
transient tracking behavior is tested by varying directly the prediction 
matrices 𝑨𝑘 and 𝑩𝑘 of the MPFFC scheme by ±10%. The comparison 
of the MPFFC scheme with and without the addition integral action 
is shown in Fig.  10, where the tracking error at the transient stage 
are measured during a fast linear trajectory (G01) moving in both 
directions with dynamic limits given in Section 6.3. It can be seen that, 
despite a direct variation of the entire state matrix 𝑨𝑘 by +10%, the 
addition integral action of the MPFFC scheme can still counteract the 
unseen nonparametric perturbation of the system matrices to ensure 
offset-free output tracking, and reduce the worst-case tracking error at 
the transient stage by 81.4% compared to the MPFFC design without 
integral action.

In addition, plant parameters typically deteriorate over the life of 
the machine due to external influences, such as temperature changes, 
which typically affect the friction. Thus, the robustness is also in-
vestigated experimentally against the mismatch of model parameters 
by ±30%. The transient tracking results of the MPFFC scheme are 
shown in Fig.  11. It can be observed, that even such a relatively large 
parameter variation does not significantly affect the resulting tracking 
performance of the MPFFC scheme. The maximum degradation of the 
mae tracking error compared to the nominal MPFFC design is 4.7%. 
Furthermore, the worst case MPFFC still improves the mae error by 
more than 38.5% compared to the baseline feedforward. This illustrates 
the significant robustness of the MPFFC scheme against parametric 
model uncertainties.

Another interesting observation is that varying some model pa-
rameters, such as reducing the model stiffness, actually improves the 
tracking error by an average of 11.9% compared to the nominal de-
sign. It may seem that the identification result is not very accurate 
in some parameters, and by changing these parameters, the resulting 
performance can be improved. However, this is due to the fact that 
the model parameters are mostly identified in the frequency domain, 
and the identified simulator is then used for feedforward design in the 
time domain. It should be noted that an accurate frequency response 
only aims to capture the dominant dynamics such as vibration modes, 
but does not necessarily imply the most accurate feedforward control 
action due to the neglected nonlinearity in the modeling. On the other 
hand, direct identification of model parameters in the time domain is 
still intractable in practice due to inevitably neglected unmeasurable 
nonlinear effects [27,50], especially for multi-axis machines with com-
pliant mechanics. Therefore, a systematic method to use the degrees of 
freedom provided by the model parameters for tuning still remains an 
open question for future analysis.
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Table 7
Contour error of the 3-axis butterfly toolpath (feedrate: 6000 mm/min).
 baseline MPFFC nom. MPFFC tuned 
 Mean [μm] 25.67 17.27 11.09  
 Maximum [μm] 167.98 109.21 84.61  

6.5. Multi-axis tracking experiment on the test bench

To demonstrate the multi-axis tracking performance of the proposed 
MPFFC approach, a three-axis experiment was performed on reference 
commands generated by an industrial CNC using G-code on the x, 𝑦
and z axes of the test bench. A freeform butterfly contour was used 
as the toolpath [49], which was converted to linear G01 segments. 
Also, the movement of the 𝑧-axis was scaled from the 𝑥-axis according 
to the workspace to obtain a 3D toolpath, see Fig.  12. The trajectory 
was planned using TwinCAT CNC (with a feedrate of 6000 mm/min 
and axis dynamics 𝑎max,𝑥|𝑦|𝑧 = 5000 mm/s2, 𝑗max,𝑥|𝑦|𝑧 = 50 000 mm/s3) 
and smoothed using the High Speed Cutting (HSC) contour smoothing 
feature [51] with an allowed path deviation of 0.8 mm. All axis con-
figuration parameters, as well as the G-code used for the trajectory 
and the desired and actual axis motion can be found in the data 
repository [38]. The metric for comparison is the contour error, which 
was calculated using Dynamic Time Warping (dtw in Matlab with 
Euclidean distance). The MPFFC was also done with a variant where 
the stiffness 𝑘 for the model was reduced by {50, 25, 50}%, respectively. 
This reduction was found heuristically and is included to show the 
potential of the proposed approach with further parameter tuning. 
The resulting contour errors are visualized graphically in Fig.  12 and 
numerically summarized in Table  7.  The mean absolute contour error is 
reduced by 32.7% using the nominal MPFFC and by further tuning the 
MPFFC model a reduction of 56.8% is achieved.  The peak contour error 
is even reduced by 34.9% MPFFC and 49.6% using the MPFFC with 
tuned model parameters. This trend is confirmed by visual inspection 
of the contour error in Fig.  12, where the high tracking error segments 
(yellow to red) are significantly reduced.

