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Abstract: Data-driven predictive control methods based on the Willems’ fundamental lemma
have shown great success in recent years. These approaches use receding horizon predictive control
with nonparametric data-driven predictors instead of model-based predictors. This study addresses
three problems of applying such algorithms under unbounded stochastic uncertainties: 1) tuning-
free regularizer design, 2) initial condition estimation, and 3) reliable constraint satisfaction, by
using stochastic prediction error quantification. The regularizer is designed by leveraging the
expected output cost. An initial condition estimator is proposed by filtering the measurements
with the one-step-ahead stochastic data-driven prediction. A novel constraint-tightening method,
using second-order cone constraints, is presented to ensure high-probability chance constraint
satisfaction. Numerical results demonstrate that the proposed methods lead to satisfactory control
performance in terms of both control cost and constraint satisfaction, with significantly improved
initial condition estimation.
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1. INTRODUCTION

Classical model-based control enables simple but powerful
control design by considering typically parametric mathe-
matical abstractions of system behaviors, known as mod-
els. However, this comes at the cost of additional modeling
and identification efforts, which constitutes the majority of
the budget in model-based control design. In this regard,
the concept of data-driven control provides an appealing
alternative that designs the controller directly from data
without parametric identification.

In this work, we focus on data-driven predictive control
(DDPC), the data-driven counterpart to model predictive
control (MPC). Similar to MPC, it solves a finite-horizon
optimal control problem in a receding horizon fashion,
but with nonparametric data-driven predictors instead of
model-based predictors. Data-driven predictors for linear
systems can be constructed by using the so-called Willems’
fundamental lemma (Willems et al., 2005; Markovsky and
Dörfler, 2023), which characterizes all possible system
behaviors with finite data.

While these predictors work well with deterministic data,
showing equivalence to model-based design, they be-
come ill-defined with stochastic data. Multiple works have
stressed this issue by introducing an inner problem that
finds the ‘optimal’ predictor under some statistical prin-
ciple, possibly with instrumental variables to reduce the
effect of noise, e.g., Fiedler and Lucia (2021); Yin et al.
(2023, 2022); Breschi et al. (2023); Dinkla et al. (2024).
This idea is known as indirect DDPC (Dörfler et al., 2023).

These stochastic data-driven predictors can be applied to
DDPC design similar to the noise-free case. However, they
suffer from the following problems with this certainty-
equivalent implementation: 1) the control cost does not
account for the prediction error, 2) the initial condition
measurements suffer from noise which cannot be improved
by collecting more data, and 3) the constraint satisfac-
tion is not guaranteed. Aspects of these problems have
been analyzed under the robust control framework where
a bounded uncertainty set is prescribed (Coulson et al.,
2019b; Berberich et al., 2021; Huang et al., 2023; Klöppelt
et al., 2022). On the other hand, the situation is less clear
under the stochastic control framework, where existing
works adopt restrictive assumptions, such as noise-free
offline data (Kerz et al., 2023) and exact polynomial chaos
expansions of stochastic measurements (Pan et al., 2023).
This paper addresses these problems under general un-
bounded stochastic uncertainties, utilizing the prediction
error quantification provided in Yin et al. (2022).

In particular, three modifications are made to the certainty-
equivalent DDPC algorithm. 1) The nominal control cost
is replaced by the expected control cost. This introduces
an additional uncertainty term whose weight is specified
using a statistical approach without requiring tuning in a
stochastic framework. Similar regularizers have been used
in DDPC problems, but without a systematic approach
to tune them before deployment. 2) The output initial
condition is estimated by Kalman-filtering the output
measurements with one-step-ahead predictions from the
previous timestep. This provides optimal initial condition



estimation and significantly reduces the prediction error.
3) Output constraints are formulated as chance constraints
and guaranteed by second-order cone (SOC) constraints.
The effectiveness of these modifications is tested in a nu-
merical example, where satisfactory control performance
in terms of both control cost and constraint satisfaction
is observed with significantly improved initial condition
estimation.

