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Abstract. This article proposes a framework which allows the study of stability robustness of4
equilibria of a nonlinear system in the face of parametric uncertainties from the point of view of5
bifurcation theory. In this context, a branch of equilibria is stable if bifurcations (i.e. qualitative6
changes of the steady-state solutions) do not occur as one or more bifurcation parameters are varied.7
The work focuses specifically on Hopf bifurcations, where a stable branch of equilibria meets a8
branch of periodic solutions. It is of practical interest to evaluate how the presence of uncertain9
parameters in the system alters the result of analyses performed with respect to a nominal vector10
field. Note that in this article bifurcation parameters have a different meaning than uncertain11
parameters. To answer the question, the concept of robust bifurcation margins is proposed based12
on the idea of describing the uncertain system in a Linear Fractional Transformation fashion. The13
robust bifurcation margins can be interpreted as nonlinear analogs of the structural singular value,14
or µ, which provides robust stability margins for linear time invariant systems. Their computation15
is formulated as a nonlinear program aided by a continuation-based multi-start strategy to mitigate16
the issue of local minima. Application of the framework is demonstrated on two case studies from17
the power system and aerospace literature.18
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1. Introduction. Bifurcation analysis studies qualitative changes in the re-21

sponse of a nonlinear system (e.g. number and type of steady-state solutions) when22

one or more parameters on which the dynamics depend are continuously varied23

[27, 21]. This is usually accomplished by selecting a few bifurcation parameters, typ-24

ically equal in number to the codimension of the studied bifurcation, based on their25

importance for the system. This analysis approach is of recognized importance since26

it allows complex dynamic behaviours to be characterized and an understanding of27

the system to be gained. However, it does not provide indications on the robustness28

of the results to uncertainties in the models. Let us consider for example the presence29

of uncertain parameters allowed to vary within a prescribed range. These parameters30

reflect the fact that uncertainty is ubiquitous in engineering systems and at any stage31

of analysis (from preliminary to detailed). Unlike the bifurcation parameters, in prin-32

ciple they are not restricted in number (and are allowed to vary simultaneously) and33

their influence on the dynamics may not be known a priori. It is then important to34

estimate their effect, and in particular whether bifurcation points can move closer to35

operating points deemed safe on the basis of analyses applied to the nominal system.36

The study of robustness within a dynamical systems perspective can be attempted37

by adopting singularity theory techniques (e.g. Lyapunov-Schmidt reduction) [18], as38

shown by recently published research [20, 8]. The central idea is to perform a reduc-39

tion of the original dynamics to a lower dimension map, whose singularities represent40

transitions between qualitatively different bifurcation diagrams. Even though it is in41

principle possible to track these singularities without computing explicitly the reduc-42

tion [8], the application of these techniques to systems with a moderately complex43

mathematical description and with generic number of uncertainties is not straight-44
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forward and has not been presented in the literature yet. Moreover, this approach45

does not directly provide information on the distance from a given (nominally stable)46

operating point to the closest bifurcation, that is, a margin to the bifurcation. An-47

other approach which considers the effect of uncertainties by focussing on a reduced48

dimensional dynamics, namely the one on the centre manifold, is that proposed in49

[38]. The main difficulty resides here in the definition of appropriate initial condi-50

tions allowing a projection of the long term dynamics on the centre manifold which51

accurately incorporates the effect of uncertainties [37].52

This article proposes a framework which provides a quantitative measure of the53

distance between branches of stable equilibria and of periodic oscillations in the uncer-54

tainty space. In other words, the onset of a Hopf bifurcation in the face of worst-case55

combinations of the uncertainty is formalised by means of a robust bifurcation margin.56

Previous works in the literature looked at the problem of computing perturbations57

to bifurcations. For example, in [12] an extension to multidimensional parameter58

spaces of standard methods for codimension-1 bifurcations is proposed. The problem59

of determining locally closest bifurcations is solved by introducing a normal vector60

to hypersurfaces of bifurcation points, and makes use of both direct and iterative61

methods. While the latter is limited to static bifurcations (i.e., saddle node, tran-62

scritical, and pitchfork), the former is in principle applicable also to the Hopf case.63

The direct method consists of solving the full set of equations defining the bifurcation64

(plus additional equations to close the problem) and, as pointed out by the authors65

of [12], it may be too onerous from a computational point of view. This approach66

was applied in [32] to the analysis of static bifurcations in flexible satellites, making a67

number of simplifying assumptions, e.g., no dependence of the equilibrium on the un-68

certainties and the system having Hamiltonian dynamics. A closely related approach,69

which according to their authors generalizes the method from [12], is discussed in [6].70

The work considers saddle-node bifurcations only, and the computation of the small-71

est perturbation to bifurcation is done by applying the generalized reduced-gradient72

method. In essence, this consists of a nonlinear optimization strategy making use of73

corrector and predictor steps and solving the system of equations defining the bifur-74

cation. However, the issue of local minima is not addressed and the same objection75

regarding the total dimension of the problem is envisaged for the Hopf bifurcation76

case (not discussed in that work). The idea of using vectors normal to a manifold of77

bifurcation points is also present in [16, 34] and other works from the same group,78

where the design of robustly stable and feasible processes is pursued.79

The problem is studied in this article from the point of view of Linear Fractional80

Transformation (LFT) models and structured singular value (µ) analysis from ro-81

bust control theory [48]. These tools are well established for the analysis of linear82

uncertain systems, and provide an analytical answer to stability and performance83

problems. Even though a direct application to the nonlinear context is precluded84

by their inherently linear formulation, an extension is proposed here for computing85

robust bifurcation margins. The core idea is to build an LFT model of the Jacobian86

of the uncertain vector field (which will generically depend on the states of the system87

and on the uncertainties) and to formulate the computation of the closest Hopf bi-88

furcation as the worst-case perturbation matrix for which the LFT becomes singular.89

This bears similarities to the problem solved by µ, but significant differences hold as90

commented in the paper. The determination of the margins is posed as a nonlinear91

smooth optimization problem, which can be solved with off-the-shelf algorithms. The92

program also allows the type of Hopf bifurcation (subcritical or supercritical) to be93

specified by constraining the sign of the first Lyapunov coefficient. Since the opti-94
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mization problem is nonlinear, the issue of local minima is discussed and different95

strategies are proposed to mitigate it. These include a multi-start strategy based on96

the construction of a manifold of Hopf points connected to a given solution obtained97

by the optimizer. The main advantages of the proposed approach, whose formulation98

is detailed in section 3, include: low dimension and computational cost of the solved99

problem; improved confidence on the accuracy of the results in terms of global validity100

of the optimum; possibility to apply the wealth of analysis strategies available with µ101

(e.g., sensitivity analysis, frequency interpretation of the results).102

In section 4 the use of this framework to study nonlinear stability problems arising103

in power system and aerospace applications is investigated by considering two case104

studies from the literature. First, the sensitivity to a set of physical parameters of the105

Hopf bifurcation encountered in a power load system with voltage regulator and dy-106

namic load model is considered in section 4.1. It is shown that the application of the107

robust bifurcation margin allows on one hand to retrieve the same findings reported108

in [13] (which considered a first-order approximation of the sensitivity), and on the109

other to investigate more sophisticated types of sensitivity analyses where coupling110

among uncertain parameters are also accounted for.111

Then, an aeroelastic flutter case study is analyzed in section 4.2. Flutter is a self-112

excited instability in which aerodynamic forces on a flexible body couple with its113

natural vibration modes producing oscillatory motion. In the presence of nonlineari-114

ties, the system typically exhibits loss of stability of the equilibrium in the form of a115

Hopf bifurcation with ensuing Limit Cycle Oscillations (LCO). Results show a good116

match with prior studies that considered linear robust analyses [25], and highlight the117

unique capability of this framework to allow the type of Hopf bifurcation (subcritical118

or supercritical) of which robustness is studied to be chosen in the analysis.119

Bifurcation analysis has been extensively applied to both application fields [41, 11],120

but the effect of uncertainties has received far less attention. The results in section 4121

show that the proposed framework can be a valuable tool for analyzing robustness in122

the nonlinear context and a more in depth application to these challenging problems123

is a future research direction.124

Preliminary results of this work were presented in [24].125

Notation: [x; y] denotes vertical concatenation of two vectors x ∈ Rn and y ∈ Rm.126

|I| indicates cardinality of a set I, σ̄(P ) is the maximum singular value of a matrix127

P ∈ Rn×n, r̄ is the complex conjugate of r ∈ Cn and 〈r, q〉 = r̄T q is the scalar product128

between complex vectors r, q ∈ Cn. Where evident from the context, subscripts of129

vectors and matrices are used to specify their elements (e.g., x3 is the third element of130

x ∈ Rn); the symbolˆis used for solutions of an optimization; the symbol˜is used for131

uncertain quantities; diag(·) indicates a block diagonal matrix made up of elements132

in ·.133

2. Background. This section provides an overview on the techniques and tools134

employed in the work. The first subsection presents the theoretical background of135

bifurcation (2.1.1) and numerical continuation (2.1.2). This is followed by a short136

introduction to the robust control concepts of LFT models (2.2.1) and µ analysis137

(2.2.2).138

2.1. Nonlinear dynamics approaches.139

2.1.1. Bifurcation theory. Consider an autonomous nonlinear system of the140

form141

(2.1) ẋ = f(x, p),142
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where x ∈ Rnx and p ∈ Rnp are respectively the vectors of states and bifurcation143

parameters, and f : Rnx × Rnp → Rnx is the vector field. In this work f is assumed144

to gather smooth nonlinear functions (f ∈ C∞). Therefore, the Jacobian matrix of145

the vector field ∇xf : Rnx × Rnp → Rnx×nx , denoted here by J , is always defined.146

The vector x0 is called a fixed point or equilibrium of (2.1) corresponding to p0147

if f(x0, p0) = 0. Let us denote with n0 the number of eigenvalues of J(x0, p0) with148

zero real parts, respectively. Then x0 is called a hyperbolic fixed point if n0 = 0,149

otherwise it is called nonhyperbolic. Bifurcations of fixed points are concerned with150

the loss of hyperbolicity of the equilibrium as p is varied. Two scenarios can take151

place: static bifurcations and dynamic bifurcations [27, 21]. The former arise when152

J is singular at an equilibrium, i.e., it has a zero eigenvalue. The common feature153

of static bifurcations is that branches of fixed points meet at the bifurcation point.154

In the case of dynamic bifurcations, branches of fixed points and periodic solutions155

meet. This case, also referred to as Hopf bifurcation, is the focus of this work and is156

formally described by the following theorem.157

Theorem 2.1 ([21] Hopf bifurcation theorem). Suppose that the system ẋ =158

f(x, p), x ∈ Rnx and p ∈ R has an equilibrium (xH , pH) at which the following159

properties are satisfied.160

1. J(xH , pH) has a simple pair of pure imaginary eigenvalues and no other ei-161

genvalues with zero real parts. This implies, for the implicit function theorem,162

that there is a smooth curve of equilibria (x(p), p) with x(pH) = xH . The ei-163

genvalues ν(p), ν̄(p) of J(x(p)), with ν(pH)=iωH , vary smoothly with p.164

2. It holds165

(2.2)
d

dp
(Re ν(p))|p=pH = l0 6= 0.166

Then there is a unique three-dimensional center manifold passing through (xH , pH) in167

Rnx ×R and a smooth system of coordinates for which the Taylor expansion of degree168

3 on the center manifold is given in polar coordinates (ρ, θ) by169

(2.3)
ρ̇ = (l0p+ l1ρ

2)ρ,

θ̇ = ω + l2p+ l3ρ
2,

170

where l0, l1, l2, and l3 are real coefficients defining the manifold. If l1 6= 0, there is a171

surface of periodic solutions in the center manifold which has quadratic tangency with172

the eigenspace of ν(p), ν̄(p). If l1 < 0, then these periodic solutions are stable limit173

cycles, while if l1 > 0, the periodic solutions are repelling.174

Note first that the theorem is typically stated considering a scalar p since the Hopf175

bifurcation is codimension-1. Condition 1 of Th. 2.1 requires that the Jacobian of the176

vector field has a pair of purely imaginary eigenvalues (and no other eigenvalues on the177

imaginary axis). Condition 2, also known as the transversality condition, prescribes178

that these eigenvalues are not stationary with respect to p at the bifurcation. A179

fundamental parameter determining the dynamic behaviour in the neighborhood of a180

Hopf point is l1, also called the first Lyapunov coefficient. Its value determines whether181

the Hopf bifurcation is subcritical or supercritical, and its analytical expression is given182

by [27]183

(2.4) l1 =
1

2ωH
Re〈r, C(q, q, q̄)− 2B(q,A−1B(q, q̄)) +B(q̄, (2iωHIn −A)−1B(q, q))〉.184
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Here the complex vectors r, q ∈ Cnx satisfy185

(2.5) Jq = iωHq, JT r = −iωHr, 〈r, q〉 = 1.186

The functions B : Rnx ×Rnx → Rnx and C : Rnx ×Rnx ×Rnx → Rnx are the tensors187

of second and third order derivatives evaluated at xH , respectively. For example, for188

vectors ξ, ς, χ ∈ Rnx , B(ξ, ς) and C(ξ, ς, χ) are in Rnx with components189

(2.6)

Bi(ξ, ς) =

nx∑
j,k=1

∂2fi(x, p)

∂xjxk

∣∣∣∣
x=xH ,p=pH

ξjςk, i = 1, 2, ..., nx,

Ci(ξ, ς, χ) =

nx∑
j,k,l=1

∂3fi(x, p)

∂xjxkxl

∣∣∣∣
x=xH ,p=pH

ξjςkχl, i = 1, 2, ..., nx.

