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The paper proposes a novel approach to data-driven reduced-order modeling which com-
bines the Dynamic Mode Decomposition technique with the concept of balanced realization.
The information on the system comes from input, state, and output trajectories, and the goal
is to derive a linear low-dimensional input-output model approximation. Since the dynamics
of aerospace systems markedly changes when some parameters are varied, it is desirable to
capture this feature in the system’s description. Therefore, a Linear Parameter-Varying repre-
sentation made of a collection of state-consistent linear time-invariant reduced-order models
is sought. The main technical novelty of the proposed algorithm consists of replacing the or-
thogonal projection onto the PODmodes, typical of Dynamic Mode Decomposition techniques,
with a balancing oblique projection. The advantages are that the input-output information in
the lower-dimensional representation is maximized, and that a parameter-varying projection
is possible while also achieving state-consistency. The validity of the proposed approach is
demonstrated on a morphing wing for airborne wind energy applications by comparing its
prediction capabilities with those of a recent algorithm from the literature.

I. Introduction

The use of data-drivenmethods to obtain low-order representations for complex systems described by high-dimensional
and nonlinear (partial) differential equations has recently received great attention [1]. A common idea to many

successful approaches is to project the high-dimensional data, typically consisting of system’s trajectories, onto a lower
dimensional subspace where the most important features of the dynamics are preserved. This is also the philosophy used
in the Dynamic Mode Decomposition (DMD) technique [2], which, in its original formulation, computes the spectrum
of a low-order linear dynamics approximating the training data. To achieve this, the method leverages the well-known
reduction technique called Proper Orthogonal Decomposition (POD) [3]. The projecting subspace is indeed spanned
by the left singular vectors (also termed POD modes) associated with the largest singular values of a snapshot matrix
gathering the system’s states at different measured times. Since the largest singular values are associated with the modes
capturing most of the energy in the system, the orthogonal projection onto this lower dimensional subspace preserves
the spatial structures with the highest energy content. However, there is no guarantee that this energy-based criterion is
the optimal one to follow in every application. Moreover, for input-output model structures (e.g. the standard state-space
models used to describe control systems), it is not clear whether a projection constructing with the POD modes, which
only use state information, provide the best possible approximation.

Prompted by these observations, this paper investigates the use of data-driven (or equation-free) reduced-order
modeling (ROM) techniques for aerospace applications where input-output models are sought, as it is the case for
example in aeroservoelasticity. The state-of-the-practice in this field is to use well-established model-based reduction
techniques [4]. However, the increasing complexity of the high-fidelity solvers on one hand, and the potential advantage
of recalibrating or directly substituting parts of the code with experimental or flight data on the other, support the
investigation of equation-free strategies. It is however important, to ensure their successful application, that distinctive
aspects of these application domains are considered.

As mentioned earlier, a common feature of the most popular data-driven approaches is that they focus on internal
dynamics (i.e. without external excitation and with fully observable states). The work in [5] recently extended the
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DMD framework to controlled systems (DMDc), but the key steps of the algorithm, included the computation of the
projecting subspace, do not substantially change. Therefore, new methods should put emphasis on preserving the
input-output behaviour of the system. In addition, it is very important to capture the variation of the system’s properties
(e.g. typically encountered in aeroservoelastic applications) as the operating conditions change. A natural framework to
do this is the Linear Parameter-Varying (LPV) representation [6]. While LPV models are of acknowledged benefit for
control related tasks [7–10], obtaining accurate models featuring low orders is notoriously a difficult task. One of the
most common strategies is to seek low-order linear time-invariant (LTI) representations for a grid of frozen-parameter
conditions and then, provided that state consistency holds across the family of models, interpolate them for varying
parameters [11]. An algorithm that applies this strategy in the data-driven setting by following a DMD approach was
proposed in [12] under the name of input-output reduced-order model (IOROM) method. In DMD-based approaches,
interpolating local LTI models can be however in principle problematic, since state consistency will depend on the
selection of the projecting subspace. If this changes across the parameter range, as it is the case if one computes the
POD modes at each grid point, then state consistency will not hold in general and thus the LPV representation is not
achieved. Conversely, if the subspace is kept fixed for all the frozen-parameter LTIs, then accuracy might deteriorate
since projection will no more take place onto the subspace associated with the POD for the considered parameter.

