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Stochastic MPC with robustness to bounded
parametric uncertainty

Elena Arcari?, Andrea Iannelli†, Andrea Carron?, Melanie N. Zeilinger?

Abstract— In this paper, we present a stochastic model
predictive control approach for discrete-time LTI systems
subject to bounded parametric uncertainty and poten-
tially unbounded stochastic additive noise. The proposed
scheme makes use of homothetic tubes along the pre-
diction horizon for a robust treatment of parametric un-
certainty. Stochastic noise is handled by tightening con-
straints using the concept of probabilistic reachable sets
(PRS), which are typically constructed offline by exploiting
noise distribution information. In order to address the pres-
ence of additional parametric uncertainty, we introduce a
strategy for generating “robustified” PRS based only on
the first and second moments of the noise sequence. In
the case of quadratic cost functions, and under a further
i.i.d. assumption on the noise distribution, we also provide
an average asymptotic performance bound for the l2-norm
of the closed-loop state. Finally, the proposed approach
is demonstrated in both an illustrative example, and for a
building temperature control problem.

Index Terms— stochastic model predictive control,
bounded parametric uncertainty, chance constraints

I. INTRODUCTION

Model predictive control (MPC) has established itself as
the state-of-the-art approach for high-performance control of
constrained dynamical systems. In the presence of bounded un-
certainty, rigorous theoretical guarantees are provided by [1],
considering worst-case scenarios of all uncertainties affecting
the dynamics. A robust design may result, however, in overly
conservative control strategies, particularly when additional
information about the uncertainty is available, e.g. in the form
of a distribution or a parametric uncertainty. In this case, it
can be beneficial to make use of a stochastic MPC approach,
where constraints are imposed in probability, i.e. formulated
as chance constraints for which a certain amount of violation
is permitted, see e.g. [2]. This motivates the developments in
this paper, offering an MPC formulation that handles robustly
the presence of parametric uncertainty, which is assumed to be
contained in a bounded polytopic set, and external disturbances
modeled as additive noise, which have potentially unbounded,
correlated distributions.

Previous results addressing multiple uncertainty sources can
be found, for instance, in [3], [4], addressing a state and input-
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dependent uncertainty, or in [5]–[7] considering stochastic
multiplicative and additive disturbances. While these results
provide strong guarantees in terms of closed-loop chance con-
straint satisfaction and stability, these rely on the assumption
of strict boundedness of all sources of uncertainty affecting
the system. Under the same assumption, recent efforts have
been made to improve control performance by including model
learning [8]–[10], parameter adaptation [11], [12], or dual
actions [13], [14].

In the presented paper, we relax the boundedness assump-
tion on the additive disturbance, while still allowing for a
robust analysis in terms of closed-loop feasibility and per-
formance guarantees in the presence of bounded parametric
uncertainty. The main idea builds on tube MPC concepts [5],
[15], [16], and combines the use of homothetic tubes [11],
[17] for handling parametric uncertainties along the prediction
horizon, together with probabilistic reachable sets (PRS) for
tightening state and input constraints, building on results in [2],
[18]–[20]. We propose a procedure for “robustifying” the PRS
design with respect to all parametric uncertainties, by only
assuming knowledge of the first and second moments of the
noise sequence affecting the system. Feedback is introduced
through the cost function (indirect feedback [19]), which at
each time step is computed with respect to the latest state
measurement and parameter update. The combined use of
homothetic tubes, “robustified” PRS (RPRS), and indirect
feedback is shown to offer strong closed-loop guarantees and
recursive feasibility. Furthermore, for i.i.d noise sequences
and quadratic cost functions, we derive an average asymptotic
bound on the l2-norm of the state.

A similar scenario, with both model and external uncertain-
ties, has been tackled in the context of model-based safety
filters [21], [22]. Differently from these results, we focus
on exploiting the parametric structure of the uncertainty,
enabling an MPC formulation that simultaneously achieves
high performance while providing theoretical guarantees. The
computational complexity of the proposed overall control
scheme is not affected by the RPRS computations since
these are constructed offline. Furthermore, the flexibility of
the proposed formulation allows for various extensions to
accommodate practical specifications [23], [24] while preserv-
ing the analysis, e.g. by incorporating ideas from [25], [26],
where computational efficiency is improved at the expense of
increased conservativeness by simplifying the homothetic tube
online optimization.

The structure of the paper is as follows. The receding-
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horizon stochastic optimal control problem for discrete-time
LTI systems is introduced in Section II. The problem com-
ponents are defined in Section III, with a particular focus on
the RPRS construction procedure. The MPC formulation and
its closed-loop analysis are detailed in Section IV. Finally,
numerical results in Section V are provided for both an
illustrative example, and a building temperature control task.

Notation
Given a matrix X , Xi:l,j:m defines a sub-matrix with

elements from row i to l and columns j to m, while for
a vector x, [x]i is the i-th entry. E[·] and Var[·] denote
the expected value and the variance of a random variable,
respectively. The convex hull of a set of points is denoted
by co{·}. 1n,m and 0n,m denote matrices of ones and zeros
of dimension n×m, respectively, and In is the identity matrix
of dimension n. The notation xi|k is used to refer to predicted
quantities, where k identifies the time when the prediction is
computed and i denotes the time step for which the prediction
is made.

II. PROBLEM FORMULATION

We consider the control of uncertain linear time-invariant
discrete-time dynamical systems modeled as

xk+1 = A(θ)xk +B(θ)uk + wk, (1)

where the state is denoted by xk ∈ Rn, the input by uk ∈
Rm, and the additive stochastic disturbance by wk ∈ Rn. The
system matrices depend affinely on an uncertain parameter
vector θ ∈ Θ ⊆ Rp

A(θ) = A0 +

p∑
i=1

Ai [θ]i, (2a)

B(θ) = B0 +

p∑
i=1

Bi [θ]i, (2b)

where Θ = {θ | Hθθ ≤ hθ}, with Hθ ∈ Rq×p, is assumed to
contain the true unknown parameter vector θtrue.

We assume access to state measurements of the true system
dynamics xtrue

k resulting from θtrue, i.e.

xtrue
k+1 = A(θtrue)xtrue

k +B(θtrue)uk + wk. (3)

The goal is to control the true system (3)for the duration T of
a finite-horizon task, in the face of uncertainty on θtrue and the
additive uncertainty wk. The proposed strategy leverages the
model in (1) and takes into account both parametric uncer-
tainty (2), and a potentially non i.i.d. stochastic disturbance
sequence W = [w>0 , . . . , w

>
T−1]> ∼ QW , which may have

unbounded support.
Assumption 1: We assume to have access to the first and

second moments of QW .
System (3) is subject to constraints on both states and inputs.
These are formulated as chance constraints that are required
to be satisfied point-wise at each time-step k ≥ 0 - and not
jointly for all time-steps - with a probability conditioned on
the true initial state xtrue

0 , i.e.

Pr(xtrue
k ∈ X | xtrue

0 ) ≥ px, Pr(uk ∈ U | xtrue
0 ) ≥ pu, (4)

where X = {x | Fx ≤ 1nx,1}, F ∈ Rnx×n, and U =
{u | Gu ≤ 1nu,1}, G ∈ Rnu×m. Additionally, px, pu ≥ 0 are
the assigned probability levels.

Using model (1), we formulate the control task subject
to (4) as a constrained optimization problem to be solved
in a receding horizon fashion. In order to obtain a tractable
formulation that can handle the presence of chance constraints,
we restrict the class of control policies over which we optimize
to the following affine state feedback law

uk = Kxk + vk, (5)

where K satisfies the following commonly used assumption
in robust MPC [11], [27].

Assumption 2: The state feedback gain K ∈ Rm×n is
chosen such that the closed-loop dynamics ACL(θ) = A(θ) +
B(θ)K is asymptotically stable ∀θ ∈ Θ, i.e. there exists a
positive definite P � 0 such that

ACL(θ)>PACL(θ)− P ≺ 0, ∀θ ∈ Θ.

Furthermore, we define the auxiliary variables zk ∈ Rn
and ek ∈ Rn as

ek = xk − zk, (6)

with the aim of separating the effect of the two different
uncertainty sources. Using (5), (1) and (6), we obtain

ek+1 + zk+1 = xk+1,

ek+1 + zk+1 = A(θ)xk +B(θ)uk + wk,

ek+1 + zk+1 = ACL(θ)zk +ACL(θ)ek +B(θ)vk + wk.

Finally, the dynamics of zk and ek can be split and defined as

zk+1 = ACL(θ)zk +B(θ)vk, (7a)
ek+1 = ACL(θ)ek + wk. (7b)

A similar split starting from the true dynamics (3) defines

ztrue
k+1 = ACL(θtrue)ztrue

k +B(θtrue)vk, (8a)
etrue
k+1 = ACL(θtrue)etrue

k + wk, (8b)

where (8a) represents the true nominal dynamics, while (8b)
represents the true error dynamics induced by the presence of
additive noise. The case in which θtrue is known is addressed
in [19] using a similar dynamics split, where the formulated
control problem optimizes over an error feedback, rather than
a state feedback strategy (5).

