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Abstract: In this article the problem of estimating the Region of Attraction (ROA) for
polynomial nonlinear systems subject to modeling uncertainties is studied. Based on recent
theoretical studies on the calculation of positively invariant sets, this article proposes an
optimization problem which allows robust inner Estimates of the Region of Attraction (rERA)
to be evaluated. The uncertainties, which can generically be time-invariant or time-varying,
are described as semialgebraic sets, and the problem is solved numerically by means of Sum
Of Squares relaxations, which allow set containment conditions to be enforced. The ensuing
optimization entails non-convex constraints, and an iterative algorithm to enlarge the provable
invariant level set is discussed. The proposed algorithm is applied to two study cases of increasing
complexity. Further, in order to benchmark the proposed rERA algorithm, comparisons are
shown with a class of well established algorithms based on Lyapunov functions level sets. The
results showcase the prowess of the proposed approach and its advantages in terms of accuracy
and computational time, particularly as the size of the system increases.
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1. INTRODUCTION

The Region of Attraction (ROA) associated to an equilib-
rium point x∗ of a nonlinear system is the set of all the
initial conditions from which the trajectories of the system
converge to x∗ as time goes to infinity (Khalil, 1996), and
its knowledge is of practical interest to guarantee the safe
operation of nonlinear systems.
Finding the exact region of attraction analytically might
be difficult and several algorithms have been proposed
to calculate inner Estimates of the Region of Attraction
(ERA), which can be broadly classified into two categories:
Lyapunov methods and non-Lyapunov methods.
The former build on the invariance and contractiveness
properties held by Lyapunov functions (LF) sublevel sets.
A common approach for finding a suitable (of generic
degree) LF for polynomial nonlinear systems is to use Sum
of Squares (SOS) techniques and recast the problem as a
set of SemiDefinite Programs (SDPs) (Chesi, 2011).
Non-Lyapunov methods have also been studied to reduce
the conservatism associated with the aforementioned ap-
proaches. For example, in a recently published work (Val-
morbida and Anderson, 2017), the recipes for calculating
ERA are expressed in terms of positively invariant sets.
This approach, prompted by LaSalle’s theorem (Khalil,
1996), still uses Lyapunov stability concepts but prescribe
weaker conditions for the function used to define the ERA.

When a more realistic description for the plant’s dynam-
ics is considered, the study of local stability should take
into account the presence of uncertainties. In (Topcu and
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Packard, 2009) an algorithm restricted to systems with a
specific dependence on the uncertainties (e.g. uncertain
parameters appearing affinely) was proposed, based on
parameter-independent LF, i.e. a single Lyapunov function
is used to certify the local stability of a system over its
entire uncertainty set. This was refined in (Topcu et al.,
2008) allowing for a branch-and-bound improvement to
alleviate the conservatism associated to the parameter-
independent LF. Other studies considered parameter-
dependent LFs (Chesi, 2004; Tan and Packard, 2008), with
the ensuing SOS-based optimization problem featuring a
substantial increase in computational burden.

The main contribution of the work is to propose an al-
gorithm, building on the result for the nominal case of
(Valmorbida and Anderson, 2017), to determine robust
inner Estimates of the Region of Attraction (rERA), i.e.
ERA of systems with uncertainties. In view of the well
recognised and conflicting aspects mentioned before, the
rERA is expressed as a parameter-independent invariant
set, but a parameter-dependent LF is involved in its cal-
culation. Even though the result is general, the proposed
implementation is based on Sum of Squares relaxations
of the set containment conditions defining the rERA. The
characterization of the uncertainties is via semialgebraic
sets, and thus their nature and the vector field’s depen-
dence on them are relatively generic.
Two case studies from the literature, featuring increasing
complexity, are used to validate the proposed approach
and to quantify its performance by comparing the results
with those from the LF-based algorithms of references
(Topcu and Packard, 2009; Topcu et al., 2008).

The layout of the article is as follows. Section 2 pro-
vides a cursory introduction to the basics of the work.



Section 3 presents an approach to compute rERA in the
framework of positively invariant sets, and describes an
iterative algorithm to numerically solve the problem. This
is subsequently applied in Section 4, where results are also
discussed. Section 5 finally presents the Conclusions.