Notation. The expected value, standard deviation, and
covariance are denoted by E[·], std(·), and cov(·), respec-
tively. The symbol Pr(·) indicates the probability of a
random event. For a sequence of matrices X1, . . . , Xn,
we denote the row-wise and diagonal-wise concatenation
by col (X1, . . . , Xn) and blkdiag (X1, . . . , Xn), respectively.
diag(·) denotes the vector of diagonal elements of a square
matrix. Given a signal x : Z→ Rn, its trajectory from k to
k+N−1 is indicated by (xi)

k+N−1
i=k = col(xk, . . . , xk+N−1).

For a vector x, ∥x∥P denotes the weighted l2-norm

(x⊤Px)
1
2 . The rank and trace of a matrix are indicated

by rank(·) and tr(·), respectively.

2. PROBLEM FORMULATION

Consider the observable part of a stable discrete-time
linear time-invariant (LTI) dynamical system with distur-
bance and output noise, given by{

xt+1 = Axt +But + Ewt,

yt = Cxt +Dut + vt,
(1)

where xt ∈ Rnx , ut ∈ Rnu , yt ∈ Rny , wt ∈ Rnw , vt ∈ Rny

are the states, inputs, outputs, disturbance, and output
noise, respectively. The noise-free output is denoted by y0t .
The noise vt is considered to be zero-mean i.i.d. with an
arbitrary distribution and covariance cov (vt) = σ2Iny ; the
disturbance wt is assumed known in the collected offline
trajectory and estimated online as detailed in Section 3.2.

The model parameters (A,B,C,D,E) are unknown, but
a matrix of input-disturbance-output trajectory data Z =[
zd0 · · · zdM−1

]
has been collected, where each column

zdi := col
(
udti , . . . , u

d
ti+L−1,

wd
ti , . . . , w

d
ti+L−1, y

d
ti , . . . , y

d
ti+L−1

)
(2)

is a length-L trajectory of the system, where the super-
script d denotes collected offline data. The availability of
offline disturbance trajectories retroactively is commonly
assumed in DDPC algorithms, e.g., Pan et al. (2023),
and is practical in many applications. The noise in each
column of outputs is assumed to be independent. This
assumption holds exactly when the columns are separate
trajectories or truncated from a longer trajectory with
ti+1 = ti + L, known as the Page construction (Iannelli
et al., 2021). Another common construction of Z is by
choosing ti+1 = ti+1, forming a block Hankel matrix. The
matrix Z is dubbed the signal matrix (Yin et al., 2023).

We are interested in designing a receding horizon control
algorithm with a predictor derived from the signal matrix
Z instead of the model parameters. Such algorithms are
known as indirect DDPC (Dörfler et al., 2023). Let L =
L0+L

′, and L0 be no smaller than the observability index
of the system. In this paper, we consider the stochastic

optimal tracking problem within a horizon of L′ that
minimizes the following expected control cost

min
(ût

k
)L

′−1
k=0

Jt :=

L′−1∑
k=0

∥∥ûtk∥∥2R + E

L′−1∑
k=0

∥∥ŷtk − rt+k

∥∥2
Q

 (3)

at time t, where ûtk is the designed input at time (t + k),
ŷtk is a random variable that predicts the noise-free future
output y0t+k, rt denotes the reference trajectory, and Q,R
are the output and the input cost matrices respectively.

It is also desired to constrain the outputs within a poly-
topic set Yt := {yt |Htyt ≤ qt } at time t, where Ht :=[
ht1 . . . htnc

]⊤ ∈ Rnc×ny and qt := col
(
qt1, . . . , q

t
nc

)
∈ Rnc .

However, due to the existence of unbounded noise, the
output constraints can only be satisfied with high proba-
bility as chance constraints, which will be detailed in later
sections. The input is constrained to be in the set U t at
time t, i.e.,

ûtk ∈ Ut+k, ∀ k = 0, . . . , L′ − 1. (4)

Then, the first element in the optimal input sequence is
applied to the system, i.e., ut := ût0 and the noisy output
yt = y0t + vt is measured.

There are multiple aspects to consider when solving this
problem, which will be discussed in the following sections.

1) There are uncertainties in both the prediction condi-
tions and the signal matrix. An accurate predictor is
desired under these uncertainties.

2) The expected control cost needs to be formulated as
a tractable objective function.

3) Tractable formulations of the output constraints need
to be derived.