We build on tube MPC concepts to address the chance
constraints (4). As θtrue is unknown, we first exploit robust
concepts to predict a tube for the dynamics of zk. In addition,
the stochastic noise wk is handled by constructing another
tube for ek that is used for tightening both state and input
constraints such that the probability levels in (4) can be
satisfied. Figures 1 and 2 provide an illustrative scalar example
of an autonomous system, and highlight the main differences
with the case in which there is no parametric uncertainty (8).
It is important to note that, while (7b) evolves autonomously,
and therefore enables an offline construction of the tube
for ek, the dynamics of zk in (7a) are controlled by vk,
which does not allow to pre-compute the tube for zk as
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for the autonomous system shown in Figure 2. The idea is
to make use of an optimization-based approach to compute
such a tube and a corresponding constraint tightening that
ensures constraint satisfaction (4) for xk and uk. We formulate
hereafter an associated optimal control problem to be solved
over a horizon N < T in a receding horizon fashion

min
{vi|k}N−1

i=0 ,

{Zi|k}Ni=0

EWk

[
N−1∑
i=0

li(x̄i|k, ūi|k) + lf (x̄N |k)

]
(9a)

s.t. x̄i+1|k = A(θ̄k)x̄i|k +B(θ̄k)ūi|k + wi|k, (9b)
ūi|k = Kx̄i|k + vi|k, (9c)

Wk = [w>0|k, . . . , w
>
N−1|k]> ∼ QWk

, (9d)

Zi|k ⊆ X 	Ek+i, (9e)
KZi|k ⊕ vi|k ⊆ U 	Eu

k+i, (9f)
ZN |k ⊆ Zf , (9g)
ACL(θ)Zi|k +B(θ)vi|k⊆ Zi+1|k, ∀θ ∈ Θ, (9h)
x̄0|k = xtrue

k , (9i)
ztrue
k ∈ Z0|k. (9j)

The overall cost function to be optimized is computed as
the sum of potentially time-varying stage costs li(·, ·), i ∈
[0, N − 1], and a terminal cost lf (·). The cost is evaluated
with respect to a point estimate of the uncertain parameter θ
that we denote by θ̄k ∈ Θ ∀k ≥ 0. Additionally, due
to the additive stochastic noise, the cost is defined as the
expectation with respect to a predicted noise sequence Wk

whose distribution QWk
is defined by the conditional distri-

bution p([w>k , . . . , w
>
k+N−1]>|[w>0 , . . . , w>k−1]>).

Assumption 3: We assume to have access to either the
density function or samples of the distribution QWk

in order
to compute the cost function expectation in (9a).
Problem (9) deals with the presence of parametric model
uncertainty by optimizing over a sequence of bounded
sets {Zi|k}Ni=0 along the prediction horizon that we refer to as
nominal tube, ensuring robust containment of zk for all θ ∈ Θ
(see, e.g., the tube for zk in Figure 2). Furthermore, we design
a sequence of confidence regions Ek containing ek, which
we use to tighten state constraints. We refer to {Ek}Tk=1 as
the stochastic error tube, for which containment holds for
all θ ∈ Θ with a probability dictated by the distribution of the
sequence W (see, e.g., the tube for ek in Figure 2). Similarly,
we construct sets Eu

k containing in probability euk = Kek,
which are used to tighten input constraints. The following
sections provide details on how to design both the nominal
tube and the confidence regions needed for state and input
constraint tightening (9e), (9f). Further clarifications are also
given regarding the construction of an appropriate terminal
set Zf (9g), and the reformulation of the nominal tube contain-
ment condition (9h), such that ultimately the overall problem
is recursively feasible, and guarantees closed-loop chance
constraint satisfaction (4). Note that recursive feasibility also
requires that condition (9j) is guaranteed despite not having
access to the true nominal system dynamics (8a).

Remark 1: Parameter estimate update
We do not make any assumption on the learning scheme

e
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Fig. 1. Without parametric uncertainty, the error between the nominal
trajectory ztrue

k (in red) and any sampled trajectory xtrue
k (in blue)

depends on the particular realization ofwk. The tube for etrue
k is depicted

in grey, and defined as three standard deviations of its distribution.

ek+1 = θek + wk, θ ∈ [0.2, 0.8], wk ∼ N (0, 0.1
2
)

zk+1 = θzk, xk = ek + zk
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Fig. 2. With parametric uncertainty, all nominal trajectories zk for some
θ ∈ [0.2, 0.8] are contained in the tube for zk (in red) for which
we highlight two sample trajectories. In blue, we depict two sample
trajectories of xk. The grey shaded areas represent three standard
deviations of ek, for θ = 0.2, and θ = 0.8. The boundaries (in black) of
the tube for ek are computed with respect to three standard deviations
of the worst case error realizations and therefore contain all possible
tubes computed for any fixed value of θ.

chosen to update the point estimate θ̄k. The only condition
to be satisfied is containment in the bounded set Θ, which
can be always guaranteed by adding a projection step to any
update scheme. An example is to use a recursive least squares
update [28], with added set projection.

III. TRACTABLE FORMULATION OF STOCHASTIC MPC
WITH BOUNDED PARAMETRIC UNCERTAINTY

In the following section, we provide details regarding the
nominal tube, and how its structure can be exploited for
reformulating the containment condition along the prediction
horizon. Then, we focus on the procedure for constructing
confidence regions for any noise sequence affecting the sys-
tem, and for determining an appropriate constraint tightening
despite the presence of parametric uncertainty. Finally, the
overall stochastic MPC problem is defined, expanding the
formulation provided in (9).

A. Nominal tube

The nominal tube predicted along a horizon of length N is
defined as a sequence of sets Zi|k, i ∈ [0 :N ]. In order to ease
computations, these sets are restricted to be translations and
scalings of a given convex set Z̄, which are typically referred
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to as homothetic tubes [27]

Zi|k = {si|k} ⊕ αi|kZ̄, (10)

where si|k ∈ Rn, αi|k ∈ R. By choosing the base set Z̄ to be
a polytope defined as {z̄ | Hz z̄ ≤ 1r,1} = co{z̄1, . . . , z̄v1},
the containment condition (9h) can be reformulated similarly
to [11] as

Hz(ACL(θ)(si|k + αi|kz̄) +B(θ)vi|k − si+1|k)

−αi+1|k1r,1 ≤ 0r,1, ∀z̄ ∈ Z̄, θ ∈ Θ,
⇔

Hz(ACL(θ)(si|k + αi|kz̄
j) +B(θ)vi|k − si+1|k)

−αi+1|k1r,1 ≤ 0r,1, ∀j ∈ {1, . . . , v1}, θ ∈ Θ,
⇔

max
θ∈Θ
{HzD

j
i|kθ}+Hzd

j
i|k ≤ αi+1|k1r,1, ∀j ∈ {1, . . . , v1},

(11)

where the last expression is obtained by using (2), and by
introducing the following terms for all j ∈ {1, . . . , v1}

pji|k = si|k + αi|kz̄
j

,

rji|k = K(si|k + αi|kz̄
j

) + vi|k,

Dj
i|k = D(pji|k, r

j
i|k),

dji|k = (A0 +B0K)(si|k + αi|kz̄
j

) +B0vi|k − si+1|k,

where the function D(a, b) : Rn×Rm → Rn×p maps vectors a
and b to a matrix whose columns are defined with respect
to {Ai}pi=1 and {Bi}pi=1 (2), resulting in

D(a, b) =
[
A1a+B1b, . . . , Apa+Bpb

]
. (12)

Finally, maximization in (11) can be cast as its corresponding
dual problem, i.e. minimization with respect to the dual vari-
ables {Λji|k}

v1
j=1. We can therefore reformulate (9h) following

a procedure similar to [11] as

Λji|khθ +Hzd
j
i|k ≤ αi+1|k1r,1, (13a)

HzD
j
i|k = Λji|kHθ, (13b)

Λji|k ∈ Rr×p≥0 , (13c)

where we include positivity conditions (13c) and Lagrangian
stationarity, thus ensuring optimality.

B. Stochastic error tube
The purpose of the stochastic error tube is to bound in prob-

ability ek, and consequently the true error state etrue
k at each

time-step k. A procedure that makes use of the first and second
moments of etrue

k for constructing such confidence regions,
i.e. k-step PRS, is given in [19]. Since the matrix ACL(θtrue)
determining the dynamics of etrue

k is unknown in the considered
setup, these sets cannot be directly constructed. The idea is to
formally define a “bound” on the moments of etrue

k that can be
used to construct a sequence of confidence regions, which we
refer to as k-step “robustified” PRS (RPRS) Ek, satisfying the
following condition for k ∈ [1 :T ]

Pr(ek ∈ Ek | etrue
0 ) ≥ p, ∀θ ∈ Θ. (14)

The remainder of this section is devoted to detailing a proce-
dure for synthesizing k-step RPRS both in the case of i.i.d.,
and correlated noise sequences affecting the system dynamics.