2. BACKGROUND

The set of functions g(x) : Rn → R which are m-times
continuously differentiable is denoted by Cm. For x ∈ Rn,
the set of all polynomials in n variables is denoted by R[x].
For g ∈ R[x], ∂(g) denotes the degree of g. Given a scalar
c > 0, the level set of g and its boundary are defined as:

εg,c = ε(g, c) := {x ∈ Rn : g(x) ≤ c}
∂ε(g, c) := {x ∈ Rn : g(x) = c} (1)

A polynomial g(x) is said to be a Sum of Squares (SOS) if
there exists a finite set of polynomials g1(x), ..., gk(x) such

that g(x) =
∑k
i=1 g

2
i (x). The set of SOS polynomials in x is

denoted by Σ[x1, ..., xn], abbreviated here with Σ[x]. The
importance of SOS polynomials lies on their connection
with convex optimization (Parrilo, 2003). Namely, g ∈ Σ[x]
if and only if g = zTQz and Q = QT � 0 (i.e. Q is positive
semidefinite), where z is a vector gathering the monomials
of g. This problem can be recast as a semidefinite program
(SDP) and there are freely available software toolboxes to
solve this in an efficient manner. In this work, the software
SOSOPT from the suite of libraries (Balas et al., 2009) will
be used in conjunction with Sedumi (Sturm, 1999).
As for the computational aspects, note that if g is dense
(i.e. no sparse monomials), the size of the SDP problem
grows polynomially with n if ∂(g) is fixed (and vice versa),
but it grows exponentially if both n and ∂(g) increase.

The algorithms employed in this work involve finding
functions that satisfy set containment conditions. Known
results from real algebraic geometry can be employed to
tackle this problem when dealing with polynomial func-
tions. In particular, an application of the Positivstellen-
satz (P-satz) Theorem allows the following property to be
stated.

Lemma 1. (Parrilo, 2003) Given h, f0, ..., fr ∈ R[x], the
following set containment holds{
x : h(x) = 0, f1(x) ≥ 0, ..., fr(x) ≥ 0

}
⊆
{
x : f0(x) ≥ 0

}
(2)

if there exist multipliers p ∈ R[x], s01, ..., s0r ∈ Σ[x] such
that

p(x)h(x)−
r∑
i=1

s0i(x)fi(x) + f0(x) ∈ Σ[x] (3)

The following result establishing an equivalence between
set containments is also recalled:

Lemma 2. (Tan, 2006) For each y satisfying g3(y) ≤ 0,

{x | g1(x, y) ≤ 0} ⊆ {x | g2(x, y) ≤ 0} iff

{(x, y) | g1(x, y) ≤ 0, g3(y) ≤ 0} ⊆ {(x, y) | g2(x, y) ≤ 0}
(4)

The last set containment can be easily enforced with the
application of Lemma 1. Indeed with reference to (3) it is
enough to take f0 = g2, f1 = g1 and f3 = g3.
In the following, all the set containments will be recast
in the form of (2), for which sufficient conditions can be
expressed as SOS constraints (3).

Consider an autonomous nonlinear system of the form

ẋ = f(x), x(0) = x0 (5)

where f : Rn → Rn is the vector field. The vector x∗ ∈ Rn
is called a fixed or equilibrium point of (5) if f(x∗) = 0.
Let φ(t, x0) denote the solution of (5) at time t with initial
condition x0. The ROA associated with x∗ is defined as

R :=
{
x0 ∈ Rn : lim

t→∞
φ(t, x0) = x∗

}
(6)

That is, R is the set of all initial states x0 that eventually
converge to x∗.

Consider now the case when the system is subject to
uncertainties:

ẋ = f(x, δ), x(0) = x0, δ ∈ ∆ (7)

where f : Rn×∆→ Rn is the uncertain vector field and ∆
denotes a generic bounded uncertainty set. It is assumed,
as commonly done in the literature (Chesi, 2004; Topcu
and Packard, 2009), that f(0, δ) = 0 ∀δ ∈ ∆, i.e. the origin
is the equilibrium point regardless of the uncertainties.
The robust Region of Attraction (rROA) is defined as:

Rδ := ∩δ∈∆

{
x0 ∈ Rn : lim

t→∞
φ(t, x0, δ) = 0

}
(8)

where φ(t, x0, δ) is the solution of (7) at time t with initial
condition x0 and subject to δ ∈ ∆. That is, Rδ is the
intersection of the ROAs for all systems governed by (7).