190

2.1.2. Numerical continuation. The computational tool of bifurcation analy-191

sis is numerical continuation, providing path following algorithms allowing implicitly192

defined manifolds [19] to be computed. These schemes are based on the implicit func-193

tion theorem (IFT) [45], which guarantees, under the condition that J is non-singular194

at an initial point (x0, p0), that there exist neighbourhoods X of x0 and P of p0 and195

a function g : P → X such that f(x, p) = 0 has the unique solution x = g(p) in X.196

Examples of numerical techniques to compute the implicit manifold g are Newton-197

Raphson, arclength, and pseudo-arclength continuation [19], efficiently implemented198

in freely available software, e.g., AUTO [14], and COCO [10].199

A general continuation problem, so called extended, can be formulated as follows200

[9, 10]201

(2.7)
F (u, λ) :=

(
Φ(u)
Ψ(u)

)
−
(

0
λ

)
= 0,

Φ : Rnu → Rm, Ψ : Rnu → Rnλ ,
202

where Φ defines the zero problem in the vector u of continuation variables, Ψ denotes203

a family of monitor functions and λ is a vector of continuation parameters. It is204

straightforward to see that the goal of tracking equilibria of the vector field f can205

be pursued by solving the zero problem only with Φ = f , and u = [x; p]. However,206

the extended continuation problem in (2.7) allows for a greater variety of problems207

to be solved, as the related concept of restricted continuation problem shows. Let208

I ⊆ {1, ..., nλ} be an index set and Ī its complement in {1, ..., nλ}. Let λI = {λi|i ∈ I}209

and consider the restriction F (u, λ)|λI=λ∗I
satisfying the IFT at some point (u∗, λ∗ =210

Ψ(u∗)). Then F (u, λ)|λI=λ∗I
defines a continuation problem for a d-manifold with211

d = nu − (m + |I|). λĪ and λI are called the set of active and inactive continuation212

parameters respectively, since the former changes during continuation, while the latter213

remain constant. Analogously, equations corresponding to λĪ are inactive constraints,214

while equations corresponding to λI are active constraints, because they impose an215

additional condition on the solutions to the set of zero problems. The formulation216

(2.7) is implemented in the software COCO, which is used for all the continuation217

analyses performed in this work.218

2.2. Robust control theory.219

2.2.1. The Linear Fractional Transformation paradigm. Linear Fractional220

Transformation (LFT) is an instrumental tool in robust control theory for analysis221
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and control of uncertain systems [48]. For the sake of clarity, first an intuition of the222

reasoning behind LFT is given, followed by a more formal definition.223

The classic interpretation of an LFT is in terms of input to output relationship of224

a feedback interconnection. Let us consider a linear time invariant (LTI) system with225

transfer matrix (i.e. matrix of transfer functions) M22 ∈ Cp2×q2 , input v and output226

y. The system M22 is assumed to be exactly known, and thus is also termed nominal.227

If the model has uncertainties (which will be better characterized later), these can be228

modelled with an operator ∆u ∈ Cq1×p1 with input z and output w. The effect of ∆u229

on M22 can then be described by introducing the transfer matrices M11, M12 and M21.230

For example, in the case of parametric uncertainties, these will be simply static (gain)231

matrices, while for the case of unmodelled dynamics these could also have dynamic232

terms (e.g. low pass filters). The key point is that, by choosing these matrices, the233

analyst can describe with a certain flexibility how the perturbation affects the nominal234

system. Given this setting, Figure 1 shows the standard representation of LFT.

Fig. 1. Standard feedback representation of an LFT.

235

The central idea is thus to represent the uncertain system as a feedback of known236

components (the transfer matrices Mij) with uncertain (the operator ∆u) ones. In237

practice, this is done by pulling out of the system the unknown parts, so that the238

problem appears as a nominal system subject to an artificial feedback. Available239

toolboxes [28] allow this operation to be efficiently performed and provide the analyst,240

given a description of how the uncertainties affect the system, with the matrices Mij .241

In order to formally define an LFT, let us denote by M ∈ C(p1+p2)×(q1+q2) the242

partitioned transfer matrix (also termed coefficient matrix )243

(2.8) M =

[
M11 M12

M21 M22

]
,244

and let ∆u ∈ Cq1×p1 the uncertain operator. The LFT of M with respect to ∆u is245

defined as the map F : Cq1×p1 −→ Cp2×q2246

(2.9) F(M,∆u) = M22 +M21∆u(I −M11∆u)−1M12.247

With reference to Fig. 1, F(M,∆u) compactly defines the uncertain transfer matrix248

from input v to output y of the nominal system M22 when this is subject to ∆u.249

Indeed, for ∆u = 0 (no uncertainties in the model) it holds F(M,∆u) = M22. It is250

also important to observe that M11 is, within this input to output framework, the251

transfer matrix seen by the perturbation block ∆u. A crucial feature apparent in (2.9)252

is that the LFT is well posed if and only if the inverse of (I−M11∆u) exists. Otherwise,253

F(M,∆u) is said to be singular. Singularity of the LFT is typically associated with the254

loss of stability of the underlying uncertain system, and thus finding the uncertain255

perturbations for which this happens is typically the objective of robust stability256

analysis (details on this will be provided in Sec. 2.2.2).257
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In robust control, ∆u typically gathers parametric and dynamic uncertainties and258

can be represented as259

(2.10)
∆u = diag(δiIdi , δjIdj ,∆Dk),

i = 1, ..., nR, j = nR + 1, ..., nR + nC , k = 1, ..., nD,
260

where the uncertainties associated with nR real scalars δi, nC complex scalars δj ,261

and nD unstructured (or full) complex blocks ∆Dk are listed in diagonal format.262

The identity matrices of dimension di and dj take into account the fact that scalar263

uncertainties might be repeated in ∆u when the LFT of the system is built up. For264

example, if a matrix has the parameter δi on three different rows, in order to cast265

it in the form of an LFT (2.9) it will be necessary to have di=3 [28]. Typically the266

uncertain parameters are normalized by scaling of M such that ∆u = 0 coincides with267

the nominal system (i.e., uncertain parameters at their nominal values) and σ̄(∆u) ≤ 1268

when uncertainties take values in the allowed interval. The set in (2.10) is generally269

referred to as structured because of the block diagonal structure. This feature, enabled270

by the LFT modeling paradigm, is known to provide less conservative results in the271

analysis of uncertain systems with respect to unstructured representations (used, for272

example, in the celebrated small gain theorem [48]).273

This work leverages the LFT framework for analysis of nonlinear systems. The274

interpretation given previously, while providing insights into this paradigm, cannot275

be thus readily used since it requires transfer matrices. For this reason, an alternative276

viewpoint on LFT is proposed.277

Let us start by considering the state-space (SS) representation (A,B, C,D) of the278

nominal LTI system with transfer matrix M22279 {
ẋ = Ax+ Bv,
y = Cx+Dv,

(2.11a)280

M22(s) = D + C(sInx −A)−1B,(2.11b)281282

where s is the Laplace variable. Define now283

(2.12) Mν =

[
A B
C D

]
, ∆ν =

1

s
Inx .284

It can then be shown that F(Mν ,∆ν) = M22. This follows directly from285

(2.13) F(Mν ,∆ν) = D + C 1

s
Inx(Inx −

1

s
A)−1B = D + C(sInx −A)−1B = M22(s),286

where the diagonal structure of ∆ν and the fact that 1
s 6= 0 have been exploited.287

This result shows that the LFTs generalize the realization of transfer matrices into288

state-space (SS) representations to the case of rational multivariate matrices. For this289

reason, the LFT paradigm can also be regarded as a realization technique [28].290

This interpretation also highlights a paramount aspect for the present work. The291

poles of (2.11) are typically found via eigenvalue analysis of A. Equivalently, the292

system has a given pole ν if (νInx −A)−1 is singular. Note that this latter condition293

can be formulated as the singularity of the LFT F(Mν ,∆ν) by replacing s = ν. In294

particular, the LTI (2.11) has a purely imaginary eigenvalue (i.e. it is neutrally stable)295

if there exists ω > 0 for which F(Mν ,∆ν) is singular with s = iω.296

Let us consider now the case when the LTI system (2.11) is subject to uncertain-297

ties. The problem can be described with the LFT formalism considering two blocks298
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for the uncertain operator, namely ∆u containing the structured perturbations, and299

∆ν . The coefficient matrix M is partitioned correspondingly300

(2.14) M =

 A A12 B
A21 A22 B1

C C1 D

 , ∆ = diag(∆ν ,∆u).301

A pictorial representation of the LFT F(M,∆) defined by the operators in (2.14) is302

given in Figure 2.303

Fig. 2. LFT of an uncertain state-space model.

The difference between the representations in Figure 1 and Figure 2, both describ-304

ing an uncertain system, is that in the former the system is described via its transfer305

matrices, while in the latter a state-space representation is used. One can switch from306

the first to the second representation by exploiting the fact that F(Mν ,∆ν) = M22307

(which was proved above).308

The consequence of this change of representation is that the new block ∆ν appears.309

Correspondingly, the coefficient matrix M (2.14) now features the matrix Mν (2.12)310

plus other matrices describing the effect of the uncertainties on the state-matrices.311

Note indeed that the transfer matrices M11, M12 and M21 will also be expressed here312

with their SS representation. Let us assume now that (2.11) is nominally stable (i.e.313

A has all the eigenvalues in the left half-plane). Then the uncertain LTI system has314

a purely imaginary eigenvalue if there exist ω > 0 (with s = iω) and a combination315

of the uncertainties in ∆u for which F(M,∆) (2.14) is singular.316

The advantage of this representation, which is key for the present work, is that317

LFTs can be constructed even for systems which do not have transfer matrices, if an318

appropriate state-space description is available. Sec. 3.1 will be devoted to showing319

which crucial steps can be taken in order to apply this rationale to the prototype of320

vector field introduced in (2.1).321

Note finally that a useful property when dealing with LFTs featured by distinct322

∆-blocks is that interconnections of LFTs can be rewritten as one single LFT. This323

is only a numerical aspect relative to the construction of LFT models, but it greatly324

helps to separate modeling-specific details of the system under consideration and to325

ease the algebraic manipulations. By virtue of this, it holds for the LFT defined in326

(2.14)327

(2.15) F(M,∆) = F(F(M,∆ν),∆u).328

2.2.2. µ analysis. The µ analysis technique leverages the key features of LFT329

modeling reviewed in the previous section to address the robust stability analysis of330
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LTI systems in the face of uncertainties. The structured singular value is a matrix331

function denoted by µ∆(M) and several equivalent definitions are available in the332

literature [48, 15, 35]. A definition which encompasses the aspects relevant to this333

work is334

(2.16) µ∆(M) =

(
min

∆
(κ : F(F(M,∆ν),∆u) is singular, σ̄(∆u) ≤ κ

)−1

,335

where κ is a real positive scalar, and µ∆(M) = 0 if the minimization problem has no336

solution.337

Based on the point of view of LFT as realization technique, an interpretation of338

the µ analysis technique is as worst-case eigenvalue analysis for uncertain systems.339

