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Closed-Loop Finite-Time Analysis of
Suboptimal Online Control

Aren Karapetyan, Efe C. Balta, Andrea Iannelli, and John Lygeros

Abstract— Suboptimal methods in optimal control arise
due to a limited computational budget, unknown system
dynamics, or a short prediction window among other rea-
sons. In this work, we study the transient closed-loop per-
formance of such methods by providing finite-time subopti-
mality gap guarantees. We consider the control of discrete-
time, nonlinear time-varying dynamical systems and estab-
lish sufficient conditions for such guarantees. These allow
the control design to distribute a limited computational
budget over a time horizon and estimate the on-the-go loss
in performance due to suboptimality. We study exponen-
tial incremental input-to-state stabilizing policies and show
that for nonlinear systems, under some mild conditions,
this property is directly implied by exponential stability
without further assumptions on global smoothness. The
analysis is showcased on a suboptimal model predictive
control use case.

Index Terms— Nonlinear Systems, Optimization Algo-
rithms, Predictive Control

I. INTRODUCTION

Optimal control aims to compute an input signal to drive a
dynamical system to a given target state, while optimizing
a performance cost subject to constraints. In the absence
of uncertainty, the problem has been studied using calculus
of variations [1] and dynamic programming [2]. However,
in many practical applications with limited computational
power, it becomes difficult or infeasible to solve due to
the curse of dimensionality [2]. This is further exacerbated
if there are unknown system and/or cost parameters. As a
result, control designers rely on approximate or suboptimal
methods [3] to solve the problem. If there are adequate
computational resources and an accurate simulator of the true
system, the problem can be solved up to an arbitrary accuracy
using approximate dynamic programming [4] or reinforcement
learning [5] techniques. When this is not the case, e.g. the
system has unpredictable dynamics or the cost to be optimized
for is changing adversarially, offline methods alone are not
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Fig. 1: Two separate closed-loop trajectories, generated by
applying a suboptimal input signal uµ, and a benchmark input
signal u⋆.

sufficient. In such cases, the policy is updated online or
adaptively as more data becomes available. We consider a
controller to be online, rather than offline or pre-fixed if it is
capable of adapting to changes in the control problem during
its single trajectory execution. For example, a model predictive
controller (MPC) can utilize a finite window of predictions
for possibly time-varying dynamics, disturbances, references,
or costs to generate an input at each step. While such a
definition partially overlaps with that of adaptive control [6],
it defines a wider class of controllers, that also includes online
optimization-based methods, like [7], [8].

The focus of this work is the closed-loop suboptimality
analysis of online controllers in the finite-time or transient
domain. Given their real-time implementation, online methods
need to stay computationally efficient while stabilizing the
system. Additionally, their performance is measured in terms
of the accumulated cost that needs to be kept to a minimum. To
quantify this, we fix a benchmark policy that we may deem to
be close to the desired optimal one, visualized in Figure 1, and
study the suboptimality gap of the given online algorithm in
terms of the additional incurred cost due to its suboptimality
with respect to the benchmark. Such an analysis provides a
relative measure on the performance of the given algorithm,
since, in general, the benchmark policy attains a non-zero cost.
In this context, we pose the following questions.

1) How does the transient cost performance of an online
algorithm scale with a measure of its suboptimality?

2) How should the benchmark policy be chosen to achieve
meaningful finite-time bounds?

We consider nonlinear time-varying systems and derive
conditions on the suboptimal and benchmark policies such
that the suboptimality gap, defined as the difference of their
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respective closed-loop costs, can be quantified. We show that it
scales with the pathlength of the suboptimal trajectory and the
rate of convergence of the suboptimal policy to the benchmark.
The former can be computed online providing an on-the-go
estimate of the suboptimality, and the latter usually depends
on suboptimal algorithm parameters, allowing the control
designer to tune these accordingly. We study the suboptimal,
projected gradient method (PGM)-based linear-quadratic MPC
[9] as an example of online control satisfying the proposed
assumptions, and bound its suboptimality gap with respect to
optimal MPC. Our contributions are summarized below:

a) We show that if the system dynamics in closed-loop
with the benchmark policy are exponentially incremen-
tally input-to-state stable (E-δ-ISS), and the suboptimal
policy is linearly converging, then the suboptimality gap
scales with the pathlength of the closed-loop suboptimal
trajectory, and the convergence rate.

b) We derive sufficient conditions under which exponential
stability (ES) of a non-smooth nonlinear time-varying
system implies E-δ-ISS, making the condition on the
benchmark policy easier to verify.

c) We study the suboptimal, PGM-based linear-quadratic
MPC problem as an example satisfying these assump-
tions, and bound its suboptimality gap.

The E-δ-ISS assumption on the benchmark policy is crucial
for the validity of the results. Incremental input-to-state-
stability is studied in [10], in the continuous-time and in
[11], in the discrete-time settings, providing a condition on
the deviation of two separate trajectories of the same system.
If the dynamics are smooth, a sufficient condition for E-δ-ISS
to hold is that of contraction [12]–[15]. However, this is often
not the case when one considers closed-loop dynamics under
optimal controllers, e.g. under a constrained MPC [16] policy.
Since we are often interested in such benchmarks, we devote
Section IV to the derivation of sufficient conditions for E-δ-ISS
to hold when the dynamics are non-smooth in general.

Such an incremental stability analysis allows for the deriva-
tion of asymptotically tight bounds in the sense that they scale
with the level of suboptimality, or the rate of convergence
of the suboptimal policy to the optimal, converging to zero
when the algorithm matches with the benchmark. The bounds
also scale with the pathlength of the suboptimal trajectory,
allowing an on-the-go calculation of the suboptimality gap
that is independent of the benchmark states. Hence, for the
suboptimal MPC example we achieve asymptotically tighter
bounds under the same assumptions compared to [17]. More-
over, our result is independent of the asymptotic properties of
the suboptimal algorithm, providing finite-time performance
bounds even when the closed-loop is not exponentially stable.

Several notable examples of settings where such finite-
time suboptimality analysis can be of use include adaptive
control [18]–[20], with suboptimality due to unknown system
parameters, online feedback optimization [21], [22] and online
control [7], [8], with suboptimality due to unknown future
costs, or real-time optimization-based control, such as real-
time MPC [23]–[25], suboptimal due to finite computational
resources.

While our analysis and results hold for any algorithm satis-
fying the outlined assumptions, optimization-based methods,
including MPC, and their suboptimal variants are of particular
interest given their wide applicability in practice. Suboptimal
MPC has been studied extensively in the literature [23]–
[30]. Real-time MPC with iterative optimization methods has
been studied in [23]–[28]. Efficient warm-start methods are
explored in [27], [28] with [27] also showing a lower bound
on the number of gradient descent steps needed to achieve
an open-loop suboptimality level, but no closed-loop analysis
is performed. The closed-loop stability is analyzed in [26]
using a robust MPC formulation, and also in later works in
[24], [25] that extend the real-time MPC work of [23] and
show asymptotic stability using Lyapunov methods and the
small gain theorem of interconnected systems. Other sources
of suboptimality for MPC have been studied in [29], analyzing
the effect of the prediction horizon on the suboptimality
of the MPC closed-loop cost, or in [30] in the context of
distributed control, to name a few. However, in this line of
work the suboptimality gap as we define here is not considered.
This is a common performance metric in online learning,
where it is referred to as regret. While there are several
works [7], [31], [32] studying the regret of various model
predictive controllers, their settings are different from ours.
For instance, [31] considers Bayesian MPC, [7] studies the
effect of predictions for linear time-invariant systems, and
[32] studies optimal controllers with inexact predictions using
perturbation analysis, thus leading to settings that are not
considered under the assumptions in this paper. The earlier
work [17] also analyzes the suboptimality of PGM-based MPC
but does not utilize nonlinear incremental stability analysis
achieving a weaker bound that is not asymptotically tight.

The article is structured as follows. In Section II we provide
the preliminaries and the problem setup. In Section III, we
conduct the suboptimality gap analysis. Sufficient conditions
for E-δ-ISS are derived in Section IV, and in Section V, the
suboptimal PGM-based linear MPC use case is studied with
a numerical example.

Notation: The sets of positive real numbers, positive inte-
gers, and non-negative integers are denoted by R+, N+ and N,
respectively. For some k0 ∈ N, the set of integers greater than
or equal to k0 is denoted by N≥k0 . For a given vector x, its
Euclidean norm is denoted by ∥x∥, and the two-norm weighted
by a Q ≻ 0 by ∥x∥Q =

√
x⊤Qx. For a square matrix

W , the spectral radius and the spectral norm are denoted by
ρ(W ), and ∥W∥, respectively. Given a symmetric, positive
definite matrix M ≻ 0, we define its unique square-root by
M

1
2 , such that M = M

1
2M

1
2 and M

1
2 ≻ 0. For a matrix

W and M ≻ 0, λ−M (W ) and λ+M (W ) denote the minimum
and maximum eigenvalues of M− 1

2WM− 1
2 ; for any vector

x, they satisfy λ−M (W )∥x∥2M ≤ ∥x∥2W ≤ λ+M (W )∥x∥2M . The
Euclidean point-to-set distance of a vector x from a nonempty,
closed, convex set A is denoted by |x|A := miny∈A ∥x− y∥,
and the projection onto it by ΠA[x] = argminy∈A ∥x − y∥.
The n−dimensional closed ball of radius r > 0, centered at
the origin is denoted by B(r) := {x ∈ Rn | ∥x∥ ≤ r}.
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II. PRELIMINARIES AND PROBLEM SETUP

We consider the optimal control problem for discrete-time,
nonlinear time-varying systems of the form

xk+1 = f0(k, xk) + g(k, xk, uk), k ∈ N≥k0 , (1)

where xk ∈ Rn and uk ∈ Rm denote the state and control
input at time k, respectively, f0 : N≥k0

× Rn → Rn denotes
the unforced nominal dynamics and g : N≥k0

× Rn × Rm →
Rn the controlled dynamics. The system evolution starts from
some initial state xk0 ∈ Rn at some initial time k0 ∈ N. The
optimal control objective is to find the sequence of control
inputs u = [u⊤k0

. . . u⊤T−1]
⊤ that minimizes the finite-time cost

JT (xk0
,u) = F (T, xT ) +

T−1∑
k=k0

c(k, xk, uk), (2)

where c : N≥k0
×Rn ×Rm −→ R is the stage cost at time k,

F : N≥k0
× Rn −→ R is the terminal cost, and T ∈ N≥k0+1

is the control horizon. In addition, the control input has to
satisfy uk ∈ U for all k, for some bounded U ⊂ Rm.