3. COMPUTATION OF ROBUST ERA WITH
INVARIANT SETS

In the Introduction it was stated that a more realistic
description of the vector field of a nonlinear system entails
the inclusion of uncertainties. These may stem from differ-
ent sources - for example: errors due to modeling assump-
tions (e.g. a local polynomial approximation of a generic
vector field with associated bounded error); parameters
with uncertain values; and higher order terms truncation
to make the problem numerically tractable (recall the
dependence of the SDPs on ∂(g)).

In this section, the problem is first theoretically framed
into the context of positively invariant sets, and an al-
gorithm to compute robust inner Estimation of Regions
of Attraction (rERA) is proposed (Section 3.1). Then, nu-
merical aspects and features of the algorithm are discussed
(Section 3.2).

3.1 An algorithm for robust inner estimates of ROA

A standard approach to calculate estimates of ROA for
nominal systems (5) consists in applying the Lyapunov’s
direct method and calculating the largest possible level set
of a Lyapunov function (LF), in view of its invariance and
contractiveness properties.

As pointed out by LeSalle’s theorem (Khalil, 1996), this
characterization is usually conservative and the following
result, which relaxes the search to positively invariant
(but not contractive) level sets of a function R, has been
proposed in the literature:

Theorem 1. ((Valmorbida and Anderson, 2017), Th. 1) If
there exist R, VN : Rn → R, with R, VN ∈ C1, and a
positive scalar γ satisfying:



∇R(x)f(x) < 0 ∀x ∈ ∂ε(R, γ) (9a)

VN (0) = 0 and VN (x) > 0 ∀x ∈ ε(R, γ)\0 (9b)

∇VN (x)f(x) < 0 ∀x ∈ ε(R, γ)\0 (9c)

ε(R, γ)is compact and 0 ∈ ε(R, γ) (9d)

then x0 ∈ εR,γ implies x0 ∈ R.

The proof of this result can be found in the reference. The
fundamental idea is that ε(R, γ) is a positively invariant
set, due to (9a)–(9d), and that all trajectories initiated
from it converge to a level set of some LF– which is
contractive and invariant because of (9b)–(9c), therefore
guaranteeing such set to be an ERA. Note that the
function R defining the level set only requires negativity
of its gradient on the set boundary.

The case with uncertainties was only marginally consid-
ered in (Valmorbida and Anderson, 2017) , and no indica-
tions on possible implementations were given.

In this paper it is proposed to describe ∆ as a semialge-
braic set (Anderson and Papachristodoulou, 2017):

∆ =
{
δ ∈ Rnδ : mi(δ) ≥ 0, i = 1, ..., j

}
(10)

where the functions mi are polynomials in δ, whose defini-
tion will be discussed later. This strategy is quite general
and allows both time-invariant and time-varying uncer-
tainties to be taken into account, as well as norm bounded
operators. Moreover, no hypotheses on how the uncertain-
ties enter the vector field are made. This is different from
other approaches in the literature where, for example, f is
required to depend affinely on the uncertain parameters,
which are supposed to lie in a given polytope (Topcu and
Packard, 2009).

Theorem 1 involves finding functions that satisfy set con-
tainment conditions. In order to make the problem com-
putationally tractable, interest is restricted to polynomial
vector fields f , and thus, applying Lemma 1, the problem
of finding an ERA can be recast as an SOS optimiza-
tion. The following Lemma allowing to study robust ERA
within the framework of invariant sets is then stated:

Lemma 3. GivenR ∈ R[x], VN ∈ R[x, δ] with VN (0, ·) = 0,
and γ a given positive constant. Then, if there exist SOS
polynomials s1, s2, s0i, s1i, s2i and a polynomial s0 such
that:

−∇Rf − s0(γ −R)− Γ0j ∈ Σ[x, δ] (11a)

VN − s1(γ −R)− Γ1j ∈ Σ[x, δ] (11b)

−∇VNf − s2(γ −R)− Γ2j ∈ Σ[x, δ] (11c)

Γ#j = s#1m1 + ...s#imi + ...+ s#jmj , # = 0, 1, 2
(11d)

Then the conditions of Theorem 1 are satisfied ∀δ ∈ ∆
and εR,γ ⊆ Rδ.