Let us focus on the operator ∆ of the LFT F(M,∆) defined in (2.14). The block340

∆ν does not represent a true uncertainty of the system, and its meaning is that the341

singularity of the LFT is checked against all the possible eigenvalues on the imaginary342

axis. For the sake of understanding, one can think of realizing this block by considering343

a set of frequencies ω and evaluating ∆ν at ν = iω. By doing this, ∆ = ∆u and the344

problem defined in (2.16) consists of finding the perturbation matrix with the smallest345

maximum singular value (also termed worst-case matrix) such that the uncertain346

system has a pair of purely imaginary eigenvalues ±iω. Therefore, µ∆(M) provides a347

robust stability (RS) test for an uncertain linear system. Specifically, if µ∆(M) ≥ 1 a348

candidate (i.e., within the allowed range of the uncertainty set) perturbation matrix349

exists that violates the well-posedness of F(M,∆). In essence, the uncertain state-350

matrix has the eigenvalues s = ±iω for a certain combination of the uncertainties351

in the allowed range. On the contrary, if µ∆(M) < 1 then there is no perturbation352

matrix inside the set ∆ such that the F(M,∆) is ill-posed and thus the system is353

robust stable within the range of uncertainties considered.354

In the most established algorithms [2], µ is evaluated on a discretized frequency355

range. That is, the ∆ν block is realized as discussed before on a pre-selected grid356

of frequencies, and the corresponding set of matrices M(iω) (the dependence on the357

frequency is now stressed) is computed. Subsequently, µ∆(M(iω)) is computed and358

a frequency-domain representation of the results is obtained. This is done in order359

to avoid the need to solve the optimization problem (2.16) on a continuous range of360

frequency, which proves computationally challenging. An exception to this common361

practice worth mentioning is represented by recently developed Hamiltonian-based362

algorithms (i.e. SMART library [39] and Robust Control Toolbox from MATLAB363

R2016b) which guarantees the validity of results over a continuous range of frequen-364

cies.365

Finally, note that (2.16) is an NP-hard problem with either pure real or mixed366

real-complex uncertainties [5], thus all µ algorithms work by searching for upper367

and lower bounds. The upper bound µUB provides the maximum size perturbation368

σ̄(∆UB
u ) = 1/µUB for which RS is guaranteed, whereas the lower bound µLB defines369

a minimum size perturbation σ̄(∆LB
u ) = 1/µLB for which RS is guaranteed to be370

violated. Along with this information, the lower bound also provides the matrix ∆LB
u371

determining singularity of the LFT.372

3. Main results. In this section the main result of the work is presented. The373

problem addressed by this article is formally defined in section 3.1 and in section374

3.2 a solution by means of a nonlinear optimization program is proposed. The step-375

by-step presentation, from Program 3.1, which calculates the smallest perturbations376

making the Jacobian unstable, to Program 3.4, which computes the closest subcritical377



10 A. IANNELLI, M. LOWENBERG, AND A. MARCOS

and supercritical Hopf bifurcations, aims at clearly presenting the formulation of378

robust bifurcation margins. Note that only Program 3.2 and Program 3.4 are actually379

needed to solve the problem (depending on whether the type of Hopf bifurcation is380

specified or not). In section 3.3 a multi-start strategy is described, within the extended381

continuation paradigm, to mitigate the issue of local optima. Finally, in section 3.4 a382

critical comparison with an alternative method from the literature solving a similar383

problem is discussed.384

3.1. Problem statement. The usual starting point in bifurcation analysis is385

Eq. (2.1), where f is a nominal vector field, meaning that the only dependence386

is on the state x and bifurcation parameter p. The latter is of size np = 1 for387

continuation of equilibrium points since all their bifurcations have codimension 1, and388

thus 1 parameter is sufficient for its analysis (this of course includes the case of Hopf389

bifurcations, see Theorem 2.1). Consider the case when parametric uncertainties affect390

the dynamics, e.g. because of lack of confidence on the values of model parameters or391

simplifying assumptions underlying the model. The presence of uncertainties can be392

modelled by introducing the uncertainty vector δ393

(3.1) δ = [δ1; ...; δi; ...δnδ ], δ ∈ Rnδ .394

The vector field depends now on δ, in addition to x and p. To highlight this, we395

denote the uncertain vector field by f̃ and the associated Jacobian by J̃396

ẋ = f̃(x, p, δ),(3.2a)397

f̃ : Rnx × R× Rnδ → Rnx , f̃ ∈ C∞,(3.2b)398

J̃ : Rnx × R× Rnδ → Rnx×nx .(3.2c)399400

The objective of the work is then to compute the margins of stable equilibria from the401

closest Hopf bifurcation for nonlinear systems affected by parametric uncertainties.402

To better understand this, assume that the nominal system f has a Hopf bifurcation403

point (xH , pH), while for another value of the bifurcation parameter p̄0 a stable fixed404

point x̄0 exists for f . The goal is to determine the smallest (or worst-case) perturba-405

tion δ̄ ∈ δ such that f̃ undergoes a Hopf bifurcation at p̄0. It is key to observe that the406

Hopf bifurcation is triggered by perturbations in δ, while the bifurcation parameter407

is fixed at p̄0. The reason for this is that the aim here is to compute the margin of408

a certain condition from the occurrence of the bifurcation. Thus, p, which generally409

defines an operating condition (e.g. load power in an electric power system, speed for410

an aircraft) is kept fixed at the value p̄0 which identifies the condition for which the411

margin is computed. This is different from what is done in the direct method [12]412

(the other approach that looked at a similar problem) where there is no distinction413

between bifurcation and uncertain parameters, both collected in p (which is then mul-414

tidimensional). As a result of this, all the entries of p are allowed to be perturbed in415

order to trigger the bifurcation, whereas here the distinction between p (of dimension416

1) and δ (of dimension nδ, depending on how many uncertainties are considered) is417

clear. See section 3.4 for a thorough comparison with the direct method.418

It is often relevant to distinguish between supercritical and subcritical Hopf bifurca-419

tions, hence two distinct worst-case perturbations will be considered. For the sake420

of readability, this distinction will be highlighted in the text when relevant but the421

notation used will be δ̄ in both cases.422

In order to quantify the margin to the closest bifurcation, and thus to allow the423

concept of worst-case uncertainty to be formalized, a metric for the magnitude of the424
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perturbation must be adopted. The adopted metric should measure in some quanti-425

tative form the perturbation to which the system is subject. This task is arbitrary426

and a common approach from robust control is followed [48] (see also section 2.2.2).427

Consider a generic uncertain parameter d, with wd indicating the uncertainty level428

with respect to a nominal value d0 and δd ∈ [−1, 1] representing the normalized un-429

certainty range. Note that d0 and wd are typically fixed by the analyst based on the430

knowledge of the nominal value and dispersion of the parameter d respectively. A431

multiplicative uncertain representation of d is thus obtained as432

(3.3) d = (1 + wdδd)d0,433

where δd = 0 corresponds to the nominal value of d, while δd = ±1 represents a434

perturbation at the extreme of the parameter range (e.g., a variation of ±20% from d0435

if wd = 0.2). Once the normalization (3.3) is applied to all the uncertain parameters in436

(3.1), a possible scalar metric (or norm) to quantify the magnitude of the perturbation437

is the largest of the absolute values of the elements in δ. This can be equivalently438

expressed as σ̄(diag(δ)), i.e., the maximum singular value of the diagonal matrix with439

elements of δ on the diagonal. Such a metric quantifies the deviation of the uncertain440

parameters from their nominal values along the direction of the parameter space441

where this is largest. The objective is thus to compute the perturbation vector with442

the smallest possible norm, providing therefore the distance from the closest Hopf443

bifurcation.444

In fact, km = σ̄(diag(δ)) can be regarded as a robust margin from bifurcation be-445

cause km ≤ 1 means that a candidate (i.e., within the allowed range of the uncertainty446

set) perturbation exists which determines a Hopf bifurcation. Thus, the equilibrium447

x̄0 of the nominal vector field is not robustly stable at p̄0. On the contrary, if km > 1448

then there is no perturbation inside the allowed set which is capable of prompting a449

Hopf bifurcation. This is pictorially represented in Figure 3, where on the x-axis is450

reported the bifurcation parameter and on the y-axis the margin km (note that the451

case p̄0 < pH where a Hopf bifurcation is encountered by increasing p is assumed here452

without loss of generality). When the line km = 1 is crossed, the system is operated in453

a region where Hopf bifurcations can occur in the face of the uncertainties accounted454

for in the system (shaded area).

0

1

Fig. 3. Concept of robust bifurcation margins.

455
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3.2. Solution via nonlinear optimization. The fundamental idea to address456

the stated objective is to exploit the interpretation of LFTs discussed in Sec. 2.2.1.457

Consider for a moment only Condition 1 of Theorem 2.1, which prescribes a pair of458

purely imaginary eigenvalues for the Jacobian. If J̃ is interpreted as the uncertain459

state-matrix of the linear case, an LFT model of the former with respect to the460

uncertain parameters in δ can be built up (numerically or analytically [29]). The461

main difference from the linear case is that in general J̃ is also a function of the states462

of the system x. This reflects the fact that in the nonlinear context uncertainties463

have a twofold effect on stability. They directly affect the matrix J̃ as independent464

variables, but also indirectly by changing the location of the equilibrium (around465

which the vector field is linearized). The latter is a distinctive feature of the nonlinear466

setting, since in the linear case the location of the equilibrium does not have any effect467

on the spectrum of the state-matrix, and thus on stability. In full generality, the LFT468

of the Jacobian F(MJ̃ ,∆) can be written as469

F(MJ̃ ,∆) = F(F(F(MJ̃ ,∆ν),∆x),∆u),(3.4a)470

∆ = diag(∆u,∆x,∆ν), MJ̃ =
[
MJ̃11

MJ̃12
;MJ̃21

MJ̃22

]
,(3.4b)471

∆u = diag(δ1Id1 , ..., δiIdi , ..., δnδIdnδ ),(3.4c)472

∆x = diag(x1Ix1
, ..., xjIxj , ..., xnxIxnx ),(3.4d)473

∆ν =
1

ν
Inx , ν = iω,(3.4e)474

475

where (3.4a) exploits the property of interconnected LFTs, and ∆u is a particular476

instance of the structured uncertainty set defined in (2.10), considering only real pa-477

rameters. Compared to the linear case (2.15), ∆ features now an additional structured478

block ∆x, which arises when performing the LFT modeling of J̃ due to the states ex-479

plicitly appearing in the Jacobian, and for which a similar representation to the one480

for ∆u is employed. ∆ν finally restricts the attention to purely imaginary eigenvalues481

of J̃ with frequency ω.482

Condition 1 of Theorem 2.1 can then be expressed as the singularity of the LFT483

(3.4a). This is the central step of the proposed extension of µ from the linear con-484

text, where J̃ would be the uncertain state-matrix, to the nonlinear one. In fact, µ485

computes by definition the worst-case perturbation matrix which makes the underly-486

ing LFT ill-posed and employs the same metric (2.16) as the one used to define the487

robust bifurcation margin km. It follows indeed from the definitions and properties488

commented earlier that km = σ̄(diag(δ)) = σ̄(∆u). Specifically, km is the reciprocal489

of µ and it has been adopted here because of its straightforward meaning of distance490

(or margin) to the onset of a bifurcation. Note in this regard that the symbol km491

was used in the early stages of robust control with the name of excess stability margin492

[43, 42].493

The discussion above paves the way for the nonlinear program presented next,494

which aims to compute the smallest perturbation for which J̃ has a pair of purely495

imaginary eigenvalues.496

Program 3.1.

min
X

km such that


f̃(x, p̄0, δ) = 0,(3.5a)

F(MJ̃ ,∆) is singular,(3.5b)

σ̄(∆u) ≤ km,(3.5c)
497

X = [x; δ;ω],498
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where X is the vector of optimization variables including: states x; uncertain param-499

eters δ; and frequency ω. X̂ will indicate the solution vector gathering x̂, δ̂, and ω̂500

respectively. Let us examine the constraints of the program. Eq. (3.5a) guarantees501

that the solution (x̂, δ̂) corresponds to an equilibrium point for the system. Eq. (3.5b)502

ensures that J̃ has a pair of complex eigenvalues ν = ±ω̂, and Eq. (3.5c) bounds the503

size of the perturbation matrix.504

This is a similar optimization problem to that in (2.16), with two crucial dif-505

ferences: constraint (3.5a), and the addition of ∆x in the block ∆ of F(MJ̃ ,∆) (to506

which, notably, constraint (3.5c) does not apply). Due to these differences, available507

algorithms for µ cannot be applied to compute solutions of (3.5), thus alternative ways508

should be pursued. Let us examine closely (3.5b), which prescribes singularity of an509