Motivated by the discussion above, this work proposes a novel equation-free approach for obtaining LPV low-order
models. The idea to address the aforementioned issues is to use, instead of an orthogonal projection associated with one
subspace, an oblique projection. This is associated with two subspaces, a basis space and a test space, characterizing
the range space and null space of the projection, respectively. Oblique projection, which is a tool employed in model
reduction [13] and system identification [14], was previously used in the context of model-based reduction of LPV
models in [15]. The oblique projection is instead used here for the first time, to the best of the authors’ knowledge, in the
context of DMD-type data-driven ROM approaches as an alternative choice to the subspace spanned by the POD modes.
After describing the steps of the Balanced Mode Decomposition (BMD) algorithm, its performance is compared with a
recent extension of the DMD with control algorithm. Precisely, the algebraic DMDc (aDMDc) algorithm was proposed
in [16] to extend DMDc to the case of parameters’ variation and to systems described by algebraic, besides differential,
equations. Including algebraic constraints is indeed very important when considering state trajectories generated by
aerodynamic solvers capturing unsteady effects, such as in panel methods or unsteady vortex lattice methods [17].

The algorithms are tested on a high-fidelity, fluid-structure interaction (FSI) numerical model of an airborne wind
energy (AWE) morphing wing. The FSI simulator is described in [18] and the wing was analyzed in detail in [19].

II. Equation-free low-order modeling
This section provides some background on equation-free ROM algorithms. In Section II.A the general data-driven

low-order modeling problem is presented. Section II.B reviews then the algebraic DMD with Control (aDMDc) [16], an
equation-free ROM algorithm from the literature used for comparison in the result section.

A. Problem statement and preliminaries
The starting point is a generic discrete-time nonlinear parameter-varying model which can be used to describe

typical aeroservoelastic systems modelled by FSI solvers:

G:+1 = 5 (G: , D: , d: ),
H: = ℎ(G: , D: , d: ),

(1)

where G ∈ R=G , D ∈ R=D , H ∈ R=H are the state, input and output, and d : R→ R=d is a vector of time-varying parameters
defining the operating conditions of the system. The problem of finding an LPV low-order approximation of (1) can be
divided into two phases: first, LTI approximations for frozen values of d in a pre-defined grid {d 9 }=6

9=1 are computed;
then, an LPV model is obtained through appropriate interpolation.

It is assumed that for each frozen value d̄ there exists an equilibrium point characterized by the tuple (Ḡ( d̄),D̄( d̄),H̄( d̄))
such that:

Ḡ( d̄) = 5 (Ḡ( d̄), D̄( d̄), d̄),
H̄( d̄) = ℎ(Ḡ( d̄), D̄( d̄), d̄).

The deviation vectors G̃: := G: − Ḡ( d̄), D̃: := D: − D̄( d̄), and H̃: := H: − H̄( d̄) are then used to express the LTI
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approximation of the system around the equilibrium in state-space form as:

G̃:+1 = �( d̄)G̃: + �( d̄)D̃: , (2a)
H̃: = � ( d̄)G̃: + � ( d̄)D̃: , (2b)

where (�( d̄),�( d̄),� ( d̄),� ( d̄)) represent the linearization around the considered trim point associated with d̄ (the
dependence on the objects on a fixed value of the parameter d will be dropped in the remainder when clear from the
context).

In the data-driven setting, the only information on the system comes from input, state, and output trajectories
{G: , D:−1, H:−1}=B:=1 of length =B , and is gathered in the following snapshot matrices:

-0 =

[
G0 − Ḡ G1 − Ḡ ... G=B−1 − Ḡ

]
∈ R=G×=B ,

-1 =

[
G1 − Ḡ G2 − Ḡ ... G=B − Ḡ

]
∈ R=G×=B ,

*0 =

[
D0 − D̄ D1 − D̄ ... D=B−1 − D̄

]
∈ R=D×=B ,

*1 =

[
D1 − D̄ D2 − D̄ ... D=B − D̄

]
∈ R=D×=B ,

.0 =

[
H0 − H̄ H1 − H̄ ... H=B−1 − H̄

]
∈ R=H×=B .

(3)

The notation [-0; *0] will denote the operation of stacking row-wise two matrices -0 and*0.
The first goal is to obtain a low-order and linear time-invariant approximation of (2), that is:

Ĩ:+1 = �Ĩ: + �D̃: ,
H̃: = �Ĩ: + �D̃: ,

where Ĩ ∈ R=I and =I � =G . Once this is available, the response of the system at any value d: for a generic time-varying
trajectory of the parameter is obtained via interpolation. For control application, it is desirable to perform this at matrix
level by directly interpolating the family of frozen LTI systems. However, this requires state-consistency across the
parameters range and when this is not achieved one can interpolate the signals of interest instead. An example of the
latter solution is the aDMDc algorithm, reviewed next.