This Lemma compounds known results, previously com-
mented in this article, and provides a novel recipe for the
determination of robustly invariant sets. If for a moment
the terms Γ#j are ignored, the SOS constraints (11a-
11b-11c) are an application of the P-Satz (Lemma 1) to
enforce respectively the set containments (9a-9b-9c). The
combined application of Lemma 1 and Lemma 2 allows also
the inequalities defining the set ∆ in (10) to be expressed
as set containments, and then enforced as SOS conditions.
This results in the terms Γ#j defined in (11d), which
guarantee that the conditions certifying that the level set

is an ERA of the system (Theorem 1) are verified ∀δ ∈ ∆.
That is, εR,γ is an rERA of the origin.
The corresponding program to enlarge the provable rERA
of a given system is:

Program 1.

max
s1,s2,s0i,s1i,s2i∈Σ[x,δ]; s0,VN∈R[x,δ]; R∈R[x]

γ

subject to conditions (11a)–(11b)–(11c)
(12)

Note that VN enters affinely in (11), whereas there are
bilinear terms involving the multipliers si, γ and R. When
the objective function is one of the two terms in the
bilinearity (e.g. s0γ), it was demonstrated in (Seiler and
Balas, 2010) that the problem is quasiconvex and thus,
the global optimum can be computed via cost bisection.
However, the terms bilinear in si and R (e.g. s0R) make
the above program non-convex. This can be handled with
local BMI solvers (Kocvara and Stingl, 2006) or by means
of iterative schemes. The latter approach is followed here
and the following algorithm is proposed:

Algorithm 1.
Output: the level set ε(R, γ).
Input: polynomials R0 ∈ R[x], V 0

N ∈ R[x, δ] satisfying
(11).

Step 1 : solve for s0, s1, s2,s0i, s1i, s2i, γ by:

max
s1,s2,s0i,s1i,s2i∈Σ[x,δ]; s0,VN∈R[x,δ]

γ

−∇R0f − s0(γ −R0) − Γ0j ∈ Σ[x, δ]

V 0
N − s1(γ −R0)− Γ1j ∈ Σ[x, δ]

−∇V 0
Nf − s2(γ −R0)− Γ2j ∈ Σ[x, δ]

Step 2 : solve for VN , γ by:

γ2 = max
VN∈R[x,δ]

γ

−∇R0f − s̄0(γ −R0)− Γ̄0j ∈ Σ[x, δ]

VN − s̄1(γ −R0)− Γ̄1j ∈ Σ[x, δ]

−∇VNf − s̄2(γ −R0)− Γ̄2j ∈ Σ[x, δ]

Step 3 : solve for s3, R, γ by:

max
s3∈Σ[x,δ]; R∈R[x]

γ

−∇Rf − s̄0(γ −R)− Γ̄0j ∈ Σ[x, δ]

V̄N − s̄1(γ −R)− Γ̄1j ∈ Σ[x, δ]

−∇V̄Nf − s̄2(γ −R)− Γ̄2j ∈ Σ[x, δ]

(γ −R)− s3(γ2 −R0) ∈ Σ[x, δ]

with Γ̄#j = s̄#1m1 + ...s̄#imi + ...+ s̄#jmj .
The superscript 0 indicates that the functions hold the
value calculated at the end of the previous iteration (or
their initializations, if at the first iteration), whereas the
symbol bar is used for quantities optimised within the
same iteration (at previous steps).
The scheme consists of one quasi-convex step (Step 1) and
two convex steps (Steps 2-3). Each step has a specific task:
Step 1 provides the multipliers for the next two steps; Step
2 calculates the function VN ; and Step 3 evaluates the
sought level set ε(R, γ) based on V̄N from the previous
step. Note also that the last SOS constraint in Step 3



is introduced to ensure that ε(R0, γ) ⊆ ε(R, γ), i.e. the
solution (at Step 3) is a set that strictly contains the
previous one (at Step 2).
The size of the ERA γ is maximised throughout each
iteration, although Steps 2-3 can also be solved as simple
feasibility problems. In this regard, note that the opti-
mality of the solution is already prevented by the non-
convexity of Program 1, and that the algorithm ensures
in any case that the ERA is non-decreasing. Therefore,
resorting to just feasibility when maximization fails is a
viable solution.