6.6. Discussion on applications

The experimental results confirm the benefits of the presented 
optimization-based feedforward framework with hybrid modeling to in-
crease the dynamic path accuracy of machine tools. This is particularly 
beneficial for processes without external forces, such as laser processes, 
where the dynamics of the machine tools dominate the finishing quality 
and can be accurately captured by combining the physics-based and 
machine learning methods. For applications where the attenuation of 
unknown disturbances is more important, such as milling, dedicated 
feedback control methods or online learning schemes are more suitable.
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The proposed feedforward scheme can be directly transferred to the 
industrial hardware for independent axis control without modifying the 
existing cascaded control structure. Due to its open-loop nature (feed-
forward only) and its computational efficiency (average runtime 63 μs 
on an i5 CPU including optimization and GP prediction), the algorithm 
can be implemented either directly in the frequency converter as a 
separate function block, or in the CNC kernel and commanded via field 
bus technologies (e.g. Profinet, EtherCAT).

7. Conclusion

In this paper, an optimization-based predictive feedforward control 
framework with hybrid modeling is presented and applied to indepen-
dent axis control of a milling machine. The hybrid model, developed 
with a particular focus on its use in dynamics simulation, combines a 
physics-based model of the multibody dynamics and a Gaussian process 
regressor of the output discrepancy. The feedforward design method 
separates the nonlinear hybrid model used for simulation from the 
linearized predictor used for input optimization. This strategy allows 
the accurate but complicated hybrid dynamics model to be used for 
real-time feedforward control in a computationally efficient way via 
online convex optimization. Extensive experimental results on a milling 
machine illustrate the real-time capability and the significant improve-
ment in dynamics path accuracy under different operating conditions, 
without introducing additional power consumption. Furthermore, the 
robustness of the proposed feedforward scheme to parametric and 
nonparametric model uncertainties is demonstrated experimentally.

Future work includes the automatic parameterization of the pre-
sented MPFFC scheme, including simultaneous tuning of control and 
model parameters, which may provide more degrees of freedom for per-
formance improvement. Another interesting extension under this sub-
ject is the integration of additional acceleration sensors at the machine 
tool end, which could be combined with the proposed feedforward 
framework for damping control of multi-axis processing.
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Appendix. Analytical velocity loop inversion with rigid-body me-
chanics model

Consider only the rigid body mechanics model of drive motor, the 
frequency response can be written as 

𝐺RB = 𝜃̇
𝑈−1𝜏m

= 1
𝑚𝜃𝑠 + 𝑑

(A.1)

and the proportional–integral (PI) velocity controller 

𝐾vel =
𝜏m,d
𝑒𝜃̇

= 𝑘𝑝(1 +
𝑘𝑖
𝑠
) (A.2)

Because the current control loop is much faster than mechanics [1, §7] 
and consider 𝜏m ≈ 𝜏m,d, the PI-controlled velocity control loop can be 
represented as

𝐺vel =
𝜃̇
𝜃̇d

=
𝑈−1𝐺RB𝐾vel

1 + 𝑈−1𝐺RB𝐾vel
(A.3)

=
1 + 1

𝑘𝑖
𝑠

1 + 𝑈𝑑+𝑘𝑝
𝑘𝑝𝑘𝑖

𝑠 + 𝑈𝑚𝜃
𝑘𝑝𝑘𝑖

𝑠2
(A.4)

where the inverse feedforward can be represented as an infinite impulse 
response (IIR) filter followed by a first-order lag term.

Data availability

All experimental data are openly available on [38].
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