An admissable policy π(k, x) : N≥k0
× Rn → U maps

the state at time k to a control input, generating the control
signal uπ = [uπ⊤k0

. . . uπ⊤T−1]
⊤ and the associated trajectory

xπ = [xπ⊤k0
. . . xπ⊤T ]⊤. With a slight abuse of notation, its

associated cost is denoted by JT (xk0 , π). We consider time-
varying systems for generality, and note that the analysis holds
directly for time-invariant systems and policies as a special
case. We showcase this in Section V.

We are interested in the relation of a policy µ, corresponding
to a given suboptimal algorithm, with respect to another bench-
mark policy µ∗ that is equipped with desirable characteristics,
e.g. optimality. The two policies are defined as follows.

Benchmark dynamics: Consider a benchmark policy µ⋆ :
N≥k0 × Rn → U . Given an initial state x⋆k0

∈ Rn, the
benchmark dynamics are given by1

x⋆k+1 = f0(k, x
⋆
k) + g(k, x⋆k, µ

⋆
k(x

⋆
k)) := f(k, x⋆k), (3)

for all k ∈ N≥k0
. We assume that there exists a set D⋆ ⊆ Rn

that is forward invariant under the closed-loop dynamics (3),
and restrict attention to x⋆k0

∈ D⋆. Hence, x⋆k ∈ D⋆ for all
k ∈ N≥k0

.
Suboptimal dynamics: The suboptimal state evolution for

a given policy µ : N≥k0
×Rn → U can be represented in the

following form2 for any xk0 ∈ Rn

xk+1 = f(k, xk) + g(k, xk, µk(xk))− g(k, xk, µ
⋆
k(xk))︸ ︷︷ ︸

:=wk(x(k))

,
(4)

for all k ∈ N≥k0
. The mapping w : N≥k0

× Rn → Rn

can be thought of as a state-dependent disturbance acting
on the benchmark state dynamics (3), introduced due to
suboptimality. It is assumed to be such that the closed-loop
suboptimal dynamics (4) evolve within a set Dµ ⊆ D⋆ that
is forward invariant under (4). Restricting attention to initial
states xk0

∈ Dµ, it then holds that xk ∈ Dµ for all k ∈ N≥k0
.

1For readability, we place the time k in the subscripts of µ, c, and F .
2We drop the explicit reference to µ from the superscript of x for

readability.

Figure 1 shows the pictorial evolution of the two considered
trajectories starting from the same initial state x0 at time k0 =
0. For each x⋆k, u⋆k denotes the control input generated by
µ⋆
k(x

⋆
k) and for each xk, uµk := µk(xk) the input generated by

the suboptimal policy.
To quantify the relation between µ and µ⋆, we define the

suboptimality gap of the policy µ as the additional incurred
cost compared to the benchmark

Rµ
T (xk0) := JT (xk0 , µ)− JT (xk0 , µ

⋆), (5)

given some xk0
∈ Dµ. An informative finite-time bound on it,

which depends on fundamental quantities of the online control
problem, can provide a quantifiable tradeoff between the effort
needed to compute the suboptimal policy µ and the additional
cost incurred by using it instead of µ⋆.

We assume the benchmark policy µ⋆ to have good per-
formance, since otherwise, Rµ

T can be uninformative. We
characterize this performance in terms of E-δ-ISS.

Definition 1. A nonlinear dynamical system xk+1 = f(k, xk)
is E-δ-ISS in some forward invariant D ⊆ Rn, if there exist
constants c0, cw, rw ∈ R+ and ρ ∈ (0, 1), such that for any
(xk0

, yk0
) ∈ D×D, and wk ∈ B(rw), k ∈ N≥k0

, the perturbed
dynamics yk+1 = f(k, yk) + wk satisfy

∥xk − yk∥ ≤ c0ρ
k−k0∥xk0 − yk0∥+ cw

k−1∑
i=k0

ρk−i−1∥wi∥,

for all k ∈ N≥k0
, where the disturbances wk are such that

yk ∈ D for all k ∈ N≥k0
. If D = Rn the system is called

globally E-δ-ISS.

E-δ-ISS for continuous-time systems has been introduced in
[10]. For an in-depth discussion and analysis of incremental
stability in discrete-time, and its relation to contraction [15]
and convergent dynamics [33], we refer the interested reader
to [11], and the references therein. We assume the following
for the benchmark policy.

Assumption 1. (Benchmark Policy). Given the closed-loop
system (3), the benchmark policy µ∗ is such that

i. it is uniformly L−Lipschitz continuous in D⋆, i.e. there
exists a constant L ∈ R+, such that for all (x, y) ∈
D⋆ ×D⋆, and k ∈ N≥k0

∥µ⋆
k(x)− µ⋆

k(y)∥ ≤ L∥x− y∥,

ii. there exist ak ≥ 0, k ∈ N≥k0
, such that for all x ∈ D⋆

and k ∈ N≥k0

∥µ⋆
k+1(x)− µ⋆

k(x)∥ ≤ ak,

iii. the closed-loop dynamics (3) are E-δ-ISS in D⋆ with a
rate ρ ∈ (0, 1).

Although the Lipschitz continuity condition excludes bench-
mark policies with abrupt changes, such as discontinuities
or jumps in the policy, it still holds for a relevant class of
policies. In particular, when µ⋆ is defined as a solution to an
optimization problem, as is, for example, the MPC policy, then
Lipschitz continuity holds [34] if the optimal solution mapping
is strongly regular [35]. This can be verified for a range
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of problems by checking for strong second order sufficient
conditions (SOSC), which is well studied in the literature,
e.g. [25], [36]. Additionally, when state constraints are present,
these can be relaxed by introducing soft constraints [37], [38],
making the SOSC conditions easier to verify. Furthermore, we
stress that the benchmark policy is not necessarily the optimal
policy but any comparator policy as long as the conditions
in Assumption 1 are satisfied. The second assumption limits
how fast the benchmark policy changes given the same state
between two timesteps. Since U is bounded, such an ak always
exists, for all k, and can be set equal to the diameter of U .
However, it can also encode additional information, such as
stationarity of the benchmark policy, in which case ak = 0 for
all k. The E-δ-ISS condition, on the other hand, is often harder
to verify, unless one assumes the existence of an incremental
Lyapunov equation [10], [11], or uses contraction to infer
incremental stability [13], which in turn assumes a smooth
policy. Since a large class of benchmark policies, including
MPC, are non-smooth globally, we show in Section IV, that
under further mild conditions on f , ES is enough to guarantee
E-δ-ISS.

Next, we impose a linear convergence condition on the
suboptimal policy µ.

Assumption 2. (Suboptimal Policy). Let uµk = µk(xk) denote
the suboptimal input evaluated on the suboptimal trajectory
(4). There exist ηk ∈ [0, 1), k ∈ N≥k0

and some uµk0−1 = ν ∈
U , such that for all xk0

∈ Dµ, k ∈ N≥k0

∥uµk − µ⋆
k(xk)∥ ≤ ηk∥uµk−1 − µ⋆

k(xk)∥. (6)

The assumption imposes at least a linear rate of conver-
gence on the suboptimal input with respect to the benchmark
given the suboptimal state. In some cases, the rate ηk can
be thought of as a design parameter that can be tuned to
control the desired level of suboptimality depending on the
available computational budget. Notably, such rates appear
in iterative optimization algorithms, such as PGM [39] or
alternating direction method of multipliers (ADMM) [40],
where the benchmark input is optimal with respect to some
objective function, and the suboptimal input is obtained by
the corresponding optimization method. When such methods
are applied to optimization-based control, warm-started with
the previous input, the exact linear convergence form of (6)
appears in [9], [24], [25] for PGM and in [41] for ADMM.
In Section V, we consider the PGM-based MPC setting of [9]
and show how both assumptions are verified.

We restrict our attention to systems where the controlled dy-
namics g are Lipschitz continuous with respect to u, uniformly
in x and k.

Assumption 3. There exists a constant Lu ∈ R+, such that
for any (u, v) ∈ Rm × Rm, for all x ∈ Dµ and k ∈ N≥k0

∥g(k, x, u)− g(k, x, v)∥ ≤ Lu∥u− v∥.

This is satisfied, for instance, in linear time-invariant sys-
tems or control-affine nonlinear systems of the form xk+1 =
f(xk) + g(xk)uk, often studied in the context of feedback
linearization (see [42], [43] for details). Finally, we restrict
our analysis to local Lipschitz continuous stage costs.

Assumption 4. There exist constants Mx,Mu ∈ R+, such
that for all (x, y) ∈ Dµ ×Dµ, (u, z) ∈ U × U and k ∈ N≥k0

∥ck(x, u)− ck(y, z)∥ ≤Mx∥x− y∥+Mu∥u− z∥,
∥Fk(x)− Fk(y)∥ ≤ Mx∥x− y∥.

III. SUBOPTIMALITY GAP ANALYSIS

In this section, we analyze the suboptimality gap for a
given policy and show that RT scales with the product of the
pathlength of the suboptimal dynamics and a vector dependent
on the convergence rates. In the analysis we take k0 = 0
without loss of generality. We define the backward difference
path vector, ∆ ∈ RT−1, to be

∆ :=
[
∥δx1∥ ∥δx2∥ . . . ∥δxT−1∥

]⊤
,

where δxk = xk − xk−1, k ∈ N+, where xk is the state at
time k for the suboptimal dynamics (4). The pathlength of the
suboptimal trajectory is then defined as ST = ∥∆∥1 and the
Euclidean pathlength as ST,2 := ∥∆∥.

The policy convergence rate vector, η̃ ∈ RT−1 is defined as

η̃ :=
[
η̃1 η̃2 . . . η̃T−1

]⊤
,

where

η̃k :=

T−1∑
i=k

i∏
j=k

ηj , ∀k ∈ [0, T − 1].

Note that η̃k = O(ηk) and provides a weighting on the
influence of the δxk on RT . This is analyzed further in Section
III-B. We denote the Euclidean norm of the suboptimality
vector by η̄ := ∥η̃∥. The rate of change of the benchmark
input µ⋆(x⋆) is captured by the vector a ∈ RT−1

+ , defined as

a :=
[
a1 a2 . . . aT−1

]⊤
.

A. Upper Bound
The bound in the following theorem captures the tradeoff

between suboptimality and the additional cost in closed-loop.