3.2 Numerical aspects

Algorithm 1 requires initializations for R and VN . A first
option is to use any quadratic LF proving asymptotic sta-
bility of the nominal linearised system (provided that the
associated Jacobian is Hurwitz), named here Vlin, which
automatically satisfies (11) for the hypotheses discussed in
Section 2. Alternatively, the corresponding functions ob-
tained with the ERA calculation (e.g. using the algorithm
for the nominal case in (Valmorbida and Anderson, 2017))
can be used.
The initialization is deemed an important aspect of the
search for rERAs since the obtained local optimum is very
sensitive to the initial guess. In this regard, it is worth
stressing the importance of the fact that Algorithm 1 is
initialized with both functions R and VN . This feature can
be favourable when preliminary estimations of the shape
of the ERA (i.e. R) and a LF (i.e. VN ) are available in that
the search can be seeded with them. When not specified,
the algorithms are initialised here with Vlin.

Another interesting aspect is that the independent vari-
ables of the optimization include the states of the system
x and the uncertain parameters δ. The polynomial mul-
tipliers s can thus potentially be function of both x and
δ (as reported in Algorithm 1), but in practice there is a
trade-off between computational time and accuracy.
In this regard, one of the advantages of this formulation
is that the level set function is R = R(x) (i.e. uncertain
parameter-independent), whilst VN is parameter depen-
dent, i.e. VN (x, δ). On the one hand, this is a less conser-
vative approach than the one represented by parameter-
independent LF level sets. On the other, the fact that εR,γ
is parameter-independent avoids the computation of the
intersection of the parameterised estimates, resulting in a
more accurate and easier to visualise outcome. This favor-
able twofold behaviour is the result of using two distinct
functions, R and VN , which allows for greater flexibility in
the optimization. Interestingly, the need to optimize over
two functions does not necessarily imply a rise in total
run time when compared to the LF-based approaches, as
discussed in Section 4.

The description of the set in (10) entails the definition
of the polynomials mi, which depend on the type of
uncertainties featuring the system. This work will focus
on parametric uncertainties, and thus possible definitions
will be discussed for this case. Let us denote δi and δi
respectively the minimum and maximum allowed values
for each uncertain parameter δi. Then, at each parameter
a polynomial mi can be associated:

mi(δi) = −(δi − δi)(δi − δi)
δi ∈ ∆⇐⇒ mi(δi) ≥ 0

δ = [δ1...δi...δj ]
T

(13)

Recalling the definition of Γ#j in (11d), it is worth noting
that for each employed mi there are three multipliers
s0i, s1i, s2i (one for each constraint). Therefore, as the
number of uncertain parameters increases, so does the
size of the associated optimization problem. However, an
alternative solution is to define a single polynomial mc:

mc(δ) = −
j∑
i=1

(δi − δi)(δi − δi) =

j∑
i=1

mi(δi)

δ ∈ ∆ =⇒ mc(δ) ≥ 0

(14)

which specializes (11d) to Γ#1 = s#cmc.
This definition gives only a sufficient condition (as opposed
to the one in (13) which is also necessary), because there
are values of δ 6∈ ∆ for which the inequality mc(δ) ≥ 0 is
satisfied. Therefore, the obtained rERA is valid for a larger
range of uncertainties. However, the adoption of mc has
the advantage of adding only 3 multipliers s0c, s1c, s2c, and
therefore a trade-off between computational speed versus
over-conservatism arises.

4. RESULTS

In this section, the capability of the framework built
in Section 3 to study rERA based on an invariant set
formulation are applied to two nonlinear (polynomial)
study cases. All the analyses are performed on a 3.6 GHz
desktop PC with 16 GB RAM.