B. Algebraic Dynamic Mode Decomposition with Control algorithm
The algebraic Dynamic Mode Decomposition with Control (aDMDc) algorithm was recently proposed in [16] to

extend the DMDc algorithm to systems described by algebraic-differential equations. The DMDc algorithm from [5] is
first briefly reviewed. This algorithm seeks a data-driven approximation of the matrices involved in the state equation
(2) by means of two truncated singular value decompositions (SVD) of the snapshot matrices. The first one is:

[-0; *0] = *Σ+> � *AΣA+>A , (4)

where the subscript A denotes a truncation of the SVD decomposition of order A (obtained by retaining only the A largest
singular values in the decomposition). Note that the value of A has nothing to do in principle with the size of the final
reduced-order model, and it could be set for example by using the hard threshold criterion suggested in [20]. The effect
of choosing A on the accuracy of the model will be discussed in the result section. The second one is computed from the
snapshot matrix -1:

-1 = *̂Σ̂+̂
> � *̂=I Σ̂=I+̂

>
=I
, (5)

where the columns of *̂=I provides the set of POD modes used for the projection on a lower dimensional space, and the
selection of =I fixes the size of the reduced-order model.

An approximation of the high-order matrices appearing in (2) can be formulated in terms of the truncated SVD (4)
and the snapshot matrix -1 as:

[� �] = -1+
>
A Σ
−1
A *

>
A . (6)
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Then, a low-order approximation is obtained by projecting (6) onto the set of POD modes by making use of (5):

[� �] =
[
*̂>=I �*̂=I *̂>=I�

]
.

Therefore, the sought low-order model is:
Ĩ:+1 = �Ĩ: + �D̃: ,

where the high-order state can be recovered as G̃ = *̂=I Ĩ.
The aDMDc builds on the DMDc approach and addresses the presence of algebraic constraints in the dynamic

equations which might arise when considering unsteady aerodynamics features. Specifically, the FSI model employed
in [16] implements a 3D panel with wake’s features inspired by the method in [17], which leads to a dependence of the
states evolution on the inputs at the next time step. Therefore, a slightly different starting point from the general one
presented in (1) has to be considered, namely:

6(G:+1, D:+1) = 5 (G: , D: , d: ),
H: = ℎ(G: , D: , d: ),

(7)

where 6 is in general a nonlinear function taking into account the dependence of the states on the control inputs at the
next time step. This dependence results from algebraic equations relating the doublet strengths (aerodynamics states)
and downwash (function of the other states and the control inputs). While this effect is sometimes accounted for with
artificial aerodynamic states by simply changing the feedtrough matrix to the outputs, to correctly capture the evolution
of the states it is important to consider the problem as stated in (7). The reader is referred to [16] for further discussion
on this aspect.

The LTI representation proposed in aDMDc to account for the algebraic constraints due to the unsteady aerodynamics
is thus:

G̃:+1 = �G̃: + �D̃: + 'D̃:+1,

where, as in DMDc, the objective is to find a low-order approximation for the state equation only. The only difference
with DMDc is that now the first SVD decomposition is computed with respect to the snapshot matrices -0,*0, and*1,
that is:

[-0; *0; *1] = *Σ+> � *AΣA+>A .

And the high-order matrices are thus approximated as:

[� � '] = -1+
>
A Σ
−1
A *

>
A .

The second truncated SVD (4) instead is unchanged, and a low-order approximation is then obtained by projecting (6)
onto the same set of POD modes used in DMDc:

[� � !] =
[
*̂>=I �*̂=I *̂>=I� *̂>=I'

]
.