Theorem 1. Let Assumptions 1, 3 and 4 hold, then the
suboptimality gap of any policy, µ, fulfilling Assumption 2
satisfies

Rµ
T (x0) = O

(
(a+∆)

⊤
η̃
)
,

for all x0 ∈ Dµ. Specifically, it is bounded by

Rµ
T (x0) ≤ M̄

(
η̃0∥δu0∥+ (a+ L∆)

⊤
η̃
)
,

for all x0 ∈ Dµ, where δu0 := ν − µ⋆
0(x0) and M̄ :=(

Mu + cwLu(MuL+Mx)
1−ρ

)
.

The asymptotic variable in the O(·) notation is the time
horizon length T , with all terms in the product (a+∆)

⊤
η̃

scaling with T , as T → ∞. The bound tends to zero as
η̃ decreases. This is intuitive, as smaller η̃ suggests that the
benchmark and suboptimal trajectories are closer to each other.
Additionally, the suboptimality gap is a relative measure, but
the bound is fully decoupled from the performance of µ⋆

and only depends on the performance of the suboptimal state
evolution if a = 0. In this case, the bound can also be given
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as RT (x0) = O(η̄ST,2), where ST,2 captures the transient
behavior of the suboptimal system and is well-defined in the
limit as T→∞ when, for example, (4) is exponentially stable.

Before we prove Theorem 1, we introduce several support-
ing lemmas, and the Cauchy Product inequality defined for
two finite series {ai}Ti=1 and {bi}Ti=1 as follows∑T

i=0

∣∣∣∑i
j=0 ajbi−j

∣∣∣ ≤ (∑T
i=0 |ai|

)(∑T
j=0 |bj |

)
. (7)

We let uµk = µk(xk) denote the suboptimal input as in
Assumption 2.

Lemma 1. Let Assumption 1 hold, then for any policy, µ,
fulfilling Assumption 2, and for all x0 ∈ Dµ

T−1∑
k=0

∥dk∥ ≤ η̃0∥δu0∥+ (a+ L∆)
⊤
η̃, (8)

where we define dk := uµk − µ⋆
k(xk), and δu0 := ν − µ⋆

0(x0).

Proof. Consider the bound on the per-step error in the input

∥dk∥
(a)

≤ ηk∥uµk−1 − µ⋆
k(xk)∥

(b)

≤ ηk∥uµk−1 − µ⋆
k−1(xk−1)∥

+ ηk∥µ⋆
k−1(xk−1)− µ⋆

k(xk)∥
(c)

≤ ηk∥dk−1∥+ ηk∥µ⋆
k−1(xk−1)− µ⋆

k−1(xk)∥
+ ηk∥µ⋆

k−1(xk)− µ⋆
k(xk)∥

(d)

≤ ηk∥dk−1∥+ ηkL∥xk − xk−1∥+ ηkak,

the inequality (a) follows directly from Assumption 2, (b)
and (c) follow from the triangle inequality for vector norms
and (d) from the uniform Lipschitz condition in Assumption
1.i. and Assumption 1.ii.. Applying the above inequality
recursively leads to

∥dk∥ ≤ ∥d0∥
k∏

i=1

ηi +

k∑
j=1

(aj + L∥δxj∥)
k∏

i=j

ηi,

for all k ∈ N+. Summing up for k = 0, . . . T − 1

T−1∑
k=0

∥dk∥ ≤ ∥δu0∥
T−1∑
k=0

k∏
i=0

ηi +

T−1∑
k=1

k∑
j=1

(aj + L∥δxj∥)
k∏

i=j

ηi

= η̃0∥δu0∥+ (a+ L∆)
⊤
η̃,

where the inequality follows from Assumption 2 and the
equality from the definitions of η̃, a and ∆.

The following lemma provides an upper bound on the norm
of the finite-time trajectory mismatch.

Lemma 2. Let Assumptions 1 and 3 hold, and consider any
policy µ fulfilling Assumption 2. Then, there exist constants
c0, cW ∈ R+, such that for all (x0, x⋆0) ∈ (Dµ ×Dµ)

T∑
k=0

∥xk − x⋆k∥ ≤ ∥x0 − x⋆0∥

(
c0
(
1− ρT+1

)
1− ρ

)

+
cwLu

(
1− ρT

)
1− ρ

(
η̃0∥δu0∥+ (a+ L∆)

⊤
η̃
)
,

where xk and x⋆k denote the states at time k under, respectively,
the suboptimal and benchmark policies.

Proof. Given the boundedness of U , the uniform Lipschitz
continuity of g in u, and recalling the definition of wk from
(4), it follows that there exists a rw ∈ R+, such that wk(xk) ∈
B(rw), k ∈ N. Consider then the dynamics (4) as a perturbed
version of the benchmark dynamics (3). Assumption 1 ensures
that there exist c0, cw ∈ R+ and ρ ∈ (0, 1), such that for all
k ∈ N and (x0, x

⋆
0) ∈ Dµ ×Dµ

∥xk − x⋆k∥ ≤ c0ρ
k∥x0 − x⋆0∥+ cw

k−1∑
i=0

ρk−i−1∥wi(xi)∥

≤ c0ρ
k∥x0 − x⋆0∥+ cwLu

k−1∑
i=0

ρk−i−1∥di∥,

where the second inequality follows from Assumption 3,
where dk := uµk − µ⋆

k(xk). Summing up over the whole
trajectory and noting the resultant finite geometric series

T∑
k=0

∥xk − x⋆k∥

≤ ∥x0 − x⋆0∥

(
c0
(
1− ρT+1

)
1− ρ

)
+ cwLu

T−1∑
k=0

k∑
i=0

ρk−i∥di∥

≤ ∥x0 − x⋆0∥

(
c0
(
1− ρT+1

)
1− ρ

)
+ cwLu

T−1∑
k=0

ρk
T−1∑
i=0

∥di∥,

where the last inequality follows from (7). Finally, the result
follows by using the bound (8) in Lemma 1.

Similarly, the norm of the finite-time input signal mismatch
due to the difference in applied inputs can be bounded in the
following Lemma.

Lemma 3. Let Assumptions 1 and 3 hold, and consider any
policy µ fulfilling Assumption 2. Then, there exist constants
c0, cw ∈ R+, such that for all (x0, x⋆0) ∈ (Dµ ×Dµ)

T−1∑
k=0

∥uµk − µ⋆
k(x

⋆
k)∥ ≤ ∥x0 − x⋆0∥

Lc0
(
1− ρT

)
1− ρ

+
(
η̃0∥δu0∥+ (a+ L∆)

⊤
η̃
)(

1 +
LcwLu

(
1− ρT−1

)
1− ρ

)
,

where xk and x⋆k are the states at time k under, respectively,
the suboptimal and benchmark policies, µ and µ⋆.

Proof. Using the triangle inequality for vector norms and
defining dk := uµk − µ⋆

k(xk)

∥uµk − µ⋆
k(x

⋆
k)∥ ≤ ∥dk∥+ ∥µ⋆

k(xk)− µ⋆
k(x

⋆
k)∥

≤ ∥dk∥+ L∥xk − x⋆k∥,

where the last inequality follows from Lipschitz continuity
of µ⋆ from Assumption 1.i.. Summing up over the trajectory
horizon, using the bound (8) from Lemma 1 and the bound in
Lemma 2 completes the proof.
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Proof of Theorem 1. By Assumption 4, for all (x0, x
⋆
0) ∈

Dµ ×Dµ

RT (x0, x
⋆
0) := JT (x0, µ)− JT (x

⋆
0, µ

⋆)

≤Mx

T∑
k=0

∥xk − x⋆k∥+Mu

T−1∑
k=0

∥uµk − µ⋆
k(x

⋆
k)∥.

Then, using Lemmas 2 and 3 for the two respective sums

RT (x0, x
⋆
0) < ∥x0 − x⋆0∥

c0 (MuL+Mx)

1− ρ

+ M̄
(
η̃0∥δu0∥+ (a+ L∆)

⊤
η̃
)
.

The result follows by taking x0 = x⋆0.

For the special case when the convergence rate of the
suboptimal policy is constant, the following Corollary follows.

Corollary 1. Let Assumptions 1, 3 and 4 hold, and consider a
suboptimal policy, µ, fulfilling Assumption 2 with ηk = η, k ∈
N. Then, its suboptimality gap is given by

Rµ
T (x0) = O

(
η

1− η
(ST + ∥a∥1)

)
,

for all x0 ∈ Dµ.

Proof. If ηk = η, k ∈ N, η̃k = η
(
1− ηT−k

)
/ (1− η) , and

is bounded by

η̃k ≤ η

1− η
, k ∈ [0, T ].

The complexity term then satisfies

(a+∆)
⊤
η̃ ≤ η (ST + ∥a∥1)

1− η
.

The rest of the proof follows directly from Theorem 1 by
replacing the complexity term with the new bound.

For bounded ST , the corollary shows the effect of η on
the suboptimality gap. Crucially, the gap is 0 in the absence
of suboptimality. On the other hand, given a fixed η, one
can calculate an upper bound on the suboptimality gap of
the policy µ by only considering its pathlength ST . The
independence from the pathlength of the benchmark policy
is particularly useful for online suboptimality estimation since
it cannot be generally accessed by the control designer.

B. Interpretation of the Upper Bound
The term η̃0∥δu0∥ in the bound of Theorem 1 captures the

error due to the initial mismatch in the control input, δu0. This
term in general cannot be avoided, unless the initial “guess”
of the input ν is correct, or η0 = 0, so that the suboptimal
and benchmark policies match at the initial timestep.

The second term, a⊤η̃, scales with the magnitude of the rate
of change of the time-varying benchmark policy µ⋆, as defined
in Assumption 1.ii.. It vanishes either when µ⋆ is stationary,
or when the benchmark and suboptimal policies coincide.

The main complexity term of interest, ∆⊤η̃ captures the
suboptimality of the policy through the inner product of
the path vector ∆ and the suboptimality vector η̃. To study
the interplay of these two quantities in more detail, let us

(a) Exponentially stable case.
Suboptimality is captured by (9).

(b) Case of limit cycles. Subop-
timality is captured by (10).

Fig. 2: The pictorial evolution of suboptimal and benchmark
trajectories evolving in Dµ ⊆ D⋆.

consider the case when the benchmark dynamics (3) have an
equilibrium at some x̄ ∈ Rn, and k0 = 0 without loss of
generality. If the suboptimal closed-loop system (4) is also
exponentially stable with ηk ̸= 0, ∀k ∈ N, then ∥δxj∥ ≈
0, ∀j ≥ j̄, for some j̄ ∈ N, as visualised in Figure 2a. Note
that, in order to provide this interpretation it is assumed that
the systems (3) and (4) have the same single equilibrium point
x̄. In such a setting, the complexity term captures the fact that
the suboptimality gap is finite as follows

∆⊤η̃ =

[
∥δx1∥ . . . ︸ ︷︷ ︸

≈ 0

∥δxj̄∥ . . . ∥δxT−1∥
]


η̃1
...