Note that, given etrue
0 = 0n,1, and E[W ] = 0nT,1,

then E[ek] = 0n,1, ∀k ≥ 0 and ∀θ ∈ Θ. Therefore, each
confidence region associated with a particular value of θ
remains centered at the origin (see e.g. [29]).

Remark 2: Noise sequence with non-zero mean
Disturbance sequences with first moment different from
zero, W = E[W ], can be considered by defining a stochastic
sequence W̃ = W −W , with E[W̃ ] = 0nT,1, and Var[W̃ ] =
Var[W ]. Then, the sequence W can be directly included in the
dynamics (7a), and handled by the nominal tube.

In order to compute the stochastic error tube {Ek}Tk=1,
the aim is to “bound” at each time-step k the marginal
variance {Var[ek]}Tk=1, corresponding to the n-dimensional
block diagonal entries of Var[E] ∈ RnT×nT , i.e. the variance
of the sequence E = [e>1 , . . . , e

>
T ]> defined as

Var[E] = ACL(θ)Var[W ]ACL(θ)>,

ACL(θ) =


In 0n,n . . . 0n,n

ACL(θ) In . . . 0n,n
ACL(θ)2 ACL(θ) . . . 0n,n

...
...

. . .
...

ACL(θ)N−1 ACL(θ)N−2 . . . In

 .
Note that for each θ ∈ Θ, Var[E] is a well-defined covariance
matrix. We formalize a bound in terms of the Loewner order,
which minimizes the variance spread in the direction of its
principal components [30], [31]. The associated optimization
problem can be formulated as

(Var[ek])−1 =

arg min
X−1

− log detX−1 (15a)

s.t. X − Var[ek] � 0, ∀θ ∈ Θ (15b)

to be solved for k ∈ [1 : T ]. In the following subsections,
we describe reformulations of problem (15) determining the
bounding sequence {Var[ek]}Tk=1, both for i.i.d. and correlated
noise sequences.

1) I.i.d. noise sequences: We consider the particular case

Var[W ] =


Σw 0n,n . . . 0n,n
0n,n Σw . . . 0n,n

...
...

. . .
...

0n,n 0n,n . . . Σw

 ,
i.e. the only non-zero entries of Var[W ] are its identical block-
diagonal entries Σw ∈ Rn×n. This means that the marginal
variances can be iteratively computed for k = 1, . . . , T as

Var[ek+1] = ACL(θ)Var[ek]ACL(θ)> + Σw, ∀θ ∈ Θ. (16)

Since etrue
0 is known, we can directly infer that Var[e1] = Σw.

For k = 2, . . . , T , we can use (16) in problem (15), to obtain

(Var[ek+1])−1 =

arg min
X−1

− log detX−1

s.t. X −ACL(θ)Var[ek]ACL(θ)> − Σw � 0,

∀θ ∈ Θ

(17)



ARCARI et al.: STOCHASTIC MPC WITH ROBUSTNESS TO BOUNDED PARAMETRIC UNCERTAINTY 5

where we iteratively use the solution at time-step k to
obtain the solution at k + 1. Since by construction Σw � 0,
and Var[ek] � 0,∀k > 0, problem (17) admits a convex
reformulation following Lemma 3 in Appendix VII-B as

(Var[ek+1])−1 =

arg min
X−1

− log detX−1

s.t.

 X−1 X−1Σw X−1ACL(θj)
ΣwX

−1 Σw 0
ACL(θj)>X−1 0 (Var[ek])−1

 � 0,

∀j ∈ {1, . . . , v2},
(18)

where {θj}v2j=1 are the vertices of Θ.
2) Correlated noise sequences: For correlated noise se-

quences with full covariance matrix Var[W ], we cannot se-
quentially compute the bounding matrix sequence as in the
i.i.d. case. The marginal variance Var[ek] depends on all
previous time steps and therefore contains a series of nonlinear
terms, i.e. powers of ACL(θ):

Var[ek] =[
Ak−1
CL (θ) . . . In

]
Var[W ]1:kn,1:kn

[
Ak−1
CL (θ)> . . . In

]>
, (19)

which cause problem (15) to be intractable. In the follow-
ing, we propose a procedure summarized in Algorithm 1
where (15) is broken down into a sequence of tractable
sub-problems that admit convex reformulations similar to
problem (18). As for the i.i.d. case, Var[e1] is initialized
to Var[W ]1:n,1:n. For each time-step k ∈ [2 : T ], the idea
is to sequentially factorize the matrix product (19) such that
at each iteration i ∈ [1 : k − 1] two sub-problems, defined as
bound1 and bound2 problems, provide tractable intermediate
solutions Ȳ (i), i = 1, . . . , k, with Ȳ (k) corresponding to
the final bound Var[ek]. Further details regarding these sub-
problems are provided in the rest of this section. First, note
that the following relation holds for each k ∈ [2 :T ][
Ak−1
CL (θ) Ak−2

CL (θ) . . .
]

=
[
Ak−2
CL (θ)

[
ACL(θ) In

]
. . .
]
,

and that by setting AI(θ) =
[
ACL(θ) In

]
, we obtain the

reformulation in (22) that determines the first sub-problem at
iteration i = 1, i.e. the bound1 problem defined as:

min
D(1)−1

− log detD(1)−1

s.t. D(1)−AI(θ)Ȳ (1)1:2n,1:2nAI(θ)
> � 0, ∀θ ∈ Θ.

(20)
Using D(1), we construct the matrix Y1(θ) defined in (22),
which depends affinely on the parameter θ. Therefore, this can
be again bounded as

min
Ȳ −1(2)

− log det Ȳ −1(2)

s.t. Ȳ (2)− Y1(θ) � 0, ∀θ ∈ Θ,

(21)

which we refer to as the bound2 problem. Matrix Ȳ (2) can
now be used to proceed with the recursion, i.e. we again
isolate a block AI(θ) from

[
Ak−2
CL (θ) . . . In

]
, and solve

the associated problem (20) to obtain D(2), and (21) to

obtain Ȳ (3). This factorization is repeated for all i until we
reach the final step returning Ȳ (k), which provides a bound
for Var[ek] (see (22)).

Note that bound1 problem in (20) admits a convex refor-
mulation, provided that the following matrix

X̃(θ) = ACL(θ)Ȳ (1)1:n,n+1:2n

+ Ȳ (1)n+1:2n,1:nACL(θ)> + Ȳ (1)n+1:2n,n+1:2n.

is positive definite. Then, Lemma 3 in Appendix VII-B can be
applied, and (20) becomes for each bound1 problem at step
i ∈ [1 : k − 1]:

min
D(1)−1

− log detD(1)−1

s.t. D(1)−1 D(1)−1X̃(θj) D(1)−1ACL(θj)

X̃(θj)D(1)−1 X̃(θj) 0
ACL(θj)>D(1)−1 0 (Ȳ (1)1:n,1:n)−1

 � 0,

∀j ∈ {1, . . . , v2}.
(23)

Finally, by pre- and post-multiplying by Ȳ −1(2) in (21), and
making use of the Schur complement together with Lemma 1,
we obtain the following convex reformulation

min
Ȳ −1(2)

− log det Ȳ −1(2)

s.t.

[
Ȳ −1(2) Ȳ −1(2)Y (θj)

Y (θj)Ȳ −1(2) Y (θj)

]
� 0,

∀j ∈ {1, . . . , v2}.

(24)

which is used for each bound2 problem at step i ∈ [1 : k−1].
Remark 3: Positive definitiveness requirement

Satisfaction of the requirement X̃(θj) � 0 for each i ∈ [1 :
k−1], k ≥ 2, j ∈ {1, . . . , v2}, needed for applying Lemma 3,
will typically depend on how strong correlations are in the
noise sequence W that affects the evolution of the system
dynamics. Alternatively, one can compute a positive definite
upper bound for X̃(θj), which may ultimately generate more
conservative k-step RPRS. Note that a similar condition can
be found in [32], referred to as correlation bound.

Remark 4: Scalability of Algorithm 1
While all k-step RPRS are pre-computed offline and therefore
do not increase the complexity of the associated control
problem, the procedure outlined in Algorithm 1 can become
computationally expensive for high dimensional systems, and
for long noise sequences, as it requires to solve 2(k−2) + 1
semi-definite programs for each time-step k ≥ 2. One way to
improve scalability is to replace the linear matrix inequalities
with diagonal dominance constraints, i.e. a sufficient condi-
tion that allows for reformulating all optimization problems
involved as linear programs (see e.g. Theorem 6.1.10 in [33]).