This procedure results in the aDMDc low-order model:

Ĩ:+1 = �G̃: + �D̃: + !D̃:+1, (8)

where the high-order state can again be obtained from G̃ = *̂=I Ĩ.
The approach proposed in [16] to handle parameters variations is to use a different set of POD modes for each value

of d in the grid. As a result, the frozen LTI models (8) do not have a consistent basis for the state, and thus the signals,
instead of the matrices, are directly interpolated. That is, the frozen LTI models (8) are simulated simultaneously, the
relative states are lifted to the high-order ones using the corresponding projection matrices (e.g. *̂=I (d 9 ) for the model
corresponding to the 9 − Cℎ element in the parameter space), and the state corresponding to the desired value of d is
obtained by interpolating the high-dimensional states. While this approach has in principle the advantage of projecting
over POD modes specifically computed for a particular value of d, it also means that an LPV model is not available.
This for example precludes the use of LPV robust control design strategies [9]. While other control techniques, such as
model predictive control, can still be successfully used [16], this will entail running in parallel multiple models (8).
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III. Balanced Mode Decomposition with oblique projection
This section presents the main technical aspects of the Balanced Mode Decomposition (BMD) algorithm. Section

III.A presents the algorithm and Section III.B gives more details on the selection of the two subspaces defining the
projection. Finally, Section III.C presents a version of the algorithm which accounts for algebraic constraints and can
thus be used to analyze the morphing wing in Section IV.

A. Formulation of the algorithm
The frozen-parameter case is considered first, leveraging the interpretation of DMD as linear dynamics fitting [21].

Specifically, given the snapshot matrices (3), the state-space matrices (�, �, �, �) defining (2) can be in principle
obtained by solving the following least-squares problem:

min
�,�,�,�


[
-1

.0

]
−

[
� �

� �

] [
-0

*0

]2

�

, (9)

where the subscripts � denotes the Frobenius norm of a matrix. Naturally, simply solving (9) does not provide
a low-dimensional representation of the system because the identified state space model (�,�,�,�) is of order =G .
To achieve this, the conventional approach in DMD, recently extended in [12] to the input-output setting with the
IOROM method, is to project the state orthogonally onto a low-dimensional subspace of dimension =I . This is done
by introducing the projection matrix & ∈ R=G×=I , where &>& = �=I , such that the orthogonal projection of G̃ on an
=I-dimensional subspace reads as &&>G̃. Equivalently, one can think that the original state is approximated by G̃ � &Ĩ
for some coefficient vector Ĩ ∈ R=I . It then follows that the vector Ĩ = &>G̃ ∈ R=I is the state of the following low-order
approximation of (2): [

� �

� �

]
≈

[
&�&> &�

�&> �

]
=

[
& 0
0 �=H

] [
� �

� �

] [
&> 0
0 �=D

]
.

The standard choice is to use the POD modes of -0 to construct the projection matrix &, namely:

-0 � *=IΣ=I+
>
=I
,

& = *=I ,
(10)

where*=I contains the left singular vectors associated with the =I largest singular values of -0.
In this work, a different strategy is employed to project the data. Precisely, the orthogonal projection is replaced by an

oblique projection. Given + ∈ R=G×=I , and, ∈ R=G×=I , such that, is bi-orthogonal to + , i.e. ,>+ = �=I , an oblique
projection can be defined by the matrix Π = +,>. That is, the oblique projection of G̃ reads as +,>G̃. Equivalently,
one can think that the original state is approximated by G̃ � +Ĩ (where, as before, Ĩ ∈ R=I is some coefficient vector),
and the component of G̃ that is eliminated by the projection is in the nullspace of Π (or, equivalently, it is orthogonal to
,). As opposed to the orthogonal projection, which is characterized by a single subspace (the one spanned by the
columns of &), the oblique projection is thus defined by two subspaces: the basis space (spanned by the columns of
+), such that the projection of G̃ lies in the span of + ; and the test space (spanned by the columns of,), such that the
projection +Ĩ has zero error within it, i.e. ,> (G̃ −+I) = 0. This is the feature that enables the BMD algorithm to
obtain families of LTI systems having state-consistency and characterized by parameter-varying projections. Indeed, it
is sufficient to employ a fixed + (since this defines the state basis) and a parameter-dependent, .

This approach leads to the following low-order approximation of (2):[
� �

� �

]
≈

[
+�,> +�

�,> �

]
=

[
+ 0
0 �=H

] [
� �

� �

] [
,> 0

0 �=D

]
, (11)

where the basis + and test spaces, are computed from data in order to maximize the input-output content captured
in the projection (as detailed in Section III.B). The matrices (�,�,�,�) can then be obtained with the following
least-squares problem:

min
�,�,� ,�


[
-1

.0

]
−

[
+ 0
0 �=H

] [
� �

� �

] [
,> 0

0 �=D

] [
-0

*0

]2

�

, (12)
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which has solution: [
� �

� �

]
>?C

=

[
,>-1

.0

] [
,>-0

*0

]†
. (13)

where † denotes the pseudo-inverse of a matrix.
To build a low-order LPV model, snapshot matrices are first collected for different realizations of {d 9 }=6