4.1 Van der Pol oscillator

The Van der Pol (VdP) oscillator is a nonlinear system
with 2 states. In (Topcu and Packard, 2009) the problem
with an uncertain scalar parameter δ1 ∈ [−1, 1] was
considered:

ẋ1 = −x2(1 + 0.2δ1)

ẋ2 = x1 + (x2
1 − 1)x2

(15)

The VdP steady-state solutions are characterized, for all
the values of δ1 within the considered range, by an unstable
limit cycle and a stable origin. The ROA for this system
is the region enclosed by its limit cycle and thus can be
easily obtained from the numerical solution of the asso-
ciated ordinary differential equations. Its estimation was
performed in (Topcu and Packard, 2009) via parameters-
independent LF level sets enforcing the SOS constraints on
both vertices of the uncertainty range (in full generality,
on each vertex of the uncertain polytope).
Fig. 1 shows the rERA given by Algorithm 1 (curve IS ),
along with the predictions obtained with an in-house im-
plementation of the algorithm from (Topcu and Packard,
2009) (curve LF, in good agreement with the results dis-
played therein), and the unstable limit cycles of the system
corresponding to eight values of δ1 across its range. The
algorithm is initialised with the functions VN and R from
nominal analyses. The cases with ∂(VN ) = ∂(R) = 4 is
considered here. Note that VN (x, δ1) is built from mono-
mials in x and δ1 up to degree ∂(VN ), with the property
that VN (0, ·) = 0 as required by Lemma 3.
Observe that the rERA obtained with the algorithm based
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Fig. 1. ERA of VdP (∂(VN , R) = 4).

on invariant sets is larger than the level set from (Topcu
and Packard, 2009). Note also that the curve IS is close,
along much of its perimeter, to the smallest of the curves
corresponding to the ROA of the system (providing an
upper bound on the guaranteed safe region). When the de-
gree of the optimised functions is increased (e.g. ∂(VN ) =
∂(R) = 6), the rERA expands in the directions where the
gap with ROA(δ1) is larger, resulting on the other hand
in longer simulations. In this regard, the total run-time to
obtain the curve IS in Fig. 1 was 297 seconds, as opposed
to 175 seconds for the curve LF.

4.2 Controlled short-period aircraft dynamics

The second test case consists of a closed-loop nonlinear
short-period (SP) model of the longitudinal dynamics of an
aircraft. It features 3 open-loop states (pitch rate z1, angle
of attack z2, pitch angle z3) and 2 controller states η1, η2.
In (Topcu et al., 2008; Topcu and Packard, 2009), the case
where two parametric uncertainties δ1 and δ2 affect the
open loop dynamics was studied:

ż =

[ −3 −1.35 −0.56
−0.91 −0.64 −0.02

1 0 0

]
z +

[
1.35− 0.04z2

0.4
1

]
u

+

(1 + δ1)(0.08z1z2 + 0.44z2
2 + 0.01z2z3 + 0.22z3

2)
(1 + δ2)(−0.05z2

2 + 0.11z2z3 − 0.05z2
3)

0


η̇ =

[
−0.6 0.09

0 0

]
η +

[
−0.06 −0.02
−0.75 −0.28

]
y

y = [z1 z3]T ; u = η1 + 2.2η2;

δ1, δ2 ∈ [−0.1, 0.1]
(16)

By defining x = [z η]T and δ = [δ1 δ2]T , the system is
recast in the class of nonlinear dynamics given by (7).

In the aforementioned references the adopted algorithms
were based on parameter-independent LF level sets.
Namely, (Topcu and Packard, 2009) devised a suboptimal
strategy to avoid enforcing the SOS constraints at each
vertex of the polytope (computationally demanding al-
ready for this size of problems); and in (Topcu et al., 2008)

a branch-and-bound refinement of the suboptimal algo-
rithm consisting in partitioning the uncertainty set and
determining a different parameter-independent LF for each
cell was employed. In both cases, the algorithms provided
the rERA only in the form of εp,β , where p(x) = xTNx
and N ∈ Rn×n, N = NT > 0 is a given matrix defining
the shape of the ellipsoid to which the search of inner
estimates of the ROA is restricted. This is because a unique
Lyapunov function V certifying the ROA over the entire
uncertainty set could not be computed.