Remark 5: While in this paper we do not consider paramet-
ric uncertainty in Bw, the computation of k-step RPRS can
similarly address the case in which the matrix Bw depends
affinely on an uncertain parameter θ, as for the dynamics
matrices in (2), since Lemma 1 can be applied.
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Var[ek] =
[
Ak−2
CL (θ)AI(θ) . . . In

]
Ȳ (1)

[
AI(θ)>Ak−2

CL (θ)> . . . In
]>

=

[
Ak−2
CL (θ) . . . In

]  �D(1), problem (20)︷ ︸︸ ︷
AI(θ)Ȳ (1)1:2n,1:2nAI(θ)> AI(θ)Ȳ (1)1:2n,2n+1:kn

Ȳ (1)2n+1:kn,1:2nAI(θ)> Ȳ (1)2n+1:kn,2n+1:kn

 [Ak−2
CL (θ)> . . . In

]> �
[
Ak−2
CL (θ) . . . In

] [ D(1) AI(θ)Ȳ (1))1:2n,2n+1:kn

Ȳ (1)2n+1:kn,1:2nAI(θ)> Ȳ (1)2n+1:kn,2n+1:kn

]
︸ ︷︷ ︸

=Y1(θ)

[
Ak−2
CL (θ)> . . . In

]> �︸︷︷︸
(21)

[
Ak−2
CL (θ) . . . In

]
Ȳ (2)

[
Ak−2
CL (θ)> . . . In

]> �
· · · �

[
ACL(θ) In

]
Ȳ (k − 1)

[
ACL(θ)> In

]> � D(k − 1) = Yk−1(θ) = Ȳ (k) = Var[ek] (22)

Algorithm 1 Marginal variance bound for correlated noise
Require: ACL(θ), Var[W ], Θ

Var[e1] = Var[W ]1:n,1:n

for k ∈ {2, . . . , T} do
Ȳ (1) = Var[W ]1:kn,1:kn

for i ∈ {1, . . . , k − 1} do
D(i) computed with bound1 problem in (20)
Define Yi(θ) as in (22)
if Yi(θ) 6= D(i) then

Ȳ (i+1) computed with bound2 problem in (21)
else if Yi(θ) == D(i) then

Ȳ (i+ 1) = D(i)
end if

end for
return Var[ek] = Ȳ (k)

end for
return

[
Var[e1] . . . Var[eT ]

]

C. Variance-based k-step RPRS
Once the sequence [Var[e1], . . . ,Var[eT ]] is available, the

uncertainty of ek at each time-step k is fully specified for
all θ ∈ Θ. We can then construct different types of confidence
regions based on Chebychev’s bound: one option is to generate
ellipsoidal k-step RPRS as

Eell
k = {e | e>(Var[ek])−1e ≤ p̃}, (25)

where p̃ = n
1−p with p being the probability level, and n is the

dimension of ek. If the distribution of the error sequence is
Gaussian, then we can set p̃ = χ2

n(p), i.e. the quantile function
of the chi-squared distribution with n degrees of freedom.
Alternatively, one can consider half-spaces:

Ehs
k = {e | h>e ≤

√
p̃h>Var[ek]h}, (26)

which is a k-step RPRS of probability level p with p̃ = 1
1−p ,

or p̃ = χ2
1(2p − 1) for Gaussian distributions (further details

can be found in [19], [34]).

D. Chance constraint reformulation
Using the stochastic error tube, we can now define a time-

varying state constraint tightening Zk = X 	 Ek, and input
constraint tightening Vk = U 	 Eu

k . A k-step RPRS Eu
k

for the input can be easily obtained based on the variance
propagation of euk = Kek, and re-using the computations from

the procedure outlined in section III-B such that Var[euk ] =
KVar[ek]K> for each time-step k.

Starting from the options provided in subsection III-C,
there are two possibilities: one, is to first generate ellipsoidal
sets Eell

k and Eell,u
k (25), and tighten the constraints using the

support function of an ellipsoid. An alternative approach is to
make use of Boole’s inequality for defining the single half-
spaces Ehs

k and Ehs,u
k (26), whose intersection determines the

overall polytopic k-step RPRS (see e.g. [34]). Either option
provides tightened sets of the form Zk = {z | Fz ≤
1nx,1 − fk}, and Vk = {u | Gu ≤ 1nu,1 − gk}, which enable
the following state and input containment conditions

Zi|k ⊆ Zk+i ⇔ Fsi|k ≤ 1nx,1 − fk+i − αi|k max
z̄∈Z̄

F z̄

KZi|k ⊕ vi|k ⊆ Vk+i ⇔
G(Ksi|k + vi|k) ≤ 1nu,1 − gk+i − αi|k max

z̄∈Z̄
GKz̄,

where we define f̄ = maxz̄∈Z̄ F z̄, and ḡ = maxz̄∈Z̄GKz̄.
Remark 6: Non-conservative constraint tightening

Since constraint tightening guarantees should ideally hold
jointly for the entire X and U , either approach for generating
k-step RPRS presented above can introduce conservatism.
However, in case either the state constraints are aligned with
the nominal tube Zi|k, or the input constraints are aligned
with KZi|k, due to the particular choice of the base set Z̄, one
can construct - for either state or input - a non-conservative
tightening for each half-space independently (see e.g. [19]).

E. Final problem

Before stating the final MPC problem, we provide con-
ditions for an appropriate terminal set design analogously
to [11], [27].

Assumption 4: (Terminal set for nominal tube)
There exists a non-empty terminal set Zf = {(s, α) ∈
Rn+1 | HT s + hTα ≤ 1nf ,1}, with s ⊕ αZ̄ ⊆ Z∞ =⋂T
k=1Zk, ∀(s, α) ∈ Zf , that is robust positively invariant

for the set dynamics (9h) under the zero terminal control law
contained in V∞ =

⋂T
k=1 Vk, i.e. we have ∀θ ∈ Θ

(s, α) ∈ Zf ⇒ ∃(s+, α+) ∈ Zf s.t.

ACL(θ)({s} ⊕ αZ̄) ⊆ {s+} ⊕ α+Z̄

Introducing the components derived in sections III-A, III-
B, III-D in problem (9), and following Assumption 4, we state
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the overall problem to be solved in a receding horizon fashion,
assuming to start from a known initial condition, i.e. xtrue

0 =
ztrue

0 = s0|0, and α0|0 = 0

min
v, s,α,Λ

EWk

[
N−1∑
i=0

lk(x̄i|k, ūi|k) + lf (x̄N |k)

]
(27a)

s.t.

x̄i+1|k = A(θ̄k)x̄i|k +B(θ̄k)ūi|k + wi|k, (27b)
ūi|k = Kx̄i|k + vi|k, (27c)

Wk = [w>0|k, . . . , w
>
N−1|k]> ∼ QWk

, (27d)

Fsi|k ≤ 1nx,1 − fk+i − αi|kf̄ , (27e)
G(Ksi|k + vi|k) ≤ 1nu,1 − gk+i − αi|kḡ, (27f)
HT sN |k ≤ 1nf ,1 − αN |khT , (27g)

Λji|khθ +Hzd
j
i|k − αi+1|k1r,1 ≤ 0, j = 1, . . . , v1, (27h)

HzD
j
i|k = Λji|kHθ, j = 1, . . . , v1, (27i)

Λji|k ∈ Rr×q≥0 , j = 1, . . . , v1, (27j)

αi+1|k ≥ 0, (27k)
x̄0|k = xtrue

k , s0|k = s1|k−1, α0|k = α1|k−1, (27l)

where we optimize over the input sequence v =
{v0|k, . . . , vN−1|k}, and the variables determining the
nominal tube {Zi|k}Ni=1, i.e. s = {s1|k, . . . , sN |k},
and α = {α1|k, . . . , αN |k}. Additionally, we optimize
over the dual variables Λ = {Λj0|k, . . . ,Λ

j
N−1|k}

v1
j=1

needed for nominal tube containment (9h), which is ex-
pressed by constraints (27h), (27i), and (27j) (see Sec-
tion III-A). The cost function expectation (27a) is taken
with respect to a predicted noise sequence Wk whose
distribution QWk

is defined by the conditional distribu-
tion p([w>k , . . . , w

>
k+N−1]>|[w>0 , . . . , w>k−1]>) (see Assump-

tion 3). Conditions (9e), (9f) are expressed via (27e), (27f),
ensuring that the sequences s and α are constrained to lie
within the tightened state and input constraints. At each
time step the first element of the sequence is initialized at
the shifted solution from the previously optimized predicted
trajectory (27l). This ensures that initial containment of the
true unknown nominal state ztrue

k in (9j) is always guaranteed
by construction. The measured state xtrue

k only enters con-
straints (27b) and (27c), which are the predicted state and input
sequences computed with the current parameter estimate θ̄k at
time k used to evaluate the cost function along the horizon, and
therefore introduce indirect feedback in the MPC optimization
problem [19]. Condition (27g) imposes containment in the
terminal set (as in (9g)) satisfying Assumption 4. Finally,
the nonnegativity constraint in (27k) guarantees a sequence
of well-defined sets determining the nominal tube.