LFT. According to the definition given in (2.9), necessary and sufficient condition510

for the well-posedness of a generic LFT F(M,∆u) is the existence of the inverse of511

the matrix (I −M11∆u). Note that M11 is, as also previously observed, the transfer512

matrix seen by the perturbation block ∆u. In the context of the LFT F(MJ̃ ,∆)513

introduced in (3.4), this means that the singularity constraint (3.5b) holds if and only514

if det(I −MJ̃ 11∆) = 0. This, in turn, can be recast as nonlinear constraints in the515

optimization variables X.516

As for (3.5c), this is a non-smooth constraint because of the maximum singular value517

operator, but it can be drastically simplified by exploiting the structure of ∆u (3.4c).518

Indeed this constraint is equivalent to519

(3.6) − km ≤ δi ≤ km, i = 1, ..., nδ,520

which is a set of linear inequalities in the optimization variables and the objective521

function km. Note that a similar relaxation would hold also for complex scalar uncer-522

tainties, not considered in this work.523

Based on the previous discussion, the following smooth nonlinear optimization524

problem is proposed to solve Program 3.1.525

Program 3.2.

min
X

km such that


f̃(x, p̄0, δ) = 0,(3.7a)

det(I −MJ̃ 11∆) = 0,(3.7b)

−km ≤ δi ≤ km, i = 1, ..., nδ,(3.7c)
526

X = [x; δ;ω], nctrs = nx + 2 + nδ,527

where nctrs denotes the number of total constraints of the optimization.528

The key idea behind Program 3.2 is to enforce singularity of the LFT (3.5b) by529

using directly the determinant condition represented by constraint (3.7b). In [40]530

this is listed among the known methods for the computation of µLB , and examples531

of related algorithms can be found in [22, 47]. The approaches presented in those532

works, however, are limited to the case of linear systems, i.e., they represent alter-533

natives to well-established µ lower bounds algorithms such as the power iteration534

[36] and the gain-based method [44]. To the best of the authors’ knowledge, this535

is indeed the first time that the concept of structured singular value is used in the536

context of worst-case bifurcations of a nonlinear vector field. Moreover, Program 3.2537

recasts the optimization so that the objective function and the constraints are smooth.538

This differs from the aforementioned works where the optimization was performed by539

minimizing the nonsmooth function σ̄(∆u). This is overcome here by considering540
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the relaxation commented in (3.6) and introducing the objective function km as an541

additional optimization variable.542

Remark 3.1. Constraint (3.7b) consists of two (real and imaginary parts of the543

determinant) nonlinear equality constraints in the variables X. By using Laplace544

expansion of the determinant [1] and the fact that ∆ is structured, an analytical545

expression for the gradient of (3.7b) with respect to δ and x can be obtained and546

provided to the optimizer. As for ω, this is more tedious and therefore finite differences547

are employed.548

Note also that, from a continuation perspective, (3.7b) can be regarded as an analog549

of the real scalar test functions commonly used to detect Hopf bifurcations [3]. The550

latter can be efficiently formulated by means of bordered matrices techniques and551

have the property that the test function has a zero at a bifurcation point. The main552

difference here is that (3.7b) is complex, thus consists of two real scalar equations.553

This is due to the fact that the frequency ω of the purely imaginary eigenvalues appear554

explicitly in the constraint (and thus is an additional independent variable), which555

is different from the test functions formulation. This is an important feature of the556

developed approach, and possible ways to exploit it will be discussed later.557

Enforcing the transversality condition558

Program 3.2 allows worst-case perturbations to be computed such that the Ja-559

cobian of f̃ linearized around the perturbed equilibrium point has a pair of purely560

imaginary eigenvalues. This, however, does not guarantee that the perturbed system561

undergoes a Hopf bifurcation because transversality (Condition 2 of Theorem 2.1) is562

not automatically verified. Constraints guaranteeing that transversality is satisfied563

can be appended to (3.7) in different ways, including using test functions [3] or au-564

tomatic differentiation [23]. Here an approach leveraging the versatility of the LFT565

paradigm is proposed. Consider a small fixed constant εp which defines the perturbed566

bifurcation parameter p̄εp = (1 + εp)p̄0. The LFT F(M ε
J̃
,∆ε) of the Jacobian at p̄εp567

can be written following (3.4) as568

F(M ε
J̃
,∆ε) = F(F(F(M ε

J̃
,∆ε

ν),∆ε
x),∆u),(3.8a)569

∆ε = diag(∆u,∆
ε
x,∆

ε
ν), M ε

J̃
=
[
M ε
J̃11
M ε
J̃12
,M ε

J̃21
M ε
J̃22

]
,(3.8b)570

∆ε
x = diag((1 + εx)x1Ix1 , ..., (1 + εx)xjIxj , ..., (1 + εx)xnxIknx ),(3.8c)571

∆ε
ν =

1

νε
Inx , νε = εν + (1 + εω)ω,(3.8d)572

573

where εν , εx, and εω are unknown scalars described later. The following optimization574

problem is then proposed to determine the worst-case perturbation for which both575

conditions of the Hopf theorem are guaranteed to hold, that is, to calculate the margins576

to the closest Hopf bifurcation point.577

Program 3.3.

min
X

km such that



f̃(x, p̄0, δ) = 0,(3.9a)

det(I −MJ̃ 11∆) = 0,(3.9b)

−km ≤ δi ≤ km,(3.9c)

f̃((1 + εx)x, p̄εp , δ) = 0,(3.9d)

det(I −M ε
J̃ 11

∆ε) = 0,(3.9e)
578

X = [x; δ;ω; εν ; εx; εω], nctrs = nx + 2 + nδ + nx + 2.579
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The first set of constraints (3.9a-3.9c) is identical to those in Program 3.2. The580

constraints (3.9d-3.9e) instead ensure that the Jacobian linearized at p̄εp has an ei-581

genvalue νε with real part εν (3.8d). Making use of a finite difference approximation,582

it follows from the definition in (2.2) that l0 = εν
εp

. Therefore, existence of a solution583

to Program 3.3 with ε̂ν 6= 0 guarantees a Hopf bifurcation for the system.584

Underlying Program 3.3 there is a perturbation argument which builds on the585

application of the IFT to the states x and the eigenvalue ν of the vector field f̃(x, p, δ̂)586

for fixed δ̂ and p in a neighbourhood of p̄0. Indeed, at p = p̄0, it holds x = x̂ and587

ν = iω̂ for the constraints (3.9a-3.9c). When perturbing p by a small increment εp,588

a first order approximation for x and ν is assumed, and reflected in the choice of the589

scalars εx (3.8c), as well as εω and εν (3.8d). A vector εx, with an element for each590

component of x, could also be considered, by adding nx−1 unknowns to Program 3.3.591

Remark 3.2. Program 3.2 does not mathematically guarantee the onset of a Hopf592

bifurcation because it does not take into account the transversality condition, and593

for this reason Program 3.3 is proposed. However, for engineering systems where p594

has a physical meaning (e.g., load power in a power system, speed for an aircraft)595

the transversality condition is often automatically verified. In fact, cases where this596

condition is not satisfied are termed degenerate in the literature [18]. For this reason,597

the problem was stated in Sec. 3.1 assuming that the nominal system has a bifurcation598

at pH whereas for p = p̄0 the system has a stable equilibrium. It is thus implicit in599

the formulation of the problem that a change of p has an effect on the stability of600

the system. In particular, it is expected that the critical eigenvalues of the perturbed601

Jacobian will cross the imaginary axis as p is perturbed around p̄0.602

It is observed that, compared to Program 3.2, Program 3.3 only adds three unknowns603

to the vector of optimization variables X, and has nx + 2 additional constraints.604

Its effect in terms of computational cost is thus not expected to be important.605

However, a strong reason to resort to Program 3.2 whenever possible is related to606

the local optimality of the solutions of nonlinear programs. This issue will be further607

discussed in Sec. 3.3, but it is remarked here that the addition of the constraints608

(3.9d-3.9e) has a detrimental effect on it. Indeed it is always advisable in nonlinear609

optimization to avoid redundant constraints in order to reduce the likelihood of local610

optima [33]. Based on these considerations, and the discussion in Remark 3.2, the611

proposed strategy is to employ Program 3.2 to find robust bifurcation margins and, if612

continuation analyses of the perturbed system show that the transversality condition613

is not fulfilled, use Program 3.3. It is noted that none of the analyses done in support614

of this study required the adoption of Program 3.3 (which however was tested to verify615

its soundness). For this reason, and also for the sake of clarity, in the remainder of the616

work Program 3.2 will be considered as the basis for discussion and further algorithms.617

Specifying the type of closest Hopf bifurcation618

The robust bifurcation margin km has been associated so far with the occur-619

rence of a generic Hopf bifurcation. Attention is now focused on the nature of the620

bifurcation, i.e., subcritical or supercritical. The idea is to add a condition on the621

sign of the Lyapunov coefficient l1 to the constraints of Program 3.2. This can be622

done by using the definition of l1 (2.4), which requires the computation of left and623

right eigenvectors associated with the critical eigenvalue, and the tensors of second624

and third order derivative. By exploiting the fact that ω is an optimization variable,625

the eigenvectors can be computed without performing an eigenvalue analysis, but by626



16 A. IANNELLI, M. LOWENBERG, AND A. MARCOS

direct computation as follows627

(3.10)

(J̃ − iωInx)q = 0, q = [1; ql],

(J̃T + iωInx)r = 0, r = [1; rl],

〈r, q〉 = 1,

628

where without loss of generality the first element of the eigenvectors has been fixed629

to 1. As for the tensors, the derivatives in (2.6) can be computed analytically in630

simple cases and by automatic or symbolic differentiation for more complex ones.631

Alternatively, in [27] efficient strategies to avoid computing second and third order632

derivatives of the vector field are discussed. In any case, they are available as a633

function of the optimization variables x and δ, and thus the only addition to the634

vector of unknowns X is essentially l1.635

In conclusion, given a positive tolerance εl on the value of the Lyapunov coefficient,636

and an integer sl = ±1 defining the sign of l1 (sl = 1 for subcritical and sl = −1637

for supercritical), the following program allows the closest subcritical or supercritical638

Hopf bifurcation to be computed.639

Program 3.4.

min
X

km such that


f̃(x, p̄0, δ) = 0,(3.11a)

det(I −MJ̃ 11∆) = 0,(3.11b)

−km ≤ δi ≤ km, i = 1, ..., nδ,(3.11c)

sll1 − εl > 0,(3.11d)
640

X = [x; δ;ω; l1], nctrs = nx + 2 + nδ + 1.641

To summarize the content of this Section, the problem of computing the closest642

Hopf bifurcation point in the uncertain parameter space has been formulated via643

a nonlinear optimization problem and has been presented incrementally in order to644

stress the key steps involved. Because the Hopf bifurcation can be of two types, namely645

subcritical and supercritical, two Programs are proposed. Program 3.2 determines646

the closest Hopf bifurcation to a given stable equilibrium (this might be subcritical or647

supercritical, depending on the specific case), whereas Program 3.4 allows the type of648

closest Hopf bifurcation (via a constraint on the Lyapunov coefficient) to be specified.649

650

3.3. Continuation-based multi-start strategy. The programs discussed in651

Section 3.2 allow margins to Hopf bifurcation for a nominally stable equilibrium point652

in the face of uncertainties to be computed. The main issue with this approach is653

that, due to the fact that is based on nonlinear optimization, there is no guarantee654

that the one found is the closest bifurcation, and thus in practice only upper bounds655

on km are computed. In other words, global minima might be missed and thus there656

could be a vector δ̄ featuring a smaller norm than δ̂ which causes a Hopf bifurcation.657

Local optima are a well known issue in nonlinear optimization and, while there exist658

global optimization algorithms that can guarantee global optima, their computational659

burden grows exponentially with the dimension of the problem and thus often are not660

practical solutions [33].661

Mitigation strategies when local solvers (e.g. interior point methods) are used662

depend on several aspects, including specific features of the program (e.g., objective663

functions) and adopted optimization algorithms [17]. For this problem the objective664
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is to compute worst-case perturbations quantified by means of a scalar metric, thus a665

possible way to account for this issue is to estimate a guaranteed smallest magnitude666

of the perturbation for which the system is stable. This is the approach taken in µ667

analysis, where the computation of µLB is known to be prone to local minima and as668

a remedy upper bounds µUB have been proposed. Lower bounds on km (nonlinear669

analogs of µUB) could then be a strategy in the present context, but this has not been670

pursued here and could be a topic of future research.671

As for the optimization algorithms, the focus of this work is not on developing672

ad-hoc advanced optimization strategies, hence off-the-shelf algorithms available in673