9=1, and the
least-squares problem (12) is solved at each grid point. Crucially, the test space, is allowed to be a function of d, as
motivated previously. This leads to the following solution for the matrices on the pre-defined grid.[

� (d 9 ) � (d 9 )
� (d 9 ) � (d 9 )

]
>?C

=

[
,> (d 9 )-1 (d 9 )

.0 (d 9 )

] [
,> (d 9 )-0 (d 9 )

*0 (d 9 )

]†
. (14)

The BMD LPV reduced-order model is then obtained by interpolating the frozen matrices (14) across the parameter’s
range:

Ĩ:+1 = �d: Ĩ: + �d: D̃: + ( Ī(d: ) − Ī(d:+1)),
H̃: = �d: Ĩ: + �d: D̃: .

(15)

where (�d,�d,�d,�d) are obtained by interpolating the corresponding matrices at the query value d: , and Ī(d: ) =
,>Ḡ(d: ). The term ( Ī(d: ) − Ī(d:+1)), which did not appear in 8, is proposed here to take into account the fact that the
equilibrium point associated with each d is in general different.

A pseudoalgorithm of the BMD algorithm is given in the next section, after having discussed the computation of
basis and test spaces.

B. Basis and test spaces construction
The interpolation of the frozen reduced-order models can be done in (15) at the state-matrices level, as opposed to

what is the case for aDMDc. While this favourable property was also achieved by other DMD-inspired methods, such
as the IOROM algorithm proposed in [12], the price to pay to guarantee state consistency was that a fixed projection
matrix for all frozen models had to be used. Thanks to the use of a parameter-varying test space, (d), the projection
can be made here also parameter-dependent, with the clear advantage that the subspaces where states are projected can
be computed anew for each value of the parameters.

The other motivation for the proposal of the BMD algorithm has to do with the fact the projecting onto the subspace
spanned by the POD modes can be arbitrary suboptimal, because they are selected only based on the energy in the
measured states. In the input-output context, a subspace typically providing lower input-output errors with respect
to the others having same size =I is the one where the system’s state is in balanced coordinates [22]. This is indeed
the principle behind balanced truncation, which consists of removing the states corresponding to the smallest =G − =I
Hankel singular values. This is an effective heuristic justified by the fact that their sum provides a lower bound and, for
systems in balanced coordinates, an upper bound on the quality of the approximation achieved by removing system’s
states [4, 23].

These control theoretic properties are used here to select the basis and test spaces. Specifically, + and , are
computed from the empirical controllability and observability Gramians of the system, respectively,2 and,>. This
ensures that the projection preserves the most observable and controllable states, enabling an approximate model-free
balanced truncation of the reduced-order LPV model.

Because a model of the system is not available, empirical Gramians are computed from appropriate input and output
trajectories of the system. The empirical controllability Gramian can be obtained by impulse response simulations (one
for each input channel). If the high-fidelity model is linear and its adjoint is available, then the empirical observability
Gramian can be computed by impulse response simulations (one for each output channel) of the adjoint system, as in
balanced POD [3]. Otherwise, the approach developed in [24], valid also for nonlinear systems and not requiring an
adjoint model, can be used. The main disadvantage is that it requires one simulation for each state. Specifically, the
initial condition of each state is perturbed and the corresponding response (for zero input) simulated. Since these are
unforced responses, the simulation time before the output decays depends on the dominant poles. When the system is
sufficiently damped, it will be generally sufficient to observe only the initial time-steps and thus this calculation can be
efficiently implemented to overcome costly simulations.

Once ,2 and ,> are available, the procedure proposed in [15] to compute an oblique projection for given
controllability and observability Gramians is employed to construct the test and basis spaces. This consists of a series
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of singular value and QR decompositions and is reported in the first part of the pseudocode below (where MATLAB
notation is used for matrix operations), which summarizes the main steps involved in the BMD algorithm.