3. STOCHASTIC DATA-DRIVEN PREDICTOR

3.1 Deterministic Prediction

With sufficiently persistently exciting inputs, the range
space of Z contains all possible trajectories of the system
in the noise-free case, i.e., vt = 0ny . The following result
derived from the Willems’ fundamental lemma (Willems
et al., 2005) provides a deterministic prediction by consid-
ering the augmented inputs ψt := col (ut, wt).

Proposition 1. Define a partition of Z as

Z := col (U,W, Yp, Yf ) := col (Ψ, Yp, Yf ) , (5)

where U ∈ RnuL×M , W ∈ RnwL×M , Yp ∈ RnyL0×M ,

Yf ∈ RnyL
′×M , and Ψ ∈ R(nu+nw)L×M . If vt = 0ny and

rank(Z) = (nu + nw)L+ nx, we have

ŷt = Yf g
t
pinv, g

t
pinv = col (Ψ, Yp)

† col
(
ut
ini, û

t,wt,yt
ini

)
,
(6)

where ût := (ûtk)
L′−1
k=0 denotes the input sequence within

the control horizon, ut
ini := (uk)

t−1
k=t−L0

, yt
ini := (yk)

t−1
k=t−L0

denote the immediate past input and output sequences of

length L0, and wt := (wk)
t+L′−1
k=t−L0

denotes the immediate
past and future disturbance sequence of length L. The

output sequence ŷt := (ŷtk)
L′−1
k=0 provides a deterministic

output prediction within the control horizon.

Indirect DDPC with deterministic predictor (6) is known
as subspace predictive control (Favoreel et al., 1999).



3.2 Stochastic Prediction

In this work, two sources of uncertainties are considered.
1) Noise in output measurements. This induces noise in
the output part of the signal matrix Yp, Yf , and the past
output sequence yt

ini with E [yt
ini] = ȳt

ini, cov (y
t
ini) = Pt. 2)

Uncertainties in the online disturbance sequence wt with
E [wt] = w̄t, cov (wt) = Σw. Statistics w̄t and Σw can
come from online measurements and predictions or prior
knowledge.

Multiple algorithms have been developed to extend the
deterministic prediction to the stochastic case. Such al-
gorithms typically involve solving the following quadratic
program:

gt = argmin
g

∥∥Ypg − ȳt
ini

∥∥2
S
+ λ ∥g∥22

s.t. Ψg = col
(
ut
ini, û

t, w̄t
)
,

(7)

where λ and S are design parameters. Different choices
of λ and S have been proposed, including the subspace
predictor (Fiedler and Lucia, 2021), Wasserstein distance
minimization (Lian et al., 2023), the signal matrix model
(Yin et al., 2023, 2021), and the minimum mean-squared
error predictor (Yin et al., 2022). See Yin et al. (2022) for a
comparison between these choices. The quadratic program
(7) admits the following closed-form solution:

gt =
[
R1 R2 R3 R4

]
col

(
ut
ini,u

t, w̄t, ȳt
ini

)
, (8)

where

[R1 R2 R3] := F−1Ψ⊤(ΨF−1Ψ⊤)−1, (9)

R4 :=
(
F−1 − F−1Ψ⊤(ΨF−1Ψ⊤)−1ΨF−1

)
Y ⊤
p S,

(10)

and F := λIM + Y ⊤
p SYp.

The stochastic predictor can be constructed based on the
solution gt with the following lemma.

Lemma 2. The stochastic output sequence within the con-
trol horizon is given by

E
[
ŷt| gt

]
= ȳt, cov

(
ŷt| gt

)
= Σt, (11)

where

ȳt := Yfg
t − Γ(Ypg

t − ȳt
ini), (12)

Σt := ΓPtΓ
⊤ + ΓwΣwΓ

⊤
w +

∥∥gt∥∥2
2
T, (13)

T := σ2
(
ΓΓ⊤ + InyL′

)
, Γw := (Yf − ΓYp)R3, (14)

Γ := col
(
CAL0 , . . . , CAL−1

)
col

(
C, . . . , CAL0−1

)†
(15)

is the autonomous transformation matrix from yt
ini to ŷt.