MATLAB for nonlinear constrained problems are employed [31]: These include: in-674

terior point, which solves the constrained problem using a sequence of unconstrained675

optimizations by using barrier or penalty functions to account for the constraints;676

active set and sqp, belonging to the class of sequential quadratic programmes, which677

directly solve the constrained problem via a series of approximating quadratic pro-678

gramming based on the Karush-Kuhn-Tucker equations (necessary conditions for op-679

timality of constrained optimization problems). Leveraging the availability of solvers680

based on different optimization methods, a (naive but possible) strategy employed in681

the work is to restart the programs using different solvers.682

Another good practice to reduce the likelihood of local minima is to formulate the683

problem in the simplest way possible [33], e.g., using smooth objective functions and684

constraints and avoiding redundant constraints. These two principles have guided685

the idea of introducing the objective function km to relax the non-smooth bound686

on the uncertainty set involving σ̄, which lead to the equivalent constraints (3.6).687

Moreover, the aim of simplifying as much as possible the set of constraints prompted688

the discussion in Remark 3.2, where it was proposed (based on a physically moti-689

vated assumption) to resort to Program 3.3 only if the solution does not satisfy the690

transversality condition.691

A strategy which exploits a distinctive feature of this formulation is to run Pro-692

gram 3.2 at a given frequency, i.e., ω does not belong to X but is fixed a priori. The693

rationale behind this is twofold. From a mathematical point of view, the optimization694

is simplified by the fact that constraint (3.7b) does not depend on the frequency and695

this enhances the accuracy of the result. From a bifurcation perspective, fixing the696

frequency restricts the mechanisms by which the system can undergo a Hopf bifur-697

cation when subject to uncertainties, which reduces the number of feasible solutions698

in the first place, and as a result makes it also more likely to detect the optimal one.699

A value of km can be associated with each discrete frequency, and the smallest of700

these values can be regarded as the most critical. A natural drawback of this ap-701

proach is that critical frequencies can be missed, but this can be overcome by running702

Program 3.2 in a second step with ω as optimization variable and initializing it with703

values corresponding to the critical solution.704

Despite these measures, the risk of falling into local minima is still present.705

In particular, the programs’ initialization represents a critical aspect and thus a706

continuation-based multi-start strategy is proposed. Assume that the optimizer has707

found a solution X̂ to Program 3.2. The goal is then to provide the optimizer with a708

set of initializations, derived from X̂ but possibly not leading the optimizer to find the709

same solution, which allows an exhaustive optimization campaign to be performed.710

The following extended continuation problem based on the constraints of Program 3.2711
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is first considered712

(3.12) F (x, δ, ω, λd, λk) =

 f̃(x, p̄0, δ)
det(I −MJ̃ 11∆)

σ̄(∆u)

−
 0

λd
λk

 = 0.713

This can be recast in the formalism of (2.7) by setting714

(3.13)

u = X = [x; δ;ω], u ∈ Rnu , nu = nx + nδ + 1,

λ = [λd;λk], λd ∈ R2, λk ∈ R1,

Φ = f̃(x, p̄0, δ), Φ : Rnu → Rnx ,
Ψ = [det(I −MJ̃ 11∆), σ̄(∆u)], Ψ : Rnu → R3,

F : Rnx+nδ+3 → Rnx+3.

715

Let I = {1, 2} and Ī = {3} be its complement, with λI = {λi|i ∈ I} and λĪ = {λi|i ∈716

Ī}, and u∗ = X̂, λ∗ = Ψ(u∗). By construction, the restriction F (u∗, λ)|λI=λ∗I
= 0717

and F (u, λ)|λI=λ∗I
satisfies the IFT at (u∗, λ∗). Therefore, F (u, λ)|λI=λ∗I

defines a718

continuation problem for the d-manifold with d = nx + nδ + 1 − (nx + 2) = nδ − 1.719

Note that λI (coinciding with λd) are inactive continuation parameters (corresponding720

to active constraints) because they are kept constant during continuation and they721

ensure the singularity of the LFT F(MJ̃ ,∆). Since λ∗d = 0, the corresponding active722

constraints could have been equivalently embedded in the zero function Φ but, for723

consistency with the parallel between f and Φ discussed in Sec. 2.1.2, this has been724

used for the vector field only. On the other hand, λ∗Ī (i.e., λk) corresponds to an725

inactive monitor function bookkeeping the magnitude of the perturbation at each726

step of the continuation.727

The manifold associated with (3.12), denoted here byH, represents the set of Hopf728

bifurcation points connected to the solution X̂ in the uncertain parameter space. A729

first important observation is that the dimension of H is nδ − 1. This is in agreement730

with the well known fact [3] that a branch (i.e., 1-dimensional manifold) of Hopf731

points can be obtained by continuing simultaneously two parameters starting from a732

known initial point. Indeed, in the case of two uncertainties (nδ = 2) H is the branch733

of Hopf points connected to the initial solution X̂.734

In principle, the computation of H could directly locate bifurcation points associ-735

ated with perturbations featuring a smaller magnitude than δ̂ by monitoring λk (note736

however that they could still be local optima since only the connected branches can737

be tracked). In addition to that, exploring the surroundings of X̂ (using a continu-738

ation meaning of this terminology) can provide the sought initialization points for a739

new optimization campaign. Unfortunately, H is generally multidimensional. In fact,740

it is reasonable to assume that even for a relatively small number of uncertainties741

computing H is not viable. To overcome this, a 1-dimensional restriction of H is742

constructed by considering a parametrization of the uncertainty set δ with a vector743

function g(z, y) : R2 → Rnδ , where the 2 independent variables z and y have been744

introduced. The definition of g is arbitrary and various strategies can be pursued.745

The approach taken here assumes that two solutions X̂1, and X̂2 from Program 3.2746

are available (their selection will be commented on later). Given the associated per-747
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turbation vectors δ̂1, and δ̂2 ∈ Rnδ , a possible choice for g is then748

(3.14) g(z, y) : R2 → Rnδ



δ̂1
1z + δ̂2

1(1− y),

...

δ̂1
i z + δ̂2

i (1− y),

...

δ̂1
nδ
z + δ̂2

nδ
(1− y),

749

Note that by construction g(1, 1) = δ̂1 and g(0, 0) = δ̂2.750

Based on this, the following continuation problem is formulated751

(3.15) F (x, δ, ω, z, y, λd, λk, λg) =


f̃(x, p̄0, δ)

det(I −MJ̃ 11∆)
σ̄(∆u)

δ − g(z, y)

−


0
λd
λk
λg

 = 0.752

With respect to the definitions in (3.13), z and y have been added to the vector of753

continuation variables u (i.e., u = [X; z; y]), while the vector function δ − g has been754

added to the family of monitor functions Ψ (with associated continuation parameters755

λg ∈ Rnδ).756

Let I = {1, 2, 4, ..., 4 + nδ}, and Ī, λI, λĪ as before. Two starting points are757

available, respectively u∗ = [X̂1; 1; 1] and u∗ = [X̂2; 0; 0], with λ∗ = Ψ(u∗). Note that758

in both cases λ∗g = Ψ(u∗) = 0 by construction. Therefore, δ = g(z, y) at each step of759

the continuation, and δ is expressed as a linear combination of δ̂1 and δ̂2.760

Since F (u∗, λ)|λI=λ∗I
= 0 and F (u, λ)|λI=λ∗I

satisfies the IFT at (u∗, λ∗), then761

a manifold Hg with dimension d = nx + nδ + 3 − (nx + 2 + nδ) = 1 is defined.762

Crucially, the dimension is 1 irrespective of the number of uncertainties nδ, with the763

drawback that these are now constrained to vary according to (3.14). H1
g and H2

g764

indicate the manifold built starting from [X̂1; 1; 1] and [X̂2; 0; 0] respectively, with765

the subscript and the superscript highlighting the dependence on the parametrization766

of the uncertainties g and the initial point.767

The construction of Hg requires two perturbation vectors δ̂1 and δ̂2. This is not768

restrictive, since as a result of the local optimality typically more than one solution769

is available. In addition, the possibility of running the optimization at a fixed fre-770

quency ω can be advantageously exploited with the goal of obtaining different modes771

of perturbations. Indeed, as discussed before, Hopf bifurcations occurring at different772

frequencies could represent different mechanisms underlying the loss of stability, thus773

considering a linear combination of the perturbations as in (3.14) represent an efficient774

strategy to select points on Hg.775

To sum up the multi-start strategy approach, the starting point is Program 3.2776

which provides a solution consisting of an equilibrium point x̂ of f̃ perturbed by δ̂ such777

that the associated Jacobian J̃ has a pair of purely imaginary eigenvalues. This is not778

necessarily the closest bifurcation point to the nominal system due to the possibility779

of local minima. However, X̂ can be used to compute the restricted manifold Hg via a780

numerically cheap continuation problem once a parametrization g for the uncertainty781

set is provided. Continuation of Hg has two objectives. First, it could directly detect782

improved solutions of Program 3.2 (if λk < k̂m). Second, points on Hg can be used783

to run Program 3.2 with different initializations.784

If the manifold Hg gathers a large number of points, and running the optimization785

for each of them is not viable, criteria could be employed to select a subset of them786
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only. Keeping in mind that the goal is to provide initializations which possibly make787

the optimizer converge to different points from the initial solution X̂, the premise788

of these criteria is to detect on Hg perturbation vectors qualitatively different from789

δ̂. Possible indicators are for example the frequency ω and the changes in sign of790

the parameters in δ (recall that these are normalized, thus a change in sign reveals a791

change in the direction of perturbation for the considered parameter).792

3.4. Comparison with the direct method. The framework presented in the793

previous sections allows the computation of the robust bifurcation margin km via794

nonlinear optimization (section 3.2) aided by a multi-start strategy (3.3). Despite its795

importance for the analysis of nonlinear systems, the computation of the closest Hopf796

bifurcation point to a stable equilibrium in the uncertain parameter space has not797

been adequately investigated so far. The only alternative approach available in the798

literature is the so-called direct method [12], and the objective of this section is to799

point out the differences (and the associated advantages) of the formulation proposed800

in this paper (in the remainder of this section termed margin method) with respect801

to it.802

The direct method for Hopf bifurcations considers as starting point the vector803

field (2.1) where np > 1, i.e. the vector of bifurcation parameters is multidimensional.804

Given a vector p̄0 associated with a stable equilibrium, the closest point to p̄0 in the805

set of parameters (or hypersurface) Σ for which the equilibrium experiences a Hopf806

bifurcation is sought. A first difference is thus that in the margin method a distinction807

is drawn between bifurcation parameter p (of dimension equal to the codimension of808

the bifurcation, which is 1 for the Hopf case) and uncertain parameters δ, and the809

closest Hopf point is sought in the uncertainty space only (that is, p̄0 is fixed). Con-810

versely, in the direct method bifurcation and uncertain parameters are all gathered811

in p and can all be perturbed in order to reach the closest bifurcation point. This812

difference only pertains to the formulation of the problem, but it is worth highlighting813

it since two different perturbation scenarios are effectively considered.814

The key observation leveraged by the direct method is that if p∗ is the closest point815

to p̄0 in Σ, then the vector p∗− p̄0 is parallel to the normal vector to the hypersurface816

Σ at p∗. Moreover, p∗ is a local minimum if the distance |p∗ − p̄0| is smaller than the817

reciprocal of the curvature of Σ at p∗.818

Implementation of these conditions lead to the extended system of equations defining819

a Hopf bifurcation ([12], Section 5). The name extended derives from the fact that, for820

np = 1, this set of equations reduces to the standard system of equations to compute821

Hopf bifurcation branches (Th. 2.1). The multidimensional case exploits the fact that822

the normal vector at p∗ can be written out as a function of ∇pf |p=p∗ and of the eigen-823

vector of the Jacobian ∇xf |p=p∗ associated with the purely imaginary eigenvalues.824