Algorithm 1 Balanced Mode Decomposition with oblique projection
Input: parameter grid points {d 9 }=6

9=1; snapshot matrices {-0 (d 9 ), -1 (d 9 ),*0 (d 9 ), .0 (d 9 )}
=6

9=1; empirical
Gramians {,2 (d 9 ),,> (d 9 )}

=6

9=1; model desired order =I .
Output: reduced-order models at the grid points {� (d 9 ),� (d 9 ),� (d 9 ),� (d 9 )}=6

9=1; test space projection
matrices {, (d 9 )}=6

9=1; fixed basis space projection matrix + .
1: for 9 = 1, ..., =6 do
2: !2 (d 9 )!2 (d 9 )> = ,2 (d 9 ) Cholesky factorization of ,2
3: !> (d 9 )!> (d 9 )> = ,> (d 9 ) Cholesky factorization of ,>
4: (*,★,★) = svd(!2 (d 9 )>!> (d 9 ))
5: (*̄,★,★) = svd(!2 (d 9 )* (:, 1 : =I))
6: &̄(:, 1 + =I ( 9 − 1) : =I 9) = *̄ (:, 1 : =I)
7: end for
8: (&,★,★) = BE3 (&̄)
9: + = &(:, 1 : =I)
10: for 9 = 1, ..., =6 do
11: (&, ') = @A (!> (d 9 )>+) Thin QR factorization
12: & = &(:, 1 : =I)
13: ' = '(1 : =I , :)
14: , (d 9 ) = !> (d 9 )&('>)−1 Time-varying test space
15: [

� (d 9 ) � (d 9 )
� (d 9 ) � (d 9 )

]
=

[
,> (d 9 )-1 (d 9 )

.0 (d 9 )

] [
,> (d 9 )-0 (d 9 )

*0 (d 9 )

]†
BMD regression problem

16: end for

The output {� (d 9 ),� (d 9 ),� (d 9 ),� (d 9 )}=6
9=1 provided by the BMD algorithm is a grid LPV model. After an

interpolation algorithm to evaluate the matrices’ entries for any value of d inside the considered range has been chosen,
this model can be used for simulation and control design. Note also that recently proposed robust analysis methods
for linear-time varying (LTV) systems [25, 26] can be applied to investigate different aircraft manoeuvres (fixing a
particular trajectory for d transforms the LPV into an LTV system). The parameter-varying test space, (d 9 ) can be
useful to gain insights into the aeroeservoealstic modes which have been eliminated and those that have been kept in the
projection, while the parameter-independent basis space can be used to recover at each time-step : the high-dimensional
state via the transformation G̃: = +Ĩ: . The construction of the basis and test spaces given above, together with Eqs.
(11)-(13) illustrated in the previous section, explain the reason for the name Balanced Mode Decomposition. Indeed, the
proposed algorithm can be seen as a version of the classic DMD technique for the reconstruction of a state-space model
where the orthogonal projection onto the POD modes is replaced by an oblique projection defined by the balancing and
adjoint modes of the system, leading to a balanced decomposition.

It is finally noted that, as said in the beginning, the algorithm provides an approximate balanced truncation.
Approximation is related to the use of empirical Gramians, which are only finite-time approximations of the true ones
(for this reason, also called finite-time Gramians) since their computation is trajectory-based. As a result, they only
provide in principle a finite-time balanced realization [4], while the theoretical order reduction error bounds are only
available for infinite-time balanced realizations. This source of error can however be made arbitrarily small by using for
constructing the Gramians long enough data sequences, such that the response of the system has decayed.

C. Extension to handle algebraic constraints
The BMD algorithm will be applied in Section IV to the FSI solver developed in [18], which presents the algebraic

constraints described in Section II.B. It is thus presented here an extension of the algorithm discussed in the previous
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section to handle this instance. For a fixed value of d, the model structure for the high-order model becomes:

G̃:+1 = �G̃: + �D̃: + 'D̃:+1,
H̃: = �G̃: + �D̃: + %D̃:+1,

where a potential effect of the algebraic constraints in the output equation is also considered via the matrix %. Therefore,
the low-order approximation becomes now:[

� � '

� � %

]
≈

[
+�,> +� +!

�,> � %

]
=

[
+ 0
0 �=H

] [
� � !

� � %

] 
,> 0 0

0 �=D 0
0 0 �=H

 .
The new objective function to be minimized is:

min
�,�,!,� ,�,%


[
-1

.0

]
−

[
, 0
0 �=H

] [
� � !

� � %

] 
,> 0 0

0 �=D 0
0 0 �=H



-0

*0

*1




2

�

,

and the new optimal solution is: [
� � !

� � %

]
=

[
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*0

*1


†

. (16)

IV. Results
This section presents and discusses results obtained from the application of the aDMDc and BMD algorithms to

the flexible and highly cambered morphing wing depicted in Fig. 1. The wing is made of composite material, and
the trailing edges are able to morph and, by doing so, to increase or decrease the camber, thus replacing conventional
ailerons. The reader is referred to the related previous works for details on the wing design [27] and its investigation
with FSI tools [19].