η̃j̄
...

η̃T−1


 ̸= 0

.
(9)

This example coincides with the suboptimal MPC use case
discussed in detail in Section V. When there are multiple
equilibria, a similar interpretation of the bound holds. Among
other possibilities, one can also consider the case when the
benchmark dynamics (3) converge to a limit cycle. Since (3)
is E-δ-ISS it follows from (4) that if at a given point in time
j̄ ∈ N, the suboptimal policy coincides with the considered
benchmark, i.e. ηj = 0, ∀j ≥ j̄, then the trajectories
will necessarily coincide, as visualized in Figure 2b. This is
captured by the complexity term as

∆⊤η̃ =

[
∥δx1∥ . . . ︸ ︷︷ ︸

̸= 0

∥δxj̄∥ . . . ∥δxT−1∥
]


η̃1
...

η̃j̄
...

η̃T−1


 = 0

.

(10)

Even though the pathlength keeps increasing, the norm of the
suboptimality vector is finite, resulting in a finite suboptimality
gap, containing only the additional cost due to suboptimality
at the first j̄ timesteps.
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IV. EXPONENTIALLY STABLE POLICIES AND E-δ-ISS
The analysis in the previous section is agnostic to the

steady-state properties of (3) and, therefore, has general va-
lidity. In this section, we analyze a common case when the
dynamics (3) have a unique equilibrium point at the origin.
We derive sufficient conditions under which the exponential
stability of globally non-smooth nonlinear dynamics implies
E-δ-ISS, thus verifying the otherwise non-trivial Assumption
1.iii..

We treat (3) as a general nonlinear time-varying system of
the form

xk+1 = f(k, xk), k ∈ N≥k0 , (11)

where f : N≥k0
× D → D is continuous with respect to

both arguments, xk0 = ξ ∈ Rn for some k0 ∈ N, D ⊂ Rn.
Moreover, the set D is assumed to be compact and to contain
the origin. The solution of the system (11) at time k ∈ N≥k0

is characterized by the function ϕ : N≥k0
× N≥k0

× D → D
mapping the current time, initial time and the initial state to
the current state, i.e. ϕ(k+1, k0, ξ) = f(k, ϕ(k, k0, ξ)) for all
k ∈ N≥k0 . We consider the origin to be an equilibrium point
for (11), i.e. f(k,0) = 0 for all k ∈ N≥k0

. Although this
restricts the attention to regulation problems, one can always
recast a tracking problem into a regulation one by considering
the nonlinear evolution of the error between the state and the
reference. We impose the following assumption.

Assumption 5. (Local Behavior). The dynamics f in (11)
are

i. Lf -Lipschitz continuous in D ⊂ Rn,
ii. continuously differentiable with respect to x, and the

Jacobian matrix [∂f(k, x)/∂x] is bounded and Lipschitz
continuous uniformly in k within some region D0 ⊆ D
containing the origin.

For completeness, we present a series of auxiliary defi-
nitions and theorems for (incremental) exponential stability
before presenting the main results of this section.

A. Preliminaries on Exponential Stability
We define uniform exponential stability for discrete-time,

nonlinear time-varying systems [43].

Definition 2. Given the system (11), the equilibrium point
x = 0 is uniformly exponentially stable in D with a rate λ, if
there exist constants d ∈ R+ and λ ∈ (0, 1), such that for all
ξ ∈ D, and k ∈ N≥k0

∥ϕ(k, k0, ξ)∥ ≤ d∥ξ∥λk−k0 . (12)

If D = Rn, then the equilibrium is uniformly globally
exponentially stable.

If the origin is exponentially stable, we also refer to the
system (11) as such. Lyapunov theory provides necessary and
sufficient conditions for the exponential stability of nonlinear
systems. Below are the discrete-time Lyapunov theorems for
exponential stability.

Theorem 2. [43, Thm. 13.11] If there exists a continuous
mapping V : N≥k0

× D → R+, and some constants c1, c2 ∈

R+, β ∈ (0, 1) and p ≥ 1, such that for all ξ ∈ D, and
k ∈ N≥k0

c1∥ξ∥p ≤ V (k, ξ) ≤ c2∥ξ∥p,
V (k + 1, f(k, ξ)) ≤ βpV (k, ξ),

then the nonlinear system (11) is uniformly exponentially
stable in D, with a rate β.

The converse Lyapunov theorem for the discrete-time case
shows the implication in the opposite direction.

Theorem 3. If the nonlinear system (11) is uniformly expo-
nentially stable in D, then there exists a continuous function
V : N≥k0

×D → R and constants c1, c2 ∈ R+ and β ∈ (0, 1),
such that for all ξ ∈ D, and k ∈ N≥k0

c1∥ξ∥2 ≤ V (k, ξ) ≤ c2∥ξ∥2, (13)

V (k + 1, f(k, ξ)) ≤ β2V (k, ξ). (14)

The proof for Theorem 3 follows directly from [44, Thm 2],
by adapting the global result to the case with forward invariant
subspace D. The above theorems generalize to uniform global
exponential stability if D = Rn [42], [44]. In continuous-time,
the rate of change of the Lyapunov function with respect to
the state is bounded by the norm of the state [42, Thm 4.14].
The following Lemma is the discrete-time equivalent of this.

Lemma 4. Let Assumption 5.i. hold, then if the system (11)
is uniformly exponentially stable in D, there exists a constant
c3 ∈ R+ and a continuous Lyapunov function V : N≥k0

×D →
R, that, in addition to (13) and (14), for all (ξ, ζ) ∈ D × D,
and k ∈ N≥k0

also satisfies

|V (k, ξ)− V (k, ζ)| ≤ c3∥ξ − ζ∥ (∥ξ∥+ ∥ζ∥) .
The proof of Lemma 4 is provided in the appendix.

B. Preliminaries on Exponential Incremental Stability
Exponential incremental stability shows the exponential

convergence of two trajectories generated by the same system
to each other [11], [13].

Definition 3. The system (11) is uniformly exponentially
incrementally stable in D if there exist constants d ∈ R+ and
λ ∈ (0, 1), such that for all (ξ, ζ) ∈ D ×D and k ∈ N≥k0

∥ϕ(k, k0, ξ)− ϕ(k, k0, ζ)∥ ≤ d∥ξ − ζ∥λk−k0 .

If this holds only for a subset of initial conditions in D×D the
system is uniformly locally exponentially incrementally stable
in this subset. If D = Rn the definition is global.

The theory of exponential convergence of two trajectories of
the same system has first been studied as uniform convergence
by Demidovich [33], [45], and later extended through contrac-
tion theory [12], [13]. Contraction is a sufficient condition for
exponential incremental stability, that when f is smooth, can
be checked by the following condition.

Theorem 4. Let Assumption 5.ii. hold, and suppose that
there exists a sequence of positive-definite, bounded matrices
P (k) ∈ Rn×n, k ∈ N≥k0

, and some ρ ∈ (0, 1) such that

D(k, x) :=
∂f

∂x
(k, x)TP (k+1)

∂f

∂x
(k, x)−ρ2P (k) ≺ 0 (15)
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for all x ∈ D̃0 ⊆ D0. Then, there exists a constant rD̃0
∈ R+,

such that (11) is uniformly locally exponentially incrementally
stable in B(rD̃0

) ⊆ D̃0 with a rate ρ.

We also state the following converse Lyapunov theorem.

Theorem 5. If the system (11) is uniformly exponentially
incrementally stable in D, then there exists a function V :
N≥k0

× D × D → R+ and constants c1, c2 ∈ R+ and
β ∈ (0, 1), such that for all (ξ, ζ) ∈ D ×D and k ∈ N≥k0

c1∥ξ − ζ∥2 ≤ V (k, ξ, ζ) ≤ c2∥ξ − ζ∥2, (16)

V (k + 1, f(k, ξ), f(k, ζ)) ≤ β2V (k, ξ, ζ). (17)

Moreover, under Assumption 5.i., there exists a constant c3 ∈
R+, such that for all (ξ, ζ, ξ̃, ζ̃) ∈ D×D×D×D and k ∈ N≥k0

|V (k, ξ, ζ)− V (k, ξ̃, ζ̃)| ≤

≤ c3

(
∥ξ − ξ̃∥+ ∥ζ − ζ̃∥

)(
∥ξ − ζ∥+ ∥ξ̃ − ζ̃∥

)
.

(18)

The proofs of Theorem 4, adapted from [13], and Theorem
5, extended from [10] and [11], are provided in the appendix.

C. Main Results
In this subsection, we show that if the nonlinear dynamics

(11) are uniformly exponentially stable in D and satisfy
Assumption 5, then they are also E-δ-ISS in the same region.
First, we show that under the local Lipschitz continuity as-
sumption, exponential incremental stability implies E-δ-ISS.

Theorem 6. Let Assumption 5 hold, then if the nonlinear
system (11) is uniformly exponentially incrementally stable in
D, it is E-δ-ISS in the same region.

For completeness, we provide the proof in the appendix,
and note that the implication is similar to existing results in
the literature, e.g. [46], that studies the asymptotic stability
of the equilibrium, or [47, Lemma 2] that considers a non-
autonomous setting.

Next, we show that if in addition to local Lipschitz con-
tinuity, the nonlinear dynamics are also locally differentiable
in some arbitrarily small region D0 around the equilibrium,
then uniform exponential stability implies uniform exponential
incremental stability and E-δ-ISS. The results are formalized
in Theorem 7 and Corollary 2.

Theorem 7. Let Assumption 5 hold, then if the nonlinear
system (11) is uniformly exponentially stable in D, it is
also uniformly exponentially incrementally stable in the same
region.