In turn, the curvature can be written as a function of the normal vector. Building825

on these relationships and enforcing all the associated constraints, the problem is fi-826

nally formulated as the solution of 6nx + np + 2 nonlinear equations in 6nx + np + 2827

unknowns. Similarly to the margin method (see the vector X in Program 3.2), the828

unknowns of the problem include the perturbed equilibrium (nx), the closest bifur-829

cation parameter vector (np), and the frequency (1). However, in addition to these830

there are another 5nx + 1 unknowns which are introduced in order to express the rest831

of the constraints, and clearly do not feature in the margin method. The key ideas832

leveraged by the margin method to avoid these additional constraints are to enforce833

the constraint on the Jacobian as singularity of the LFT (3.7b) and cast the minimum834

distance problem as maximum singular value minimzation of the perturbation matrix835
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∆. As for the number of constraints, Program 3.2 has nctrs = nx + 2 + nδ while the836

direct method features 6nx + np + 2. A comparison in terms of size of the problem,837

both in terms of unknowns and constraints, points out an objective advantage of the838

margin method with respect to the direct method. Quoting the author in [12], “this839

direct method for computing Hopf bifurcations may bee too cumbersome to be useful if840

nx is large”.841

The distinctions between the two methods are however not restricted to the size of the842

problem. For example, the mathematical formulation of the problem is different. In843

the margin method, km is the result of an optimization problem whereas in the direct844

method a determined (the number of constraints equals the number of unknowns) set845

of nonlinear equations has to be solved (e.g. with Newton-type methods). This is846

deemed an advantage of the margin method, since the greater degree of freedom in847

finding the solution can be exploited using optimization techniques in order to achieve848

higher efficiency in the computation and more robustness to the problem of local min-849

ima. As for the latter aspect, it is further observed that the margin method is also850

equipped with the multi-start strategy (3.3), as opposed to the direct method where851

there are no strategies to directly tackle the problem of converging to local minima.852

Another favourable feature offered by the margin method is that it allows the type853

of closest bifurcation to be specified via constraint on the Lyapunov coefficient (Pro-854

gram 3.4). This is done in a relatively straightforward way by using the fact that ω855

is an optimization variable, and thus the eigenvectors needed for the computation of856

l1 (2.4) are available without performing an eigenvalue analysis (3.10). As a result,857

Program 3.4 only adds one unknown (l1) and one scalar constraint to Program 3.2858

where the type of bifurcation is not specified. This is again due to the LFT formula-859

tion of the problem that provides an analytic dependence of the constraints on ω (see860

also Remark 3.1). Conversely, the option of specifying the closest bifurcation is not861

available in the direct method, nor is it clear how it could be added without incurring862

a further substantial increase in the number of unknowns and constraints.863

Another important aspect is related to the type of constraints involved in the two864

problems. As discussed in Remark 3.1, the gradients of the constraints in Program 3.2865

with respect to the unknowns (with the exception of ω, which is more tedious) can all866

be analytically computed and provided to the solver, with great advantage in terms867

of efficiency of computation. This clearly does not apply to the direct method due868

to the very complicated definition of the constraints (involving eigenvectors and their869

projections) and of the unknowns.870

Finally, a unique feature of the robust bifurcation margin km owes to its interpre-871

tation as nonlinear extension of the structured singular value µ. This indeed opens872

up the possibility to transfer to the bifurcation field many of the well established873

approaches in robust control [48]. This applies to: modelling, where advanced LFT874

algorithms [28, 29] can be employed to efficiently formulate the constraints of Pro-875

gram 3.2 and Program 3.4; analysis, where the insightful interpretations of µ and876

associated analysis strategies (sensitivity, frequency-domain analysis) [26] carry over877

to km; and ultimately robust control design, whereby a (potentially nonlinear) con-878

troller is synthesised to prevent bifurcations in the face of a given uncertainty set.879

While examples of the first two aspects have been given throughout the section and880

will be exemplified further in section 4, the latter is an exciting prospective line of881

research that can build on this initial work.882

4. Numerical examples. The proposed concept of robust bifurcation margin883

is demonstrated on two test cases from the literature. The first is a power system884
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model for which the sensitivity of the Hopf bifurcation to modeling parameters was885

considered in [13], while the second is an aeroelastic case study previously studied886

with linear robust control techniques in [25].887

4.1. Power system.888

4.1.1. Model description. The first example considers the single machine889

power load system with voltage regulator and dynamic load model studied in [13]890

and depicted in Fig. 4. The model used in [13] is very similar to the one originally891

proposed in [7], with the variations discussed next. The model in [7] consists of: five892

ordinary differential equations representing the dynamics of the generator voltages893

E
′

d+ jE
′

q, the voltage regulator state Rf and output voltage VR, and the field voltage894

EFD; two algebraic equations which relate the load bus voltage phasor VL θ to the895

voltage source E
′

d+jE
′

s and the load demand PL+jQL, where PL and QL are respec-896

tively the constant (and fixed a priori) active and reactive power components. The897

goal of the regulator is to control the voltage Es at the high side of the transformer898

given a reference voltage setpoint Eref , which depends on the loading level.

𝐸𝑟𝑒𝑓

Generator

Regulator

High side
transformer

Load bus Load

𝑉𝑅 , 𝑅𝐹

𝐸𝑠
𝑗𝑥𝑇 𝑗𝑥𝑒𝐸𝑑

′ + 𝑗𝐸𝑞
′ 𝑃𝐿 + 𝑗𝑄𝐿𝑉𝐿 , 𝜃

𝐸𝐹𝐷

Fig. 4. Power system sketch.

899
Differently from [7], the model in reference [13] considers: a dynamic power load900

(i.e. PL and QL are not constant); a setpoint Eref which is fixed for all loading levels;901

and an expression of the voltage Es as a function of the other state variables. Due902

to these changes, two ordinary differential equations are added for VL and θ, and the903

two algebraic equations become explicit equations for PL and QL.904

The resulting set of seven ordinary differential equations describing the power system,905

with vector of states x = [E
′

d;E
′

q;VR;EFD;Rf ; θ;VL], is:906

T
′

q0Ė
′

d = −E
′

d + (xq − x
′

d)Iq,(4.1a)907

T
′

d0Ė
′

q = −E
′

q − (xd − x
′

d)Id + EFD,(4.1b)908

TAV̇R = −VR +KA(Eref − Es −
KfEFD
Tf

+Rf ),(4.1c)909

TEĖFD = −EFD + VR,(4.1d)910

Tf Ṙf = −Rf +
KfEFD
Tf

,(4.1e)911

Dθ̇ = PL − lPF,(4.1f)912

kV̇L = QL − l
√

1− PF 2.(4.1g)913914

where: Tq0 and Td0 are the open circuit time constants; xd and xq are the synchronous915

reactances; x
′

d is the transient reactance; Id and Iq are the currents; TA and KA are916

the voltage regulator time constant and gain; TE is the exciter time constant; Tf and917

Kf are the time constant and gain of the feedback loop; D and k are time constants918

of the load dynamics; PF is the power factor and l parameterizes the increase of the919



COMPUTATION OF ROBUST BIFURCATION MARGINS 23

constant power part of the load (this will be used as bifurcation parameter in the920

analyses).921

This set of equations must be closed with the defining equations for Id, Iq, PL, QL,922

and Es. For the currents, the following holds [7]:923

(4.2)

Id =
1

xE
(E
′

q − VL cos(δ − θ)),

Iq =
1

xE
(−E

′

d + VL sin(δ − θ)),

xE = x
′

d + xT + xe.

924

where δ is the rotor angle, xT is the high side transformer reactance and xe is the925

transmission line reactance.926

The equations for the remaining three variables are not provided in [13]. The re-927

lationships for PL and QL are derived here from the two aforementioned algebraic928

equations in [7], which now allow an explicit expression for the load components to929

be obtained since the phasor VL θ has a dedicated dynamic description (4.1f-4.1g).930

As for Es, a relationship to the state variables is derived by considering the loadflow931

equation for the circuit with the voltage source at the high side of the transformer.932

This leads to:933

PL =
VL
xE

cos(θ)P̃ − VL
xE

sin(θ)Q̃,(4.3a)934

QL =
VL
xE

sin(θ)P̃ +
VL
xE

cos(θ)Q̃,(4.3b)935

P̃ = −E
′

d cos(δ) + E
′

q sin(δ)− VL sin(θ),936

Q̃ = E
′

d sin(δ) + E
′

q cos(δ)− VL cos(θ),937

Es =
1

VL

√
(xePL)

2
+ (xeQL + V 2

L )
2
.(4.3c)938

939

Note that the same expression for Es was used in [46], where a very similar power940

system was analyzed.941

Table 1 reports the values of the parameters used here for the power system942

model. These are all taken from [7], except for D and k (introduced anew in [13]) and943

Kf , whose value was changed in [13]. As for the rotor angle δ, it is noted that their944

dynamic is assumed faster than the dominant voltage dynamics, thus the angle is in945

quasi-steady state and does not have any effect on the results [7]. Time constants are946

in seconds, reactance are p.u. while all the other parameters are dimensionless.

Table 1
Power system model parameters.

xT xe xd xq x
′
d T

′
d0 T

′
q0 KA TA TE Kf Tf PF D k

0.15 0.34 1 1 0.18 5 1.5 30 0.4 0.56 0.1 1.3 0.95 0.05 0.1

947

Numerical continuation is applied to the nominal model using the parameter l as948

bifurcation parameter. The (non-zero) stable equilibrium point at l = 0 is found by949

simulating the model and this is provided as an initialization to COCO. The branch950

of equilibrium points as l is increased is reported in Fig. 5 by showing the values of951

three components of the state vector, namely E
′

d, Rf , and VL.952
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Fig. 5. Bifurcation diagram for the nominal power system model.

The analyses show that the system has a branch of stable equilibria for low values953

of l (this part of the branch is denoted by a solid line), which undergoes a Hopf954

bifurcation at lH=0.83 (circle marker), with a frequency of the associated imaginary955

eigenvalues equal to ωH=2.6 rad
s , and a saddle node bifurcation at lSN=1.13 (square956

marker). As aforementioned, the model used in here is not exactly the same as that957

of [13] as insufficient information was provided in that reference to reproduce their958

results exactly. In [13], the Hopf bifurcation also occurred at a lower loading level959

than the saddle node one but at different values, i.e. lH=0.37 and lSN=1.03. Thus,960

qualitatively speaking, the results from Fig. 5 are similar to those in [13] (see also the961

sensitivity analysis discussed next) and should enable the proposed robust bifurcation962

margin approach to be tested by comparing with the results from [13]1.963

4.1.2. Sensitivity analysis of the Hopf bifurcation. The authors in [13]964

compute the sensitivity of both bifurcations to the model’s parameters (the focus will965

be here only on the analyses for the Hopf one). This computation is performed by966

first defining what is termed the loading margin to instability at l0 (a value of the967

bifurcation parameter l corresponding to a stable equilibrium) as M(l0) = lH − l0.968

The first-order sensitivity Mc of M to a generic parameter c (here c represents any969

model parameter, in the present case those in Table 1) is then computed as the partial970

derivative of M with respect to c evaluated at l0, i.e. Mc(l0) = ∂M
∂c

∣∣
l=l0

. Its computa-971

tion is performed using normal vectors to the manifold of Hopf bifurcation points and972

essentially consists of a sensitivity of the critical eigenvalue. An approximation to this973

sensitivity can be computed as M̃c = M(l0,c+ε)−M(l0,c)
ε , where M(l0, c+ ε) = lc+εH − l0974

and lc+εH is the value of l at which a Hopf bifurcation occurs when the parameter c is975

increased to c + ε. The quantity M̃c is thus a finite difference approximation of Mc976

and can be computed via numerical continuation. The results of such a sensitivity977

analysis are reported in Table 2 for the parameters previously listed in Table 1.