Proof. This comes directly from the proof of Theorem 1
in Yin et al. (2022) by considering the augmented inputs
ψt. □

Unfortunately, Γ cannot be obtained exactly since A and
C are unknown. However, this transformation matrix can
also be estimated using a data-driven approach. Note
that the true output prediction is given by ŷt

0 = Γȳt
ini

if col (ut
ini, û

t,wt) = 0 and Pt = 0. Using the certainty

equivalence principle, an estimate Γ̂Z can be found by
replacing ŷt

0 with ȳt. Then we have

ȳt = YfR4ȳ
t
ini − Γ̂Z(YpR4ȳ

t
ini − ȳt

ini) := Γ̂Z ȳt
ini, (16)

which leads to

Γ̂Z = YfR4 (YpR4)
−1 . (17)

In what follows, it is assumed that Γ = Γ̂Z . This estimate
is correct in the noise-free case and consistent under mild
conditions as shown in the following propositions.

Proposition 3. If vt = 0ny , we have Γ̂Z = Γ.

Proof. If vt = 0ny , we have σ2 = 0. All designs of λ and
S are equivalent to the subspace predictor, under which

case R4 is the last nyL0 columns of col (Ψ, Yp)
† and thus

YpR4 = InyL0 . Then Lemma 2 in Yin et al. (2022) directly

leads to Γ̂Z = Γ. □

Proposition 4. Let the singular values of col (Ψ, Yp) be
σ1, . . . , σLσ in descending order, where Lσ := (nu+nw)L+

nyL0. Then as M →∞, Γ̂Z → Γ w.p. 1, if σLσ →∞.

Proof. Let col (Ψ, Yp) := ΩSV ⊤ be the singular value
decomposition, where Ω, S ∈ RLσ×Lσ and V ∈ RM×Lσ .
Then, gtpinv = V S−1Ω⊤ωt, where ωt := col (ut

ini,u
t, w̄t, ȳt

ini),

and
∥∥gtpinv∥∥22 ≤ ∥V ∥22 ∥∥S−1

∥∥2
2
∥Ω∥22 ∥ωt∥22 = ∥ωt∥22

/
σ2Lσ

.

Note that gtpinv is also the least-norm solution to the linear

system col (Ψ, Yp) g = ωt, so we have ∥gt∥22 ≤
∥∥gtpinv∥∥22.

Therefore, if σLσ → ∞, ∥gt∥22 → 0 and Σt → 0 since

Pt = 0. This directly leads to the convergence of Γ̂Z to Γ.
□

Remark 5. The singular value condition σLσ →∞ requires
that the columns of col (Ψ, Yp) activate all directions per-
sistently as M → ∞. This is satisfied for, for example,
independent random or repeated full-rank inputs and dis-
turbances.

4. STOCHASTIC INDIRECT DATA-DRIVEN
PREDICTIVE CONTROL

Based on the stochastic predictor (11), the stochastic in-
direct DDPC algorithm can be proposed. In the following
subsections, the stochastic control cost is first formulated
as a quadratic objective. Then, the prediction accuracy
is improved by filtering the output initial condition mea-
surements with a Kalman filter. Finally, the satisfaction of
chance constraints is guaranteed by formulating tightened
SOC constraints.

4.1 Stochastic Control Cost

The stochastic control cost Jt is formulated as a quadratic
function in the following lemma.

Lemma 6. The expected control cost is given by

Jt =
∥∥ût

∥∥2
R̄
+
∥∥ȳt − rt

∥∥2
Q̄
+tr

(
Q̄T

) ∥∥gt∥∥2
2
+constant, (18)

where R̄ := IL′ ⊗ R, Q̄ := IL′ ⊗ Q, rt := (rt+k)
L′−1
k=0 , and

T := σ2
(
ΓΓ⊤ + InyL′

)
. The cost is quadratic with respect

to the optimization variable ût.