Note that now the system has more than 2 states, therefore
projections of the ERA onto particular planes are em-
ployed to graphically visualize the predictions. In general,
the analyst will focus on the states which are supposed to
experience larger perturbations during the operation of the
system. In this work, the z1-z2 phase-plane (Fig. 2) will be
displayed since the studied nonlinearities arise from their
dynamics. Further, to provide as much information relative
to the analyses as possible, Fig. 3 shows the projections
onto the z1-z3 plane. The same nomenclature as in the
previous plot applies, and the degree of the optimized
polynomials VN and R is 2.
The largest estimate available in the published litera-
ture, taken from (Topcu et al., 2008) and obtained with
quartic LFs employing the suboptimal (branch-and-bound
refined) algorithm, corresponds to β = 11.1 and p = xTx
and is reported in here for comparison (LF in the figure).
Note also that the analyses displayed in the figures below
are obtained describing the uncertainty set with a single
polynomial mc(δ1, δ2) following the definition in (14).
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Fig. 2. Projection of the rERA of SP onto z1-z2 plane.

The results showcase that the proposed invariant sets-
based algorithm markedly outperforms the estimation
given with the LF level set approach (which was obtained
with a higher degree for the LFs). This aspect can be
ascribed primarily to the less conservative formulation
of the problem (invariant set, see Lemma 3, versus LF
level sets), but also to the flexibility given by Algorithm
1 in optimizing the shape of the level set throughout the
iterations. In some of the LF-based algorithms proposed
to handle the case with uncertainties, as in (Topcu et al.,
2008), the shape of the rERA (p) is fixed a priori and the
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Fig. 3. Projection of the rERA of SP onto z1-z3 plane.

only optimized quantity is the size β such that the largest
possible set (εp,β) verifying the conditions defining the
rERA is achieved. This does not exploit the directionality
of the ROA, and is exemplified in both Figs. 2-3 where
the curves IS are ellipses with distinct axes, whereas the
curves LF are circles. A possible improvement on this
aspect consists in using the value of p from a previous
rERA calculation to initialize the analyses.

The total run-time to obtain the invariant set rERA was
1890 seconds. While in (Topcu et al., 2008) there is no
reference to computational time or size of the problem,
in (Topcu and Packard, 2009) a smaller estimation (i.e.
without branch-and-bound refinement) was achieved in
approximately 2300 seconds, and this can be taken as a
lower bound on the total processing time of algorithm LF.
Note that the SP system features 5 states, nonlinearities
up to degree 3, and 2 uncertainties, and it represents a
challenging test case from the computational point of view
(Topcu and Packard, 2009). Indeed, it is well-known that
SOS suffer of the so-called scalability, i.e. the significant
growth in simulation time as the size of the analysed
system increases. The research community is working
on solutions to tackle this well recognised issue (see for
example (Ahmadi et al., 2017) where a survey on recent
advances is presented) with the aim to provide efficient
numerical tools that can make SOS-based programs (as
the one presented in this article) more amenable for high
order systems.

5. CONCLUSION

This article considers the problem of estimating the re-
gion of attraction of systems described by polynomial
vector fields and subject to modelling uncertainties. A
recently proposed formulation based on invariant level sets
is adopted as the theoretical foundation to propose a recipe
for the computation of robust inner estimates.
The rERA is characterized with set containments which
are enforced as SOS constraints using known results from
real algebraic geometry. The ensuing optimization problem
is bilinear and thus an iterative scheme is proposed to
enlarge provable regions. Features of the algorithms are

commented, and possible solutions to lower the compu-
tational cost due to the inclusion of the uncertainties in
the problem are discussed. It is emphasized the advantage,
compared to other established algorithms, resulting from
optimising two functions, one directly defining the level
set (R), which is parameter-independent, and the other
an auxiliary one (VN ), which is parameter-dependent. This
approach can hence in principle retain the advantages of
these two typically conflicting aspects.
Preliminary results show that the proposed algorithm
leads to larger estimations of the rROA than the LF level-
set approaches considered for reference. As the size of the
analysed system is increased, this approach seems also to
be more efficient in that it features a smaller run-time.
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