Note that the computational complexity of the proposed
formulation is similar to [11] since the RPRS computations are
all carried out offline. While the choice of homothetic tubes
increases the number of optimization variables with respect
to [19], the proposed approach can handle the presence of
model mismatch and therefore guarantees constraints to be
fulfilled within the prescribed probability level.

IV. ANALYSIS OF CLOSED-LOOP PROPERTIES

The theorems presented in this section establish recursive
feasibility of the control scheme based on (27), and closed-
loop chance constraint satisfaction of the true unknown system
thanks to a combined use of homothetic tubes for handling
parametric uncertainty and of indirect feedback. Furthermore,
we derive an average asymptotic performance bound on the l2-
norm of the state in the case of quadratic cost functions and
i.i.d. noise sequences.

A. Recursive feasibility and closed-loop properties
Theorem 1: (Recursive feasibility and closed-loop chance

constraint satisfaction)
Consider system (1) under the control law (5) using the opti-
mal input sequence v∗ resulting from (27). If Assumptions 2
and 4 hold, θtrue ∈ Θ, and the optimization problem (27) is
feasible for xtrue

0 = ztrue
0 = s0|0 and α0|0 = 0, then:

(i) Problem (27) is recursively feasible.
(ii) The true state xtrue

k and input utrue
k satisfy the closed-loop

chance constraints (4).
Proof:

(i) Let v∗ = {v∗0|k, . . . , v
∗
N−1|k} be the optimal solution

of optimization problem (27) at time-step k, with s∗ =
{s∗0|k, . . . , s

∗
N |k} and α∗ = {α∗0|k, . . . , α

∗
N |k} satisfying

stage-wise constraints (27e), (27f), nominal tube contain-
ment (27h)-(27j) and terminal condition (27g). We can
construct the following admissible nominal tube {s∗i|k} ⊕
α∗i|kZ̄, i = 0, . . . , N . The goal is to find a candidate
solution ṽ = {ṽ0|k+1, . . . , ṽN−1|k+1} which similarly sat-
isfies stage-wise and terminal constraints for the next time-
step k + 1. We choose the following candidate solution by
shifting v∗, and applying the terminal admissible control
input ṽN−1|k+1 = 0, obtaining ṽ = {v∗1|k, . . . , v

∗
N−1|k, 0}.

Then, the resulting candidate nominal tube at time-step k+
1 is admissible since the first N − 1 steps are the shifted
solution {s∗i|k} ⊕ α∗i|kZ̄, i = 1, . . . , N , and the N -th
step ACL({s∗N |k} ⊕ α

∗
N |kZ̄) satisfies constraint (27g) due

to Assumption 4.
(ii) Due to probabilistic containment ensured by the sets in the

stochastic error tube, we have that Pr(ek ∈ Ek | etrue
0 ) ≥

px, ∀θ ∈ Θ, ∀k ∈ [1 : T ], and therefore this condition
holds also for the true error state etrue

k evolving with respect
to the unknown true parameter θtrue. Then, due to feasibility
of problem (27), the nominal state tube Z0|k contains the
true nominal state ztrue

k , i.e. ztrue
k ∈ Z0|k ⊆ X 	 Ek, and

therefore the true state xtrue
k = etrue

k +ztrue
k satisfies Pr(xtrue

k ∈
X | xtrue

0 ) ≥ px. The same result can be derived for the
input.

B. Average asymptotic cost bound
We now consider the particular case in which the cost

function (27a) is quadratic, i.e.

lk(x, u) = ||x||2Q + ||u||2R, (28a)

lf (x) = ||x||2P , (28b)
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where Q � 0, R � 0, and P satisfies the following condition

ACL(θ)>PACL(θ)− P � −Q−K>RK, ∀θ ∈ Θ. (29)

Furthermore, we assume that the system is affected by
zero-mean i.i.d. noise sequences, i.e. E[wk] = 0,Var[wk] =
Σw, ∀k ≥ 0, and therefore the expected value of the overall
objective can be explicitly computed in closed-form. This
enables an analysis of the closed-loop true state xtrue

k in terms
of its l2-norm, which reflects its energy, and for which we
provide an average performance asymptotic bound.

Theorem 2: (Average asymptotic l2-norm bound)
Consider system (1) subject to i.i.d. disturbances under the
control law (5) resulting from problem (27) using cost func-
tion (28), (29). There exist constants c0, c1 ∈ R>0 such that
for given ε0, ε1 ∈ R>0:

lim
T→∞

1

T
E

[
T∑
k=0

||xtrue
k ||22

]
≤

(1+ε1)(1+ 1
ε0

)c1

µ ||∆θmax||22 + tr(Σ)

λmin(Q̄)− ε0c0
,

where 1
µ > sup(z,Kz+v)∈Z∞×V∞ ||D(z,Kz + v)||22,

with D(·, ·) defined in (12), and ∆θmax is the diameter of
the set Θ. The term Σ is defined as Σ = PΣw + ε0Σ0 +
(1 + 1

ε0
)Σ1, where PΣw is the cost incurred under no model

mismatch. Conversely, Σ0,Σ1 � 0 arise due to parametric
uncertainty and are functions of the variance matrix Σw (see
equations (33), and (34) in the Appendix for definitions).
Finally, λmin(Q̄) denotes the maximum eigenvalue of Q̄ =
Q+KRKT , and ε0 is chosen such that λmin(Q̄)− ε0c0 > 0,
while ε1 can be chosen to be arbitrarily small.

Proof: Proof details are given in Appendix VII-A.
The two terms in the performance bound provide an explicit
characterization of the unavoidable cost incurred due to model
mismatch, and due to the presence of stochastic noise.

Remark 7: (Case with no model mismatch)
The development in Appendix VII-A shows that in the ab-
sence of model mismatch, we recover the same expected cost
decrease bound shown in [19]. As a consequence, we also
obtain the same average asymptotic cost bound with cost
matrices (28).

Remark 8: (Effect of parameter learning scheme)
Note that in the proof details in Appendix VII-A, we construct
based on the properties of Θ a worst-case bound for the term

lim
T→∞

1

T

T∑
k=0

||θtrue − θ̄k||22.

In doing so, we do not leverage the properties of the learning
scheme chosen to update the point estimate of θ that can
potentially provide conditions for convergence, and therefore
improve the performance bound.

V. NUMERICAL RESULTS

A. Illustrative example
We first make use of an illustrative example for demon-

strating the properties of the presented control approach. The
considered model is of the form

xk+1 = Axk +B(θ)uk + wk, (30)

with A =
[

1 1
0 1

]
. Uncertainty affects only the input matrix,

i.e. we consider the case of misspecified actuator gains,
where B = B0 + θB1, and B0 = B1 =

[
0.5 1

]>
.

The additive stochastic disturbance affecting the system is
i.i.d. Gaussian distributed as wk ∼ N

(
0,
[

0.3 0.5
0.5 1

])
. We

study the behavior of our proposed approach in terms of
constraint violation by varying both the level of chance con-
straint satisfaction and the amount of model mismatch. The
system is subject to state chance constraints on the second
dimension Pr(|[xk]2| ≤ 3) ≥ px, such that the probability
level px belongs to the set {0.85, 0.9, 0.95}. The model
mismatch is bounded and contained in the interval Θα :=
[−α, 0], where α ∈ {0.04, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}
is a parameter which we use to vary the magnitude of the
considered model mismatch.

The associated MPC problem in (27) is solved in a receding
horizon fashion, where we choose the prediction horizon to
have length N = 30. The cost function is chosen to be
quadratic in the state and in the input as in (28), and the
weights are set as Q = I2, and R = 1. The objective is
computed by fixing the parameter estimate to θ̄α = −α,
while the unknown true parameter is θtrue = 0. Constraints
are tightened, by constructing k-step RPRS based on marginal
distributions following the procedure outlined in Section III-
B.1, and with respect to which we compute a polytopic
terminal set as in [11], satisfying Assumption 4.

We conduct numerical simulations comparing our approach
(RSMPC) with the nominal stochastic MPC (SMPC) scheme
in [19] that is not designed to handle the presence of a model
mismatch. In this framework, we define the nominal model
with respect to θ̄α, and therefore as α increases so does the
unaccounted amount of model mismatch. For each pair α
and px, we run simulations for Ns = 1000 noise sequence
realizations over a time horizon of length T = 100, and we
compute the empirical constraint satisfaction Nc(k) for each
time-step k ∈ [0, T ] as

Nc(k) = #(|[xtrue
k ]2| ≤ 3) / Ns · 100 [%],

i.e. the percentage of times the true simulated trajectory
satisfies the constraint at time-step k divided by the total
number of simulations. Then, Nc is obtained as the minimum
over all time-steps Nc = mink∈(0:T )Nc(k).