Proof. We start by showing that the exponential stability of
f implies that the linearized dynamics around the origin are
also stable by following similar arguments to [42]. Let

A(k) :=
∂f(k, x)

∂x
(k,0),

which is well-defined given Assumption 5. Moreover, there
exists a Ā ∈ R+, such that ∥A(k)∥ ≤ Ā, k ∈ N≥k0

. It follows
from Theorem 3, that there exists a continuous mapping V :
k ∈ N≥k0 ×D → R satisfying (13)-(14). Let us consider V as
a candidate Lyapunov function for A(k). Then for all x ∈ D,

k ∈ N≥k0
there exist constants β ∈ (0, 1), and c4, d ∈ R+

such that

V (k + 1, A(k)x) =

V (k + 1, f(k, x)) + [V (k + 1, A(k)x)− V (k + 1, f(k, x))]

≤ β2V (k, x) + [V (k + 1, A(k)x)− V (k + 1, f(k, x))]

≤ β2V (k, x) + c4∥f(k, x)−A(k)x∥∥f(k, x) +A(k)x∥
≤ β2V (k, x) + c4∥x∥ · ∥f(k, x)−A(k)x∥ (dβ + ∥A(k)∥) ,

where the first inequality follows from Theorem 3, the second
from Lemma 4 and the last from Definition 2 and properties
of induced norms. Denoting h(k, x) := f(k, x) − A(k)x, it
follows from the Lipschitz continuity of the Jacobian of f [42,
Chpt. 4.6] that there exists a Lh ∈ R+, such that ∥h(k, x)∥ ≤
Lh∥x∥2, for all k ∈ N≥k0 for all x ∈ D0. Using this

V (k + 1, A(k)x) ≤ β2V (k, x) + c4Lh

(
dβ + Ā

)
∥x∥3

≤

(
β2 +

c4Lh

(
dβ + Ā

)
c1

∥x∥

)
V (k, x) := γV (k, x),

where the second inequality follows from the converse Lya-
punov Theorem 3 for some c1 ∈ R+. Defining r1 :=

min

{
c1(1−β2)

c4Lh(dβ+Ā)
,max{r > 0 | ∥x∥ < r, x ∈ D0}

}
, for all

∥x∥ < r1, it holds that γ < 1. Hence, using Theorem
2 the linearized dynamics xk+1 = A(k)xk are uniformly
exponentially stable. Then, from [48, Thm 23.3] there exists
a sequence of uniformly positive definite P (k) that solves the
difference Lyapunov equation A⊤(k)P (k+1)A(k)−P (k) ≤
−cI, for some c ∈ R+.

Considering now equation (15) for some k ∈ N≥k0
, x̄ ∈ D0

and denoting dk(x̄) := ∂f
∂x (k, x̄)−A(k), it holds that

∂f

∂x
(k, x̄)⊤P (k + 1)

∂f

∂x
(k, x̄)− P (k)

= [A(k) + dk(x̄)]
⊤
P (k + 1) [A(k) + dk(x̄)]− P (k)

= A(k)⊤P (k + 1)A(k)− P (k)

+A(k)⊤P (k + 1)dk(x̄) + dk(x̄)
⊤P (k + 1) [A(k) + dk(x̄)]

≤ −cI +A(k)⊤P (k + 1)dk(x̄)

+ dk(x̄)
⊤P (k + 1) [A(k) + dk(x̄)] ,

where the first equality follows from the definition of dk(x̄)
and the last one from [48, Thm 23.3].

Following the same arguments as in [42, Chpt. 4.6], there
exists a constant L2 ∈ R+, such that for all k ∈ N≥k0 and
x̄ ∈ D0, ∥dk(x̄)∥ ≤ L2∥x̄∥. Pre- and post-multiplying the
above with some x⊤ and x, respectively then yields

x⊤
[
∂f

∂x
(k, x̄)⊤P (k + 1)

∂f

∂x
(k, x̄)− P (k)

]
x ≤

− c∥x∥2 + 2∥x∥2∥A(k)⊤P (k + 1)dk(x̄)∥
+ ∥x∥2∥dk(x̄)⊤P (k + 1)dk(x̄)∥

≤ −∥x∥2
(
c− 2ĀP̄L2∥x∥ − P̄ rdL

2
2∥x∥

)
,

where rd = max
x∈D

∥x∥, and ∥P (k)∥ ≤ P̄ , k ∈ N≥k0
. Note

that the rate of exponential stability of the linear system A(k)
is
√
1− c

P̄
∈ (0, 1). Then, choosing ρ2 > 1 − c

P̄
, adding
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x⊤
(
1− ρ2

)
P (k)x to both sides of the above inequality and

defining r2 :=
c−(1−ρ2)P̄

2ĀP̄L2+P̄ rdL2
2

ensures that

x⊤
[
∂f

∂x
(k, x)TP (k + 1)

∂f

∂x
(k, x)− ρ2P (k)

]
x < 0,

uniformly in k and x, for all ∥x∥ < r := min (r1, r2). This
implies by Theorem 4 that there exists a positive constant
rD̃0

≤ r, such that for all x ∈ B(rD̃0
) the system (11) is

uniformly exponentially incrementally stable with rate of ρ.
To show that the system is also uniformly exponentially

incrementally stable in D, consider any ξ1, ξ2 ∈ D, then for
all k ∈ N≥k0

, and some d ∈ R+, the following two inequalities
hold

∥ϕ(k, k0, ξ1)− ϕ(k, k0, ξ2)∥ ≤
∥ϕ(k, k0, ξ1)∥+ ∥ϕ(k, k0, ξ2)∥ ≤ 2rddβ

k−k0 ,
(19)

∥ϕ(k, k0, ξ1)− ϕ(k, k0, ξ2)∥ ≤ Lk−k0

f ∥ξ1 − ξ2∥︸ ︷︷ ︸
:=∆ξ

. (20)

The bound in (19) follows from the exponential stability of f ,
and the one in (20) from its Lipschitz continuity. Combining
the two

∥ϕ(k, k0, ξ1)−ϕ(k, k0, ξ2)∥ ≤ min{2rdd·βk−k0 , Lk−k0

f ∥∆ξ∥}.

Define k′ ∈ N≥k0
such that both ∥ϕ(k′, k0, ξ1)∥ <

rD̃0
, ∥ϕ(k′, k0, ξ2)∥ < rD̃0

. Then, from the above analysis,
there exists a d′ ∈ R+, such that for all k ∈ N≥k′

∥ϕ(k, k0, ξ1)− ϕ(k, k0, ξ2)∥
≤ d′ρk−k′

· ∥ϕ(k′, k0, ξ1)− ϕ(k′, k0, ξ2)∥.

It then follows that

∥ϕ(k, k0, ξ1)− ϕ(k, k0, ξ2)∥
≤ d′ρk−k′

·min{rdd · βk−k0 , Lk−k0

f ∥∆ξ∥}.

Note that for all k = {k0, . . . , k′}

∥ϕ(k, k0, ξ1)− ϕ(k, k0, ξ2)∥ ≤ c5∥∆ξ∥ρk−k0 ,

where c5 := max{1, L
k′
f

ρk′ }, makes it a constant independent
of ∥∆ξ∥, and since k′ is finite, also independent of time.
Combining the bounds, the following holds for all k ∈ N≥k0

∥ϕ(k, k0, ξ1)− ϕ(k, k0, ξ2)∥ ≤ c5d
′ρk−k0∥∆ξ∥,

which is the definition of uniform exponential incremental
stability.

Combining Theorems 6 and 7 the following corollary fol-
lows directly.

Corollary 2. Let Assumption 5 hold, then if the nonlinear
system (11) is uniformly exponentially stable in D, it is also
E-δ-ISS in the same region.

Remark 1. The conditions on the Jacobian matrix of f in
Assumption 5 are required only in the time-varying case, as
these are satisfied trivially in the time-invariant setting; for
further details, we refer the reader to [42, Theorems 4.7, 4.12].

Remark 2. It is worth highlighting that the implication
in Corollary 2 is also claimed in [11, Thm. 12] without
assuming local differentiability. While the proof in [11] holds
for asymptotic stability, the same arguments break down in the
exponential case since one cannot find constants d ∈ R+ and
λ ∈ (0, 1) as in Definition 3 that are independent of the initial
deviation ∥ξ − ζ∥. Hence, the results in this section serve to
fill this gap by deriving sufficient conditions in the form of
Assumption 5 under which the implication holds.

In the sequel, we use these insights to address the closed-
loop dynamics under suboptimal and optimal linear MPC
policies as a notable use case.

V. MODEL PREDICTIVE CONTROL - A USE CASE

In Section III, we showed that under certain assumptions on
the suboptimal policy µ (Assumption 2) and the benchmark
policy µ⋆ (Assumption 1), the suboptimality gap of µ can be
bounded for a certain family of costs. We now exploit the re-
sults of Section IV to show that these assumptions are satisfied
in the case of suboptimal, PGM-based linear-quadratic MPC,
and derive an asymptotically tighter suboptimality gap bound
compared to [17] under the same assumptions.

Consider the control of linear time-invariant dynamical
systems, modeled by

xk+1 = Axk +Buk, k ∈ N,

where A ∈ Rn×n, and B ∈ Rn×m are known system matrices,
and the state and input vectors are defined as before. We
consider the finite horizon linear-quadratic regulator (LQR)
problem with the objective of minimizing the finite-time cost

JT (x0,u) = ∥xT ∥2P +

T−1∑
k=0

∥xk∥2Q + ∥uk∥2R, (21)

where Q ∈ Rn×n and R ∈ Rm×m are design matrices and
P is taken to be the solution of the discrete-time Algebraic
Riccati Equation, P = Q + K⊤RK + (A − BK)⊤P (A −
BK), with K = (R+B⊤PB)−1(B⊤PA). The control inputs
must satisfy uk ∈ U for all k ∈ N, where U ⊆ Rm is a
constraint set. The following standard assumptions ensure a
unique minimizer for (21) always exists [16], [49].

Assumption 6. (Well-posed problem)
i. The pair (A,B) is stabilizable, Q ≻ 0, R ≻ 0.

ii. The input constraint set U is closed, convex and contains
the origin in its interior.

The model predictive controller solves this problem in a
receding horizon fashion, solving the following parametric
optimal control problem (POCP) at each timestep k, having
measured a state x ∈ Rn

µ⋆(x) := argmin
ν

JN (ξ0, ν)

s.t. ξi+1 = Aξi +Bνi, i=0, . . . , N − 1,

ξ0 = x, νi ∈ U , i=0, . . . , N − 1.

(22)

Here N is the prediction horizon length, and ν =
[ν⊤0 . . . ν⊤N−1]

⊤ denotes the predicted input vector. We refer
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to the minimiser of (22) for a given initial state (parameter)
x ∈ Rn, µ⋆(x) : Rn → RNm, as the optimal mapping. For this
example, we take as the benchmark policy µ⋆, the map solving
the POCP (22). The optimal cost attained by this mapping
is denoted by J⋆

N (x) := JN (x, µ⋆(x)), which serves as an
approximate value function for the problem. For each k, the
model predictive controller applies the first element of µ⋆(xk)
to the system, and the process is repeated in a receding horizon
fashion. The optimal state evolution under this optimal MPC
policy is then given by

x⋆k+1 = Ax⋆k +Bµ⋆(x⋆k) := f(x⋆k), k ∈ N, (23)

where x⋆0 := x0, B := BS, and S := [Im×m 0 . . . 0] ∈
Rm×Nm is a matrix selecting the first control input. Note
that the optimal MPC policy, µ⋆ is time-invariant due to the
structure of the problem.