Proof. The expected output cost is calculated as:

E
[∥∥ŷt − rt

∥∥2
Q̄

]
= E

[(
ȳt + et − rt

)⊤
Q̄
(
ȳt + et − rt

)]
=
∥∥ȳt − rt

∥∥2
Q̄
+ E

[(
et
)⊤

Q̄ et
]
=

∥∥ȳt − rt
∥∥2
Q̄
+ tr

(
Q̄Σt

)
=
∥∥ȳt − rt

∥∥2
Q̄
+ tr

(
Q̄T

) ∥∥gt∥∥2
2
+ const,



where et: E [et] = 0, cov (et) = Σt is the prediction error.
The second to last equality is due to the cyclic property
of the trace function. This cost is quadratic with respect
to ût since both gt and ȳt are linear with respect to ût.□

The stochastic control cost adds a ∥gt∥22-regularization
term to the nominal cost. Such regularization is required in
direct DDPC (Coulson et al., 2019a) for well-definedness
and is proposed to enhance robustness in indirect DDPC
(Yin et al., 2021). However, it was unclear how to tune the
weighting factor for the regularizer other than trial and
error. By considering the regularizer as the uncertainty
term in the expected output cost, the weighting factor
can be reliably selected as tr

(
Q̄T

)
, which depends on the

output cost matrix and the noise level.

4.2 Initial Condition Estimation

In model-based output-feedback MPC, an estimator has to
be designed to estimate the initial state of the predictor,
which is not measurable. This is not required in DDPC
since the output initial condition ȳt

ini can be directly
measured. In fact, in most existing DDPC implementa-
tions with stochastic data, the output initial condition ȳt

ini
comes from measurements as in the deterministic case,
i.e., ȳt

ini := (yk)
t−1
k=t−L0

. Thus, the associated covariance

Pt = σ2I is constant in (13). This source of uncertainty can
be alleviated by choosing a larger L0 (Yin et al., 2021). On
the other hand, in the presence of stochastic uncertainties,
a properly designed estimator can estimate the initial state
with a diminishing covariance that is much smaller than
the noise level in the measurements.

Therefore, although not required, it can be beneficial
to improve the output initial condition measurements
based on output predictions at previous time steps by
designing an estimator, especially in cases where the online
measurement error is large. In this subsection, a Kalman
filter is designed as the estimator. In particular, we replace
yk with its Kalman-filtered counterpart for the output
initial condition. This reduces the prediction errors by
shrinking Pt as time progresses.

In detail, the same predictor (11) for predictive control
design at time (t − 1) is used to filter the output at time
t and update ȳt

ini. The predictor can be considered as a
non-minimal state-space “model” with “state”

x̄t := col
(
ut−L0 , . . . , ut−1, y

0
t−L0

, . . . , y0t−1

)
. (19)

Let ȳtk and etk denote the (k + 1)-th block element of ȳt

and et, respectively, and Σt
k be the covariance of etk, i.e.,

the (k + 1)-th ny × ny block on the diagonal of Σt. The
data-driven “model” is then given by

x̄t+1 =

[
Λnu 0

0 Λny

]
︸ ︷︷ ︸

Λ̄

x̄t +


0

ût0
0

ȳt0 + et0

 ,
ζt+1 =

[
0 Iny

]
x̄t+1 + vt = y0t + vt = yt,

(20)

where Λk denotes the k-step upper shift matrix with ones
on the k-th superdiagonal. The covariances of the “process
noise” et0 and the measurement noise vt are Σt

0 and σ2Iny ,
respectively. Then, a Kalman filter for (20) can be designed
to estimate the initial condition x̄t. Let the state estimate

and the output part of the state error covariance be x̄t,t
and Pt,t, respectively. Then, the initial conditions for the
DDPC problem can be set as col (ut

ini, ȳ
t
ini) := x̄t,t and

Pt := Pt,t. The Kalman filtering algorithm is summarized
in Algorithm 1.

Algorithm 1 Kalman filter in stochastic indirect DDPC

1: Initialization:

x̄0,0 := col (u−L0 , . . . , u−1, y−L0 , . . . , y−1) , (21)

P0,0 := InyL0 . (22)

2: Prediction:

x̄t,t+1 := Λ̄x̄t,t + col
(
0, ût0,0, ȳ

t
0

)
, (23)

Pt,t+1 := ΛnyPt,t (Λ
ny )⊤ +Σt

0. (24)

3: Update:

Kt+1 := Σt
0

(
Σt

0 + σ2Iny

)−1
, (25)

x̄t+1,t+1 := x̄t,t+1 + col
(
0,Kt+1

(
yt − ȳt0

))
, (26)

Pt+1,t+1 :=
(
Iny −Kt+1

)
Pt,t+1. (27)

Remark 7. A similar idea was proposed in Alpago et al.
(2020) for a direct DDPC algorithm. However, no approach
is provided to quantify the covariance of the prediction error
required in the Kalman filter as there is no well-defined
predictor in direct DDPC.