Figure 3 depicts Nc against the percentage of model mis-
match, defined as 100α [%]. Each plot shows the behavior of
the proposed scheme compared with the SMPC scheme for
a fixed value of px. We observe that as model mismatch in-
creases, the ability of SMPC to satisfy the imposed probability
level decreases until it falls below the satisfaction threshold.
On the other hand, the proposed approach has similar behavior
to the SMPC scheme for small mismatch and becomes slightly
more conservative only for larger values of α.

Additionally, we investigate the case in which we consider
the system in (30) to be affected by correlated noise w̃k that
we obtain via the following linear dynamics

w̃k+1 = Aww̃k + wk,

where wk is i.i.d. Gaussian noise as defined for system (30),
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Fig. 3. Minimum empirical constraint satisfaction Nc computed
for Ns = 1000 i.i.d. noise realizations, for different levels of model
mismatch and imposed chance constraint probability level.
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Fig. 4. Minimum empirical constraint satisfaction Nc computed
for Ns = 1000 correlated noise realizations, for different levels of
model mismatch and imposed chance constraint probability level.

and Aw =
[

0.3 0.001
0 0.5

]
. In Figure 4, we show again a

comparison with respect to SMPC where the k-step PRS
take into account the correlation, but whose construction is
again unaware of parametric uncertainty. For this example, the
introduced correlation via the dynamics Aw did not introduce
any further conservatism in the construction of the robustified
k-step PRS, and therefore the behavior of RSMPC is similar
to the i.i.d case.

B. Building temperature control

Motivated by the increasing interest as an application for
MPC [35], [36], the case of a building temperature control
problem is considered in the following. The goal is to maintain
a predefined temperature in four adjacent rooms, for which
fluctuations are controlled by heating/cooling units and vary
according to the interaction between rooms and the outside.
The system dynamics depends on physical parameters that
are often not precisely known, and therefore we conduct
robustness tests with respect to parameters of interest, e.g.
thermal conductance. The dynamics is also subject to the effect
of the uncertain outside temperature, which we model as an
additive disturbance sequence, correlated in time. The system

has the following form:

xk+1 = A(θ)xk +Buk +Bwwk,

where the state xk ∈ R4 captures the room temperatures,
the input uk ∈ R4 controls each room, and the distur-
bance sequence representing outdoor temperature fluctua-
tions W = [w0, . . . , wT ]> ∼ N (µW ,ΣW ) is Gaussian
distributed. Following Remark 2, we split it into a deter-
ministic sequence W = µW , and a zero-mean stochastic
sequence W̃ = W −W .

Model uncertainty is represented by the parameter θ =
[θ1, θ2]> ∈ Θrooms ⊆ R2, with Θrooms = {θ

∣∣ ||θ||∞ ≤ 1}.
By considering an error on the thermal conductance between
rooms 1-2, and 1-3, uncertainty only affects matrix A, while B
and Bw are assumed to be known. Therefore, we have
that A(θ) = A0 + θ1A1 + θ2A2, where A0 is the nominal
matrix, and A1, A2 are computed by perturbing A0 by ±10%.
Nominal matrices A0, B, and Bw are defined as in [19].

We choose the temperature to be tracked as Tref = 21◦

for each room, and define the cost function as l(x, u) = ||x−
Tref14,1||2Q+||u||1, where Q = 50I4. The system is subject to
the following state chance constraints for dimensions {j}4j=1:

Pr([xk]j ≥ 20◦) ≥ px, Pr([xk]j ≤ 22◦) ≥ px,

where px = 0.9. By choosing base set Z̄ aligned with the
state constraints, we can design a non-conservative constraint
tightening by constructing a half-space k-step RPRS for each
dimension j = 1, . . . , 4 at probability level px (see Remark 6).
The system is also subject to input chance constraints for
dimensions j = 1, . . . , 4:

Pr([uk]j ≥ −4.5kW ) ≥ pu, Pr([uk]j ≤ 4.5kW ) ≥ pu,

where pu = 0.99. In this case, the half-space input constraint
tightening of probability level pu will determine, according
to Boole’s inequality, a joint chance constraint satisfaction
level of at least 0.96. Furthermore, the polytopic terminal
set is computed with respect to the tightened state and input
constraints similar to the illustrative example in section V-A.

Simulations depicted in Figures 5 and 6 are carried out over
a period of T = 29 hours, for which we show the closed-loop
behavior and the prediction at the last time-step. We average
results over 10000 outdoor temperature sequence realizations
that are shown in terms of mean and 2 standard deviations
in the top subplot of Figure 5. A similar representation of the
state corresponding to room 4 and the input is given in the two
subplots below, where the 100%-quantiles contain all closed-
loop and predicted trajectories. Constraint violations are visi-
ble particularly when the input action tries to counteract low
outdoor temperature fluctuations. We compute the minimum
empirical constraint satisfaction out of the 10000 simulation
scenarios and obtain 91.01% for the closed-loop state and
100% for the closed-loop input, falling close to the predefined
levels px and pu. In Figure 6 we observe the behavior of
the state and input nominal tube boundaries corresponding to
room 4, for which we plot the median behavior and the 100%-
quantiles to show that for all simulated noise realizations,
the tightened constraints are always satisfied. The closed-loop
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nominal tube boundaries are in median non-conservative and
tend to grow in prediction when approaching the terminal set,
which is constructed to guarantee containment of the reference
temperature.

Finally, we provide a study of the behavior of the RSMPC
scheme in terms of closed-loop cost for different combinations
of parametric uncertainty and of probability level of chance
constraint satisfaction. In Figure 7, we depict the percentage
of cost increase with respect to a nominal SMPC scheme sim-
ulated with no model mismatch. For each pair of αΘrooms, α ∈
{0.2, 0.6, 1} and px = pu ∈ {0.8, 0.85, 0.9, 0.92, 0.95, 0.97},
we show mean and 2 standard deviations computed with
respect to 1000 simulations. While the influence of parametric
uncertainty is particularly noticeable for large values of α, the
relative cost increase is generally very small.

VI. CONCLUSIONS

A model predictive control scheme for the control of
systems affected by bounded parametric uncertainty and ad-
ditive stochastic noise - with potentially unbounded support
- was presented in this paper. The effects of the sources of
uncertainty are separated by splitting the dynamics into two
components: the first is only affected by bounded parametric
uncertainty, dealt with by constructing a homothetic tube along
the MPC prediction horizon, which we refer to as the nom-
inal tube. The second evolves autonomously with uncertain
dynamics and is perturbed by additive stochastic noise that is
handled by means of the stochastic error tube, i.e. a sequence
of k-step RPRS for which we present a synthesis procedure
both for i.i.d. and correlated noise sequences. The tubes,
and the additional use of indirect feedback, provide recursive
feasibility and closed-loop chance constraint satisfaction of
the proposed control scheme while allowing for using point-
wise estimate updates of the uncertain parameters to compute
the cost function. Potential future research involves a formal
integration of an online learning scheme while maintaining
probabilistic constraint satisfaction guarantees. Finally, we
compute a bound for the average asymptotic l2-norm of the
state, under the assumption of i.i.d. additive noise sequences
affecting the system, and quadratic cost functions. Results
are demonstrated on both an illustrative example, and on a
building temperature control problem.

ACKNOWLEDGEMENT

The authors would like to thank Dr. Johannes Koehler for
the technical discussions and for providing valuable feedback.

VII. APPENDIX

A. Proof of Theorem 2

In the following, a performance analysis of the l2-norm
of the closed-loop state xtrue

k is carried out by means of an
asymptotic analysis of its average behavior. The idea is to first
quantify the expected cost difference between two consecutive
time steps k and k + 1 by providing a bound in expectation,
which in turn is used to show that the average asymptotic l2-
norm is bounded.
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Fig. 5. Mean and 2 standard deviations computed over 10000 realiza-
tions of outdoor temperature sequences depicted in the top subplot. The
middle and bottom subplots show the evolution of median and 100%-
quantiles of the state and input of room 4, respectively. The black
horizontal lines represent the constraints, while the vertical dashed line
separates closed-loop behavior from prediction.

0 10 20 30 40 50 60

20

21

22
closed-loop prediction

[Z
k

] 4
[◦

]

Room 4 - nominal tubes

0 10 20 30 40 50 60
−5

0

5
closed-loop prediction

time k [hours]

[K
Z
k
⊕
v
k

] 4
[k
W

]

upper bound median 100%-quantile

lower bound median 100%-quantile

tightened constraints original constraints

Fig. 6. Median and 100%-quantiles of the state and input nominal tube
boundaries for 10000 realizations of outdoor temperature sequences.
In blue we depict the nominal tube upper bound and in red the lower
bound. The black continuous lines represent the original constraints and
the dashed lines are the tightened constraints with respect to the k-step
RPRS.

0.8 0.85 0.9 0.92 0.95 0.97
0

0.1

0.2

0.3

0.4

chance-constraint probability level

pe
rc

en
ta

ge
co

st
in

cr
ea

se
[%

]

The combined effect of parametric uncertainty and additive noise

α = 0.2
α = 0.6
α = 1

Fig. 7. Percentage of overall closed-loop cost increase expressed in
terms of mean and 2 standard deviations computed over 1000 outdoor
temperature realizations for each pair of αΘ and px = pu.