Morphing wing

Skin
Spars

Stringers

Flexible skin Actuator

Drone

Fig. 1 Illustrative depiction of the aeroeservoelastic testcase [19].

The state of the system G consists of the total number of structural modes of the wing (extracted from the commercial
software Nastran [28]) and the doublet strengths (from the 3D panel method solver), with =G = 618. The input vector D
of size =D = 6 is given by:

D = [U; ?; @; A; �B; �0B] , (17)

where U is the angle of attack, ?, @, and A are the roll, pitch, and yaw rotation rates and �B and �0B are the symmetric
and anti-symmetric morphing actuation inputs. Unless otherwise specified, we will consider here as output only
the first bending mode of the wing (=H = 1), since this is usually the one associated with dynamic instabilities and
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large deformations, and thus it is of especial interest for active control tasks. The flight speed will be considered as
time-varying parameter (=d = 1). These analyses choices are done here for the sake of simplicity, since the algorithms
can be applied to a generic number of outputs and varying parameters.

The training phase, common to all the algorithms and consisting of generating the snapshot matrices in Eq. (3), is
carried out in the same way as described in [16]. Specifically, the system is excited with impulses in the input channels
deployed in random order, and trajectories of length =B = 500 with sampling time 0.006B are recorded.

A. Fixed-parameter models
In this first set of tests, the accuracy of the models at fixed values of the flight speed + is assessed. The models

are simulated using sinusoidal inputs in each input channel, choosing the same values tested in [16]. The frequencies,
different for each channel, are all of the order of magnitude of the aircraft reduced frequency lA =: +

2̄
, where 2̄ is the

mean chord of the wing. This test is performed for 3 flight speeds in the range of operating conditions of interest, namely
+=30 <

B
, +=40 <

B
, and +=50 <

B
. To quantify the accuracy as a function of the order of the model =I , the Euclidean

norm of the error signal between the first bending mode amplitude provided by the high-fidelity FSI and the prediction
obtained with the three ROM algorithm is computed. It is also noted that the results obtained with the aDMDc algorithm
showed great sensitivity, in the range of =I displayed in Fig. 2, to the SVD truncation order A employed in Eq. (4).
Using the hard threshold criterion from [20] was not satisfactory as it resulted in a very large A (therefore the truncation
included very low singular values deteriorating the approximation). A fine-tuning of A proved to be necessary to obtain
acceptable results, and therefore, to present an objective analysis, unless otherwise specified it is used A = =I .

Results are shown in Fig. 2.

Fig. 2 Error on the prediction of the wing’s bending mode made by the two algorithms for three different
values of the flight speed.

It is clear that for all speeds BMD provides the smallest error for low order approximation of the full dynamics, as
expected in view of the optimized choice of low-dimensional subspace where the high-dimensional data are projected.
As the size =I of the system increases, the difference between the algorithms is less noticeable and, for high enough
orders, the algorithms tend to give same results.

9



B. Parameter-varying models
In the second set of tests, the accuracy during parameter-varying manoeuvres is tested. The reduced-order models

are obtained using snapshot matrices obtained gridding the flight speed range every 2 <
B
.

1. Response to sinusoidal excitation
The same sinusoidal excitation signals used in Section IV.A are considered here, and a manoeuvre of 3B where the

flight speed linearly increases from +=20 <
B
to +=50 <

B
is analyzed. Thus, a grid of 16 different speeds (=6 = 16) is

considered. In Fig. 3, the bending mode amplitude response obtained with the FSI solver (FSI) is compared with the
predictions of the two algorithms when the order of the models is fixed at =I = 14. All the signals are normalized by
the largest value of the bending amplitude measured in the FSI simulation. The aDMDc model was here obtained by
fine tuning the threshold value A in order to provide the best results. Indeed, in the low order regime for the currently
considered parameter-varying case, the choice A = =I gave rise in some cases to unstable models.

Fig. 3 Comparison of the normalized output (bending mode) of the low-order models with =I = 14 against the
FSI solver for parameter-varying simulations.