Problem (22) is a parametric quadratic program and for a
given parameter x ∈ Rn can be represented in an equivalent
condensed form J⋆

N (x) = minν∈N ∥(x, ν)∥2M , where N =
UN ⊆ RNm

M =

[
W G⊤

G H

]
, (24)

and the definitions of H ∈ RNm×Nm, W ∈ Rn×n and, G ∈
RNm×n can be found in [9].

As the optimal µ⋆(x) may often be infeasible to compute
exactly, suboptimal schemes are often considered. In our
setting, a suboptimal policy is computed by performing only
a finite number of optimization steps for (22). In particular,
given x ∈ Rn and an input vector ν ∈ RNm, consider
the operator that performs one step of the projected gradient
method

T (x, ν) := ΠN [ν − α∇νJN (x, ν)], (25)

where α ∈ R is a step size. Applying (25) iteratively ℓk ∈
N+ times provides an approximation for the optimal input,
and hence the optimal policy. The combined dynamics of the
system and the approximate optimizer are then given by3

uµk = T ℓk(xk, u
µ
k−1), (26a)

xk+1 = Axk +Buµk , (26b)

where uµ−1 ∈ RNm is an initialization vector, and for some
l ∈ N, x ∈ Rn and ν ∈ RNm, we define

T l(x, ν) = T (x, T l−1(x, ν)), T 0(x, ν) = ν. (27)

The dynamics under the suboptimal policy are (26b) by taking
uµk = µk(xk) for all k ∈ N, i.e.

xk+1 = Axk +Bµ⋆(xk)︸ ︷︷ ︸
f(xk)

+B (uµk − µ⋆(xk))︸ ︷︷ ︸
=dk

, k ∈ N.

Note that µk is also a function of the previous input state
uµk−1. However, since the closed-loop evolution is noise-free, it
can be uniquely determined given the initialization vector, the
current time k, and the current state. Hence, the dependence on
uµk−1 is encoded in the subscript of µk. The suboptimal policy
can in general be defined as a function of the information
vector Ik = {xk, uk−1, . . . , u0}; as long as Assumption 2 is
satisfied, the results in this manuscript hold.

3The subscript of ℓk is dropped when it is taken to be a constant.

A. Optimal MPC

In this subsection, we review the properties of the optimal
mapping µ⋆(x). As shown in [9], [50], [51], the system (23) is
exponentially stable with the forward invariant ROA estimate

ΓN := {x ∈ Rn | ψ(x) ≤ rN},

where ψ(x) :=
√
J⋆
N (x), d = c · λ−(Q)/λ+(P ), rN =√

Nd+ c and c > 0 is such that the following set

Ω = {x ∈ Rn | ∥x∥2P ≤ c},

also satisfies Ω ⊂ {x ∈ Rn | −Kx ∈ U}. The function
ψ(x) is a Lyapunov function for the optimal MPC algorithm,
satisfying

∥x∥P ≤ ψ(x) ≤ ∥x∥W (28)
ψ (f(x)) ≤ βψ(x), (29)

where β ∈ (0, 1) is the exponential decay rate. The Lipschitz
continuity of the optimal mapping is formalized in the follow-
ing lemma.

Lemma 5. [9, Corollary 2] For any (x, y) ∈ ΓN ×ΓN , the
optimal solution mapping, µ⋆(x), satisfies

∥µ⋆(x)− µ⋆(y)∥ ≤ ∥H− 1
2 ∥∥G(x− y)∥H−1 ≤ L∥x− y∥

with a Lipschitz constant L := ∥H− 1
2 ∥ · ∥H− 1

2G∥.

The proof follows from the parametric quadratic program
structure of the MPC problem and is derived in [9] or [16]
from an explicit MPC point of view.

B. Suboptimal MPC

The suboptimal policy in this setting is defined by (26a).
The following well-established result shows the linear rate of
convergence of the PGM method.

Theorem 8. [39, Theorem 3.1] For any x ∈ Rn, ν ∈ RNm,
ℓ ∈ N+, and for α = 1

λ+(H)+λ−(H)∥∥T ℓ(x, ν)− µ⋆(x)
∥∥ ≤ ηℓ∥ν − µ⋆(x)∥,

where η = (λ+(H)− λ−(H))/(λ+(H) + λ−(H)).

The suboptimal MPC scheme is treated by considering the
combined evolution of the system-optimizer dynamics (26).
The stability of such a scheme, also referred to as Time-
Distributed MPC (TD-MPC) or as real-time implementation
of MPC is shown in [9], [24], [25] for a fixed number of
iterations ℓ and in [17] for a time-varying ℓk. In particular, if
ℓk > ℓ⋆ for all k ∈ N, where

ℓ⋆ =
log(1− β)− log(σκ+ ω(1− β))

log(η)
,

where β is the same as in Section V-A, ω = 1 +
∥H− 1

2 ∥∥H− 1
2GB∥, σ = ∥W 1

2B∥, and

κ = ∥H− 1
2 ∥∥H− 1

2G(A− I)P− 1
2 ∥

+ ∥H− 1
2 ∥
√
λ+H(GB)(λ+P (W )− 1),
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Then, the combined dynamics (26) are exponentially stable in
the following forward invariant ROA estimate

ΣN =

{
(x, z)∈ΓN×N | ψ(x)≤rN ,

∥z − µ⋆(x)∥ ≤ (1− β)rN
σ

}
,

recalling rN from Section V-A. For the rest of the section we
take uµ−1 = 0, with the assumption that the resulting uµ0 =
T ℓ(x0, u

µ
−1) is such that (x0, u

µ
0 ) ∈ ΣN . For further analysis

of the choice of the initial input and the forward invariant
dynamics, we refer the interested reader to [50].

The exponential stability result from [17] is summarized in
the following Lemma.

Lemma 6. [17, Lemma 5] Given the dynamics (26), the
following holds for all (x0, u

µ
0 ) ∈ ΣN , k ∈ N and ℓk > ℓ⋆

∥xk∥ ≤ h0∥P− 1
2 ∥ · ∥x0∥W

k∏
i=−1

εi,

where εk := max{β + τκηℓk , σ+τηℓkω
τ } ∈ (0, 1), ε−1 := 1

and h0 = 1 + τηℓ0L∥W− 1
2 ∥.

If the same number of optimization iterations are taken at
all times the bound reduces to the following.

Corollary 3. [17, Corollary 3] Given the dynamics (26), the
following holds for all ℓ > ℓ⋆, (x0, u

µ
0 ) ∈ ΣN and k ∈ N

∥xk∥ ≤ h∥P− 1
2 ∥ · ∥x0∥W · εk,

where ε := max{β + τκηℓ, σ+τηℓω
τ } ∈ (0, 1) and h = 1 +

τηℓL∥W− 1
2 ∥.

C. Suboptimality Gap
We define the suboptimality vector, η̃ℓ, for this use case as

η̃ℓ :=
[
η̃ℓ,1 η̃ℓ,2 . . . η̃ℓ,T−1

]
,

where η̃ℓ,k := ηℓk(1 + η̃ℓ,k+1), k ∈ [0, T − 2], and η̃ℓ,T−1 :=
ηℓT−1 . We denote the Euclidean norm of the suboptimality
vector by η̄ℓ := ∥η̃ℓ∥. The main result for a suboptimal MPC
scheme is summarized in the following Theorem.

Theorem 9. Let Assumption 6 hold, then if ℓk > ℓ⋆, ∀k ∈ N,
the suboptimality gap of the suboptimal MPC (26) is given by

RT (x0) = O (η̄ℓ∥x0∥) ,

for all (x0, u
µ
0 ) ∈ ΣN . Specifically, it is bounded by

RT (x0) ≤ M̄
(
η̃ℓ,0∥δu0∥+ L∆⊤η̃ℓ

)
,

with M̄,∆ defined as in Theorem 1 and δu0 = uµ−1−µ⋆
0(x0).

Moreover, if ℓk = ℓ > ℓ⋆,∀k ∈ N, then, for all (x0, u
µ
0 ) ∈ ΣN

RT (x0) = O
(

ηℓ

1− ηℓ
∥x0∥

)
.

Proof. We start by showing that Assumptions 1-4 are satisfied
in the MPC use-case. In this setting, the linear dynamics to
be controlled are given by

xk+1 = Axk +Būk, k ∈ N, (30)

with the input ūk ∈ RNm. First, we note that Assumption 3 is
satisfied trivially with Lu = ∥B∥. The benchmark controller
is the optimal policy µ⋆ that solves the POCP (22), and is
given in (23).

Taking D⋆ to be the forward invariant ROA estimate D⋆ =
ΓN , it follows from Lemma 5 that Assumption 1.i. is satisfied.
Since the policy is time-invariant, Assumption 1.ii. is satisfied
trivially with ak = 0 for all k. To show that the Assumption
1.iii. is satisfied, we use the analysis from Section IV. Exploit-
ing the structure of the optimization problem (22), it has been
shown in [16] that under Assumption 6, the solution of the
MPC problem is piecewise-affine in the state. Moreover, the
set Ω, that defines a forward invariant set around the origin for
the dynamics (23) with inactive input constraints, is non-empty
[4]. This and Lemma 5 imply that Assumption 5 is satisfied.
As discussed in Section V-A, the benchmark dynamics (23)
are exponentially stable in D⋆, therefore, by Corollary 2 we
conclude that they are also E-δ-ISS in the same region. The
suboptimal policy is given by (26a). The results in [17] show
that for all ℓk ≥ ℓ⋆, ΣN is a forward invariant ROA estimate
for the combined dynamics (26). Given this and an initial
uµ−1 = 0, consider Dµ = {x ∈ Rn | (x, T ℓ(x, uµ−1)) ∈ ΣN}.
Then Assumption 2 is satisfied directly from Theorem 8 and
the suboptimal policy definition.