ARCARI et al.: STOCHASTIC MPC WITH ROBUSTNESS TO BOUNDED PARAMETRIC UNCERTAINTY 11

We assume that at time-step k+1 the system evolves under
a shifted sequence V̄ = {v̄0, . . . , v̄N−1} = {v̂1, . . . , v̂N−1, 0},
where {v̂i}N−1

i=0 is the optimal control sequence at time-step k,
obtained by solving problem (27). We then define the predicted
state sequence at time k as {x̂0, . . . , x̂N}, and at time k + 1
as {x̄0, . . . , x̄N}, evolving under V̄ . Furthermore, it holds
that wk

d
= ŵ0, i.e. the closed and open-loop disturbance

realizations are drawn from the same distribution, therefore

x̄0
d
= x̂1 + (A(θtrue)−A(θ̄k))xtrue

k + (B(θtrue)−B(θ̄k))utrue
k

= x̂1 + x̃k.

The predicted states sequences at, respectively, time-step k
and k + 1 have the following relation for i = 0, . . . , N − 1

x̄i
d
= x̂i+1 + δx̂i,

and at the last predicted time-step i = N we have x̄N
d
=

ACL(θ̄k)x̂N + ŵN + δx̂N . The terms {δx̂i}Ni=0 represent the
cumulated prediction error due to model mismatch, and evolve
according to the following dynamics

δx̂0 = x̃k (31a)
δx̂i+1 = ACL(θ̄k+1)δx̂i + (ACL(θ̄k+1)−ACL(θ̄k))x̂i+1

+ (B(θ̄k+1)−B(θ̄k))v̂i+1. (31b)

We observe two sources of model mismatch propagated
along the horizon, as the model parameters are updated from
time-step k to k+1. The initial prediction error x̃k, depending
on the difference between the true unknown model parame-
ter θtrue and the previous estimate θ̄k, and the propagation
error in (31b), depending on the difference between the
updated estimate θ̄k+1 and the previous θ̄k. The procedure
for bounding the expected cost difference is outlined in (32),
in which conditioning is omitted for the sake of readability,
and Q̄ = Q+KRK>. All inequalities make use of the i.i.d.
assumption on the additive disturbance sequence, which also
entails that x̂i+1 and δxi are independent given the initial
condition xtrue

k , and therefore allows for applying Lemma 2.
We now analyse each term independently, starting from (1)

E
[
||ACL(θ̂)x̂N ||2P + ||x̂N ||2Q + ||ûN ||2R − ||x̂N ||2P

]

= E

||x̂N ||2ACL(θ̂)>PACL(θ̂) +Q+KRK> − P︸ ︷︷ ︸
=P̃�0

 ≤ 0,

which holds thanks to (29). Then, the second term (2) vanishes
since we are subtracting the shifted sequence

E

[
N−2∑
i=0

||x̂i+1||2Q + ||ûi+1||2R −

(
N−1∑
i=1

||x̂i||2Q + ||ûi||2R

)]
= 0.

For the third term (3), we can explicitly evaluate the expected
value since xk, uk are given and the disturbance distribution
is known

E
[
−||xtrue

k ||2Q − ||utrue
k ||2R + ||ŵN ||2P

]
= tr(PΣw)− ||xtrue

k ||2Q − ||utrue
k ||2R.

The last two terms are costs incurred due to the presence of
a model mismatch. The expected value of the quadratic form
(4) is explicitly evaluated

E

[
||ACL(θ̂)x̂N ||2P +

N−1∑
i=0

||x̂i+1||2Q + ||ûi+1||2R

]

= E

[
||x̂N ||2P̃ + ||x̂N ||2P +

N−1∑
i=1

||x̂i||2Q + ||ûi||2R

]

≤ ||E[x̂N ]||2P +

N−1∑
i=1

||E[x̂i]||2Q + ||E[ûi]||2R

+ tr(PVar(x̂N )) +

N−1∑
i=1

tr(QVar(x̂i)) + tr(RVar(ûi))

≤ c0||xtrue
k ||22 + tr(P Σ̄Nw ) + tr(Q

N−1∑
i=1

Σ̄iw) + tr(RK
N−1∑
i=1

Σ̄iwK
>)

= c0||xtrue
k ||22 + tr(Σ0),

where the first inequality uses P̃ � 0. The second inequality
uses the same argument used in [11], i.e. the cost associated
with the expected values of the predicted states is a continuous,
piecewise quadratic function in x0, ∀θ ∈ Θ [37]. Therefore, it
can be upper bounded with a quadratic function of the initial
condition for some c0 > 0. The variances can be expressed
exactly as a function of Σ̄iw =

∑i−1
l=0 ACL(θ̄k)lΣwA

>
CL(θ̄k)l,

and we define

Σ0 = P Σ̄Nw +Q

N−1∑
i=1

Σ̄iw +RK

N−1∑
i=1

Σ̄iwK
>. (33)

We then obtain a bound for (5)

E

[
||δx̂N ||2P +

N−1∑
i=0

||δx̂i||2Q̄

]
= ||E[δx̂N ]||2P +

N−1∑
i=0

||E[δx̂i]||2Q̄

+ tr(PVar(δx̂N )) +

N−1∑
i=0

tr(Q̄Var(δx̂i))

≤ c1||x̃k||22 + tr(PVar(δx̂N )) +
N−1∑
i=0

tr(Q̄Var(δx̂i))

= c1||x̃k||22 + tr(P ¯̄ΣNw ) + tr(Q̄
N−1∑
i=0

¯̄Σiw) = c1||x̃k||22 + tr(Σ1),

where again we make use of the bound on the cost
of the expected values of δx̂i, which is a function of
the initial condition x̃k (31a). The variances can be ex-
pressed as a function of Σ̄iw, and therefore depend on
the known noise variance Σw, resulting in the follow-
ing relation: ¯̄Σiw =

∑i
j=1ACL(θ̄k+1)i−j(ACL(θ̄k+1) −

ACL(θ̄k))Σ̄jw(ACL(θ̄k+1) − ACL(θ̄k))>A>CL(θ̄k+1)i−j . Fi-
nally, we define

Σ1 = P ¯̄ΣNw + Q̄

N−1∑
i=0

¯̄Σiw. (34)

Putting everything together and rearranging terms, we ob-
tain that there exists an ε0 > 0 such that

E
[
J∗(xtrue

k+1, θ̄k+1)
∣∣ xtrue

k

]
− J∗(xtrue

k , θ̄k)
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E
[
J
∗
(x

true
k+1, θ̄k+1)

∣∣ xtrue
k

]
− J∗(xtrue

k , θ̄k) ≤ E
[
J(x

true
k+1, θ̄k+1, V̄ )

∣∣ xtrue
k

]
− J∗(xtrue

k , θ̄k)

= E

||x̄N ||2P +

N−1∑
i=0

||x̄i||
2
Q + ||ūi||

2
R

− E

||x̂N ||2P +

N−1∑
i=0

||x̂i||
2
Q + ||ûi||

2
R


= E

||ACL(θ̂)x̂N + ŵN + δx̂N ||
2
P +

N−1∑
i=0

||x̂i+1 + δx̂i||
2
Q + ||K(x̂i+1 + δx̂i) + v̂i+1||

2
R

− E

||x̂N ||2P +

N−1∑
i=0

||x̂i||
2
Q + ||ûi||

2
R


≤ E

[
(1 + ε0)||ACL(θ̂)x̂N ||

2
P + ||ŵN ||

2
P + (1 +

1

ε0
)||δx̂N ||

2
P

]
+ E

N−1∑
i=0

(1 + ε0)(||x̂i+1||
2
Q + ||ûi+1||

2
R) + (1 +

1

ε0
)||δx̂i||

2
Q̄


−E

||x̂N ||2P +

N−1∑
i=0

||x̂i||
2
Q + ||ûi||

2
R

 (32)

= E
[
||ACL(θ̂)x̂N ||

2
P + ||x̂N ||

2
Q + ||ûN ||

2
R − ||x̂N ||

2
P

]
︸ ︷︷ ︸

(1)

+E

N−2∑
i=0

||x̂i+1||
2
Q + ||ûi+1||

2
R −

N−1∑
i=1

||x̂i||
2
Q + ||ûi||

2
R


︸ ︷︷ ︸

(2)

+E
[
−||xtrue

k ||
2
Q − ||u

true
k ||

2
R + ||ŵN ||

2
P

]
︸ ︷︷ ︸

(3)

+ε0 E

||ACL(θ̂)x̂N ||
2
P +

N−1∑
i=0

||x̂i+1||
2
Q + ||ûi+1||

2
R


︸ ︷︷ ︸

(4)

+(1 +
1

ε0
)E

||δx̂N ||2P +

N−1∑
i=0

||δx̂i||
2
Q̄


︸ ︷︷ ︸

(5)