Table 2
Sensitivity of the Hopf bifurcation to model parameters (continuation-based).

xT xe xd xq x
′
d T

′
d0 T

′
q0 KA TA TE Kf Tf PF D k

M̃c -0.96 -1.3476 -0.05 -0.006 -0.9111 0.039 0.0047 0.003 -0.2975 -0.1982 2.1 -0.14 1.5 -0.005 0.11

1A MATLAB implementation of the power system model presented in this section, together with
a file to run continuation analyses with COCO, is available at
https://github.com/AndreaIan/PowerSystem cont

https://github.com/AndreaIan/PowerSystem_cont
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It is noted that the sign of all the sensitivities (a negative sign means that an978

increase of the parameter makes the loading margin to instability decrease) coincide979

with those reported in [13] except for k, and the magnitude (proportional to the980

sensitivity to that parameter) is also generally well captured.981

In order to show the connection between the sensitivity approach used in [13] and982

the concept of robust bifurcation margin, a first type of analysis is discussed next. A983

set of four parameters from the power system model is considered, namely xq, KA,984

TA, and Kf . Without loss of generality, only a subset of the parameters in Table985

2 is selected to allow a more clear interpretation of the results. A subcritical value986

of the loading level at which robustness of the plant is studied is then selected; this987

is denoted l̄0 according to the notation adopted in section 3.1. In all the analyses988

presented here the value l̄0 = 0.725 < lH will be considered. Once the set of uncertain989

parameters and a value of the bifurcation parameter is selected, the corresponding990

LFT can be constructed. It is observed that the dependence of the vector field on the991

states cannot be captured directly in an LFT fashion. This is due to the trigonometric992

functions (4.2-4.3a-4.3b) and square root (4.3c). For this reason, Taylor expansions993

of these functions about the equilibrium state at l̄0 are considered. The order of the994

expansion (1 and 2 depending on the specific state) is selected in order to guarantee995

a satisfactory trade-off between accuracy and size of the LFT F(MJ̃ ,∆). For all996

the uncertain parameters a range of variation of ±15% from the nominal value is997

considered.998

Program 3.2 is employed with an initialization provided by the nominal values of999

the equilibrium point and of the uncertainties. The value of the Lyapunov coefficient1000

l1 will not be considered as a variable in these analyses since the goal is not to study1001

the effect of the parameters on the type of Hopf bifurcation, even though this would1002

also be possible within this framework. Five different tests will be considered: four in1003

which only one parameter belongs to the uncertainty set ∆u (the total size of each of1004

the four LFTs is 17), and one in which all the four parameters are included in ∆u (the1005

total size of the LFT is 25). The results are reported in Table 3 in terms of robust1006

stability margin km, frequency ω̂ and worst-case perturbation for the normalized1007

uncertainties.1008

Table 3
Sensitivity analysis with the robust bifurcation margin at l̄0 = 0.725.

test km ω̂ rad
s

δxq δKA δTA δKf
1 24.3 2.3 24.3 · · ·
2 ∞ n.a. · n.a. · ·
3 7.8 2.1 · · 7.8 ·
4 2.5 2.6 · · · -2.5

5 1.54 2.2 1.54 -1.54 1.54 -1.54

The value of km for the first four tests, where only one parameter at a time1009

is allowed to vary, can be considered as a measure of the sensitivity of the Hopf1010

bifurcation to that parameter –and it is thus expected to show similar results to1011

those obtained in [13]. Indeed, all the predictions reported in Table 2 (which was in1012

agreement with [13]) are confirmed: high sensitivity to Kf , medium sensitivity to TA,1013

and practically no sensitivity to xq and KA (note that for the latter the optimization1014

problem was found infeasible). Moreover, the signs of the worst-case perturbations1015

are also in agreement with the findings in Table 2. The fifth test shows that when1016
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all the parameters are acting together the margin km decreases, but it is still greater1017

than 1, that is the power system at l̄0 is robust to the uncertainty considered. For the1018

predicted worst-case perturbation, the Hopf bifurcation taking place at l̄0 is associated1019

with a frequency ω̂ = 2.2 rads (recall that this is one of the optimization variables of1020

Program 3.2), which is smaller than the one in the nominal case, but within the same1021

frequency range.1022

While the proposed robust bifurcation margin framework can be used to retrieve1023

the results of the sensitivity tests performed in [13], one of its advantage is that allows1024

also for another type of sensitivity analysis. In particular, the effect of a parameter1025

on the bifurcation is evaluated while simultaneously accounting for the other uncer-1026

tainties affecting the system. This is inherently different from the sensitivity measure1027

proposed in [13], which is a first-order approximation of the partial derivative of the1028

margin, and thus effectively neglects any coupling among the uncertainties. This key1029

aspect will be exemplified with a second type of km-based analysis.1030

It is known that the structured singular value µ can be used to evaluate the1031

sensitivity of an instability to a set of nδ selected parameters by performing multiple1032

µ tests. This can be achieved for example using the skew-µ concept [30], or, within1033

standard µ analysis tools, by considering two different uncertainty levels w1,di and1034

w2,di (recall the definition of the uncertainty level in Eq. 3.3) for each parameter di1035

(i = 1, ...nδ). In the first µ test (termed base to indicate it is the baseline test), all1036

the parameters have the uncertainty level w1,di , while in the following nδ tests, the1037

uncertainty level of the i-th parameter is set to w2,di and for all the others it is kept1038

at w1,dj (with j 6= i). The difference between the peak of the baseline µ plot and1039

the peaks of the other nδ tests is proportional to the sensitivity of the instability to1040

the considered parameter. See [26] for an application of this analysis approach to the1041

robust flutter problem.1042

In the same spirit, the parameters studied in Table 3 are analyzed here considering1043

w1 = 0.15 (i.e the previously defined 15% uncertainty range) and w2 = 0.3 (i.e.1044

doubling the range for the specific parameter used in the nδ test). Program 3.2 is1045

again employed and the results are shown in Table 4 (the first column identifies the1046

test performed, i.e. base and then the parameter whose uncertainty level is set to w2).1047

Table 4
Robust bifurcation margin sensitivity analysis at l̄0 = 0.725.

test km ω̂ rad
s

δxq δKA δTA δKf
base 1.54 2.2 1.54 -1.54 1.54 -1.54

xq 1.41 2.2 1.41 -1.41 1.41 -1.54

KA 1.31 2 1.31 -1.31 1.31 -1.31

TA 1.24 2.2 1.24 -1.24 1.24 -1.24

Kf 0.97 2.4 0.97 -0.97 0.97 -0.97

1048

The baseline test coincides with test 5 in Table 3 but is reported to facilitate1049

the comparison. The different sensitivity of the considered parameters is confirmed1050

in this new analysis (from the least sensitive parameter xq to the most sensitive one1051

Kf ). However, it is also clear that every parameter now has an effect on the shift of1052

the bifurcation point towards l̄0. This is clearly seen comparing Table 3 and 4, where1053

for the former table only Kf showed a high sensitivity effect (close to the value of1054

the baseline test), but as shown in Table 4, when the uncertainty coupling is taken1055

into account for the analysis, then all of the four parameters have similar levels to the1056
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baseline case. This finding results from taking into account perturbations in the other1057

parameters while computing the parameter’s sensitivity, and shows that the coupling1058

among the uncertainties (not captured with first-order sensitivity approaches) can1059

drastically affect the importance of some parameters. Specifically, parameters deemed1060

unimportant with a first-order analysis can instead have a non-negligible impact on1061

the bifurcation point.1062

To further characterize this aspect, Figure 6 depicts the reciprocal of the robust1063

bifurcation margin km as a function of the frequency. The five curves represent the1064

five cases considered in Table 4 and, unlike the one-shot tests discussed therein, are1065

obtained by fixing the frequency in the optimization and computing the value of the1066

margin at each frequency.

1 1.5 2 2.5 3 3.5 4 4.5

 [rad/s]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1
/k

m

Base

x
q

K
A

T
A

K
f

Fig. 6. Sensitivity analysis of four parameters based on the robust bifurcation margin.

1067

The curves in Figure 6 resemble those typically employed in linear robust analysis1068

with µ [48, 2, 26]. This points out once again the connection between the proposed1069

concept of robust bifurcation margin km and the structured singular value µ. In1070

particular, when 1
km
≥ 1, a perturbation in the allowed range of uncertainties exists1071

such that a Hopf bifurcation is experienced by the system when perturbed. Note that1072

the peak of each curve coincides with the reciprocal of the margin reported in Table1073

4. This representation allows the different sensitivities to the parameters discussed1074

previously to be immediately inferred.1075

4.2. Aeroelastic system.1076

4.2.1. Model description. The typical section is an aeroelastic case study com-1077

monly used for flutter analysis purposes [4], and consists of a rigid airfoil with lumped1078

springs simulating the 3 structural degrees of freedom (DOFs): plunge h, pitch α and1079

trailing edge flap β. By defining the vector of structural states xs = [hb ;α;β] and1080

aerodynamic states xa (used to capture the unsteady aerodynamic contribution), the1081

system can be described in matrix form as:1082

(4.4) ẋ =

ẋsẍs
ẋa

 =

 0 I 0
−M−1K −M−1B M−1D

0 E R

xsẋs
xa

 = Ax,1083
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where M , B and K are respectively the aeroelastic inertial, damping and stiffness1084

matrices:1085

(4.5)

M = Ms −
1

2
ρ∞b

2A2,

B = −1

2
ρ∞bV A1,

K = Ks −
1

2
ρ∞V

2A0.

1086

They include the structural mass Ms and stiffness matrices Ks plus the aerodynamic1087

quasi-steady matrices Ai (ρ∞ is the air density and b the half chord distance). D, E,1088

and R in (4.4) come from the rational approximation of the unsteady aerodynamic1089

operator. The parameters defining the model are provided in [25] and the total state1090

size nx is 9 (6 structural and 3 aerodynamic). The interested reader is referred to [25]1091

for a complete definition of the parameters defining the model and further details on1092

aeroelastic modeling with uncertainties.1093

Nonlinearities in Ks are considered in this work. Specifically, hardening cubic1094

terms for the plunge and pitch degrees of freedom are assumed, and the matrix Ks is1095

rewritten accordingly:1096

(4.6) Ks = KL
s +KNL

s =

 KL
h 0 0

0 KL
α 0

0 0 Kβ

+

 KNL
h KL

h

(
h
b

)2
0 0

0 KNL
α KL

αα
2 0

0 0 0

 ,1097

where Kh, Kα and Kβ are respectively the plunge, pitch and control surface stiffness.1098

As is common practice [11], the coefficients of the nonlinear terms are assumed pro-1099

portional to the corresponding linear ones through the dimensionless coefficients KNL
h1100

and KNL
α (assumed here equal to 100). The hardening effect modelled in (4.6) takes1101

into account the fact that the stiffness properties change when the system undergoes1102

large deformations, with an increase in the stiffness generally observed.1103

The dynamics of the system is thus in the form of the generic vector field (2.1),1104

and, by selecting the speed V as bifurcation parameter, it holds:1105

(4.7)
ẋ = f(x, V ) = AL(V )x+ fNL(x),

J(x, V ) = AL(V ) +∇xfNL(x),
1106

where: AL : R → Rnx×nx is obtained from A (4.4) by setting the nonlinear terms1107

to zero; fNL : Rnx → Rnx is the nonlinear part of the vector field; and the state is1108

x = [xs; ẋs;xa]. Note that, for the nonlinearities considered here (4.6), fNL (and thus1109

also ∇xfNL) does not depend on the speed.1110

Following the notation in section 3.1, VH will denote the speed at which the1111

nominal system undergoes a Hopf bifurcation, and after which it will potentially1112

exhibit limit cycle oscillations. Given a subcritical speed V̄0 (such that V̄0 < VH1113

corresponds to a stable equilibrium) and the definition of a vector δ of parametric1114

uncertainties, then the distance in the parameter space of the equilibrium at V̄0 from1115

the closest Hopf bifurcation is computed by means of the robust bifurcation margin1116

km. The robust bifurcation analysis will thus allow the quantification of the influence1117

of parametric uncertainties on the onset of LCO, which are a notorious problem for1118

nonlinear aeroelastic systems [11].1119

Numerical continuation can be applied to (4.7) after having specified the value1120

of the trim state xt. Two cases will be considered, case 1 (c1) with xt = 0 and case1121
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2 (c2) featuring a non-zero value αt = 1◦ for the angle of attack of the section. The1122

latter is physically motivated by the fact that the section is generating positive lift to1123

counterbalance gravitational forces directed downwards. Figure 7 shows the standard1124

(i.e. nominal) bifurcation diagrams with V on the x-axis and the normalized plunge1125

DOF h
b on the y-axis (in the case of branches of LCO solution branches, this is the1126

maximum value over a period). The usual convention of representing stable steady-1127

states (equilibria and LCOs) with solid lines and unstable ones with dashed lines is1128

adopted, and the Hopf bifurcation is marked with a circle.1129
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Fig. 7. Bifurcation diagram for the nominal vector field for two different trim states.