Finally, to reconcile the quadratic cost defined in (21) and
the modified dynamics (30), we redefine the cost, as

JT (x0, ū) = ∥xT ∥2P +

T−1∑
k=0

∥xk∥2Q + ∥ūk∥2R,

where R = S⊤RS. For the quadratic costs in (21), and for
any (x, y) ∈ Dµ ×Dµ, and (u, z) ∈ (N ×N )

|x⊤Qx− y⊤Qy + u⊤Ru− z⊤Rz|
≤2∥x− y∥∥Q∥xm + 2∥u− z∥∥R∥um,

where xm and um are such that, ∥x∥ ≤ xm and ∥u∥ ≤ um
for all x ∈ Dµ, u ∈ N . Then the condition in Assumption
4 is satisfied with Mx = 2xm max{∥Q∥, ∥P∥} and Mu =
2um∥R∥.

Since Assumption 6 implies Assumptions 1-4 are satisfied,
we can invoke the bound in Theorem 1 for the suboptimality
gap. As the suboptimal dynamics are exponentially stable, its
pathlength is finite. In particular

S2
T,2 =

T∑
k=1

∥xk − xk−1∥2 ≤ 4

T∑
k=0

∥xk∥2

≤ c20∥x0∥2
T∑

k=0

k∏
i=0

ε2i−1 ≤ c20
1− ε̄2

∥x0∥2,

where the first inequality follows by the triangle inequal-
ity, the second from Lemma 6 and by denoting c0 :=
2h0∥P− 1

2 ∥∥W 1
2 ∥, and the last one by bounding the geometric

series and denoting ε̄ := max{εi}T−1
i=0 . Noting that ak = 0 for

all k ∈ N in this example, the suboptimality gap is bounded
by O(ST,2η̄ℓ) = O(η̄ℓ∥x0∥).

In the case when ℓk = ℓ > ℓ⋆ for all k ∈ N, one can use
the bound derived in Corollary 1, with a simplified expression
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for the pathlength

ST ≤ c

1− ε
∥x0∥.

The above is obtained directly from the bound in Corollary 3
and by denoting c := 2h∥P− 1

2 ∥∥W 1
2 ∥.

The theorem shows that the suboptimality gap of the MPC
suboptimal controller (26) scales with η̃ℓ or ηℓ, where the
number of iterations ℓk are design parameters. Note that the
higher ℓk the more computation is required at each timestep,
but the lower the suboptimality gap; in the limit, as ℓ → ∞,
the suboptimality gap is zero. This is a tighter result than the
one derived in [17], as in the latter no incremental properties
of the optimal controller are used. Specifically, when looking
at the limit case of ηk = 0, k ∈ N, the suboptimality gap
in [17] is strictly positive, while the bound in Theorem 9
vanishes, reflecting the exact matching of the suboptimal and
benchmark trajectories. The derived bounds can be used by
control designers to give a quantifiable measure of the finite-
time suboptimality of the controller. This can then be utilized
to find the best sequence of ℓk to deliver a desired tradeoff
between suboptimality and computational power.

In practice, the suboptimal MPC can be asymptotically
stable even when the number of optimization iterations ℓ is less
than ℓ⋆. In this case, the existence of a forward invariant region
of attraction Dµ is not given, but the bounds in Theorem 1 and
Corollary 1 still hold, as long as the closed-loop suboptimal
system stays stable. This is shown in the following numerical
example.

D. Numerical Example

The suboptimal TD-MPC scheme described in this section
is implemented for the following linearized, continuous-time
model of an inverted pendulum from [50], [17]

Ac =

[
0 1

14.7 0

]
, Bc =

[
0
30

]
,

where the state is x = [θ, θ̇]⊤, θ is the angle relative to the
equilibrium position and the control input is the applied torque.
We consider the control of the discretized model of the plant
with a sampling time of Ts = 0.1. The input constraint set is
taken to be U = [−1, 1], the cost matrices are Q = I2, and
R = 1 and the initial state is x0 = [−π/4 π/3]⊤.

The left panel of Figure 3 shows the evolution of two
trajectories in closed-loop with the TD-MPC policy with ℓ = 6
and with an optimal MPC. For this example ℓ⋆ = 849.
However, even with the low value of ℓ = 6 the closed-loop
system stays stable, as also observed in [9], [50]. Although the
asymptotic/exponential stability cannot be proven, the finite
time bounds can still be computed online using only the
suboptimal states as per Corollary 1. The order of this upper
bound, as well as the empirically observed suboptimality gap,
RT (x0), are plotted in the right panel of Figure 3 for T = 30
for a range of values of ℓ, increasing from 1 to 5000. The
decrease of the suboptimality gap for increasing values of ℓ
is juxtaposed with the increase of simulation/computational
time in the same figure. The simulation time for each ℓ is

Fig. 3: The phase plot on the left shows two separate tra-
jectories generated by applying respectively TD-MPC, with
a constant ℓ = 6 (in green) and optimal MPC policies (in
purple). The logarithmic scale plot on the right shows the
empirical suboptimality gap (in green), as well as the order
of the upper bound decrease (in red) as ℓ, and therefore the
computation time is increased. The two curves on the right are
parameterized by ℓ, ranging from 1 to 5000.

calculated as the sum of the times it takes to solve the TD-
MPC for each timestep, over the horizon T . To obtain an
averaged value for this time, its average over 100 repeated
independent runs from the same initial conditions is taken.
The initial states are intialized in ΣN following the procedure
described in [50]. In the right panel of the figure, only the
complexity ηℓ

1−ηℓST of the suboptimality gap upper bound is
plotted. The true constant multiplying the complexity term
above is much larger; our aim here is not to compare the very
conservative theoretical bound with the practical performance,
but to give an estimate of whether the bound captures the order
correctly. Indeed, it can be observed from the figure that the
order of the true suboptimality gap is approximately captured
by the upper bound with an underestimation.

Among other possible uses of the closed-loop suboptimality
analysis, the insights in the figure can be used to design
the allocation of finite computational resources. The right-
side plot in the figure can be used to estimate the relative
gain in computational time and loss in optimality for a given
change in ℓ. For example, a change of ℓ = 6 to ℓ = 40, or
equivalently ηℓ = 0.92 to ηℓ = 0.56 results in a 3.6 times
increase in computational time and a 9.3 times decrease in
the suboptimality gap bound. This provides an approximation
for the variation of the true subopimality gap that decreased
8.7 times in the same interval.

VI. CONCLUSIONS

We study the finite-time suboptimality gap of policies for
discrete-time nonlinear, time-varying systems. We show that
when the benchmark policy is chosen to be exponentially
incrementally stable, then given a geometric improvement
condition on the suboptimal policy, its suboptimality gap
scales with its pathlength and improvement factor. We fur-
ther show, that for non-smooth nonlinear systems E-δ-ISS is
implied by exponential stability under certain conditions. The
assumptions are verified on the suboptimal linear quadratic
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MPC use case and on a numerical example. The generality
of the provided analysis enables the study of other examples
where the suboptimality is due to unknown system parameters
or cost functions, for example in the fields of adaptive and
online control. We leave the analysis of these use cases as
well as the treatment of measurement and process noise to
future work.

APPENDIX

Proof of Lemma 4
Proof. Given a state ξ ∈ D and some N ∈ R+, let

V (k0, ξ) =

N−1∑
k=0

ϕ(k + k0, k0, ξ)
⊤ϕ(k + k0, k0, ξ).

Then

V (k0, ξ) =

ξ⊤ξ +

N−1∑
k=1

ϕ(k + k0, k0, ξ)
⊤ϕ(k + k0, k0, ξ) ≥ ∥ξ∥2,

and, from Definition 2

V (k0, ξ) ≤
N−1∑
k=0

d2∥ξ∥2λ2k ≤ d2

1− λ2
∥ξ∥2.

Thus, (13) is satisfied with c1 = 1 and c2 = d2

1−λ2 . To show
that (14) holds, consider

V (k0 + 1, f(k0, ξ))− V (k0, ξ)

=

N−1∑
k=0

(
∥ϕ(k + k0 + 1, k0, ξ)∥2 − ∥ϕ(k + k0, k0, ξ)∥2

)
= ∥ϕ(N + k0, k0, ξ)∥2 − ∥ξ∥2 ≤ d2λ2N∥ξ∥2 − ∥ξ∥2

= −
(
1− d2λ2N

)
∥ξ∥2.

Choosing N large enough such that d2λ2N < 1, ensures (14)

holds with β2 = 1 − (1−d2λ2N)
c2

∈ (0, 1) since c2 ≥ c1 = 1
and c2 ∈ R+. Finally, for some (ξ, ζ) ∈ D × D and k0 ∈ N,
denote ∆ϕ(k, k0, ξ, ζ) := ϕ(k + k0, k0, ξ) − ϕ(k + k0, k0, ζ)
and consider

|V (k0, ξ)− V (k0, ζ)|

=

∣∣∣∣∣
N−1∑
k=0

(
∥ϕ(k + k0, k0, ξ)∥2 − ∥ϕ(k + k0, k0, ζ)∥2

)∣∣∣∣∣
≤

N−1∑
k=0

(∥ϕ(k + k0, k0, ξ)∥+ ∥ϕ(k + k0, k0, ζ)∥)

· ∥∆ϕ(k, k0, ξ, ζ)∥

≤
N−1∑
k=0

dλk (∥ξ∥+ ∥ζ∥) · Lk
f∥ξ − ζ∥

= (∥ξ∥+ ∥ζ∥) ∥ξ − ζ∥
N−1∑
k=0

dλkLk
f ,

where the last inequality follows from the exponential stability
and Lf -Lipschitz continuity of the nonlinear mapping. Taking
c3 =

∑N−1
k=0 dλ

kLk
f completes the proof.

Proof of Theorem 4

Proof. The condition in (15) implies the contraction of the
dynamics within the contraction region D̃0, as defined in [12].
We will first show that there exists a rD̃0

such that for all
initial states x ∈ B(rD̃0

) the dynamics (11) evolve in a forward
invariant set contained in D̃0. To see this, for some r ∈ R+,
and k ∈ N≥k0

define E0(k, r) := {x ∈ Rn | ∥x∥P (k) ≤ r},
and r⋆ := max{r > 0 |E0(k, r) ⊆ D̃0, , ∀k ∈ N≥k0

}. This
implies that if a state satisfies x ∈ E0(k, r⋆), then x ∈ D̃0

necessarily. The largest ball contained in the intersection of
the sets E0(k, r⋆), k ∈ N≥k0

is then given by B( r
⋆

P̄
), where

P (k) ⪯ P̄ I for all k ∈ N≥k0 , and P̄ > 0 exists since
P (k) is uniformly bounded. Consider now the differential dis-
placement δx for the dynamics (11), defining an infinitesimal
displacement at a given time k. The shortest path integral with
respect to the metric P (k) between 0 and a given state xk at
time k is given by

Vℓ(δxk, k) :=

∫ xk

0

∥δx∥P (k) = ∥xk∥P (k),

where the second equality follows from the fact that the
shortest path integral corresponds to the Riemannian distance
(see e.g. [11], [13], [52]). Using the same arguments as in
[13, Thm 2.8] or [11, Thm. 15], one can then show that
for any xk ∈ B( r

⋆

P̄
), it holds that Vℓ(δxk+1, k + 1) ≤

ρVℓ(δxk, k) < r⋆. This, in turn, implies that ∥xk+1∥P (k+1) <

r⋆ =⇒ xk+1 ∈ E0(k + 1, r⋆) =⇒ xk+1 ∈ D̃0.
Taking rD̃0

= r⋆

P̄
completes the claim that the dynamics are

forward invariant within D̃0. For any initial state in B(rD̃0
),

uniform local exponential incremental stability with a rate ρ
then follows from standard Lyapunov arguments, see e.g. [13,
Thm 2.8].