4.3 Chance Constraint Satisfaction

As mentioned in Section 2, the output constraints yt ∈ Yt

cannot be guaranteed robustly under unbounded noise. In-
stead, high-probability chance constraints are considered,
either element-wise as

Pr (ht+k
i

⊤
ŷtk ≤ qt+k

i ) ≥ p, ∀ i = 1, . . . , nc, k = 0, . . . , L′ − 1,
(28)

or set-wise as

Pr
(
ŷtk ∈ Yt+k

)
≥ p, ∀ k = 0, . . . , L′ − 1, (29)

where p is the targeted probability. These chance con-
straints are typically guaranteed by tightening the nominal
constraints to account for prediction uncertainties. How-
ever, unlike standard model-based predictors with additive
uncertainties, the prediction error covariance of the data-
driven predictor (11) depends on the particular inputs and
initial conditions via gt. So the amount of constraint tight-
ening cannot be calculated offline. Define the augmented
linear constraints by Ȳt =

{
y
∣∣ H̄ty ≤ q̄t

}
, where

H̄t :=
[
h̄t1 . . . h̄tL′nc

]⊤
:= blkdiag

(
Ht, . . . ,Ht+L′−1

)
,

q̄t := col
(
q̄t1, . . . , q̄

t
L′nc

)
:= col

(
qt, . . . , qt+L′−1

)
.

The following lemma guarantees chance constraint satis-
faction by constraint tightening.

Lemma 8. The constraint

q̄t − H̄tȳt ≥ µ
√

diag
(
H̄tΣtH̄t⊤

)
(30)

guarantees the satisfaction of the chance constraints (28) if

µ ≥
√

1
1−p − 1 and (29) if µ ≥

√
ny

1−p .

Proof. Applying the one-sided Chebyshev’s inequality,
we have

Pr
(
h̄tiŷ

t − h̄tiȳt ≤
√

1
1−p − 1 · std

(
h̄tiŷ

t
))
≥ p, ∀ i, (31)



Algorithm 2 Stochastic indirect DDPC

1: Select a data-driven predictor and calculate predictor
parameters from (9), (10), (14), and (17).

2: Initialize the Kalman filter from Algorithm 1.
3: for t← 0, 1, . . . do
4: col (ut

ini,y
t
ini)← x̄t,t, Pt ← Pt,t

5: ût ← argmin
ût

(18) s.t. (8), (12), (4), (36).

6: Apply ut = ût0 to the system and measure yt.
7: Run the Kalman filter from Algorithm 1.
8: end for

where std
(
h̄tiŷ

t
)
=

√
h̄tiΣ

th̄ti
⊤
. From (30), we have

q̄ti − h̄tiȳt ≥ µ
√
h̄tiΣ

th̄ti
⊤
. (32)

Equations (31) and (32) lead to (28) for µ ≥
√

1
1−p − 1.

From the multi-dimensional Chebyshev’s inequality, the
ellipsoidal set

E t
k :=

{
etk

∣∣∣∣ etk⊤ (
Σt

k

)−1
etk ≤

ny
1− p

}
(33)

is a confidence region of prediction error etk with at least
probability p. Then, the chance constraint is satisfied if

ȳtk ∈ Yt+k ⊖ E t
k :=

{
y
∣∣ y + e ∈ Yt+k,∀ e ∈ E t

k

}
, (34)

where ⊖ denotes the Pontryagin difference. For polytope
Yt+k and ellipsoid E t

k , we have

Yt+k ⊖ E t
k =

{
y
∣∣∣ht+k

i

⊤
y ≤ qt+k

i − ηE t
k

(
ht+k
i

)
, i = 1, . . . , nc

}
,

(35)

where ηE t
k
(h) :=

√
ny

1−ph
⊤Σth is the support function of

E t
k . Aggregating the constraints for all i leads to (29) for

µ ≥
√

ny

1−p . □

Remark 9. The lemma can be tightened if both vt and
wt are Gaussian, by using the cumulative distribution
functions of the χ2 and Gaussian distributions.