The system experiences supercritical Hopf bifurcations at1130

VH= 302.7 m
s for c1 and VH= 289.0 m

s for c2. The frequency of the associated1131

imaginary eigenvalues are respectively ωH=70 rad
s and ωH=75 rad

s .1132

4.2.2. Computation of robust bifurcation margins. Including uncertainties1133

in the nominal vector field of (4.7) yields the expression for the uncertain vector field1134

1135

ẋ = f̃(x, V, δ) = ÃL(V, δ)x+ f̃NL(x, V, δ),(4.8a)1136

J̃(x, V, δ) = ÃL(V, δ) +∇xf̃NL(x, V, δ).(4.8b)11371138

The bifurcation parameter V will be fixed in the subsequent analyses to V̄0 = 270ms ,1139

which, recall Figure 7, is associated in both cases with stable equilibria –and hence,1140

it is a valid choice according to the discussion in section 3.1.1141

The initial step to compute robust bifurcation margins is the definition of the1142

nominal system and of the uncertainty set, which in turn will drive the construction of1143

the underlying LFT. The former is described by (4.7), while the uncertainty definition1144

is chosen to define a range of variation of ±10% from the nominal value for the1145

coefficients Ms11 , Ms22 , Ks22 and of ±5% for Ms12 and Ks111146

(4.9) ∆u = diag(δKL
s22
, δKL

s11
, δMs11

, δMs12
, δMs22

).1147

This uncertainty definition was considered since it is the same as that used in [25],1148

where the linear problem (i.e. KNL
h = KNL

α =0) was extensively analyzed by means1149
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of nominal (eigenvalue analysis) and robust (µ analysis) techniques. This testcase is1150

thus used to benchmark the first set of numerical results obtained with the method1151

proposed in this paper.1152

Program 3.2 is computed with an initialization provided by the nominal values of1153

the equilibrium point and of the uncertainties. The results from the program are re-1154

ported in Table 5 in terms of robust stability margin km, frequency ω̂ of the imaginary1155

eigenvalues at V̄0, and type of Hopf bifurcation. Recall indeed that Program 3.2 cal-1156

culates the closest Hopf bifurcation without constraining the value of l1, and the type1157

of predicted Hopf bifurcation was assessed a posteriori with numerical continuation1158

of the perturbed system.

Table 5
Robust bifurcation margins at V̄0 = 270m

s
for uncertainties in the set (4.9).

km ω̂ rad
s

type

c1 0.73 71.5 super

c2 0.49 75.1 super

1159

It is inferred from the first column of Table 5 that in both cases the Hopf bifur-1160

cation could be shifted to V = 270ms within the uncertainty range (note indeed that1161

km < 1). Another important observation is that c1 gives a margin km within less1162

than 1% of the result from the literature [25] (obtained with µ considering the linear1163

system at the same speed V = 270ms ). The (normalized) uncertainty vector found1164

here by the optimizer is1165

(4.10)
δ̂ =[δKL

s22
; δKL

s11
; δMs11

; δMs12
; δMs22

],

=[−0.7328; 0.7328;−0.7328; 0.5027; 0.7328],
1166

which also features the same perturbations (within a small tolerance) as those de-1167

tected in [25] (their physical meaning in relation to the onset of flutter was discussed1168

in the reference). In order to better appreciate the importance of this result, let1169

us recall that nominal analyses (Figure 7) found for c1 the branch of equilibria at1170

x = 0 regardless of V . Since the uncertainties selected here only affect ÃL, then1171

f̃NL(0, V, ·) = fNL(0, V ) = 0 and thus ∇xf̃NL ≡ 0. That is, the determination of1172

km is equivalent (for this specific case) to the problem solved by µ, i.e., finding the1173

smallest perturbation matrix such that ÃL is neutrally stable. The good matching1174

with the literature results is very important, since in [25] µLB and µUB were shown1175

to be close, indicating that the true value of µ was determined. This result hence ver-1176

ifies the correctness of the approach proposed here since it recovers the result which,1177

for this specific case, is known a priori to be the correct one. Moreover, at least for1178

this case, Program 3.2 is able to detect the global minimum of the optimization.1179

Another positive feature is that Program 3.2 has the frequency ω as a decision vari-1180

able, whereas µ was applied in [25] at discrete frequencies because this is the available1181

implementation for the standard algorithms [2] (which has the drawback of possibly1182

missing critical frequencies and thus overestimating the value of the stability margin).1183

Case c2 is then considered (with αt = 1◦). This cannot be analyzed with µ1184

because J̃ is now also a function of the nonlinear terms due to non zero values for1185

the equilibria (which in turn depend on the uncertainty). For this reason, it is not1186

possible to compare the results with the true analytic solution. However, it is noted1187

that km now achieves a smaller value than for c1. This is in accordance with the1188

nominal analyses in Figure 7, for which c2 presented a smaller VH than c1. Thus,1189
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as V̄ = 270ms is closer to the nominal bifurcation speed for c2, a smaller robustness1190

margin is expected. Note also that the two predicted frequencies ω̂ are relatively close1191

to the nominal ones. These interpretations thus give some confidence that an accurate1192

prediction of the margin has also been obtained for c2.1193

Other important information gathered in Table 5 is the type of closest Hopf bi-1194

furcations. Note that in order to obtain this result, the solver COCO was used to1195

perform numerical continuation of the perturbed system, which also allowed verifi-1196

cation that the latter experienced a Hopf bifurcation at V̄0 = 270ms , as expected.1197

These analyses show that the closest Hopf bifurcations are of the same nature as the1198

corresponding ones in nominal conditions. Based on the greater attention typically1199

devoted to subcritical LCOs due to the associated risks [11], the following analyses1200

will make use of Program 3.4 to investigate whether changes in parameter values can1201

drive the Hopf bifurcation from supercritical to subcritical. Without loss of generality,1202

only the case c2 will be considered.1203

Uncertainties in two aerodynamic parameters are added to the set (4.9), namely,1204

the terms A012 and A022 of the steady aerodynamics matrix A0 (4.5). These corre-1205

spond to the lift and moment coefficients of the airfoil respectively, and are allowed1206

to vary within ±20% from their nominal values. Table 6 shows the solutions provided1207

by Program 3.4 for the two types of possible Hopf bifurcation in terms of: Lyapunov1208

coefficient l1, stability margin km, frequency ω̂, and normalized perturbations. A1209

tolerance εl = 1 on the value of the Lyapunov coefficient was used.

Table 6
Worst-case perturbations and margins to supercritical and subcritical Hopf bifurcations.

l1 km ω̂ rad
s

δKL
s22

δKL
s11

δMs11
δMs12

δMs22
δA022

δA012

super -103 0.25 76 -0.25 0.25 -0.25 -0.25 0.25 0.25 -0.25

sub 1 3.13 67 -3.12 3.12 -3.12 -3.12 3.12 3.12 1.83

1210

The supercritical case is consistent with the corresponding case in Table 5. Indeed,1211

the margin approximatively halves as a result of the additional uncertainty in the1212

system, while the frequency has a similar value. Note also that the constraint on l11213

is not active and thus l1 has a large absolute value. On the contrary, the subcritical1214

case features a far higher margin (which, according to the definition of km given in1215

subsection 3.1, points out that there is no perturbation inside the allowed set capable1216

of prompting the investigated bifurcation) and achieves a value of l1 equal to the1217

tolerance εl. Another interesting fact is that while all the normalized perturbations1218

feature the same sign as in the supercritical case, this does not hold for A012
which1219

has an opposite perturbation and, in absolute value, smaller than the others. This1220

is an interesting aspect, because according to standard interpretations of unstable1221

aeroelastic phenomena [4, 25], a negative perturbation for A012
would be expected1222

(as noted for the supercritical case). The justification for this could be sought in1223

the physical mechanisms prompting subcritical LCO [11] and will be investigated in1224

future studies. It is remarked here that the commented scenario is distinctive of1225

this problem, where different (possibly conflicting) constraints define the worst-case1226

conditions. While robustness in the linear context focuses on the loss of stability1227

only, from a dynamical systems perspective this becomes a multi-faceted concept1228

characterized by concurrent conditions and thus non-intuitive results can be found.1229

Figure 8 shows bifurcation diagrams relative to worst-case combinations of pa-1230

rameters found by Program 3.4 by changing the tolerance on the Lyapunov coefficient1231
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εl. In the legend of Figure 8, the value of the Lyapunov coefficient at the bifurcation1232

point is indicated.

262 264 266 268 270 272 274
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

V [m/s]

α

 

 

l
1
=80

l
1
=50

l
1
=30

l
1
=10

l
1
=1

l
1
=−10

3

Fig. 8. Bifurcation diagram of the system for different worst-case perturbations.

1233

The first important observation is that all the cases display a Hopf bifurcation1234

at V̄0 = 270ms . The branches relative to the solutions from Table 6 (obtained with1235

εl = 1) are l1 = −103 and l1 = 1. This in turn demonstrates that Program 3.4 is able1236

to correctly predict worst-case combinations of uncertainty which lead to respectively1237

supercritical and subcritical bifurcation. For the other curves l1 = εl holds since this1238

constraint is always active, and the associated margins km slightly increase compared1239

to the value 3.13 featured in Table 6. It is stressed that a quantitative interpreta-1240

tion of the absolute value of l1 depends on the arbitrary normalization adopted for1241

the eigenvector q in its definition (3.10). The point made here is qualitative and,1242

specifically, is that as the tolerance εl (and thus l1) is increased, the subcritical Hopf1243

bifurcation predicted by the optimizer is more pronounced (i.e. the range of speeds1244

for which unstable and stable LCOs coexist with the branch of stable equilibria is1245

larger). Even though this is not guaranteed by the Hopf bifurcation theorem, since l11246

is defined on the center manifold at the bifurcation point only, the magnitude of the1247

Lyapunov coefficient can be taken as a measure of the subcriticality of the LCO (when1248

comparing different instances computed with the same normalization of q). Figure1249

8 shows therefore that embedding the constraint on the Lyapunov coefficient in the1250

bifurcation margin computation is successfully done by the optimization.1251

The last part of the section is aimed at providing insights into the numerical as-1252

pects of the algorithms. As a preamble, it is observed that there are not definitive1253

answers with respect to robustness to local minima or efficiency of the algorithms1254

as these will depend on many aspects such as, for example, the type of vector field1255

(not only size and degree, but also number of attractors) and the optimization al-1256

gorithm employed (which is an aspect that has not been investigated in this work).1257

Investigation of these important features are left for future work.1258

The execution time of Program 3.4 is larger than that of Program 3.2 (approxima-1259

tively 6s against 3s for the case with 7 uncertainties). Most importantly, the addition1260

of the constraint on l1 exacerbates the issue of local minima, especially when this is an1261

active constraint. The set of strategies described in Section 3.3 were thus employed to1262

obtain the results presented in Figure 8. Specifically, reinitializing the optimization1263
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with points on the auxiliary manifold Hg and with solutions obtained by fixing the1264

frequency in Program 3.4 led to significant improvements in the solution.1265

Finally, it is remarked that for all the analyzed cases, the worst-case combina-1266

tions of the uncertain parameters predicted by the optimization problem were used to1267

perform numerical continuation analyses of the perturbed system with COCO. In all1268

cases the perturbed systems encountered a Hopf bifurcation at the pre-selected speed1269

V̄0. Even though this fact does not ensure that the global optimum (i.e. smallest1270

margin to bifurcation) was found, it represents important evidence of the validity of1271

the overall approach.1272

5. Conclusions. The paper develops a framework for the analysis of nonlinear1273

systems subject to parametric uncertainties with the goal of studying robustness of1274

stable equilibria to the onset of dynamic bifurcations. A scalar metric quantifying a1275

perturbation in the uncertainty set is first defined, and the magnitude of the smallest1276

perturbation such that a stable equilibrium is driven into a Hopf bifurcation point is1277

named the robust bifurcation margin km. Its definition, which also allows the nature1278

of the closest Hopf bifurcation (subcritical or supercritical) to be specified, is based1279

on the idea of building a Linear Fractional Transformation model of the uncertain1280

Jacobian and studying its singularity. The proposed margin can be interpreted as an1281

extension of the structured singular value µ to the nonlinear context. The compu-1282

tation of km is recast as a nonlinear smooth constrained optimization problem, and1283

as such it suffers in principle from the issue of local minima. Thus, the proposed1284

programs technically provide only an upper bound on the margin. However, several1285

mitigation strategies are described in order to tighten the gap with the actual margin,1286

including a continuation-based multi-start strategy. Application of the framework is1287

demonstrated on two case studies: a power system model and an aeroelastic system1288

exhibiting nonlinear flutter behaviour. For the former, analyses show that km can be1289

used to infer sensitivity of the Hopf bifurcation to system’s parameters and it allows1290

more accurate predictions than those achieved with available methods only providing1291

first-order information. As for the latter, first the same results obtained in the lit-1292

erature with µ are retrieved, and then the possibility to distinguish between closest1293

subcritical and supercritical bifurcations is explored. The results verify from different1294

perspectives soundness of the newly introduced concept and provide examples of its1295

perspective advantages over available techniques to study the nonlinear robustness1296

problem in different application domains.1297
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