≤ tr(PΣw)− ||xtrue
k ||2Q − ||utrue

k ||2R

+ ε0(c0||xtrue
k ||22 + tr(Σ0)) + (1 +

1

ε0
)(c1||x̃k||22 + tr(Σ1))

≤ −(λmin(Q̄)− ε0c0)||xtrue
k ||22 + (1 +

1

ε0
)c1||x̃k||22 + tr(Σ),

with λmin(Q̄) − ε0c0 > 0. We can now proceed with an
analysis of the asymptotic behavior of the l2-norm of xtrue

k .
We start by using a standard argument in stochastic MPC, i.e.
repeatedly applying the law of iterated expectations, and using
the expected cost difference bound:

E
[
J∗(xtrue

T , θ̄T )
∣∣ xtrue

0

]
− J∗(xtrue

0 , θ̄0) ≤

E

[
T∑
k=0

−C||xtrue
k ||22 + (1 +

1

ε0
)c1||x̃k||22 + tr(Σ)

∣∣∣∣∣ xtrue
0

]
,

where C = (λmin(Q̄)− ε0c0). Taking the limit for T →∞

0 ≤ lim
T→∞

1

T

(
E
[
J∗(xtrue

T , θ̄T ) | xtrue
0

]
− J∗(xtrue

0 , θ̄0)
)
≤

lim
T→∞

1

T
E

[
T∑
k=0

−C||xtrue
k ||22 + (1 +

1

ε0
)c1||x̃k||22 + tr(Σ)

∣∣∣∣∣ xtrue
0

]
.

Then, we can derive the l2-norm bound on xtrue
k

lim
T→∞

1

T

(
E

[
T∑
k=0

||xtrue
k ||22

∣∣∣∣∣ xtrue
0

])

≤ tr(Σ)

C
+

(1 + 1
ε0

)c1

C
lim
T→∞

1

T
E[
∑T
k=0||x̃k||22 | xtrue

0 ].

This limit can be explicitly computed: in (35) we express
the state as xtrue = ztrue + etrue, and apply Lemma 2. The
split allows for bounding D(ztrue,Kztrue +vtrue) (12) using its
supremum, which exists since Z∞,V∞ are compact sets. We
then exploit the boundedness of Θ so that we can isolate the
expected norm of the error state etrue

k , for which we know
that E[etrue

k | xtrue
0 ] = 0, ∀k ≥ 0 due to the assumption

on the additive noise and since etrue
0 = 0. Furthermore,

since ACL(θtrue) is Hurwitz, we know that under the i.i.d.

noise distribution assumption, the variance Var(ek | xtrue
0 )

converges to some matrix Σ∞ that satisfies the following
Lyapunov equation Σ∞ = ACL(θtrue)Σ∞A

>
CL(θtrue) + Σw.

B. Lemmas

Lemma 1: Vertex property [38]
Let F (θ, x) > 0 be an inequality of the form

F (θ, x) = F0(θ) +

m∑
j=0

xjFj(θ) > 0,

where the functions Fj(θ) are affine in θ ∈ Θ and Θ is a
convex polytope of r vertices defined as Θ = co{θ1, ..., θr}.
Then, the infinite set of LMIs F (θ, x) � 0 holds ∀θ ∈ Θ if
and only if F (θ, x) � 0 holds at each vertex of Θ, i.e.,

F (θ, x) � 0,∀θ ∈ Θ⇔ F (θi, x) � 0, i = 1, . . . , r.

Lemma 2: Fenchel-Young inequality in expectation
Consider x, y independent random variables, then for all
matrices R = R> � 0, and ∀ ε > 0

E
[
||x+ y||2R

]
≤ (1 + ε)E

[
||x||2R

]
+ (1 +

1

ε
)E
[
||y||2R

]
Proof:

E
[
||x+ y||2R

]
= ||E[x] + E[y]||2R + tr(RVar(x)) + tr(RVar(y))

≤ (1 + ε)||E[x]||2R + (1 +
1

ε
)||E[y]||2R

+ tr(RVar(x)) + tr(RVar(y))

= (1 + ε)
(
||E[x]||2R + tr(RVar(x))

)
+ (1 +

1

ε
)
(
||E[y]||2R + tr(RVar(y))

)
− εtr(RVar(x))− 1

ε
tr(RVar(y))

≤ (1 + ε)E
[
||x||2R

]
+ (1 +

1

ε
)E
[
||y||2R

]
,
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lim
T→∞

1

T
E

 T∑
k=0

||x̃k||
2
2

∣∣∣∣∣ xtrue
0

 = lim
T→∞

1

T
E

 T∑
k=0

||(A(θ
true

)− A(θ̄k))x
true
k + (B(θ

true
)− B(θ̄k))u

true
k ||

2
2

∣∣∣∣∣ xtrue
0


= lim
T→∞

1

T
E

 T∑
k=0

||D(z
true
k , Kz

true
k + v

true
k )(θ

true − θ̄k) + (ACL(θ
true

)− ACL(θ̄k))e
true
k ||

2
2

∣∣∣∣∣ xtrue
0


≤ lim
T→∞

1

T
E

 T∑
k=0

(1 + ε1)||D(z
true
k , Kz

true
k + v

true
k )(θ

true − θ̄k)||22 + (1 +
1

ε1
)||(ACL(θ

true
)− ACL(θ̄k))e

true
k ||

2
2

∣∣∣∣∣ xtrue
0


≤ (1 + ε1)

||∆θmax||22
µ

+ lim
T→∞

(1 +
1

ε1
)

1

T
E

 T∑
k=0

||(ACL(θ
true

)− ACL(θ̄k))e
true
k ||

2
2 | x

true
0


≤ (1 + ε1)

||∆θmax||22
µ

+ (1 +
1

ε1
) max
θ∈Θ
||ACL(θ

true
)− ACL(θ)||22 lim

T→∞

1

T

T∑
k=0

E
[
||etrue
k ||

2
2 | x

true
0

]

= (1 + ε1)
||∆θmax||22

µ
+ (1 +

1

ε1
) max
θ∈Θ
||ACL(θ

true
)− ACL(θ)||22 lim

T→∞

1

T

T∑
k=0

||E
[
e

true
k | xtrue

0

]
||22 + tr(Var(etrue

k | xtrue
0 ))

= (1 + ε1)
||∆θmax||22

µ
+ (1 +

1

ε1
) max
θ∈Θ
||ACL(θ

true
)− ACL(θ)||22 lim

T→∞

1

T

T∑
k=0

tr(ACL(θ
true

)
k

ΣwA
>
CL(θ

true
)
k

)

= (1 + ε1)
||∆θmax||22

µ
+ (1 +

1

ε1
) max
θ∈Θ
||ACL(θ

true
)− ACL(θ)||22 lim

T→∞

tr(Σ∞)

T
= (1 + ε1)

||∆θmax||22
µ

, (35)

where the first inequality makes use of a combination of the
Cauchy-Schwarz inequality and of Fenchel-Young’s inequality
on the norm of the expected values of x and y (see Section
3.3.2 [31]). The second inequality uses the fact that for
all X,Y symmetric, and positive (semi-)definite, tr (XY ) ≥ 0.

Lemma 3: Convex reformulation
An optimization problem of the form

min
X−1

− log detX−1

s.t. X − Z −A(θ)Y A(θ)> � 0, ∀θ ∈ Θ

is equivalent to the following convex reformulation

min
X−1

− log detX−1

s.t.

 X−1 X−1Z X−1A(θj)
ZX−1 Z 0

A(θj)>X−1 0 Y −1

 � 0,

∀j ∈ {1, . . . , r},

provided that Y,Z � 0, Z = Z>, and A(θ) is of the
form A(θ) = A0 +

∑p
i=1Ai [θ]i, with θ ∈ Θ :=

co{θ1, ..., θr}.
Proof: Pre- and post-multiply the matrix inequality

by X−1 to obtain

X−1 −X−1ZX−1 −X−1A(θ)Y A(θ)>X−1 � 0,

and use the following condition for positive semi-definite
matrices based on the Schur complement, i.e. if

Y � 0, then
[
X−1 −X−1ZX−1 X−1A(θ)

A(θ)>X−1 Y −1

]
� 0

⇔
X−1 −X−1ZX−1 −X−1A(θ)Y A(θ)>X−1 � 0.

Applying again the Schur complement to the first diagonal
block

Z � 0, X−1 −X−1ZX−1 � 0⇔
[
X−1 X−1Z
ZX−1 Z

]
� 0,

the optimization problem can be reformulated as:

min
X−1

− log detX−1

s.t.

 X−1 X−1Z X−1A(θ)
ZX−1 Z 0

A(θ)>X−1 0 Y −1

 � 0, ∀θ ∈ Θ

to which we can apply Lemma 1 since the linear matrix
inequality is affine in θ, and θ belongs to a convex set Θ.
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