Unfortunately, the tightened constraint (30) is not convex.
The following corollary provides a convex surrogate for
(30).

Corollary 10. The SOC constraint

q̄t − H̄tȳt ≥ µ
(
c1 + c2

∥∥gt∥∥
2

)
, (36)

where

c1 :=

√
diag

(
H̄t (ΓPtΓ⊤ + ΓwΣwΓ⊤

w) H̄
t⊤

)
, (37)

c2 :=

√
diag

(
H̄tTH̄t⊤

)
, (38)

guarantees the satisfaction of (30).

Proof. Since
√∑

i ai ≤
∑

i

√
ai, we have

c1 + c2
∥∥gt∥∥

2
≥

√
c21 + c22 ∥gt∥

2
2 =

√
diag

(
H̄tΣtH̄t⊤

)
. □

The proposed stochastic indirect DDPC algorithm is sum-
marized in Algorithm 2.

0 5 10 15 20 25 30 35

t

0

0.5

1

y

Ref.

N-DDPC

KF-DDPC

S-DDPC

Bounds

Fig. 1. Closed-loop trajectories of DDPC algorithms.

5. NUMERICAL EXAMPLE

In this section, we compare the performance of nominal
DDPC (N-DDPC ), DDPC with initial condition estima-
tion in Algorithm 1 (KF-DDPC ), and stochastic DDPC in
Algorithm 2 (S-DDPC ) 1 . Consider the following fourth-
order dynamics:

[
A B E
C 0 0

]
=


0.36 0.64 0.07 0.02 0.29 0.03
0.42 0.58 0.02 0.07 0.03 0.20
−9.34 9.34 0.23 0.58 4.90 1.07
5.88 −5.88 0.39 −0.39 1.07 3.48
1 0 0 0 0 0

 .
The following parameters are used in the example: L0 = 4,
L′ = 10, Q = 20, R = 1, σ2 = 0.01, p = 0.95. An offline
trajectory of length 500 is collected with unit Gaussian
inputs and the signal matrix is constructed with a Hankel
structure, which leads to M = 487. The statistics of
the disturbance are given by w̄t = 0 and Σw = 0.001 ·
I. Both the noise and the disturbance are Gaussian.
The elementwise chance constraints (28) are used. The
same online noise and disturbance sequences are used
to compare the three algorithms. The minimum mean-
squared error predictor in Yin et al. (2022) is employed
as the predictor. No input constraint is considered in this
example, i.e., Ut = R. Upper and lower output bounds are
specified as the output constraints.

The closed-loop trajectories of the algorithms are pre-
sented in Figure 1, alongside the reference trajectory and
the output bounds. As observed in Figure 1, KF-DDPC
outperforms N-DDPC by introducing the initial condition
estimator, although constraint violations are still evident.
S-DDPC further eliminates the constraint violations ex-
perienced in KF-DDPC by constraint tightening. To un-
derscore the effectiveness of the Kalman filter, Figure 2
showcases the comparison between the filtered output ini-
tial conditions and the measured ones for S-DDPC. The
filtered trajectory is notably closer to the true trajectory
compared to the measured trajectory.

The performance is further evaluated quantitatively by
50 Monte Carlo simulations with different noise and dis-
turbance realizations. Figure 3 shows the boxplots of the
true total control cost and the total amount of constraint
violations, calculated as

∑
t max (Htyt − qt, 0). The results

validate our observations from Figure 1 that our proposed
algorithm S-DDPC performs much better than the nom-

1 The Matlab scripts for reproducing the results are available at
https://doi.org/10.3929/ethz-b-000672607.
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Fig. 3. Boxplots of (a) the true total control cost and (b)
the total amount of constraint violations.

inal algorithm with almost no constraint violation. KF-
DDPC obtains lower control costs than S-DDPC, but at
the expense of larger constraint violations.

6. CONCLUSION

This work discusses several modifications in stochastic
data-driven predictive control (DDPC) algorithms. They
provide a tuning-free regularizer design in the control
cost, improved initial condition estimation, and reliable
constraint satisfaction. These are achieved by evaluating
the expected cost, designing a Kalman filter, and for-
mulating convex constraint tightening terms, respectively.
These modifications pave the way for providing theoretical
guarantees for DDPC algorithms under general unbounded
stochasticity.
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