Proof of Theorem 5

The proof hinges on extending results from [44], [53],
[10] and [11]. Before presenting the proof, we provide the
following auxiliary definition and theorem.

Definition 4. [44], [53] Given a closed, positively invariant
set A ⊂ Rn, the system (11) is uniformly exponentially stable
in D with respect to A, if there exist constants d ∈ R+ and
λ ∈ (0, 1), such that for all ξ ∈ D and k ∈ N≥k0

|ϕ(k, k0, ξ)|A ≤ d|ξ|Aλk−k0 .

The extension of the converse Lyapunov results from [10]
and [44] to the case of stability in a forward invariant region
is included below for completeness.

Theorem 10. If the system (11) is uniformly exponentially
stable in D with respect to some closed set A, then there exists
a function V : N≥k0

× D → R+ and constants c1, c2 ∈ R+

and β ∈ (0, 1), such that for all ξ ∈ D, and k ∈ N≥k0

c1|ξ|2A ≤ V (k, ξ) ≤ c2|ξ|2A, (31)

V (k + 1, f(k, ξ)) ≤ β2V (k, ξ). (32)
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Proof. Following the same line of arguments from the proof
of Lemma 4, consider a x ∈ D and some N ∈ R+ and let

V (k0, ξ) =

N−1∑
k=0

|ϕ(k + k0, k0, ξ)|2A, (33)

for some k0 ∈ N. Then,

V (k0, ξ) = |ξ|2A +

N−1∑
k=1

|ϕ(k + k0, k0, ξ)|2A ≥ |ξ|2A,

and, from Definition 4

V (k0, ξ) ≤
d2

1− λ2
|ξ|2A.

Next, consider

V (k0 + 1, f(k0, ξ))− V (k0, ξ)

=
N−1∑
k=0

(
|ϕ(k0 + k + 1, k0, ξ)|2A − |ϕ(k0 + k, k0, ξ)|2A

)
= |ϕ(k0 +N, ξ)|2A − |ξ|2A ≤ d2λ2N |ξ|2A − |ξ|2A
= −

(
1− d2λ2N

)
|ξ|2A.

Choosing N large enough such that d2λ2N < 1 completes the

proof with c1 = 1, c2 = d2

1−λ2 , and β2 = 1 − (1−d2λ2N)
c2

∈
(0, 1) since c2 ≥ c1 = 1 and c2 ∈ R+.

Proof of Theorem 5. Consider the augmented system{
ξk+1 = f(k, ξk)
ζk+1 = f(k, ζk).

We define the diagonal as the set ∆ := {
[
ξ⊤, ξ⊤

]⊤ ∈ D×D :
ξ ∈ D}. Let z := [ξ⊤, ζ⊤]⊤ ∈ D×D, then it is shown in [10]
that

|z|∆ =

√
2

2
∥ξ − ζ∥. (34)

Then, considering the evolution of the combined system

zk+1 = F(k, zk) :=

[
f(k, ξk)
f(k, ζk)

]
, (35)

one can note that zk ∈ D × D for all k ∈ N≥k0
, for any

(ξk0
, ζk0

) ∈ D × D, since D is forward invariant. It follows
that system (11) is exponentially incrementally stable in D if
and only if (35) is exponentially stable in D with respect to
the diagonal ∆.

Moreover, using Theorem 10, the combined system (35)
admits a Lyapunov function satisfying (31)-(32). Given a z ∈
D×D, it follows from the equivalence in (34), and the proof
of Theorem 10, that (16)-(17) are satisfied with c1 =

√
2
2 , and

c2 = d2
√
2−λ2

√
2

for the following Lyapunov function

V (k0, z) =

N−1∑
k=0

|ϕF (k0 + k, k0, z)|2∆,

where ϕF : N≥k0 ×N≥k0 ×R2n → R2n is the state transition
matrix for the system (35).

We show the inequality (18) next. For any (ξ, ζ, ξ̃, ζ̃) ∈
D×D×D×D, k ∈ N≥k0 , w := [ξ̃⊤, ζ̃⊤]⊤ and z defined as
above

|V (k0, z)− V (k0, w)|

=

∣∣∣∣∣
N−1∑
k=0

(
|ϕF (k0 + k, k0, z)|2∆ − |ϕF (k0 + k, k0, w)|2∆

)∣∣∣∣∣
≤

N−1∑
k=0

(∥ϕF (k0 + k, k0, z)− ϕF (k0 + k, k0, w)∥)

· (|ϕF (k0 + k, k0, z)|∆ + |ϕF (k0 + k, k0, w)|∆)

≤
N−1∑
k=0

dλk√
2

∥∥∥∥[ϕ(k0 + k, k0, ξ)− ϕ(k0 + k, k0, ξ̃)

ϕ(k0 + k, k0, ζ)− ϕ(k0 + k, k0, ζ̃)

]∥∥∥∥
·
(
∥ξ − ζ∥+ ∥ξ̃ − ζ̃∥

)
≤
(
∥ξ − ξ̃∥+ ∥ζ − ζ̃∥

)(
∥ξ − ζ∥+ ∥ξ̃ − ζ̃∥

)N−1∑
k=0

dλkLk

√
2

,

where the last two inequalities follow from the Lipschitz
continuity and exponential stability (with respect to ∆) of the
solutions. The first inequality follows from the following. For
any two vectors ξ, ζ ∈ D and closed, convex set A

|ξ|A − |ζ|A = |ξ|A − ∥ζ − ζp∥ ≤ ∥ξ − ζp∥ − ∥ζ − ζp∥
≤ |∥ξ − ζp∥ − ∥ζ − ζp∥| ≤ ∥ξ − ζ∥,

where ζp ∈ A is such that |ζ|A = ∥ζ − ζp∥, which exists
and is unique, since A is closed and convex. Finally, choosing
c3 =

∑N−1
k=0

dλkLk
√
2

completes the proof.

Proof of Theorem 6

Proof. Given the nonlinear system (11), consider the evolution
of two, respectively unperturbed and perturbed trajectories

xk+1 = f(k, xk),

yk+1 = f(k, yk) + wk,

for some (xk0
, yk0

) ∈ D × D, where wk ∈ B(rw), for some
rw ∈ R+ is such that yk ∈ D for all k ∈ N≥k0

. Given f is
uniformly exponentially incrementally stable in D, then from
Theorem 5, there exists a Lyapunov function V : N≥k0

×D×
D → R+ satisfying (16)-(18). Then, for any (x, y) ∈ D ×D,
k ∈ N≥k0 , and w ∈ B(rw)

V (k + 1, f(k, x), f(k, y) + w)− V (k, x, y) =

= V (k + 1, f(k, x), f(k, y))− V (k, x, y)

+ V (k + 1, f(k, x), f(k, y) + w)− V (k + 1, f(k, x), f(k, y))

≤ −
(
1− β2

)
c1∥x− y∥2

+ c3∥w∥ (∥f(k, x)− f(k, y)− w∥+ ∥f(k, x)− f(k, y)∥)
≤ −

(
1− β2

)
c1∥x− y∥2 + c3∥w∥2 + 2c3Lf∥w∥∥x− y∥,

where the first inequality follows from Theorem 5, and the
second from the triangle inequality. Completing the square,



KARAPETYAN et al.: CLOSED-LOOP FINITE-TIME ANALYSIS OF SUBOPTIMAL ONLINE CONTROL 15

and denoting c4 := (1− β2)c1 it follows from above that

V (k + 1, f(k, x), f(k, y) + w)− V (k, x, y) ≤

≤ −3c4
2

∥x− y∥2

+

(√
c4√
2
∥x− y∥+ c3Lf

√
2∥w∥

√
c4

)2

−
2c23L

2
f∥w∥2

c4

≤ −c4
2
∥x− y∥2 +

2c23L
2
f∥w∥2

c24

≤ − c4
2c2

V (k, x, y) +
2c23L

2
f∥w∥2

c4
,

where the second inequality follows by the fact that (a+ b)
2 ≤

2a2 + 2b2 for any a, b ∈ R, and the last inequality from
Theorem 5. Finally, rearranging the Lyapunov equations it
follows that

V (k + 1, f(k, x), f(k, y) + w) ≤ ρ2V (k, x, y) + c5∥w∥2,

for all k ∈ N≥k0
, with ρ2 := 1− c4

2c2
∈ (0, 1), since c2 > c4,

and c5 :=
2c23L

2
f

c4
. Unrolling the recursion and using (16)

c1∥xk − yk∥2

≤ ρ2(k−k0)V (k0, xk0
, yk0

) + c5

k−1∑
i=k0

ρ2(k−i−1)∥wi∥2

≤ c2ρ
2(k−k0)∥xk0

− yk0
∥2 + c5

k−1∑
i=k0

ρ2(k−i−1)∥wi∥2.

Dividing by c1 and taking the square root, completes the proof

∥xk − yk∥ ≤
√
c2
c1
ρ(k−k0)∥xk0 − yk0∥

+

√
c5
c1

k−1∑
i=k0

ρk−i−1∥wi∥.
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(IfA), ETH Zürich between 2021 and 2023. Since
September 2023, he has been leading the Con-
trol and Automation research group at inspire

AG. His research interests include control theory, optimization, statistical
learning, robotics, cyber-physical systems, and additive manufacturing.

Andrea Iannelli is an Assistant Professor in
the Institute for Systems Theory and Automatic
Control at the University of Stuttgart (Germany).
He completed his B.Sc. and M.Sc. degrees in
Aerospace Engineering at the University of Pisa
(Italy) and received his PhD from the University
of Bristol (United Kingdom) on robust control and
dynamical systems theory. He was a postdoc-
toral researcher in the Automatic Control Lab-
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