The plot confirms, also in the LPV setting, that the BMD algorithm guarantees the smallest error when a low-order
approximation of the system is desired. It is remarked that aDMDc does not provide a family of interpolated low-order
models, but instead requires to interpolate directly the high-order states, thus simulations in parallel of the low-order
models are needed. The better performance of BMD, despite the fact that a part of the projection (the one related to the
basis space) is constant, is ascribed to the improved selection of subspace for the projection compared to the standard
POD one. In addition to the improvement in the accuracy, the BMD algorithm is also capable of providing a family of
consistent LTI models with the discussed advantages for control design, not further investigated in this work.

It is then investigated the capability of the models to predict other quantities of interest, such as for example
aerodynamic coefficients depending on the system’s states. In particular, we test here the accuracy when these coefficients
are computed directly from the states. That is, the low-order states are lifted to the high-order ones, which are then
used to compute the coefficients using their functional dependence on the states. While this is the only possible
way of reconstructing system’s signals for aDMDc, in BMD this can alternatively be done by simply adding the
desired quantities to the vector of output (as already done for the bending mode amplitude before) and generating
new reduced-order models. This would probably be the preferred approach if the signals are used for control (either
because they represent measurements fed to the controller or because they are performance to be optimized), but from a
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modeling perspective it is also of interest the characterization analyzed here.
Figure 4 shows the normalized lift, pitch, and drag coefficients for the same constantly accelerated manoeuvre

considered so far and with sinusoidal excitation. Normalization is performed, as done earlier in Figure 3, by dividing
each signal by the largest value of the corresponding signal in the FSI simulation. The models have size =I = 14. The
shown aDMDc model was here obtained by fine tuning the threshold value A .

Fig. 4 Comparison of the normalized lift, pitch, and drag coefficients for a parameter-varying simulation with
=I = 14 and sinusoidal inputs.

The same observations gathered earlier with respect to the trajectory of the bending mode (Figure 4) are confirmed
here. It is particularly interesting to observe that, even though these coefficients are not output of the model, and thus
the balancing projection is not aimed directly at capturing them, the BMD algorithm is still able to perform better than
aDMDc.

2. Simulation accuracy for different input signals
This section investigates the accuracy of the reduced-order models for different types of input signals. The Euclidean

norm of the error signal between the first bending mode amplitude provided by the high-fidelity FSI and the prediction
obtained with the three ROM algorithm is again used as metric to assess the quality of the approximation. The
manoeuvre considered here is the same analyzed in Section IV.B.1, that is constant acceleration from +=20 <

B
to +=50

<
B
in 3B. Three classes of inputs are considered: Sine coincides with the signal tested so far and already investigated in

[16]; Chirp excites the system by injecting in all 6 input channels defined in (17) a chirp signal with frequency linearly
varying from 0.1lA to lA ; PRBS excites the system by injecting in all 6 input channels a PRBS-9 sequence. This latter
input, namely a Pseudo-Random Binary Signal (PRBS), is a deterministic signal with white-noise-like properties [29].
It is very well known in the experiment design field since it has the favourable property of equally distributing energy
across all the frequencies in the input spectrum, thus allowing one to extract information of the models in different
frequency ranges. Although not a common input in aircraft manoeuvres, it has been used in this spirit here, since the
previously adopted sets of input will only give information on the behaviour of the reduced models around the aircraft
reduced frequency lA . Results are shown in Fig. 5.

The plots confirm the advantage in using the BMD approach when seeking a low-order model capturing parameter
variations. These results are important considering that are obtained by exploring a borader spectrum of the system’s
response than what was the case for purely sinusoidal inputs.
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Fig. 5 Error on the prediction of the system’s output (bending mode) for speed-varying manoeuvres with three
different types of input signals.

V. Conclusion
The paper proposes the Balanced Mode Decomposition algorithm, a novel data-driven approach for constructing

low-order LPV models from the system’s trajectories. The main novelties compared to alternative approaches available
in the literature are the use of an oblique projection (instead of an orthogonal one) and the projection onto subspaces
defined based on controllability and observability properties of the system (rather than based on POD-type criteria).
The performance of the BMD algorithm is assessed on a morphing wing for airborne wind energy applications by
comparing it with the recently proposed aDMDc algorithm. The results, proposed both for the fixed parameter and for
the parameter-varying case, confirm the theoretical advantages discussed in the technical part of the paper. Indeed,
BMD achieves the lowest prediction error in the range of low order models. The improved accuracy is ascribed to the
projection of the states onto a subspace that maximizes the information on the input-output content. Moreover, BMD
provides a state consistency family of low-order LTI systems which gives a grid LPV model of the system, while still
providing at the same time a parameter-varying projection operator.
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